Oceanologia No. 56 (1) / 14



The Editor would like to thank every reviewer who cooperated by evaluating the papers submitted to Oceanologia in 2013.




Simple statistical formulas for estimating biogeochemical properties of suspended particulate matter in the southern Baltic Sea potentially useful for optical remote sensing applications
Oceanologia 2014, no. 56(1), pp. 7-39

Sławomir B. Woźniak
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland;
e-mail: woznjr@iopan.gda.pl

keywords: Biogeochemical properties of suspended particulate matter, light absorption and backscattering coefficients, remote-sensing reflectance

Received 6 June 2013, revised 8 October 2013, accepted 16 October 2013.

Financial support for this research was provided by Statutory Research Programme No. I.1 at the Institute of Oceanology, Polish Academy of Sciences, by research grant No. NN306 2838 33 awarded to Sławomir B. Woźniak by the Polish Ministry of Science and Higher Education, and by the "SatBałtyk" project funded by the European Union through the European Regional Development Fund (contract No. POIG.01.01.02-22-011/09 entitled "The Satellite Monitoring of the Baltic Sea Environment").


Simple statistical formulas for estimating various biogeochemical properties of suspended particulate matter in the southern Baltic Sea are presented in this paper. These include formulas for estimating mass concentrations of suspended particulate matter (SPM), particulate organic matter (POM), particulate organic carbon (POC) and total chlorophyll a (Chl a). Two different approaches have been adopted. The first approach was to use the available empirical material (the results of field measurements and laboratory analyses of discrete water samples) and find statistical formulas for estimating the biogeochemical properties of suspended particulate matter from those of inherent optical properties (IOPs), which are potentially retrievable from remote sensing measurements. The second approach was to find formulas that would enable biogeochemical properties of suspended particulate matter to be estimated directly from spectral values of the remote-sensing reflectance Rrs. The latter was based on statistical analyses of a synthetic data set of Rrs obtained from numerical simulations of radiative transfer for which the available empirical material on seawater IOPs and biogeochemistry served as input data. Among the empirical formulas based on seawater IOPs that could be used as a step in two-stage remote sensing algorithms (the other step is estimating certain IOPs from reflectance), the best error statistics are found for estimates of SPM and POM from the particulate backscattering coefficient bbp in the blue region of light wavelengths (443 nm), and for estimates of POC and Chl a from the coefficient of light absorption by the sum of all non-water (i.e. suspended and dissolved) constituents of seawater an, in the blue (443 nm) and green (555 nm) parts of the spectrum respectively. For the semi-empirical formulas under consideration, which could serve as starting points in the development of local one-stage (direct) remote sensing algorithms, the best error statistics are found when SPM, POM and POC are estimated from the same blue-to-red band reflectance ratio (Rrs (490)/ Rrs(645)) (with estimated SPM reaching a better precision than estimated POM and POC), and when Chl a is estimated from the green-to-red band ratio (Rrs(555)/Rrs(645)).

  References ref

Ahn Y.-H., Moon J.-E., Gallegos S., 2001, Development of suspended particulate matter algorithms for ocean color remote sensing, Korean J. Remote Sens., 17 (4), 285-295.

Bukata R. P., Jerome J. H., Kondratyev K. Ya., Pozdnyakov D. V., 1995, Optical properties and remote sensing of inland and coastal waters, CRC Press, Boca Raton, 362 pp.

Dana D. R., Maffione R. A., 2002, Determining the backward scattering coefficient with fixed-angle backscattering sensors - revisited, Ocean Optics XVI Conf., November 18-22, Santa Fe, New Mexico, 9 pp.

Darecki M., Kaczmarek S., Olszewski J., 2005, SeaWiFS ocean colour chlorophyll algorithms for the southern Baltic Sea, Int. J. Remote Sens., 26 (2), 247-260, http://dx.doi.org/10.1080/01431160410001720298

Darecki M., Stramski D., 2004, An evaluation of MODIS and SeaWiFS bio- optical algorithms in the Baltic Sea, Remote Sens. Environ., 89 (3), 326-350, http://dx.doi.org/10.1016/j.rse.2003.10.012

Dera J., Woźniak B., 2010, Solar radiation in the Baltic Sea, Oceanologia, 52 (4), 533-582, http://dx.doi.org/10.5697/oc.52-4.533

Fournier G. R., Forand J. L., 1994, Analytic phase function for ocean water, Ocean Optics XII, Proc. SPIE Int. Soc. Opt. Eng., 2258, 194-201.

Franz B. A., Werdell P. J., 2010, A generalized framework for modeling of inherent optical properties in remote sensing applications, Proc. Ocean Optics 2010, Anchorage, Alaska, USA, 27 September-1 October 2010, 13 pp.

Gordon H. R., Brown O. B., Jacobs M. M., 1975, Computed relationships between inherent and apparent optical properties of a flat, homogeneous ocean, Appl. Optics, 14 (2), 417-427, http://dx.doi.org/10.1364/AO.14.000417

HOBI Labs (Hydro-Optics, Biology & Instrumentation Laboratories, Inc.), 2008, HydroScat-4 spectral backscattering sensor, USER’S MANUAL, Rev. 4., June 15, 2008, 65 pp.

IOCCG, 2012, Ocean-colour observations from a geostationary orbit, [in:] Reports of the International Ocean-Colour Coordinating Group No. 12, D. Antoine (ed.), IOCCG, Dartmouth, 103 pp.

Kowalczuk P., 1999, Seasonal variability of yellow substance absorption in the surface layer of the Baltic Sea, J. Geophys. Res., 104 (12), 30047-30058, http://dx.doi.org/10.1029/1999JC900198

Kowalczuk P., Olszewski J., Darecki M., Kaczmarek S., 2005, Empirical relationships between coloured dissolved organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters, Int. J. Remote Sens., 26 (2), 345-370, http://dx.doi.org/10.1080/01431160410001720270

Lee Z. P., Carder K. L., Arnone R., 2002, Deriving inherent optical properties from water color: A multi-band quasi-analytical algorithm for optically deep waters, Appl. Optics, 41 (27), 5755-5772, http://dx.doi.org/10.1364/AO.41.005755

Loisel H., Bosc E., Stramski D., Oubelkheir K., Deschamps P. Y., 2001, Seasonal variability of the backscattering coefficient in the Mediterranean Sea based on Satellite SeaWiFS imagery, Geophys. Res. Lett., 28 (22), 4203-4206, http://dx.doi.org/10.1029/2001GL013863

Loisel H., Meriaux X., Poteau A., Artigas L. F., Lubac B., Gardel A., Cafflaud J., Lesourd S., 2009, Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications, J. Coast. Res., 56 (SI), 1532-1536.

Maffione R. A., Dana D. R., 1997, Instruments and methods for measuring the backward-scattering coefficient of ocean waters, Appl. Optics, 36 (24), 6057-6067, http://dx.doi.org/10.1364/AO.36.006057

Maritorena S., Hembise Fanton d’Andon O., Mangin A., Siegel D. A., 2010, Merged satellite ocean color data products using a bio-optical model: characteristics, benefits and issues, Remote Sens. Environ., 114 (8), 1791-1804, http://dx.doi.org/10.1016/j.rse.2010.04.002

Maritorena S., Siegel D. A., 2005, Consistent merging of satellite ocean color data sets using a bio-optical model, Remote Sens. Environ., 94 (4), 429-440, http://dx.doi.org/10.1016/j.rse.2004.08.014

Maritorena S., Siegel D. A., Peterson A., 2002, Optimization of a semi-analytical ocean color model for global scale applications, Appl. Optics, 41 (15), 2705-2714, http://dx.doi.org/10.1364/AO.41.002705

Martinez-Vicente V., Land P. E., Tilstone G. H., Widdicombe C., Fishwick J. R., 2010, Particulate scattering and backscattering related to water constituents and seasonal changes in the Western English Channel, J. Plankton Res., 32 (5), 603-619, http://dx.doi.org/10.1093/plankt/fbq013

McKee D., Cunningham A., 2006, Identification and characterization of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents, Estuar. Coast. Shelf Sci., 68 (1-2), 305-316, http://dx.doi.org/10.1016/j.ecss.2006.02.010

McKee D., Piskozub J., Brown I., 2008, Scattering error corrections for in situ absorption and attenuation measurements, Opt. Express, 16 (24), 19480-19482, http://dx.doi.org/10.1364/OE.16.019480

Miller R. L., McKee B. A., 2004, Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters, Remote Sens. Environ., 93 (1-2), 259-266, http://dx.doi.org/10.1016/j.rse.2004.07.012

Mobley C. D., 1994, Light and water; radiative transfer in natural waters, Acad. Press, San Diego, 592 pp.

Morel A., 1974, Optical properties of pure water and pure sea water, [in:] Optical aspects of oceanography, N. G. Jerlov & E. Steemann Nielsen (eds.), Acad. Press, London, 1-24. Morel A., Prieur L., 1977, Analysis of variations in ocean color, Limnol. Oceanogr., 22 (4), 709-722, http://dx.doi.org/10.4319/lo.1977.22.4.0709

Neukermans G., Loisel H., Meriaux X., Astoreca R., McKee D., 2012, In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition, Limnol. Oceanogr., 57 (1), 124-144, http://dx.doi.org/10.4319/lo.2012.57.1.0124

Pegau W. S., Gray D., Zaneveld J. R. V., 1997, Absorption and attenuation of visible and near-infrared light in water: Dependence on temperature and salinity, Appl. Optics, 36 (24), 6035-6046, http://dx.doi.org/10.1364/AO.36.006035

Pope R. M., Fry E. S., 1997, Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements, Appl. Optics, 36 (33), 8710-8723, http://dx.doi.org/10.1364/AO.36.008710

Rodriguez-Guzman V., Gilbes-Santaella F., 2009, Using MODIS 250 m imagery to estimate total suspended sediment in a tropical open bay, Int. J. Syst. Appl. Eng. & Dev., 3 (1), 36-44.

Siegel H., Gerth M., Beckert M., 1994, The variation of optical properties in the Baltic Sea and algorithms for the application of remote sensing data, Ocean Optics XII, Proc. SPIE Int. Soc. Opt. Eng., 2258, 894-905.

Sogandares F. M., Fry E. S., 1997, Absorption spectrum (340-640 nm) of pure water. I. Photothermal measurements, Appl. Optics, 36 (33), 8699-8709, http://dx.doi.org/10.1364/AO.36.008699

Smith R. C., Baker K. S., 1981, Optical properties of the clearest natural waters (200-800 nm), Appl. Optics, 20 (2), 177-184, http://dx.doi.org/10.1364/AO.20.000177

Stramski D., Reynolds R. A., Babin M., Kaczmarek S., Lewis M. R., Röttgers R., Sciandra A., Stramska M., Twardowski M. S., Franz B. A., Claustre H., 2008, Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans, Biogeosciences, 5 (1), 171-201, http://dx.doi.org/10.5194/bg-5-171-2008

Wang L., Zhao D., Yang J., Chen Y., 2012, Retrieval of total suspended matter from MODIS 250 m imagery in the Bohai Sea of China, J. Oceanogr., 68 (5), 719-725, http://dx.doi.org/10.1007/s10872-012-0129-5

Wong M. S., Lee K. H., Kim Y. J., Nichol J. E., Li Z., Emerson N., 2007, Modeling of suspended solids and sea surface salinity in Hong Kong using Aqua/MODIS satellite images, Korean J. Remote Sens., 23 (3), 161-169.

Woźniak B., Bradtke K., Darecki M., Dera J., Dzierzbicka L., Ficek D., Furmańczyk K., Kowalewski M., Krężel A., Ma jchrowski R., Ostrowska M., Paszkuta M., Stoń-Egiert J., Stramska M., Zapadka T., 2011a, SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing Project in Poland. Part 1: Assumptions, scope and operating range, Oceanologia, 53 (4), 897-924, http://dx.doi.org/10.5697/oc.53-4.897

Woźniak B., Bradtke K., Darecki M., Dera J., Dudzińska-Nowak J., Dzierzbicka L., Ficek D., Furmańczyk K., Kowalewski M., Krężel A., Majchrowski R., Ostrowska M., Paszkuta M., Stoń-Egiert J., Stramska M., Zapadka T., 2011b, SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing Project in Poland. Part 2: Practical applicability and preliminary results, Oceanologia, 53 (4), 925-958, http://dx.doi.org/10.5697/oc.53-4.925

Woźniak S. B., Meler J., Lednicka B., Zdun A., Stoń-Egiert J., 2011, Inherent optical properties of suspended particulate matter in the southern Baltic Sea, Oceanologia, 53 (3), 691-729, http://dx.doi.org/10.5697/oc.53-3.691

Zaneveld J. R. V., Kitchen J. C., Moore C., 1994, The scattering error correction of reflecting-tube absorption meters, Ocean Optics XII, Proc. SPIE Int. Soc. Opt. Eng., 2258, 44-55.

full, complete article (PDF - compatibile with Acrobat 4.0), 628 KB

Biometry and reproductive biology of Pseudonereis anomala Gravier 1901 (Polychaeta: Nereididae) on the Alexandria coast, Egypt
Oceanologia 2014, no. 56(1), pp. 41-58

Rasha Hamdy, Mohamed Moussa Dorgham*, Hoda Hassan El-Rashidy, Manal Mohamed Atta
Department of Oceanography, Faculty of Science, Alexandria University,
Alexandria, 21511, Egypt;
e-mail: mdorgham1947@yahoo.com
*corresponding author

keywords: Polychaete reproduction, Pseudonereis anomala, fecundity, biometry, length-weight relationship

Received 13 June 2013, revised 14 November 2013, accepted 31 December 2013.


The biometric characteristics and reproductive biology of the nereid polychaete Pseudonereis anomala were studied monthly from August 2009 to July 2010 at two ecologically different sites (Abu-Qir and El-Mex) on the Alexandria coast, south-eastern Mediterranean Sea. The maximum body length and weight showed different values at the two sites: 9.8 and 11.9 cm, and 0.77 and 1.3 g respectively. The formula of the length-weight relationship indicated allometric growth, whereas the regression equation between length to the 6th segment and weight reflected isometric growth. Immature individuals were the major component of the worm population at the two sites, making up 69.1% at Abu Qir and 66.9% at El Mex; the respective percentages of males and females at these sites were 5.8-8.1% and 22.8-27.3%. Spawning was observed all the year round with female fecundity conspicuously lower at Abu-Qir (annual average: 26556 ± 999 eggs per female) than at El-Mex (annual average: 47955 ± 2916 eggs per female). However, oocyte size was greater at Abu Qir (diameter: up to 250 µm) than at El Mex (diameter: up to 220 µm).

  References ref

Abd-Elnaby F.A., 2009, Observations on spermatogenesis in Polychaete. Species, Halla parthenopeia (Family: Oenonidae, Polychaeta), World Appl. Sci. J., 6 (1), 144-153.

Arias A. M., Drake P., 1995, Structure and production of the benthic macroinvertebrate community in a shallow lagoon in the Bay of Cádiz, Mar. Ecol.-Prog. Ser., 115, 151-167, http://dx.doi.org/10.3354/meps115151

Bartels-Hardege H. D., Hardege J. D., Beckmann M., Muller C., 1996, Sex pheromones in marine polychaetes V: biologically active compound from the coelomic fluid of female Nereis japonica (Annelida Polychaeta), J. Exper. Mar. Biol. Ecol., 201 (1-2), 275-284, http://dx.doi.org/10.1016/0022-0981(96)00009-3

Bechamn W. C., 1948, The length-weight relationship, factors for conversions between standard and total lengths, and coefficients of condition for seven Michigan fishes, T. Am. Fish. Soc., 75 (1), 237-256, http://dx.doi.org/10.1577/1548-8659(1945)75[237:TLRFFC]2.0.CO;2

Çinar M. E., Altun C., 2007, A preliminary study on the population characteristics of the lessepsian species Pseudonereis anomala (Polychaeta: Nereididae) in Iskenderun Bay (Levantine Sea, Eastern Mediterranean), Turk. J. Zool., 31, 403-410.

Çinar M. E., Ergen Z., 2005, Lessepsian migrants expanding their distributional ranges; Pseudonereis anomala (Polychaeta: Nereididae) in Izmir Bay (Aegean Sea), J. Mar. Biol. Assoc. UK, 85 (2), 313-321, http://dx.doi.org/10.1017/ S0025315405011203h

Chatelain É. H., Breton S., Lemieux H., Blier P. U., 2008, Epitoky in Nereis (Neanthes) virens (Polychaeta: Nereididae): a story about sex and death, Comp. Biochem. Phys. B, 149 (1), 202-208, http://dx.doi.org/10.1016/j.cbpb.2007.09.006

Costa-Paiva E. M., Paiva P. C., 2007, A morphometric analysis of Eunice cuvier (Annelida, Polychaeta) species, Rev. Bras. Zool., 24 (2), 353-358, http://dx.doi.org/10.1590/S0101-81752007000200013

Cunha T., Hall A., Queiroga H., 2005, Estimation of the Diopatra neapolitana annual harvest resulting from digging activity in Canal de Mira, Ria de Aveiro, Fish. Res., 76 (1), 56-66, http://dx.doi.org/10.1016/j.fishres.2005.05.008

Dağli E., Ergen Z., Çinar M. E., 2005, One-year observation on the population structure of Diopatra neapolitana Delle Chiaje (Polychaeta, Onuphidae) in Izmir Bay (Aegean Sea, eastern Mediterranean), Mar. Ecol., 26 (3-4), 265-272, http://dx.doi.org/10.1111/j.1439-0485.2005.00055.x

Day J. H., 1967, A monograph on the Polychaetes of southern Africa. Part 1: Errantia, Brit. Mus. (Nat. Hist.), London, 878 pp.

Dorgham M. M., Hamdy R., El-Rashidy H. H., Atta M. M., 2013, First records of polychaetes new to Egyptian Mediterranean waters, Oceanologia, 55 (1), 235-267, http://dx.doi.org/10.5697/oc.55-1.235

El-Barhoumi M., Scaps P., Zghal F., 2013, Reproductive cycle of Marphysa sanguinea (Montagu, 1815) (Polychaeta: Eunicidae) in the Lagoon of Tunis, Sci. World J., art. ID 624197, 7 pp., http://dx.doi.org/10.1155/2013/624197

Ezhova E. E., 2011, Spawning and early ontogenesis of the littoral polychaete Namanereis littoralis (Grube, 1876) (Nereididae, Namanereidinae), Russ. J. Dev. Biol., 42 (3), 160-167, http://dx.doi.org/10.1134/S1062360411030064

Fidalgo e Costa P., 1999, Reproduction and growth in captivity of the polychaete Nereis diversicolor O. F. Mu¨ller, 1776, using two different kinds of sediment: preliminary assays, Bol. Inst. Esp. Oceanogr., 15 (1-4), 351-355.

Fischer A., 1999, Reproductive and developmental phenomena in annelids: a source of exemplary research problems, Hydrobiologia, 402, 1-20, http://dx.doi.org/10.1023/A:1003719906378

Fishelson L., Rullier F., 1969, Quelques annelides polychetes de La Mer Rouge, Israel J. Zool., 18 (1), 49-117.

Hamdy R., 2008, Ecological Studies on Benthic Polychaetes Along Alexandria coast, M. Sc. thesis, Alexandria Univ., 214 pp.

Hile R., 1936, Age and growth of the Cisco Leucichthys artedi (Le Sueur), in the lakes of the north-eastern highlands, Wisconsin, Bull. U.S. Bur. Fish., 48 (19), 211-317.

Jha A. N., Hutchinson T. H., Mackay J. M., Elliott B. M., Dixon D. R., 1996, Development of an in-vivo genotoxicity assay using the marine worm Platynereis dumerilii (Polychaeta, Nereidae), Mutat. Res. - Envir. Muta., 359 (2), 141-150, http://dx.doi.org/10.1016/S0165-1161(96)90260-5

Luis O. J., Passos A. M., 1995, Seasonal changes in lipid-content and composition of the polychaete Nereis (Hediste) diversicolor, Comp. Biochem. Phys. B., 111 (4), 579-586, http://dx.doi.org/10.1016/0305-0491(95)00029-8

McHugh D., 1993, A comparative study of reproduction and development in the Polychaete Family Terebellidae, Biol. Bull., 185, 153-167.

Ménard F., Gentil F., Dauvin J. C., 1989, Population dynamics and secondary production of Owenia fusiformis Delle Chiaje (Polychaeta) from the Bay of Seine (eastern English Channel), J. Exp. Mar. Biol. Ecol., 133, 151-167.

Nicolaidou A., 1983, Life history and productivity of Pectinaria koreni Malmgren Polychaeta), Estuar. Coast. Shelf Sci., 17 (3), l-43.

Olive P. J. W., 1985, Environmental control of reproduction in Polychaeta, Fortschr. Zool., 29, 17-38.

Olive P. J. W., 1999, Polychaete aquaculture and polychaete science: a mutual synergism, Hydrobiologia, 402, 175-183, http://dx.doi.org/10.1023/A:1003744610012

Olive P. J. W., Wang W. B., 1997, Cryopreservation of Nereis virens (Polychaeta, Annelida) larvae: the mechanism of preservation of a differentiated metazoan, Cryobiology, 34 (3), 284-294. Omena E. P., Amaral A. C. Z., 2000, Population dynamics and secondary production of Laeonereis acuta (Treadwell, 1923) (Nereididae: Polychaeta), Bull. Mar. Sci., 67 (1), 421-431.

Prevedelli D., Cassai C., 2001, Reproduction and larval development of Perinereis rullieri Pilato in the Mediterranean Sea (Polychaeta: Nereididae), Ophelia, 54 (2), 133-142, http://dx.doi.org/10.1080/00785236.2001.10409461

Reish D. J., 1985, The use of the polychaetous annelid Neanthes arenaceodentatus as a laboratory experimental animal, Tethys, 11, 335-341.

Reish D. J., De Callibus K., Dewar J., Bube C., 2009, Reproductive longevity in two species of polychaetous annelids, Zoosymposia, 2, 391-395.

Schroeder P. C., Hermans C. O., 1975, Annelida: polychaeta, [in:] Reproduction of marine invertebrates. III. Annelids and Echiurans, A. C. Giese & J. S. Pearse (eds.), Acad. Press, New York, 1-213.

Selim S. A., Abdel Naby F. A., Gab-Alla A. A., Ghoba A., 2005, Gametogenesis and spawning of Spirobranchus tetraceros (Polychaeta, Serpulidae) in Abu Kir Bay, Egypt, Mediterr. Mar. Sci., 6 (1), 89-97, http://dx.doi.org/10.12681/mms.195

Strickland J. D. H., Parsons T. R., 1972, A practical handbook of seawater analysis, Bull. Fish Res. Bd. Canada, 167, 1-310.

Watson G. J., Bentley M. G., Gaudron S. M., Hardege J. D., 2003, The role of chemical signals in the spawning induction of polychaete worms and other marine invertebrates, J. Exp. Mar. Biol. Ecol., 294 (2), 169-187, http://dx. doi.org/10.1016/S0022-0981(03)00264-8

Watson G. I., Hamilton K. M., Tuffnail W. F., 2005, Chemical alarm signaling in the polychaete Nereis (Neanthes) virens (Sars) Annelida: Polychaetes, Anim. Behav., 70 (5), 1125-1132, http://dx.doi.org/10.1016/j.anbehav.2005.03.011

Younsi M., Daas T., Daas O., Scaps P., 2010, Polychaetes of commercial interest from the Mediterranean East Coast of Algeria, Medit. Mar. Sci., 11 (1), 185-188.

full, complete article (PDF - compatibile with Acrobat 4.0), 278 KB

Principal Component and Cluster Analysis for determining diversification of bottom morphology based on bathymetric profiles from Brepollen (Hornsund, Spitsbergen)
Oceanologia 2014, no. 56(1), pp. 59-84

Mateusz Moskalik1, Jarosław Tęgowski2, Piotr Grabowiecki1, Monika Żulichowska3
1Institute of Geophysics, Polish Academy of Sciences,
Księcia Janusza 64, 01-452 Warsaw, Poland;
e-mail: mmosk@igf.edu.pl
e-mail: graba@igf.edu.pl
2Department of Oceanography and Geography, University of Gdańsk,
al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland;
e-mail: j.tegowski@ug.edu.pl
3Department of Biology and Earth Sciences, Jagiellonian University,
Gronostajowa 7, 30-387 Kraków, Poland;
e-mail: m_zulik@interia.pl

keywords: Fjord morphology, Brepollen, Hornsund, Svalbard, Principal Component and Cluster Analyses

Received 24 May 2013, revised 24 September 2013, accepted 3 October 2013.

The project was partly supported by The Polish Ministry of Sciences and Higher Education Grant No. N N525 350038.


Navigation charts of the post-glacial regions of Arctic fjords tend not to cover regions from which glaciers have retreated. Whilst research vessels can make detailed bathymetric models using multibeam echosounders, they are often too large to enter such areas. To map these regions therefore requires smaller boats carrying single beam echosounders. To obtain morphology models of equivalent quality to those generated using multibeam echosounders, new ways of processing data from single beam echosounders have to be found. The results and comprehensive analysis of such measurements conducted in Brepollen (Hornsund, Spitsbergen) are presented in this article. The morphological differentiation of the seafloor was determined by calculating statistical, spectral and wavelet transformation, fractal and median filtration parameters of segments of bathymetric profiles. This set of parameters constituted the input for Principal Component Analysis and then in the form of Principal Components for the Cluster Analysis. As a result of this procedure, three morphological classes are proposed for Brepollen: (i) steep slopes (southern Brepollen), (ii) flat bottoms (central Brepollen) and gentle slopes (the Storebreen glacier valley and the southern part of the Hornbreen glacier valley), (iii) the morphologically most diverse region (the central Storebreen valley, the northern part of the Hornbreen glacier valley and the north-eastern part of central Brepollen).

  References ref

Adam C., Vidal V., Bonneville A., 2005, MiFil: a method to characterize seafloor swells with application to the south central Pacific, Geochem. Geophy. Geosy.,6 (1), Q01003, 1-25, http://dx.doi.org/10.1029/2004GC000814

Aharonson O., Zuber M. T., Rothman D. H., 2001, Statistics of Mars’ topography from the Mars Orbiter Laser Altimeter: slopes, correlations and physical models, J. Geophys. Res., 106 (E10), 23723-23735, http://dx.doi.org/10.1029/2000JE001403

Błaszczyk M., Jania J. A., Hagen J. O., 2009, Tidewater glaciers of Svalbard: recent changes and estimates of calving fluxes, Pol. Polar Res., 30 (2), 85-142.

Błaszczyk M., Jania J. A., Kolondra L., 2013, Fluctuations of tidewater glaciers in Hornsund Fjord (Southern Svalbard) since the beginning of the 20th century, Pol. Polar Res., 34 (4), 327-352, http://dx.doi.org/10.2478/popore-2013-0024

Caliński T., Harabasz J., 1974, A dendrite method for cluster analysis, Commun. Stat., 3, 1-27.

Dowdeswell J. A., Hogan K. A., Evans J., Noormets R., O’Cofaigh C., Ottesen D., 2010, Past ice-sheet flow east of Svalbard inferred from streamlined subglacial landforms, Geology, 38 (2), 163-166, http://dx.doi.org/10.1130/G30621.1

Forwick M., Baeten N. J., Vorren T. O., 2009, Pockmarks in Spitsbergen fjords, Norw. J. Geol., 89 (1-2), 65-77.

Głowacki P., Jania J. A., 2008, Nature of rapid response of glaciers to climate warming in Southern Spitsbergen, Svalbard, [in:] The first International Symposium on the Arctic Research (ISAR-1) - Drastic Change under Global Warming, Nat. Comm. Japan, Tokyo, 257-260.

Goff J. A., 2000, Simulation of stratigraphic architecture from statistical and geometrical characterizations, Math. Geol., 32 (7), 765-786, http://dx.doi.org/10.1023/A:1007579922670

Goff J. A., Orange D. L., Mayer L. A., Hughes Clarke J. E., 1999, Detailed investigation of continental shelf morphology using a high-resolution swath sonar survey: the Eel margin, northern California, Mar. Geol., 154 (1-4), 255-269, http://dx.doi.org/10.1016/S0025-3227(98)00117-0

Hastings H. M. G., Sugihara G., 1994, Fractals - a user’s guide for the natural sciences, Oxford Univ. Press, Oxford, New York, 7-77.

Herzfeld U. C., Kim I. I., Orcutt J. A., 1995, Is the ocean floor a fractal?, Math. Geol., 27 (3), 421-462, http://dx.doi.org/10.1007/BF02084611

Hiller J. K., Smith M., 2008, Residual relief separation: digital elevation model enhancement for geomorphological mapping, Earth Surf. Proc. Land., 33 (14), 2266-2276, http://dx.doi.org/10.1002/esp.1659

Kim S.-S., 2005, Separation of regional and residual components of bathymetry using directional median filtering, M. Sc. thesis, Univ. Hawaii, 49 p.

Kim S.-S., Wessel P., 2008, Directional median filtering for regional-residual separation of bathymetry, Geochem. Geophy. Geosy., 9 (3), Q03005, 11 pp., http://dx.doi.org/10.1029/2007GC001850

Lefebvre A., Lyons A. P., 2011, Quantification of roughness for seabed characterisation, [in:] Underwater Acoustic Measurements (4th UAM) - Technologies & Results, Kos, Greece, Proc. Book 4th Int. Conf. Exhibit., 1623-1630.

Little S. A., 1994, Wavelet analysis of seafloor bathymetry: an example, [in:] Wavelets in geophysics, E. Foufoula-Georgiou & P. Kumar (eds.), Acad. Press Inc., San Diego, London, 167-182.

Little S. A., Carter P. H., Smith D. K., 1993, Wavelet analysis of a bathymetric profile reveals anomalous crust, Geophys. Res. Lett., 20 (18), 1915-1918, http://dx.doi.org/10.1029/93GL01880

Little S. A., Smith D. K., 1996, Fault scarp identification in side-scan sonar and bathymetry images from the Mid-Atlantic Ridge using wavelet-based digital filters, Mar. Geophys. Res., 18 (6), 741-755, http://dx.doi.org/10.1007/BF00313884

Mandelbrot B. B., 1982, The fractal geometry of nature, W. H. Freeman & Co., New York, 468 pp.

Maulik U., Bandyopadhyay S., 2002, Performance evaluation of some clustering algorithms and validity indices, IEEE T. Pattern Anal., 24 (12), 1650-1654, http://dx.doi.org/10.1109/TPAMI.2002.1114856

Milligan G. W., Cooper M. C., 1985, An examination of procedures for determining the number of clusters in a data set, Psychometrica, 50 (2), 159-179, http://dx.doi.org/10.1007/BF02294245

Moskalik M., Bialik R. J., 2011, Statistical analysis of topography of Isvika Bay, Murchisonfjorden, Svalbard, [in:] GeoPlanet: Earth and planetary sciences, experimental methods in hydraulic research, P. Rowiński (ed.), 1st edn., Springer, Berlin-Heidelberg, 225-233.

Moskalik M., Błaszczyk M., Jania J., 2013b, Statistical analysis of Brepollen bathymetry as a key to determine average depth on a glacier foreland, Geomorphology, http://dx.doi.org/10.1016/j.geomorph.2013.09.029, (in press).

Moskalik M., Grabowiecki P., Tęgowski J., Żulichowska M., 2013a, Bathymetry and geographical regionalization of Brepollen (Hornsund, Spitsbergen) based on bathymetric profiles interpolations, Pol. Polar Res., 34 (1), 1-22, http://dx.doi.org/10.2478/popore-2013-0001

Nikora V., Goring D., 2004, Mars topography: bulk statistics and spectral scaling, Chaos Solit. Fractals, 19 (2), 427-439, http://dx.doi.org/10.1016/S0960-0779(03)00054-7

Nikora V., Goring D., 2005, Martian topography: scaling, craters, and high- order statistics, Math. Geol., 37 (4), 337-355, http://dx.doi.org/10.1007/s11004-005-5952-4

Nikora V., Goring D., 2006, Spectral scaling in Mars topography: effect of craters, Acta Geophys., 54 (1), 102-112, http://dx.doi.org/10.2478/s11600-006-0009-8

Ostrovsky I., Tęgowski J., 2010, Hydroacoustic analysis of spatial and temporal variability of bottom sediment characteristics in Lake Kinneret in relation to water level fluctuation, Geo-Mar. Lett., 30 (3-4), 261-269, http://dx.doi.org/10.1007/s00367-009-0180-4

Ottesen D., Dowdeswell J. A., 2006, Assemblages of submarine landforms produced by tidewater glaciers in Svalbard, J. Geophys. Res., 111, F01016, http://dx.doi.org/10.1029/2005JF000330

Ottesen D., Dowdeswell J. A., 2009, An inter-ice-stream glaciated margin: submarine landforms and a geomorphic model based on marine-geophysical data from Svalbard, Geol. Soc. Am. Bull., 121 (11-12), 1647-1665, http://dx.doi.org/10.1130/B26467.1

Ottesen D., Dowdeswell J. A., Benn D. I., Kristensen L., Christiansen H. H., Christensen O., Hansen L., Lebesbye E., Forwick M., Vorren T. O., 2008, Submarine landforms characteristic of glacier surges in two Spitsbergen fjords, Quaternary Sci. Rev., 27 (15-16), 1583-1599, http://dx.doi.org/10.1016/j.quascirev.2008.05.007

Ottesen D., Dowdeswell J. A., Landvik J. Y., Mienert J., 2007, Dynamics of the Late Weichselian ice sheet on Svalbard inferred from high-resolution sea-floor morphology, Boreas, 36(3), 286-306, http://dx.doi.org/10.1111/j.1502-3885.2007.tb01251.x

Pace N. G., Gao H., 1988, Swath seabed classiffication, IEEE J. Ocean. Eng., 13 (2), 83-90, http://dx.doi.org/10.1109/48.559

Pastusiak T., 2010, Issues of non-researched marine regions coverage by electronic maps, Logistyka, 2, 2069-2086, (in Polish).

Ray S., Turi R. H., 1999, Determination of number of clusters in K-means clustering and application in colour image segmentation, [in:] Advances in Pattern Recognition and Digital Techniques (ICAPRDT’99), Calcutta, India, Proc. 4th Int. Conf., N. R. Pal, A. K. De & J. Das (eds.), Narosa Publ. House, New Delhi, 137-143.

Statens Kartverk, 2008, Paper chart 526, Hornsund, scale 1:50 000.

Tęgowski J., Łubniewski Z., 2002, Seabed characterisation using spectral moments of the echo signal, Acta Acust., 88 (5), 623-626.

The Norwegian Hydrographic Service and Norwegian Polar Research Institute, 1990, Den Norske Los. Arctic Pilot, 7, (2nd edn.), U.K. Hydrogr. Office, 2007, NP11 Arctic Pilot Edition 2004, Correction 2007.

Wen R., Sinding-Larsen R., 1997, Uncertainty in fractal dimension estimated from power spectra and variograms, Math. Geol., 29 (6), 727-753, http://dx.doi.org/10.1007/BF02768900

Wessel P., 1998, An empirical method for optimal robust regional-residual separation of geophysical data, Math. Geol., 30 (4), 391-408, http://dx.doi.org/10.1023/A:1021744224009

White L., 2003, Rivers bathymetry analysis in the presence of submerged large woody debris, M. Sc. Eng. thesis, Univ. Texas, Austin, 157 pp.

White L., Hodges B. R., 2005, Filtering the signature of submerged large woody debris from bathymetry data, J. Hydrol., 309 (1-4), 53-65, http://dx.doi.org/10.1016/j.jhydrol.2004.11.011

Wilson M. F. J., O’Connell B., Brown C., Guinan J. C., Grehan A. J., 2007, Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope, Mar. Geod., 30 (1-2), 3-35, http://dx.doi.org/10.1080/01490410701295962

Wornell G. W., Oppenheim A. V., 1992, Estimation of fractal signals from noisy measurements using wavelets, IEEE T. Signal Proces., 40 (3), 611-623, http://dx.doi.org/10.1109/78.120804

full, complete article (PDF - compatibile with Acrobat 4.0), 985 KB

Sediment deposition and accumulation rates determined by sediment trap and 210Pb isotope methods in the Outer Puck Bay (Baltic Sea)
Oceanologia 2014, no. 56(1), pp. 85-106

Angelika Szmytkiewicz1,*, Tamara Zalewska2,
1Institute of Oceanography, University of Gdańsk,
al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland;
e-mail: oceaszm@ug.edu.pl
*corresponding author
2Institute of Meteorology and Water Management, National Research Institute, Maritime Branch,
J. Waszyngtona 42, 81-342 Gdynia, Poland

keywords: Sedimentation rates, sediment trap, 210Pb isotope methods, outer Puck Bay, Baltic Sea

Received 22 March 2013, revised 30 August 2013, accepted 9 October 2013.


Two methods - in situ sediment trap experiments and an isotopic method based on measurements of 210Pb activities in the sediment cores taken near the traps - were applied for determining sediment deposition and sediment accumulation rates in the eastern part of Puck Bay. The sediment deposition rate (1.67 mm year-1) based on the in situ measurement was comparable with the sediment accumulation rate calculated using the Constant Flux:Constant Sedimentation Rate model for the isotopic method. The age of the sediment layers was determined with the Constant Rate of Supply model; the deepest layers had accumulated around 1900.

  References ref

Appleby P.G., 1997, Dating of sediments by 210Pb: problems and solutions, [in:] Proceedings of a seminar ‘Dating of sediments and determination of sedimentation rate’, Helsinki, STUK A145:7.

Appleby P. G., Oldfield F., 1992, Application of 210Pb to sedimentation studies, [in:] Uranium-series disequilibrium: application to Earth, marine, and environmental sciences, M. Ivanovich & R. S. Harmon (eds.), Clarendon Press, Oxford, 731-778.

Bierman P. R., Albrecht A., Bothner M. H., Brown E. T., Bullen T. D., Gray L. B., Turpin L., 1998, Erosion, weathering and sediementation, [in:] Isotope tracers on catchment hydrology, C. Kendall & J. J. McDonnell (eds.), Amsterdam, Elsevier, 839 pp.

Blomqvist S., Kofoed C., 1981, Sediment trapping-A subaquatic in situ experiment, Limnol. Oceanogr., 26 (3), 585-590, http://dx.doi.org/10.4319/lo.1981.26.3.0585

Boer W., van den Bergh G. D., de Haas H., de Stigter H. C., Gieles R., van Weering Tj. C. E., 2006, Validation of accumulation rates in Teluk Banten (Indonesia) from commonly applied 210Pb models, using the 1883 Krakatau tephra as time marker, Mar. Geol., 227 (3-4), 263-277, http://dx.doi.org/10.1016/j.margeo.2005.12.002

Brush G. S., Martin E. A., De Fries R. S., Rice C. A., 1982, Comparison of 210Pb and pollen methods for determining rates of estuarine sediment accumulation, Quaternary Res., 18 (2), 203-215, http://dx.doi.org/10.1016/0033-5894(82)90070-9

Díaz-Asencio M., Alonso-Hernandez C. M., Bolanos-Álvarez Y., Gómez-Batista M., Pinto V., Morabito R., Hernández-Albernas J. I., Eriksson M., Sanchez-Cabeza J. A., 2009, One century sedimentary record of Hg and Pb pollution in the Sagua estuary (Cuba) derived from 210Pb and 137Cs chronology, Mar. Pollut. Bull., 59 (4-7), 108-115, http://dx.doi.org/10.1016/j.marpolbul.2009.02.010

Einsele G., 2000, Sedimentary basins evolution, facies and sediment budget, Berlin- Heidelberg, Springer, 792 pp., http://dx.doi.org/10.1007/978-3-662-04029-4

Faas R. W., Carson B., 1988, Short-term deposition and long-term accumulation of lagoonal sediment, Great Sound, New Jersey, Mar. Geol., 82 (1-2), 97-112, http://dx.doi.org/10.1016/0025-3227(88)90009-6

Goldberg E. D., 1963, Geochronology with 210Pb, [in:] Radioactivity dating, IAEA, Vienna, 121-131.

Grabowska-Olszewska B., Siergiejew J. M., 1977, Soil science, Wyd. Geol., Warszawa, 81-85, (in Polish).

Hargrave B. T., Burns N. M., 1979, Assesment of sediment trap collection eficiency, Limnol. Oceanogr., 24 (4), 1124-1136, http://dx.doi.org/10.4319/lo.1979.24.6.1124

Håkanson L., Floderus S., Wallin M., 1989, Sediment trap assemblages - a methodological description, Hydrobiologia, 176-177 (1), 481-490, http://dx.doi.org/10.1007/BF00026583

HELCOM, 1995, Radioactivity in the Baltic Sea 1984-1991, Baltic Sea Environ. Proc. No. 61, 59-68.

HELCOM, 2003, Radioactivity in the Baltic Sea 1992-1998, Baltic Sea Environ. Proc. No. 61, 5-15.

HELCOM, 2009, Radioactivity in the Baltic Sea 1999-2006, Baltic Sea Environ. Proc. No. 117, 47-49.

Hille S., Leipe T., Seifert T., 2006, Spatial variability of recent sedimentation rates in the eastern Gotland Basin (Baltic Sea), Oceanologia, 48 (2), 1-21.

Imam E., McCorquodale J., Bewtra J., 1983, Numerical modeling of sedimentation tanks, J. Hydraul. Eng.-ASCE, 109 (12), 1740-1754, http://dx.doi.org/10.1061/(ASCE)0733-9429(1983)109:12(1740)

Jankowska H., Łęczyński L., 1993, The bottom morphology, [in:] The Puck Bay, K. Korzeniewski (ed.), Fund. Rozw. Uniw. Gdańsk., Gdańsk, 316-319, (in Polish).

Jähmlich S., Lund-Hansen L. Ch., Leipe T., 2002, Enhanced settling velocities and vertical transport of particulate matter by aggregation in the benthic boundary layer, Dan. J. Geogr., 102, 37-49.

Jegliński W., Kramarska R., Uścinowicz Sz., Zachowicz J., 2009, Sediments; Habitats; Valorisation of the sea bottom, [in:] Atlas of Polish marine area bottom habitats, G. Gic-Grusza, L. Kryla-Straszewska, J. Urbański, J. Warzocha, J. M. Węsławski (eds.), Broker Innowacji, Gdynia, 28-29; 90-91; 94-95, (in Polish).

Komar P., 1998, Beach processes and sedimentation, Prentice Hall, New Jersey, 544 pp.

Kozerski H. P., 1994, Possibilities and limitations of sediment traps to measure sedimentation and resuspension, Hydrobiologia, 284 (1), 93-100, http://dx.doi.org/10.1007/BF00005734

Lund-Hanses L. C., Petersson M., Nurjaya W., 1999, Vertical sediment fluxes and wave-induced sediment resuspension in a shallow-water coastal lagoon, Estuaries, 22 (1), 39-46, http://dx.doi.org/10.2307/1352925 Łydka K., 1985, Petrology of sedimentary rocks, Wyd. Geol., Warszawa, 163 pp., (in Polish).

Massel S., 2010, Hydrodynamic processes in maritime ecosystems, Univ. Gdańsk, Sopot, 501 pp., (in Polish).

McKee B. A., Nittrouer C. A., De Master D. J., 1983, Concepts of sediment deposition and accumulation applied to the continental shelf near the mouth of the Yangtze River, Geology, 11 (11), 631-633, http://dx.doi.org/10.1130/0091-7613(1983)11<631:COSDAA>2.0.CO;2

Mojski J. E., 1995, Geological atlas of the southern Baltic 1:500 000, Tab. 34, p. 63, (in Polish).

Mulsow S., Piovano E., Cordoba F., 2009, Recent aquatic ecosystem response to environmental events revealed from 210Pb sediment profiles, Mar. Pollut. Bull., 59 (4-7), 175-181, http://dx.doi.org/10.1016/j.marpolbul.2009.05.018

Musielak S., 1983, The Puck Lagoon as an example of basin with sedimentation typical of lagoons, [in:] Dynamics of lithodynamic environment of coastal marine areas, J. Giżejewski & A. Mielczarski (ed.), Materials of I Polish school of sedimentology, Lubiatowo, part II, Inst. Hydroeng., PAS, Gdańsk, 412-448, (in Polish).

Musielak S., 1985, Sediments of seas and oceans, Wyd. Uniw. Gdańsk., Gdańsk, 179 pp., (in Polish).

Myślińska E., 2001, Laboratory studies of the soils, Wyd. Nauk. PWN, Warszawa, 277 pp., (in Polish).

Nicholas M. M., 1989, Sediment accumulation rate and relative sea-level rise in lagoons, Mar. Geol., 88 (3-4), 201-219, http://dx.doi.org/10.1016/0025-3227(89)90098-4

Nielsen S. P., Bengston P., Bojanowski R., Hagel P., Herrmann J., Ilus E., Jakobson E., Motiejunas S., Panteleev Y., Skujina A., Suplinska M., 1999, The radiological exposure of man from radioactivity in the Baltic Sea, Sci. Total Environ., 237-238, 133-141, http://dx.doi.org/10.1016/S0048-9697(99)00130-8

Passchier S., Uścinowicz S., Laban C., 1997, Sediment supply and transport directions in the Gulf of Gdańsk as observed from SEM analysis of quartz grain surface textures, Pr. Państw. Inst. Geol., CLVIII, 1-23.

Pempkowiak J., 1991, Enrichment factors of heavy metals in the Southern Baltic surface sediments dated with 210Pb, 137Cs and 134Cs, Environ. Int., 17 (5), 421-428, http://dx.doi.org/10.1016/0160-4120(91)90275-U

Piekarek-Jankowska H., Szmytkiewicz A., Kubowicz-Grajewska A., Kolat G., 2009, Geological conditions in the post-dredgings area in the Puck Bay, [in:] Development of a program of restoration of the post-dredgings pits area in the Puck Bay, L. Kruk-Dowigiałło & R. Opioła (eds.), Zakł. Wyd. Nauk. Inst. Morsk., Gdańsk, 113-130, (in Polish).

Pruszak Z., 1990, Debris movement and modification of the sea bottom in direction perpendicular to the coastline, Wyd. IBW PAN, Gdańsk, 173 pp., (in Polish). Pruszak Z., 1998, The dynamics of the shore and seabed, Wyd. IBW PAN, 463 pp., (in Polish).

Robbins J. A., 1978, Geochemical and geophysical applications of radioactive lead, [in:] Biogeochemistry of lead in the environment, J. O. Nriagu (ed.), Elsevier, Amsterdam, 285-393.

Roos P., Valeur J. R., 2006, A sediment trap and radioisotope study to determine resuspension of particle reactive substances in the sound between Sweden and Denmark, Cont. Shelf Res., 26 (4), 474-487, http://dx.doi.org/10.1016/j.csr.2006.01.001

Shepard F. P., 1973, Submarine geology, Harper Collins Publ., New York, 517 pp. Suplińska M. M., Pietrzak-Flis Z., 2008, Sedimentation rate and dating of bottom sediments in the Southern Baltic Sea region, Nukleonika, 53 (Suppl. 2), 105-111.

Syvitski J. P. M., 2003, Sediment fluxes and rates of sedimentation, [in:] Sediments and sedimentary rocks, G. V. Middleton (ed.), Dordrecht, Kluwer Acad. Publ., 600-606.

Szczepańska T., Uścinowicz S., 1994, Geochemical atlas of the southern Baltic, PIG, Warszawa, 10-12.

Szczuciński W., 2007, The modern methods of determining the accumulation of sediment in the sea, LAB, 12 (2), 12-15, (in Polish).

Szymczak E., 2006, The role of river sediment inflow in present sedimentation proceses in the Puck Lagoon, unpubl. Ph. D. thesis, Univ. Gdańsk, (in Polish).

Szymczak E., Piekarek-Jankowska H., 2006, The transport and distribution of the River load from the Reda River into the Puck Lagoon (southern Baltic Sea, Poland), Oceanol. Hydrobiol. Stud., 36 (1), 103-124.

Uścinowicz S., 1997, The Gdańsk Basin, Prz. Geol., 45 (6), 589-594, (in Polish). Uścinowicz S., Zachowicz J., 1993, Geological map of the bottom of the Baltic Sea, 1:200 000, sheet ‘Gdańsk’, PIG, Warszawa, (in Polish).

Uścinowicz S., Zachowicz J., 1994, Explanation of the Geological map of the bottom of the Baltic Sea 1:200 000, sheets ‘Gdańsk, Elbląg, Głębia Gdańska’, PIG, Warszawa, 65 pp., (in Polish). White J., 1990, The use of sediment traps in high-energy environments, Mar. Geophys. Res., 12 (1-2), 145-152, http://dx.doi.org/10.1007/BF00310569

Witkowski A., Pempkowiak J., 1995, Reconstruction of human impact from diatom and 210Pb sediment dating (the Gulf of Gdańsk - southern Baltic Sea), Geograph. Polon., 65, 63-67.

Zaborska A., Carroll J., Papucci C., Pempkowiak J., 2007, Intercomparison of alpha and gamma spectrometry techniques used in 210Pb geochronology, J. Environ. Radioactiv., 93 (1), 38-50, http://dx.doi.org/10.1016/j.jenvrad.2006.11.007

Zajączkowski M., Szczuciński W., Bojanowski R., 2004, Recent changes in sediment accumulation rates in Adventfjorden, Svalbard, Oceanologia, 46 (2), 217-231. Zalewska T., Lipska J., 2006, Contamination of the southern Baltic Sea with 137Cs and 90Sr over the period 2000-2004, J. Environ. Radioactiv., 91 (1-2), 1-14, http://dx.doi.org/10.1016/j.jenvrad.2006.08.001

Żytkowicz R., 1994, Sedimentation processes of organic matter in the Puck Lagoon, [in:] The Puck Bay - possibilities of revaluation, L. Kruk-Dowgiałło & P. Ciszewski (eds.), IOŚ, Warszawa, 23-33, (in Polish).

full, complete article (PDF - compatibile with Acrobat 4.0), 416 KB

Effect of accessory pigment composition on the absorption characteristics of a dinoflagellate bloom in a coastal embayment
Oceanologia 2014, no. 56(1), pp. 107-124

Anil Kumar Vijayan1,*, Srikanth Ayyala Somayajula2,3
1Centre for Marine Living Resources and Ecology (CMLRE),
Ministry of Earth Sciences, Cochin, India;
e-mail: anilkumarv@cmlre.gov.in
*corresponding author
2Indian National Centre for Ocean Information Services (INCOIS), "Ocean Valley",
Pragathi Nagar (BO), Nizampet (SO)Hyderabad–500090
3Present address: Takuvik Joint UL/CNRS Laboratory Program, Department of Biology, Laval University,
1045 Av. de la Médecine, 2078, Quebec G1V 0A6, Canada

keywords: Specific absorption coefficient, HPLC, Derivative analysis, NPP index

Received 7 January 2013, revised 15 October 2013, accepted 27 November 2013.


The light absorption properties of a dinoflagellate (Noctiluca scintillans Macartney) bloom in Manila Bay were analysed during the onset of a whole-bay-scale bloom in March 2004. The chlorophyll a concentrations varied over a very wide range from 1.4 µg l-1 to extremely high values of 521 µg l-1. The chlorophyll specific absorption coefficients of phytoplankton (a*ph(λ)) varied significantly in shape and magnitude. The spectrally averaged values of a*ph(λ) varied by two orders of magnitude within and outside the bloom patch. The total suspended solid concentration was high in the middle of the bay (≥4 mg l-1). The non-photosynthetic pigment (NPP) index was ~0.6 at most of the stations, mainly due to the presence of photoprotective pigments like zeaxanthin, lutein and neoxanthin, which led to variations in the blue absorption maxima of the chlorophyll-specific absorption coefficients. The absorption properties of the accessory pigments were masked owing to the presence of overlapping pigment absorption bands. The fourth derivative of the absorption spectra was able to resolve these overlapping features and enhance the absorption characteristics of prominent accessory pigments.

  References ref

Allali K., Bricaud A., Claustre H., 1997, Spatial variation in the chlorophyll- specific absorption coefficients of phytoplankton and photosynthetically active pigments in Equatorial Pacific, J. Geophys. Res., 102 (C6), 12413-12423, http://dx.doi.org/10.1029/97JC00380

Azanza R. V., Miranda L. N., 2001, Phytoplankton composition and Pyrodinium bahamense toxic blooms in Manila Bay, Philippines, J. Shellfish Res., 20, 1251-1255.

Babin M., Morel A., Falkowski P. G., Claustre H., Bricaud A., Kobler Z., 1996, Nutrient and light-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic systems, Deep Sea Res. Pt. 1, 43 (8), 1241-1272, http://dx.doi.org/10.1016/0967-0637(96)00058-1

Balch W. M., Haxo F. T., 1984, Spectral properties of Noctiluca miliaris Suriray, a heterotrophic dinoflagellate, J. Plankton Res., 6 (3), 515-525, http://dx.doi.org/10.1093/plankt/6.3.515

Barlow R., Lamont T., 2012, Phytoplankton absorption and pigment adaptation of a red tide in the Benguela ecosystem, Afr. J. Marine Sci., 34 (2), 241-248, http://dx.doi.org/10.2989/1814232X.2012.709968

Bidigare R. R., Morrow J. H., Kiefer D. A., 1989a, Derivative analysis of spectral absorption by photosynthetic pigments in the western Sargasso Sea, J. Mar. Res., 47 (2), 323-341, http://dx.doi.org/10.1357/002224089785076325

Bidigare R. R., Ondrusek M. E., Morrow J. H., Kiefer D. A., 1990, In vivo absorption properties of algal pigments, Proc. SPIE, 1302, 290-302, http://dx.doi.org/10.1117/12.21451

Bidigare R. R., Schofield O., Prezelin B. B., 1989b, Influence of zeaxanthin on quantum yield of photosynthesis of Synecococcus clone WH7803 (DC2), Mar. Ecol.-Prog. Ser., 56, 177-188, http://dx.doi.org/10.3354/meps056177

Bricaud A., Babin M., Morel A., Claustre H., 1995, Variability in the chlorophyll-specific absorption coefficient of natural phytoplankton: analysis and parameterization, J. Geophys. Res., 100 (C7), 13 321-13 332, http://dx.doi.org/10.1029/95JC00463

Bricaud A., Claustre H., Ras J., Oubelkheir K., 2004, Natural variability of phytoplanktonic absorption in oceanic waters: Influence of size structure of algal populations, J. Geophys. Res., 109, C11010, http://dx.doi.org/10.1029/2004JC002419

Chisholm S. W., 1992, Primary productivity and bio-geochemical cycles in the sea, Plenum Press, New York, 213-237.

Cleveland J. S., Weidemann A. D., 1993, Quantifying absorption by aquatic particles: A multiple scattering correction for glass-fiber filters, Limnol. Oceanogr., 38 (6), 1321-1327, http://dx.doi.org/10.4319/lo.1993.38.6.1321

Cleveland J. S., 1995, Regional models for phytoplankton absorption of chlorophyll a concentration, J. Geophys. Res., 100 (C7), 13333-13344, http://dx.doi.org/10.1029/95JC00532

Ciotti A. M., Cullen J. J., Lewis M. R., 1999, A semi-analytical model of the influence of phytoplankton community structure on the relationship between light attenuation and ocean color, J. Geophys. Res., 104 (C1), 1559-1578, http://dx.doi.org/10.1029/1998JC900021

De las Alas J. G., Sodusta J. A., 1985, A model for the wind driven circulation of Manila Bay, Nat. Appl. Sci. Bull., 37 (2), 159-170.

Duysens L. M. N., 1956, The flattening effect of the absorption spectra of suspension as compared to that of solutions, Biochim. Biophys. Acta, 19, 1-12, http://dx.doi.org/10.1016/0006-3002(56)90380-8

Fuji-ie W., Yanagi T., Siringan F., 2002, Tide, tidal current and sediment transport in Manila bay, La Mer, 40, 137-145.

Fukuyo Y., Takano H., Chihara M., Matsuoka K., 1990, Red tide organisms in Japan. An illustrated taxonomic guide, Uchida Rokakuho Co., Ltd., Tokyo, 407 pp.

Furuya K., Lirdwitayaprasit T., 2000, Pigment composition of Pedinomonas noc- tilucae (Pedinophyceae), an endosymbiont of green Noctiluca (Dinophyceae), La Mer, 38, 95-97.

Furuya K., Saito H., Sriwoon R., Vijayan A. K., Omura T., Furio E. E., Borja V. M., Boonyapiwat S., Lirdwitayaprasit T., 2006, Persistent whole-bay red tide of Noctiluca scintillans in Manila Bay, Philippines, Coast. Mar. Sci., 30 (1), 74-79.

Furio E. F., Gonzales C. L., 2002, Practical guide on paralytic shellfish poisoning monitoring in the Philippines, BFAR, Manila and JICA, Tokyo, 3-27.

Gonzales C. L., 1989, Biology, epidemiology and management of Pyrodinium red tides, ICLARM Conf. Proc., Fisheries Dept., Ministry of Development, Brunei Darussalam and Int. Center Living Aquat. Resourc. Manage., Manila, Philippines., 21, 39-47.

Gómez R. A., Weeks A. R., Boxall S. R., 2001, The identification of phytoplankton pigments from absorption spectra, Int. J. Remote Sens., 22, 315-338, http://dx.doi.org/10.1080/014311601449952

Halldal P., 1970, Photobiology of microorganisms, Wiley-Interscience, London, 17-55.

full, complete article (PDF - compatibile with Acrobat 4.0), 312 KB

Non-native crab Rhithropanopeus harrisii (Gould, 1984) - a new component of the benthic communities in the Gulf of Gdańsk (southern Baltic Sea)
Oceanologia 2014, no. 56(1), pp. 125-139

Joanna Hegele-Drywa*, Monika Normant
Department of Experimental Ecology of Marine Organisms, University of Gdańsk,
al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland;
e-mail: ocejhd@ug.edu.pl
*corresponding author

keywords: Harris mud crab, Rhithropanopeus harrisii, non-native species, distribution, Gulf of Gdańsk, southern Baltic Sea

Received 24 May 2013, revised 24 September 2013, accepted 3 October 2013.

This research was funded by the Polish National Science Centre, grant No.3016/B/PO1/2011/40.


The aim of this study was to determine the occurrence, spatial distribution and abundance pattern of the Harris mud crab Rhithropanopeus harrisii in the Gulf of Gdańsk (southern Baltic Sea). Between 2006 and 2010, this species was found at 69 out of 129 sampling stations, at depths from 0 to 20 m. Two main aggregations of the Harris mud crab were established: (1) in Puck Bay (max. density 19 indiv. 100 m-2) and (2) in the Gdynia and Sopot area (max. density 5 indiv. 100 m-2). 920 specimens were collected during the whole sampling period: 150 juveniles, 370 females and 400 males. The minimum measured carapace width was 1.96 mm, the maximum 21.40 mm (mean 9.03 ±4.11 mm).

  References ref

Bacevičius E., Gasiūnaitė Z. R., 2008, Two crab species-Chinese mitten crab (Eriocheir sinensis Milne-Edwards) and mud crab (Rhithropanopeus harrisii Gould ssp. tridentatus Maitland) in the Lithuanian coastal waters, Baltic Sea, Trans. Wat. Bull., 2 (2), 63-68, http://dx.doi.org/10.1285/i1825229Xv2n2p63

Barnes R. S. K., 2005, The Brackish-water fauna of northwestern Europe, Cambridge Univ. Press, New York, 312 pp.

Bonsdorff E., 2006, Zoobenthic diversity-gradients in the Baltic Sea: continuous post-glacial succession in a stressed ecosystem, J. Exp. Mar. Biol. Ecol., 330 (1), 383-391, http://dx.doi.org/10.1016/j.jembe.2005.12.041

Buszewski B., Buszewska T., Chmarzyński A., Kowalkowski T., Kowalska J., Kosobucki P., Zbytniewski R., Namieśnik J., Kot-Wasik A., Pacyna J., Panasiuk D., 2005, The present condition of the Vistula river catchment area and its impact on the Baltic Sea coastal zone, Reg. Environ. Change., 5 (2-3), 97-110, http://dx.doi.org/10.1007/s10113-004-0077-8

Christiansen M. E., Costlow J. D. Jr., 1975, The effect of salinity and cyclic temperature on larval develop of the mud crab Rhithropanopeus harrisii (Brachyura: Xantidae) reared in the laboratory, Mar. Biol., 32 (3), 215-221, http://dx.doi.org/10.1007/BF00399201

Colautti R. I., MacIsaac H. J., 2004, A neutral terminology to define ‘invasive’ species, Divers Distrib., 10 (2), 135-141, http://dx.doi.org/10.1111/j.1366-9516.2004.00061.x

Cronin T. W., 1982, Estuarine retention of larvae of the crab Rhithropanopeus harrisii, Estuar. Coast. Shelf Sci., 15 (2), 207-220, http://dx.doi.org/10.1016/0272-7714(82)90028-2

Cronin T. W., Forward R. B. Jr., 1986, Vertical migrations cycles of crab larvae and their role in larval dispersal, Bull. Mar. Sci., 39 (2), 192-201.

Czerniejewski P., 2009, Some aspects of population biology of the mud crab, Rhithropanopeus harrisii (Gould, 1841) in the Odra estuary, Poland, Oceanol. Hydrobiol. St., 38 (4), 49-62.

Czerniejewski P., Rybczyk A., 2008, Body weight, morphometry, and diet of the mud crab Rhithropanopeus harrisii tridentatus (Maitland, 1874) in the Odra Estuary, Poland, Crustaceana, 81 (11), 1289-1299, http://dx.doi.org/10.1163/156854008X369483

De Man J. G., 1892, Carcinological studies in the Leyden Museum, Notes Leyden Mus., 14, 225-264.

Demel K., 1953, Nowy gatunek w faunie Baętyku, Kosmos, 2, 105-106.

Diamond D. W., Scott L. K., Forward R. B. Jr., Kirby-Smith W., 1989, Respiration and osmoregulation of the estuarine crab Rhithropanopeus harrisii (Gould): effect of the herbicide, alachlor, Comp. Biochem. Phys. A, 93 (2), 313-318, http://dx.doi.org/10.1016/0300-9629(89)90043-1

Dukes J. F., Mooney H. A., 2004, Disruption of ecosystem processes in western North America by invasive species, Rev. Chil. Hist. Nat., 77 (3), 411-437, http://dx.doi.org/10.4067/S0716-078X2004000300003

Forward R. B. Jr., 2009, Larval Biology of the crab Rhithropanopeus harrisii (Gould): a synthesis, Biol. Bull., 216 (3), 243-256.

Fowler A. E., Forsström T., von Numers M., Vesakoski O., 2013, The North American mud crab Rhithropanopeus harrisii (Gould, 1841) in newly colonized Northern Baltic Sea: distribution and ecology, Aquat. Inv., 8 (1), 89-96, http://dx.doi.org/10.3391/ai.2013.8.1.10

Galil B. S., Gollasch S., Minchin D., Olenin S., 2009, Alien marine biota of Europe, [in:] Handbook of alien species in Europe, DAISIE (eds.), Springer, Dordrecht, 93-104.

Galil B. S., Clark P. F., Carlton J. T., 2011, Invading nature, Springer Ser. Inv. Ecol., 6, 716 pp.

Gonçalves F., Ribeiro R., Soares M. V. M., 1995, Rhithropanopeus harrisii (Gould), an American crab in the Estuary of the Mondego River, J. Crust. Biol., 15 (4), 756-762, http://dx.doi.org/10.2307/1548824

Hegele-Drywa J., Normant M., 2009, Feeding ecology of the American crab Rhithropanopeus harrisii (Crustacea, Decapoda) in the coastal waters of the Baltic Sea, Oceanologia, 51 (3), 361-375, http://dx.doi.org/10.5697/oc.51-3.361

Janta A., 1996, Recovery of the crab Rhithropanopeus harrisii (Gould) tridentatus (Maitland) population in the Dead Vistula Estuary (Baltic Sea, Poland), [in:] Crangon, Iss. Mar. Biol. Centre, Gdynia, Proc. 2nd Estuary Symp., Gdańsk, October 1993, 37-41.

Jensen K. R., Knudsen J., 2005, A summary of alien marine benthic invertebrates in Danish waters, Oceanol. Hydrobiol. Stud., 34 (Suppl. 1), 137-162.

Kujawa S., 1957, Biology and culture of the crab Rhithropanopeus harrisii (Gould) subsp. tridentatus (Maitland) from Vistula Lagoon, Wszechświat, 2, 57-59, (in Polish).

Koęodziejczyk A., Koperski P., 2000, Bezkręgowce sęodkowodne Polski. Klucz do oznaczania oraz podstawy morfologii i ekologii makrofauny, Wyd. Uniw. Warszaw., Warszawa, 250 pp.

Kotwicki L., 1997, Macrozoobenthos of the sandy littoral zone of the Gulf of Gdańsk, Oceanologia, 39 (4), 447-460.

Kotta J., Ojaveer H., 2012, Rapid establishment of the alien crab Rhithropanopeus harrisii (Gould) in the Gulf of Riga, Est. J. Ecol., 61 (4), 293-298.

Leppäkoski E., Olenin S., Gollasch S., 2002, The Baltic Sea - a field laboratory for invasion biology, [in:] Invasive aquatic species of Europe, E. Leppäakoski, S. Olenin & S. Gollasch (eds.), Kluwer Acad. Publ., The Netherlands, 253-259.

Levine J. M., Vilá M., D’Antonio C. D., Dukes J. S., Grigulis K., Lavorel S., 2003, Mechanisms underlying the impacts of exotic plant invasions, P. Roy. Soc. Lond. B Bio., 270 (1517), 775-781, http://dx.doi.org/10.1098/rspb.2003.2327

Maitland R. T., 1874, Naamlijst van Nederlandsche Schaaldieren, Tijdschr. Nederl. Deirk. Ver., 1, 228-269.

Michalski K., 1957, Rhithropanopeus harrisii subsp. tridentata (Mtl.) in the Rivers Vistula and Motęawa, Prz. Zool., 1, 68-69, (in Polish).

Miller R. J., 1990, E?ectiveness of crab and lobster traps, Can. J. Fish. Aquat. Sci., 47 (6), 1228-1251, http://dx.doi.org/10.1139/f90-143.

Mordukhay-Boltovskoy F. D., 1952, O wseleni nowogo vida kraba v bassein Dona, Priroda, 1, 113 pp. Nehring S., Leuchs H., 1999, Rhithropanopeus harrisii (Gould, 1841) (Crustacea: Decapoda) - ein amerikanisches Neozoon im Elbeästuar, Lauterbornia, 35, 49-51.

Normant M., Miernik J., Szaniawska A., 2004, Remarks on the morphology and the life cycle of Rhithropanopeus harrisii tridentatus (Maitland) from the Dead Vistula River, Oceanol. Hydrobiol. Stud., 33 (4), 93-102.

Normant M., Gibowicz M., 2008, Salinity induced changes in haemolymph osmolality and total metabolic rate of the mud crab Rhithropanopeus harrisii Gould, 1841 from Baltic coastal waters, J. Exp. Mar. Biol. Ecol., 355 (2), 145-152.

Paavola M., Olenin S., Leppäkoski E., 2005, Are invasive species most successful in habitat of low native species richness across European brackish water seas?, Estuar. Coast. Shelf Sci., 64 (4), 738-750, http://dx.doi.org/10.1016/j.ecss.2005.03.021

Pautsch F., Ławiński L., Turoboyski K., 1969, Zurö kologie der Krabbe Rhithropanopeus harrisii (Gould) (Xanthidae), Limnologia, 7 (1) 63-68.

Piliczewski B., 2001, Water temperature, [in:] Environmental conditions in the Polish zone of the Southern Baltic Sea during 2000, W. Krzymiński & E. Łysiak-Pastuszak (eds.), Inst. Meteorol. Water Manag., Mar. Branch Mater., Gdynia, 55-66, (in Polish).

Pro jecto-Garcia J., Cabral H., Schubart C. D., 2010, High regional differentiation in a North American crab species throughout its native range and invaded European waters: a phylogeographic analysis, Biol. Invasions, 12 (1), 253-263, http://dx.doi.org/10.1007/s10530-009-9447-y

Roche D. G., Torchin M. E., 2007, Established population of the North American Harris mud crab, Rhithropanopeus harrisii (Gould 1841) (Crustacea: Brachyura: Xanthidae) in the Panama Canal, Aquat. Inv., 2 (3), 155-161, http://dx.doi.org/10.3391/ai.2007.2.3.1

Roche D. G., Torchin M. E., Leung B., Binning S. A., 2009, Localized invasion of the North American Harris mud crab Rhithropanopeus harrisii, in the Panama Canal: implications for eradication and spread, Biol. Invasions, 11 (4), 983-993, http://dx.doi.org/10.1007/s10530-008-9310-6

Rodriguez G., Suarez H., 2001, Anthropogenic dispersal of decapod crustaceans in aquatic environments, Intersciencia, 26 (7), 282-288.

Ryan E. P., 1956, Observations on the life history and the distribution of the Xanthide (mud crabs) of Chesapeake Bay, Am. Mild. Nat., 56, 138-162.

Rychter A., 1997, Effect of anoxia on the behaviour, haemolymph lactate and glycogen concentrations in the mud crab Rhithropanopeus harrisii ssp. tridentatus (Maitland) (Crustacea: Decapoda), Oceanologia, 39 (3), 325-335.

Rychter A., 1999, Energy value and metabolism of the mud crab Rhithropanopeus harrisii tridentatus (Crustacea, Decapoda) in relation to ecological conditions, Ph.D. thesis, UG, Gdynia, (in Polish).

Schmidt-Nielsen K., 1997, Animal physiology: adaptation and environment, PWN, Warszawa, 730 pp., (in Polish).

Stachowicz J. J., Fried H., Osman R. W., Whitlatch R. B., 2002, Biodiversity, invasion resistance and marine ecosystem functioning: reconciling pattern and process, Ecology, 83 (9), 2575-2590, http://dx.doi.org/10.1890/0012-9658(2002)083[2575:BIRAME]2.0.CO;2

Stańczykowska A., 1986, Zwierzęta bezkręgowe naszych wód, WSiP, Warszawa, 218 pp.

Szudarski M., 1963, Distribution of the crab Rhithropanopeus harrisii (Gould) subsp. tridentatus (Maitland) in Poland, ICES, Baltic-Belt Seas Comm. No. 73.

Turoboyski K., 1973, Biology and ecology of the crab Rhithropanopeus harrisii ssp. tridentatus, Mar. Biol., 23 (4), 303-313, http://dx.doi.org/10.1007/BF00389338

Williams A. B., 1984, Shrimps, lobsters, and crabs of the Atlantic Coast of the eastern United States, Maine to Florida, Smithson. Inst. Press, Washington D. C., 401-404.

Zaitsev Y., ö ztürk B., 2001, Exotic species in the Aegean, Marmara, Black, Azov and Caspian Seas, Turk. Mar. Res. Found., Istanbul, 265 pp.

Żmudziński L., 1961, Decapods of the Baltic Sea, Prz. Zool., 5 (4), 352-360, (in Polish).

Żmudziński, L., 1999, Obunogi Amphipoda Baętyku - klucz do oznaczania, WSP - Inst. Biol. Ochrony Środ., Zakę. Ekol. Ochr. Morza, Sęupsk, 43 pp.

full, complete article (PDF - compatibile with Acrobat 4.0), 191 KB

Evadne anonyx G. O. Sars, 1897 - the first record of this Ponto-Caspian cladoceran in the Gulf of Gdańsk (Baltic Sea)
Oceanologia 2014, no. 56(1), pp. 141-150

Luiza Bielecka*, Stella Mudrak-Cegiołka, Marcin Kalarus
Department of Marine Plankton Research, Institute of Oceanography, University of Gdańsk,
al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland;
e-mail: ocelb@univ.gda.pl
*corresponding author

keywords: Evadne anonyx, non-indigenous species, Gulf of Gdańsk, Baltic Sea

Received 24 April 2013, revised 2 September 2013, accepted 9 October 2013.

This research was conducted within the framework of project No. 4739/B/P01/2010/39 from the Polish National Sciences Centre.


Evadne anonyx, a new invasive Ponto-Caspian species, was detected for the first time in the Gulf of Gdańsk in the summer of 2006. Seven years probably elapsed from the first record of E. anonyx in the Baltic Sea (Gulf of Finland) to the first one in the Gulf of Gdańsk. Although the species was found at 10 out of 13 stations in rather low densities (not exceeding 6 indiv. m-3), all the developmental stages of E. anonyx were present (juveniles as well as adults - parthenogenetic females, gamogenetic females and males) in the plankton material investigated.

  References ref

Aladin N. V., 1995, The conservation ecology of the Podonidae from the Caspian and Aral Seas, Hydrobiologia, 307 (1-3), 85-97, http://dx.doi.org/10.1007/BF00032000

Antsulevich A., 2007, First records of the tubenose goby Proterorhinus marmoratus (Pallas, 1814) in the Baltic Sea, Aquat. Invasions, 2 (4), 468-470, http://dx.doi.org/10.3391/ai.2007.2.4.23

Bielecka L., Krajewska-Sołtys A., Szymanek L., Szymelfenig M., 2005, Mesozooplankton in the Hel upwelling region (the Baltic Sea), Oceanol. Hydrobiol. Stud., 34 (2), 137-161.

Bielecka L., Żmijewska M. I., Szymborska A., 2000, A new predatory cladoceran Cercopagis (Cercopagis) pengoi (Ostroumov 1891) in the Gulf of Gdańsk, Oceanologia, 42 (3), 371-374.

Bielecka L., Mudrak S., 2010, New data on the non-indigenous cladoceran Cercopagis pengoi (Ostroumov 1891) in the Gulf of Gdańsk (Baltic Sea), Oceanologia, 52 (1), 147-151, http://dx.doi.org/10.5697/oc.52-1.147

Drake J. A. (ed.), 2009, Handbook of alien species in Europe: DAISIE, Invading Nature, Ser. Invas. Ecol., Vol. 3, 399 pp.

Duriš Z., Jurasz W., Kubláková M., Vaoecha D., 2000, Ponto-Caspian invading water-?flea Cercopagis pengoi in the Gulf of Gdańsk, Poland (Crustacea, Cladocera), Acta Fac. Rerum Nat. Univ. Ostraviensis, Biol.-Ekol., 192 (6-7), 51-56.

Janas U., Zgrundo A., 2007, First record of Mnemiopsis leidyi,1865 A. Agassiz in the Gulf of Gdańsk (southern Baltic Sea), Aquat. Invasions, 2 (4), 450-454, http://dx.doi.org/10.3391/ai.2007.2.4.18

Jaspers C., Titelman J., Hansson L. J., Haraldsso M., Rollike Ditlefsen C., 2011, The invasive ctenophore Mnemiopsis leidyi poses no direct threat to Baltic cod eggs and larvae, Limnol. Oceanogr., 56 (2), 431-439.

Krylov P. I., Bychenkov D. E., Panov V. E., Rodionova N. V., Telesh I. V., 1999, Distribution and seasonal dynamic of the Ponto-Caspian invader Cercopagis pengoi (Crustacea, Cladocera) in the Neva Estuary (Gulf of Finland), Hydrobiologia, 393 (0), 227-232, http://dx.doi.org/10.1023/A:1003558919696

Laine A. O., Mattila J., Lehikoinen A., 2006, First record of the brackish water dreissenid bivalve Mytilopsis leucophaeata in the northern Baltic Sea, Aquat. Invasions, 1 (1), 38-41, http://dx.doi.org/10.3391/ai.2006.1.1.9

Leppäkoski E., Gollasch S., Gruszka P., Ojaveer H., Olenin S., Panov V., 2002, The Baltic - a sea of invaders, Can. J. Fish. Aquat. Sci., 59 (7), 1175-1188, http://dx.doi.org/10.1139/f02-089

Litvinchuk L. F., 2005, Evadne anonyx Sars, 1897 (Cladocera, Polyphemoidea, Podonidae) - a new representative of the Baltic Sea fauna, Biol. Inland Waters, 1, 240-249, (in Russian).

Mordukhai-Boltovskoi F. D., 1995, Polyphemidae of the Pontocaspian Basin, Hydrobiologia, 25, 212-220, http://dx.doi.org/10.1007/BF00189864

Ojaveer H., Lumberg A., 1995, On the role of Cercopagis (Cercopagis) pengoi (Ostroumov) in Parnu Bay and the NE part of the Gulf of Riga ecosystem, Proc. Estonian Acad. Sci. Ecol., 5 (1/2), 20-25.

Ojaveer H., Simm M., Lankov A., 2004, Population dynamics and ecological impact of the non-indigenous Cercopagis pengoi in the Gulf of Riga (Baltic Sea), Hydrobiologia, 522(1-3), 261-269, http://dx.doi.org/10.1023/B:HYDR.0000029927.91756.41

Olszewska A., 2006, New records of Cercopagis pengoi (Ostroumov 1891) in the southern Baltic, Oceanologia, 48 (2), 319-321.

Orlova M. I., Telesh I. V., Berezina N. A., Antsulevich A. E., Maximov A. A., Litvinchuk L. F., 2006, E?ects of nonindigenous species on diversity and community functioning in the eastern Gulf of Finland (Baltic Sea), Helgoland. Mar. Res., 60 (2), 98-105, http://dx.doi.org/10.1007/s10152-006-0026-7

Panov V. E., Krylov P. I., Telesh I. V., 1999, The St. Petersburg harbour profile, [in:] Initial risk assessment of alien species in Nordic coastal waters, S. Gollasch & E. Leppäkoski (eds.), Nord, Copenhagen, 244 pp.

Pãollupüü M., Simm M., Põllumäe A., Ojaveer H., 2008, Successful establishment of the Ponto-Caspian alien cladoceran Evadne anonyx G. O. Sars 1897 in low-salinity environment in the Baltic Sea, J. Plankton Res., 30 (7), 777-782, http://dx.doi.org/10.1093/plankt/fbn036

Rivier I. K., 1998, The predatory Cladocera (Onychopoda: Podonidae, Polyphemidae, Cercopagidae) and Leptodorida of the world, Backhuys Pub., Leiden, 13, 213 pp.

Rodionova N. V., Krylov P. I., Panov V. E., 2005, Invasion of the Ponto-Caspian predatory cladoceran Cornigerius maeoticus maeoticus (Pengo, 1879) into the Baltic Sea, Oceanology, 45 (1), 66-68.

Rodionova N. V., Panov V. E., 2006, Establishment of Ponto-Caspian predatory cladoceran Evadne anonyx in the eastern Gulf of Finland, Baltic Sea, Aquat. Invasions, 1 (1), 7-12. StatSoft, Inc., 2010, STATISTICA (data analysis software system), ver. 9.1., www.statsoft.com.

Zaiko A., Lehtiniemi M., Naršéius A., Olenin S., 2011, Assessment of bioinvasion impacts on a regional scale: a comparative approach, Biol. Invasions, 13 (8), 1739-1765, http://dx.doi.org/10.1007/s10530-010-9928-z

full, complete article (PDF - compatibile with Acrobat 4.0), 181 KB


First record of a new alien species Limnodrilus cervix Brinkhurst, 1963 (Annelida, Clitellata) in the Vistula Lagoon (Southern Baltic Sea)
Oceanologia 2014, no. 56(1), pp.151-158

Elżbieta Dumnicka1, Izabela Jabłońska-Barna2,*, Agata Rychter3
1Institute of Nature Conservation, Polish Academy of Sciences,
al. A. Mickiewicza 33, 21--120 Kraków, Poland
2University of Warmia & Mazury, Faculty of Environmental Sciences,
M. Oczapowskiego 5, 10--719 Olsztyn, Poland;
e-mail: ijpb@uwm.edu.pl
*corresponding author
3The State School of Higher Professional Education in Elbląg, Institute of Technology,
Wojska Polskiego 1, 82--300 Elbląg, Poland

keywords: Alien Limnodrilus species, Vistula Lagoon

Received 19 June 2013, revised 7 November 2013, accepted 10 January 2014.


The present work reports the first record of Limnodrilus cervix in the south-eastern part of the Baltic Sea. A specimen of this North American species was found in 2010 in the Vistula Lagoon, near the village of Piaski (Poland). The distribution of other Nearctic Limnodrilus species in Europe is also presented.

  References ref

Brinkhurst R. O., 1963, Taxonomical studies on the Tubificidae (Annelida; Oligochaeta), Int. Rev. Ges. Hydrobio., 51 (5), 1-89.

Brinkhurst R. O., Jamieson B. G. M., 1971, Aquatic Oligochaeta of the world, Oliver & Boyd, Edinburgh, 860 pp.

Chubarenko B., 2008, The Vistula Lagoon, [in:] Transboundary waters and basins in the South-East Baltic, B. Chubarenko (ed.), Terra Baltica, Kaliningrad, 37-57.

Dobrzycka-Krahel A., Tarała A., Chabowska A., 2012, Expansion of alien gammarids in the Vistula Lagoon and the Vistula Delta (Poland), Environ. Monit. Assess., 185 (6), 5165-5175, http://dx.doi.org/10.1007/s10661-012-2933-1

Dziubińska A., 2011, Mytilopsis leucophaeta, an alien dreissenid bivalve discovered in the Gulf of Gdańsk (southern Baltic Sea), Oceanologia, 53 (2), 651-655, http://dx.doi.org/10.5697/oc.53-2.651

Ezhova E. E., Polunina J. J., 2011, Invasions of alien invertebrate species in the Baltic Lagoons - The Curonian Lagoon and The Vistula Lagoon, Problemy izuchenia i okhrany prirodnogo i kulturnogo nasledya natsyonalnogo parka ‘Kurskaya kosa’, Kaliningrad, Izd-vo. BFU im. I. Kanta, Wyp. 7, 25-37, (in Russian).

Ezhova E. E., Żmudziński L., Maciejewska K., 2005, Long-term trends in the macrozoobenthos of the Vistula Lagoon, southeastern Baltic Sea. Species composition and biomass distribution, Bull. Sea Fish. Inst., Gdynia, 1 (164), 55-73.

He X., Cui Y., Wang H., 2010, Limnodrilus simplex sp. nov. (Oligochaeta: Naididae: Tubificinae) from Changjiang River, China. Zoological Science, 27, 768-770, http://dx.doi.org/10.2108/zsj.27.768

Jabłońska-Barna I., Rychter A., Kruk M., 2013, Biocontamination of the western Vistula Lagoon (south-eastern Baltic Sea, Poland), Oceanologia, 55 (3), 751-763, http://dx.doi.org/10.5697/oc.55-3.751

Jażdżewski K., Konopacka A., Grabowski M., 2002, Four Ponto-Caspian and one gammarid species (Crustacea, Amphipoda) recently invading Polish waters, Contrib. Zool., 71 (4), 115-122.

Jażdżewski K., Konopacka A., Grabowski M., 2004, Recent drastic changes in the gammarid fauna (Crustacea, Amphipoda) of the Vistula River deltaic system in Poland caused by alien invaders, Divers. Distrib., 10 (2), 81-87, http://dx.doi.org/10.1111/j.1366-9516.2004.00062.x

Kathman R. D., Brinkhurst R. O., 1998, Guide to the freshwater oligochaetes of North America, Aquatic Resour. Cent., Tennessee, 264 pp.

Kennedy C. R., 1965, The distribution and habitat of Limnodrilus Claparéde (Oligochaeta: Tubificidae), Oikos, 16, 26-38, http://dx.doi.org/10.2307/3564862

Leppäkoski E., 2005, The first twenty years of invasion biology in the Baltic Sea area, Oceanological and Hydrobiological Studies, 24 (Suppl. 1), 5-17.

Milbrink G., 1980, Oligochaete communities in pollution biology: The European situation with special reference to lakes in Scandinavia, [in:] Aquatic oligochaete biology, R. O. Brinkhurst & D. G. Cook (eds.), Plenum Press, New York, London, 433-455, http://dx.doi.org/10.1007/978-1-4613-3048-6_22

Milbrink G., Timm T., 2001, Distribution and dispersal capacity of the Ponto-Caspian tubificid oligochaete Potamothrix moldaviensis Vejdovský et MrAázek, 1903 in the Baltic Sea Region, Hydrobiologia, 463, 93-102, http://dx.doi.org/10.1023/A:1013139221454

Munts R., Soes D. M., 2012, Limnodrilus tortilipenis Wetzel, 1987 (Oligochaeta), a new alien species for The Netherlands, Lauterbornia, 75, 43-47.

Rakocinski C. F., Brown S. S., Gaston G. R., Heard R. W., Walker W. W., Summers J. K., 2000, Species-abundance-biomass responses by estuarine macrobenthos to sediment chemical contamination, J. Aquat. Ecosyst. Stress Recov., 7 (3), 201-214, http://dx.doi.org/10.1023/A:1009931721009

Rudinskaya L. V., Gusev A. A., 2012, Invasion of the North American wedge clam Rangia cuneata (G. B. Sowerby I., 1831) (Bivalvia: Mactridae) in Vistula Lagoon of the Baltic Sea, Russ. J. Biol. Invasion, 3 (2), 220-229, http://dx.doi.org/10.1134/S2075111712030071

Semenchenko V. P., Rizevsky V. K., Mastitsky S. E., Vezhnovets V. V., Pluta M. V., Razlutsky V. I., Laenko T., 2009, Checklist of aquatic alien species established in large river basins of Belarus, Aquat. Invasions, 4 (2), 337-347, http://dx.doi.org/10.3391/ai.2009.4.2.5

Semernoy V. P., 2004, Oligochaeta of Lake Baikal, Nauka Publication, Novosibirsk, 528 pp., (in Russian).

Soes D. M., van Haaren T., 2007, Limnodrilus tortilipenis Wetzel, 1987 new for The Netherlans, Macrofaunanieuwsmail, 71, 1, (in Dutch).

Soors J., van Haaren T., Timm T., Speybroeck J., 2013, Bratislavia dadayi (Michaelsen, 1905) (Annelida: Clitellata: Naididae): a new non-indigenous species for Europe, and other non-native annelids in the Schelde estuary, Aquat. Invasions, 8 (1), 37-44, http://dx.doi.org/10.3391/ai.2013.8.1.04

Timm T., 2009, A guide to the freshwater Oligochaeta and Polychaeta of Northern and Central Europe, Lauterbornia, 66, 1-235.

van Haaren T., 2002, Eight species of aquatic Oligochaeta new for The Netherlands (Annelida), Nederlandsche Faunistische Mededelingen, 16, 39-56.

van Haaren T., Soors J., 2013, Aquatic Oligochaeta of The Netherlands and Belgium, K.N.N.V. Publishing., Utrecht, 400 pp.

Żmudziński L., 1996, The effect of the introduction of the American species Marenzelleria viridis (Polychaeta: Spionidae) on the benthic ecosystem of Vistula Lagoon, Mar. Ecol.-P. S. Z. N. I., 17 (1-3), 221-226, http://dx.doi.org/10.1111/j.1439-0485.1996.tb00503.x

full, complete article (PDF - compatibile with Acrobat 4.0), 670 KB

First record of brown colouration of Atlantic cod (Gadus morhua, L.) from the North Sea
Oceanologia 2014, no. 56(1), pp. 159-163

Agnieszka Rybczyk1,*, Przemysław Czerniejewski2, Joanna Rokicka-Praxmajer3
1Department of Aquatic Sozology, West Pomeranian University of Technology,
Kazimierza Królewicza 4, 71-550 Szczecin, Poland;
e-mail: arybczyk@zut.edu.pl
*corresponding author
2Department of Fisheries Management, West Pomeranian University of Technology,
Kazimierza Królewicza 4, 71-550 Szczecin, Poland
3Department of Marine Ecology and Environmental Protection, West Pomeranian University of Technology,
Kazimierza Królewicza 4, 71-550 Szczecin, Poland

keywords: North Sea, Gadus morhua, skin colour, brown cod

Received 25 June 2013, revised 17 October 2013, accepted 26 November 2013.


This paper reports the biological characterisation of a specimen of Atlantic cod (Gadus morhua L.) with a unique brown colour, which is the first fish of this species with such a colouration recorded from European waters. It was caught in the coastal zone of the North Sea in June 2011. This "brown" cod fish weighed 1074.3 g and had an overall length of 422 mm.

  References ref

Ahilan B., Prince Jeyaseelan M. J., 2001, Effects of different pigment sources on colour changes and growth of juvenile Carassius auratus, J. Aquac. Trop., 16, 29-36.

Bagnara J. T., Hadley M. E., 1973, Chromatophores and color change, Prentice- Hall, New Jersey, 202 pp.

Brander K. M., 1995, The effects of temperature on growth of Atlantic cod (Gadus morhua L.), ICES J. Mar. Sci. 52 (1), 1-10, http://dx.doi.org/10.1016/1054-3139(95)80010-7

Fox D. L., 1976, Animal biochromes and structural colors: physical, chemical, distributional and physiological features of colored bodies in the animal world, Univ. California Press, Los Angeles, 433 pp.

Goodwin T. W., 1950, Carotenoids in fish, Biochem. Soc. Symp., 6, 63-82.

Gosse K. R., Wroblewski J. S., 2004, Variant colourations of Atlantic cod (Gadus morhua) in Newfoundland and Labrador nearshore waters, ICES J. Mar. Sci., 61 (5), 752-759, http://dx.doi.org/10.1016/j.icesjms.2004.04.003

Kikkert A. H., 1993, Analysis of the cod samples collected in the North Sea during the 1991 International Stomach Sampling Project, ICES CM 1993/G:13. Magnussen A., 2011, Food and feeding habits of cod (Gadus morhua) on the Faroe Bank, ICES J. Mar. Sci., 68 (9), 1909-1917, http://dx.doi.org/10.1093/icesjms/fsr104

Morris C. J., Green J. M., 2002, Biological characteristics of a resident population of Atlantic cod (Gadus morhua L.) in southern Labrador, ICES J. Mar. Sci., 59 (4), 666-678, http://dx.doi.org/10.1006/jmsc.2002.1228

Oosthuizen E., Daan N., 1974, Egg fecundity and maturity of North Sea cod, Gadus morhua, Neth. J. Sea Res., 8 (4), 378-397, http://dx.doi.org/10.1016/0077-7579(74)90006-4

Rijnsdorp A. D., Daan N., Van Beek F. A., Heessen H. J. L., 1991, Reproductive variability in North Sea plaice, sole and cod, ICES J. Mar. Sci., 47 (3), 352-375, http://dx.doi.org/10.1093/icesjms/47.3.352

Secor D. H., Dean J. M., Laban E. H., 1992, Otolith removal and preparation for microstructural examination, [in:] Otolith microstructure examination and analysis, D. K. Stevenson & S. E. Campana (eds.), Can. Spec. Publ. Fish. Aquat. Sci., 117, 1957 pp.

Sherwood G. D., Grabowski J. H., 2010, Exploring the life-history implications of colour variation in offshore Gulf of Maine, USA, cod (Gadus morhua), ICES J. Mar. Sci., 67 (8), 1640-1649, http://dx.doi.org/10.1093/icesjms/fsq094

Thorsen A., Witthames P. R., Marteinsdóttir G., Nash R. D. M., Kjesbu O. S., 2010, Fecundity and growth of Atlantic cod (Gadus morhua L.) along a latitudinal gradient, Fish. Res., 104 (1-3), 45-55, http://dx.doi.org/10.1016/j.fishres.2010.03.020

Ursin E., 1984, On the growth parameters of Atlantic cod as a function of body size, Dana, 3, 1-20.

Vitale F., Svedang H., Cardinale M., 2006, Histological analysis invalidates macroscopically determined maturity ogives of the Kattegat cod (Gadus morhua) and suggests new proxies for estimating maturity status of individual fish, ICES J. Mar. Sci., 63 (3), 485-492, http://dx.doi.org/10.1016/j.icesjms.2005.09.001

full, complete article (PDF - compatibile with Acrobat 4.0), 239 KB