Oceanologia No. 54 (1) / 12





Influence of underwater light fields on pigment characteristics in the Baltic Sea - results of statistical analysis
Oceanologia 2012, 54(1), 7-27

Joanna Stoń-Egiert1,*, Roman Majchrowski2, Mirosław Darecki1, Alicja Kosakowska1, Mirosława Ostrowska1
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: aston@iopan.gda.pl
*corresponding author
2Institute of Physics, Pomeranian University in Słupsk,
al. Marszałka Piłsudskiego 46, Gdynia 81-378, Poland;

keywords: pigments, phytoplankton, underwater irradiance, statistical analysis, Baltic Sea

Received 6 September 2011, revised 25 November 2011, accepted 2 January 2012.

This work was carried out within the framework of the SatBałtyk project funded by the European Union through the European Regional Development Fund, (contract No. POIG.01.01.02-22-011/09 entitled "The Satellite Monitoring of the Baltic Sea Environment"), research project NN 304 275235 and also as part of IO PAS's statutory research.


Changes in phytoplankton pigment concentrations in Case 2 waters (such as those of the Baltic Sea) were analysed in relation to the light intensity and its spectral distribution in the water. The analyses were based on sets of empirical measurements containing two types of data: chlorophyll and carotenoid concentrations obtained by HPLC, and the distribution of underwater light fields measured with a MER 2049 spectrophotometer - collected during 27 research cruises on r/v "Oceania" in 1999-2004. Statistical analysis yielded relationships between the total relative (to chlorophyll a concentrations) concentrations of major groups of phytoplankton pigments and optical depth τ, between the total relative concentrations of major groups of photosynthetic pigments (chlorophylls b (Cchl b tot / Cchl a tot), chlorophylls c (Cchl c tot / Cchl a tot) and photosynthetic carotenoids (CPSC tot / Cchl a tot)) and the spectral fitting function (the "chromatic acclimation factor"), and between the total relative concentrations of photoprotective carotenoids (CPPC tot / Cchl a tot) in Baltic waters and the potentially destructive radiation (PDR), defined as the absolute amount of energy in the blue part of the spectrum (400-480 nm) absorbed by unit mass of chlorophyll a. The best approximations were obtained for the total chlorophyll c content, while the relative estimation errors were the smallest (σ_ = 34.6%) for the approximation to optical depth and spectral fitting function. The largest errors related to the approximation of chlorophyll b concentrations: σ_ = 56.7% with respect to optical depth and 57.3% to the spectral fitting function.
     A comparative analysis of the relative (to chlorophyll a content) concentrations of the main groups of pigments and the corresponding irradiance characteristics in ocean (Case 1) waters and Baltic waters (Case 2 waters) was also carried out. The distribution of Cchl b tot / Cchl a tot ratios with respect to optical depth reveals a decreasing trend with increasing τ for Baltic data, which is characteristic of photoprotective pigments and the reverse of the trend in oceans. In the case of the Cchl c tot approximations, the logarithmic statistical error is lower for Baltic waters than for Case 1 waters: σ_ = 34.6% for Baltic data and σ_ = 39.4% for ocean data. In relation to photoprotective carotenoids (CPPC), σ_ takes a value of 38.4% for Baltic waters and 36.1% for ocean waters. The relative errors of the approximated concentrations of different pigment groups are larger than those obtained for ocean waters. The only exception is chlorophyll c, for which the logarithmic statistical error is about 8.8% lower (σ_ = 34.6% for Baltic waters and 38.2% for ocean waters). Analysis of the errors resulting from the approximations of the photoprotective carotenoid content, depending on the energy characteristics of the underwater irradiance in the short-range part of PAR, showed that the relative errors are 1.3 times higher for Baltic waters than for ocean waters: σ_ = 38.4% for Baltic waters and 32.0% for ocean waters.

  References ref

Babin M., Sadoudi N., Lazzara L., Gostan J., Partensky F., Bricaud A., Veldhuis M., Morel A., Falkowski P. G., 1996, Photoacclimation strategy of Prochlorococcus sp. and consequences on large scale variations of photosynthetic parameters, Ocean Opt. XIII, Proc. SPIE, 2963, 314-319, doi:10.1117/12.266462. http://dx.doi.org/10.1117/12.266462

Berner T., Dubinsky Z., Wyman K., Falkowski P. G., 1989, Photoadaptation and the "package effect" in Dunaliella tertiolecta (Chlorophyceae), J. Phycol., 25 (1), 70-78. http://dx.doi.org/10.1111/j.0022-3646.1989.00070.x

Bricaud A., Morel A., Prieur L., 1983, Optical efficiency factors of some phytoplankters, Limnol. Oceanogr., 28 (5), 816-832, doi:10.4319/lo.1983.28.5.0816. http://dx.doi.org/10.4319/lo.1983.28.5.0816

Demmig-Adams B., 1990, Carotenoids and photoprotection in plants: A role of xanthophyll zeaxanthin, Biochim. Biophys. Acta, 1020 (1), 1-24, doi:10.1016/0005-2728(90)90088-L. http://dx.doi.org/10.1016/0005-2728(90)90088-L

Demmig-Adams B., Adams W. W., 1996, The role of xanthophyll cycle catrotenoids in the protection of photosynthesis, Trends Plant Sci., 1 (1), 21-26, doi:10.1016/S1360-1385(96)80019-7. http://dx.doi.org/10.1016/S1360-1385(96)80019-7

Dera J., Woźniak B., 2010, Solar radiation in the Baltic Sea, Oceanologia, 52 (4), 533-582, doi:10.5697/oc.52-4.533. http://dx.doi.org/10.5697/oc.52-4.533

Egeland E. S., Eikrem W., Throndsen J., Wilhelm C., Zapata M., Liaaen-Jensen S., 1995, Carotenoids from further prasinophytes, Biochem. Syst. Ecol., 23 (7-8), 747-755, doi:10.1016/0305-1978(95)00075-5. http://dx.doi.org/10.1016/0305-1978(95)00075-5

Falkowski P. G., La Roche J., 1991, Acclimation to spectral irradiance in algae, J. Phycol., 27 (1), 8-14,doi:10.1111/j.0022-3646.1991.00008.x. http://dx.doi.org/10.1111/j.0022-3646.1991.00008.x

Goericke R., Montoya J. P., 1998, Estimating the contribution of microalgal taxa to chlorophyll a in the field-variations of pigment ratios under nutrient- and light-limited growth, Mar. Ecol. Prog. Ser., 169,97-112, doi:10.3354/meps169097. http://dx.doi.org/10.3354/meps169097

Harrison W. G., Platt T., 1986, Photosynthesis-irradiance relationships in polar and temperate phytoplankton populations, Polar Biol., 5 (3), 153-164, doi:10.1007/BF00441695. http://dx.doi.org/10.1007/BF00441695

Henriksen P., Riemann B., Kaas H., Sorensen H. M., Sorensen H. L., 2002, Effects of nutrient-limitation and irradince on marine phytoplankton pigments J. Plankton Res., 24 (9), 835-858,doi:10.1093/plankt/24.9.835. http://dx.doi.org/10.1093/plankt/24.9.835

Hoffmann B., Senger H., 1988, Kinetics of photosynthesis apparatus adaptation in Scenedesmus obliquus to change in irradiance and light quality, Photochem. Photobiol., 47 (5), 737-739, doi:10.1111/j.1751-1097.1988.tb02773.x. http://dx.doi.org/10.1111/j.1751-1097.1988.tb02773.x

Leeuwe van M. A., Stefels J., 1998, Effects of iron and light stress on the biochemical composition of Antarctic Phaeocystis sp. (Prymnesiophyceae). II. Pigment composition, J. Phycol., 34 (3), 496-503, doi:10.1046/j.1529-8817.1998.340496.x. http://dx.doi.org/10.1046/j.1529-8817.1998.340496.x

Mackey D. J., Higgins H. W., Mackey M. D., Holdsworth D., 1998, Algal classes abundances in the western equatorial Pacific: Estimation from HPLC measurements of chloroplast pigments using CHEMTAX, Deep See Res.Pt.I, 45 (9), 1441-1468, doi:10.1016/S0967-0637(98)00025-9. http://dx.doi.org/10.1016/S0967-0637(98)00025-9

Majchrowski R., 2001, The effect of lighting on the characteristics of light absorption by phytoplankton in the sea Stud.i rozpr., Pom. Akad. Pedag., 1, Słupsk, 131 pp., (in Polish).

Majchrowski R., Ostrowska M., 1999, Modified relationships between the occurrence of photoprotecting carotenoids of phytoplankton and Potentially Destructive Radiation in the sea, Oceanologia, 41 (4), 589-599.

Majchrowski R., Ostrowska M., 2000, Influence of photo- and chromatic acclimation on pigment composition in the sea, Oceanologia, 42 (2), 157-175.

Majchrowski R., Ostrowska M., 2009, Mathematical description of vertical algal accessory pigment distributions in oceans - a brief presentation, Oceanologia, 51 (4), 561-580, doi:10.5697/oc.51-4.561. http://dx.doi.org/10.5697/oc.51-4.561

Majchrowski R., Woźniak B., Dera J., Ostrowska M., Ficek D., Kaczmarek S., 1998, Relations between phytoplankton pigment composition and spectral irradiance distribution in the ocean, Progr. Abstr., Ocean Opt. XIV, Kailua Kona, 60 pp.

Mitchell B. G., Kiefer D. A., 1988, Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton, Deep Sea Res., 35, 639-663, doi:10.1016/0198-0149(88)90024-6. http://dx.doi.org/10.1016/0198-0149(88)90024-6 Mo

rel A., Lazzara L., Gostan G., 1987, Growth rate and quantum yield time response for a diatom to changing irradiances (energy and color), Limnol. Oceanogr., 32 (5), 1066-1084, doi:10.4319/lo.1987.32.5.1066. http://dx.doi.org/10.4319/lo.1987.32.5.1066

Niyogi K. K., Björkman O., Grossman A. R., 1997, The roles of specific xanthophylls in photoprotection, P. Natl. Acad. Sci. USA, 94 (25), 14162-14167, doi:10.1073/pnas.94.25.14162. http://dx.doi.org/10.1073/pnas.94.25.14162

Sathyendranath S., Lazzara L., Prieur L., 1987, Variations in the spectral values of specific absorption of phytoplankton, Limnol. Oceanogr., 32 (2), 403-415, doi:10.4319/lo.1987.32.2.0403. http://dx.doi.org/10.4319/lo.1987.32.2.0403

Schlüter L., Mohlenberg F., Havskum H., Larsen S., 2000, The use of phytoplankton pigments for identifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chlorophyll a ratios, Mar. Ecol. Prog. Ser., 192, 49-63, doi:10.3354/meps192049. http://dx.doi.org/10.3354/meps192049

Sosik H. M., Mitchell B. G., 1991, Absorption, fluorescence, and quantum yield for growth in nitrogen-limited Dunaliella tertiolecta, Limnol. Oceanogr., 36 (5), 910-921, doi:10.4319/lo.1991.36.5.0910. http://dx.doi.org/10.4319/lo.1991.36.5.0910

Staehr P. A., Henriksen P., Markager S., 2002, Photoacclimation of four marine phytoplankton species to irradiance and nutrient availability, Mar. Ecol. Prog. Ser., 238, 47-59, doi:10.3354/meps238047. http://dx.doi.org/10.3354/meps238047

Stoń J., Kosakowska A., 2002, Phytoplankton pigments designation - an application of RP-HPLC in qualitative and quantitative analysis, J. Appl. Phycol.,14 (3), 205-210, doi:10.1023/A:1019928411436. http://dx.doi.org/10.1023/A:1019928411436

Stoń-Egiert J., Kosakowska A., 2005, RP-HPLC determination of phytoplankton pigments-comparison of calibration results for two columns, Mar. Biol., 147 (1), 251-260, doi:10.1007/s00227-004-1551-z. http://dx.doi.org/10.1007/s00227-004-1551-z

Stramski D., Sciandra A., Claustre H., 2002, Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana, Limnol. Oceanogr., 47 (2), 392-403, doi:10.4319/lo.2002.47.2.0392. http://dx.doi.org/10.4319/lo.2002.47.2.0392

Sukenik A., Bennett J., Falkowski P. G., 1987, Light-saturated photosynthesis-limitation by electron transport or carbo fixation, Biochem. Biophys. Acta, 891 (3), 205-215, doi:10.1016/0005-2728(87)90216-7. http://dx.doi.org/10.1016/0005-2728(87)90216-7

Sukenik A., Bennett J., Mortain-Bertrand A., Falkowski P. G., 1990, Adaptation of photosynthetic apparatus to irradiance in Dunaliella tertiolecta, Plant Physiol., 92 (4), 891-898, doi:10.1104/pp.92.4.891. http://dx.doi.org/10.1104/pp.92.4.891

Woźniak B., Dera J., 2007, Light absorption in sea water, Springer, New York, 454 pp.

Woźniak B., Dera J., Ficek D., Majchrowski R., Ostrowska M., Kaczmarek S., 2003, Modelling light and photosynthesis in the marine environment, Oceanologia, 45 (2), 171-245.

Woźniak B., Dera J., Majchrowski R., Ficek D., Koblentz-Mishke O. J., Darecki D., 1997a,"IOPAS initial model" of marine primary production for remote sensing application, Oceanologia, 39 (4), 377-395.

Woźniak B., Dera J., Majchrowski R., Ficek D., Koblentz-Mishke O. J., Darecki M., 1997b, Statistical relationships between photosynthesis and abiotic conditions in the ocean - the IO PAS initial model for remote sensing application Proc. SPIE, 3222, 516-528.

full, complete article (PDF - compatibile with Acrobat 4.0), 2.58 MB

Revisiting the role of oceanic phase function in remote sensing reflectance
Oceanologia 2012, 54(1), 29-38

Włodzimierz Freda1,*, Jacek Piskozub2
1Gdynia Maritime University,
Morska 81-87, Gdynia 81-225, Poland;
e-mail: wfreda@am.gdynia.pl
*corresponding author
2Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;

keywords: marine optics, phase functions, remote sensing reflectance, scattering

Received 30 August 2011, revised 3 November 2011, accepted 19 December 2011.


The effect of angular structure differences between measured and best-fit analytical phase functions of the equivalent backscattering ratio on calculated reflectance values was studied and shown to be significant. We used a Monte Carlo radiative transfer code to check the effect of choosing different analytical (several Fournier-Forand (1994) and Henyey-Greenstein (1941)) phase functions with backscattering ratios identical to the "classical" average Petzold function. We show that the additional variability of the resulting water leaving radiance is about 7% (4% between the Fournier-Forand functions themselves) for most scenarios. We also show a previously unknown maximum of the discrepancy (up to 10%) for highly scattering waters. We discuss the importance of relative differences in phase function for different angular ranges to this maximum and to the behaviour of the discrepancy as a function of solar zenith angle.

  References ref

Chami M., McKee D., Leymarie E., Khomenko G., 2006,Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance, Appl. Optics, 45 (36), 9210-9220. http://dx.doi.org/10.1364/AO.45.009210

Cox C., Munk W., 1954, Measurement of the roughness of the sea surface from photographs of the sun's glitter, J. Opt. Soc. Am., 44 (11), 838-850. http://dx.doi.org/10.1364/JOSA.44.000838

Dera J., Woźniak B., 2010, Solar radiation in the Baltic Sea, Oceanologia, 52 (2), 533-582. http://dx.doi.org/10.5697/oc.52-4.533

Flatau P., Piskozub J., Zaneveld J. R. V., 1999, Asymptotic light field in the presence of a bubble-layer, Opt. Express, 5 (5), 120-124. http://dx.doi.org/10.1364/OE.5.000120

Forand J. L., Fournier G. R., 1999, Particle distributions and index of refraction estimation for Canadian waters, Proc. SPIE, 3761, 34 pp.

Fournier G., Forand J. L., 1994, Analytic phase function for ocean water Ocean Optics XII, J. S. Jaffe (ed.),Proc. SPIE, 2258, 194-201.

Freda W., Piskozub J., 2007, Improved method of Fournier-Forand marine phase function parameterization, Opt. Express, 15 (20), 12763-12768. http://dx.doi.org/10.1364/OE.15.012763

Gordon H. R., 1989, Dependence of the diffuse reflectance of natural waters on the sun angle, Limnol. Oceanogr., 34 (8), 1484-1489. http://dx.doi.org/10.4319/lo.1989.34.8.1484

Gordon H. R., 2005, Normalized water-leaving radiance: revisiting the influence of surface roughness, Appl. Optics, 44 (2), 241-248. http://dx.doi.org/10.1364/AO.44.000241

Henyey L. C., Greenstein J. L., 1941, Diffuse radiation in the galaxy, Astrophys. J., 93, 70-83. http://dx.doi.org/10.1086/144246

Massel S. R., 2010, Surface waves in deep and shallow waters, Oceanologia, 52 (1), 5-52. http://dx.doi.org/10.5697/oc.52-1.005

Mobley C. D., 1994, Light and water: radiative transfer in natural waters, Acad. Press, San Diego,CA, 592 pp.

Mobley C. D., Sundman L. K., Boss E., 2002, Phase function effects on oceanic light fields, Appl. Optics, 41 (6), 1035-1050. http://dx.doi.org/10.1364/AO.41.001035

Morel A., Gentili B., 1993, Diffuse reflectance of oceanic waters. II. Bidirectional aspects, Appl. Optics, 32 (3), 6864-6879. http://dx.doi.org/10.1364/AO.32.006864

Morel A., Prieur L., 1977, Analysis of variations in ocean color, Limnol. Oceanogr., 22 (4), 709-722. http://dx.doi.org/10.4319/lo.1977.22.4.0709

Petzold T. J., 1972, Volume scattering functions for selected ocean waters, Tech. Rep. 72-78, Scripps Inst. Oceanogr. (SIO), Univ. California, San Diego.

Piskozub J., 1994, Effects of surface waves and sea-bottom on self-shading on inwater optical instruments, Ocean Optics XII, J. Jaffe (ed.), Proc. SPIE, 2258, 300-308.

Piskozub J., Neumann T., Woźniak L., 2008, Ocean color remote sensing: choosing the correct depth weighting function, Opt. Express, 16 (19), 14683-14688. http://dx.doi.org/10.1364/OE.16.014683

Piskozub J., Weeks A. R., Schwarz J. N., Robinson I. S., 2000, Self-shading of upwelling irradiance for an instrument with sensors on a sidearm, Appl. Optics, 39 (12), 1872-1878. http://dx.doi.org/10.1364/AO.39.001872

Sullivan J. M., Twardowski M. S., 2009, Angular shape of the volume scattering function in the backward direction, Appl. Optics, 48 (35), 6811-6819. http://dx.doi.org/10.1364/AO.48.006811

Zaneveld J. R. V., 1995, A theoretical derivation of the dependence of the remotely sensed re ectance of the ocean on the inherent optical properties, J. Geophys. Res., 100 (7), 13135-13142. http://dx.doi.org/10.1029/95JC00453

full, complete article (PDF - compatibile with Acrobat 4.0), 136 KB

Transformation of statistical and spectral wave periods crossing a smooth low-crested structure
Oceanologia 2012, 54(1), 39-58

Dalibor Carevic*, Goran Loncar, Marko Prsic
Faculty of Civil Engineering, University of Zagreb,
Kaciceva 26, Zagreb 10000, Croatia;
e-mail: car@grad.hr
*corresponding author

keywords: smooth submerged breakwater, wave period transformation, statistical wave parameters, spectral wave parameters, smooth emerged breakwater

Received 6 June 2011, revised 28 November 2011, accepted 12 December 2011.


We carried out experimental studies of a smooth submerged breakwater in a wave channel in order to study such a structure impacts on the changes of statistically and spectrally defined representative wave periods as waves cross it. We discuss the impact of relative submersion, i.e. the relationship between the breakwater crown submersion and the incoming significant wave length Rc / Ls-i, on the representative wave periods. The mean periods, estimated using statistical and spectral methods, were compared in front of and behind the breakwater: the two periods turned out to be identical. Based on the measurements of the spectral mean wave periods in front of and behind the breakwater, an empirical model is derived for estimating the reduction in mean spectral period for submerged and emerged smooth breakwaters.

  References ref

Beji S., Battjes J. A., 1993, Experimental investigation of wave propagation over a bar, Coast. Eng., 19 (1-2), 151-162, doi:10.1016/0378-3839(93)90022-Z. http://dx.doi.org/10.1016/0378-3839(93)90022-Z

Briganti R., Van der Meer J., Buccino M., Calíbrese M., 2003, Wave transmission behind low-crested structures, Proc. Coast. Struc., ASCE, Portland, 580-599.

Goda Y., 1974, Estimation of wave statistics from spectral information, Proc. Int. Symp. "Ocean Wave Measurement and Analysis, waves' 74", ASCE, New Orleans, 320-337.

Goda Y., 1979, A review on statistical interpretation of wave data, Rept. Port Harbour Res. Inst., 18 (1), 5-32.

Goda Y., 2000, Measurement of the re ection coeffcient in a wave ume, [in:] Random seas and design of maritime structures, 2nd edn., Adv. Ser. Ocean Eng., World Sci. Publ., 356-361.

Goda Y., 2008, Overview on the applications of random wave concept in coastal engineering, Proc. Japan Acad., Ser. B 84, 374-392.

Goda Y., Suzuki Y., Kishira Y., 1974, Some experiences in laboratory experiments with irregular waves, Proc. 21st Japanese Conf. Coast. Eng., 237-242, (in Japanese).

Journée J. M. J., Massie W. W., 2001, Offshore hydromechanics, 1st edn., Delft Univ. Technol., http://www.shipmotions.nl, 5-43.

Longuet-Higgins M. S., 1983, On the joint distribution of wave periods and amplitudes in a random wave field, Proc. Royal Soc. Lond., Ser. A., 241-258.

Martinelli L., Zanuttigh B., Lamberti A., 2006, Hydrodynamic and morphodynamic response of isolated and multiple low crested structures: experiments and simulations, Coast. Eng., 53 (4), 363-379, doi:10.1016/j.coastaleng.2005.10.018. http://dx.doi.org/10.1016/j.coastaleng.2005.10.018

Raichlen F., Cox J. C., Ramsden J. D., 1992, Inner harbor wave conditions due to breakwater overtopping, Proc. ASCE ‘Coastal Engineering Practice’, ASCE Long Beach, 425-446.

Tanimoto K., Takahashi S., Kimura K., 1987, Structures and hydraulic characteristics of breakwaters - the states of the art of breakwater design in Japan, Rep. Port Harbour Res. Inst., 26 (5), 11-54.

Van der Meer J., Briganti R., Zanuttigh B., Baoxing W., 2005, Wave transmission and reflection at low-crested structures: design formulae, oblique wave attack and spectral change, Coast. Eng., 52 (10-11), 915-929. http://dx.doi.org/10.1016/j.coastaleng.2005.09.005

Van der Meer J., Regeling H. J., de Waal J. P., 2000, Wave transmission: spectral changes and its effect on run-up and overtopping, Proc. ICCE, ASCE, Sydney, 2156-2168.

Van der Meer J., Wang B., Wolters A., Zanuttigh B., Kramer M., 2003, Oblique wave transmission over low-crested structures, Proc. Coast. Struc., ASCE, Portland, 567-591.

Wang B., Otta A. K., Chadwick A. J., 2007, Transmission of obliquely incident waves at low-crested breakwaters: theoretical interpretations of experimental observations, Coast. Eng., 54 (4), 333-344, doi:10.1016/j.coastaleng.2006.10.005. http://dx.doi.org/10.1016/j.coastaleng.2006.10.005

Zelt J. A., Skjelbreia J. E., 1992, Estimating incident and re ected wave fields using an arbitrary number of wave gauges, Proc. 23rd ICCE, ASCE, 466-480.

full, complete article (PDF - compatibile with Acrobat 4.0), 309 KB

Some features of the quantitative distribution of sipunculan worms (Sipuncula) in the central and southern Barents Sea
Oceanologia 2012, 54(1), 59-74

Evgeny A. Garbul1,*, Natalia A. Anisimova2
1Murmansk Marine Biological Institute, Kola Science Centre of Russian Academy of Sciences,
Vladimirskaya St. 17, Murmansk 183010, Russia;
e-mail: Garbul@mmbi.info
*corresponding author
2Polar Research Institute of Marine Fisheries and Oceanography (PINRO),
Knipovich St. 6, Murmansk 183763, Russia

keywords: Sipuncula, biodiversity, distribution, Barents Sea

Received 25 July 2011, revised 26 September 2011, accepted 30 November 2011.

This research was carried out by authority of the federal task programme "World Ocean".


The article reports on the current state of the sipunculan fauna of the central and southern parts of the Barents Sea. The main quantitative parameters (biomass and abundance) of the sipunculan populations are obtained, and the contribution of sipunculids to the total benthos biomass is assessed. The major factors causing long-term variations in Sipunculidae distribution and abundance are evaluated for the area in question.
     The investigations show that the most commonly encountered sipunculan species are Nephasoma diaphanes diaphanes, N. abyssorum abyssorum and Phascolion strombus strombus. The main contribution to the total benthos biomass comes from the two species most typical of the Barents Sea benthic fauna: Golfingia margaritacea margaritacea and G. vulgaris vulgaris. It is possible that the reduction in Golfingia biomass between the 1970s and 1990s, described in the article, is due to changes in the sampling methodology.

  References ref

Anisimova N., Berenboim B., Gerasimova O., Manushin I., Pinchukov M., 2005, On the effect of red king crab on some components of the Barents Sea ecosystem. Ecosystem dynamics and optimal long-term harvest in the Barents Sea fisheries Proc. 11th Russian Norwegian Symp.,IMR/PINRO Joint Rep. Ser. 2, 298-306.

Boitsov V. D. ,2006, Variability of Barents Sea water temperature and its forecasting PINRO Press, Murmansk, 292 pp., (in Russian).

Brotskaya V. ., Zenkevitch L. A., 1939, Quantitiative accounting of Barents Sea's benthic fauna, Proc. VNIRO, 4, 1-150, (in Russian).

Cochrane S. K. J., Denisenko S. G., Renaud P. E., Emblow Ch. S., Ambrose Jr. W. G., Ellingsen I. H., Skardhamar J., 2009, Benthic macrofauna and productivity regimes in the Barents Sea- ecological implications in a changing Arctic, J. Sea Res., 61 (4), 222-233, doi:10.1016/j.seares.2009.01.003. http://dx.doi.org/10.1016/j.seares.2009.01.003

Cutler E. B., 1994, The Sipuncula- their systematics, biology and evolution Cornell Univ. Press, Ithaca, 453 pp.

Denisenko S. G., 2001, Abundance, biomass and species dominating in consumers community Abstr. VIII Congr. Hydrobiol. Soc. RAS, Vol. 2, Kaliningrad, 162-163, (in Russian).

Denisenko S. G., 2007, Zoobenthos of the Barents sea under the conditions of changing climate and anthropogenic impact [in:]The dynamics of Sea ecosystems and modern problems of the biological potential conservation of the Russian seas, V. G. Tarasov (ed.), Dalnauka Press, Vladivostok, 418-511, (in Russian).

Denisenko S. G., Denisenko N. V., 1991, About the in uence of over-trawling on Barents Sea's benthos [in:] Ecological situation and protection of Barents Sea's ora and fauna, KSC RAS Publ., Apatity, 158-164, (in Russian).

Garbul E. A., 2007, Sea worms Sipuncula and Priapulida fauna in some areas of the Kara Sea [in:] Biology and oceanography of the Northern Sea Route: Barents and Kara Seas, G. G. Matishov (ed.), Nauka, Moscow, 04-111, (in Russian).

Garbul E. A., 2009, Distribution of sipunculisds in the areas of the Frantz Josef Land and Novaya Zemlya ,Dokl. Biol. Sci., 426 (1), 278-281, doi:10.1134/S0012496609030259. http://dx.doi.org/10.1134/S0012496609030259

Garbul E. A., 2010, Some aspects of the distribution of two species of sipunculids worms (genus Golfingia), Abstr.I nt. Sci. Conf. "Nature of maritime Arctic: modern challenges and the role of science", Murmansk,10-12 March 2010, KSC RAS Publ., Apatity, 45-46, (in Russian).

Garbul E. A., Lubina O. S., 2011, Assessment of catching efficiency of bottom grabs of different types on sandy ground of the sea bed, Proc. Int. Sci. Conf. "Global climatic processes and their effects on ecosystems of Arctic and Subarctic regions", Murmansk, 9-11 November 2011, Mar. Biol. Inst., KSC RAS Publ., Apatity, 19-20, (in Russian).

Gayevskaya N. C., 1948, Fauna and flora detector of USSR north seas Soviet Sci., Moscow, 740 pp., (in Russian).

Gurevich V. I., 1995, Recent sedimentogenesis and environment on the arctic shelf of Western Eurasia Meddelelser, 131, 92 pp.

Kędra M., Włodarska-Kowalczuk M., 2008, Distribution and diversity of sipunculan fauna in high Arctic fjords (west Svalbard), Polar Biol.,31 (10),1181-1190, doi:10.1007/s00300 008 0456 6. http://dx.doi.org/10.1007/s00300-008-0456-6

Lyubin P. A., Anisimova N. A., Manushin I. E., Zhuravlyova N. E., 2010, Additional catch of macrozoobenthos in the ichthyological over-trawling as a mark of trawling intensity Proc. MGTU, 13 (4/1), 641-646, (in Russian).

Manushin I., Anisimova N., 2008, Selectivity in the red king crab feeding in the Barents Sea. Research on the red king crab (Paralithodes camtschaticus) from the Barents Sea in 2005-2007, IMR/PINRO Joint Rep. Ser.3, 24-28.

Matishov G. G., Matishov D. G., Moiseev D. V., 2009, Inflow of Atlantic-origin waters to the Barents Sea along glacial troughs Oceanologia,51 (3), 321-340, doi:10.5697/oc.51 3.321.

Murina G. V. V., 1977, The sea worms Sipunculida of Arctic and boreal waters of Eurasia. USSR fauna determinant 111 Nauka, Leningrad, 238 pp., (in Russian).

Sokolov V.I.,Milyutin D. M., 2008, The modern status of the red king crab population (Paralithodes camtschaticus, Decapoda, Lithodidae) in the Barents Sea, Zool. Inst., 87 (2), 141-155, (in Russian).

Vagin V. L., 1937, Gephyrea [in:]A nimal kingdom of USSR Vol. 1, AS USSR Press, Moscow-Leningrad, 555-557, (in Russian).

Zatsepin V. I., 1948, Classes of Echiuridae, Sipunculidae, Priapulidae. Fauna and ora detector of USSR Northern Seas Soviet Sci.,Moscow,168-174,(in Russian).

Zenger N. K., 1870, About the worms of Gephyrea, detected by Ulyanov V. N. at the Novaya Zemlya and of the Norwegian coast 51st Ses. Soc. Nat. Anthropol. Ethnogr., 396-397, (in Russian).

full, complete article (PDF - compatibile with Acrobat 4.0), 901 KB

Spring development of hydrolittoral rock shore communities on wave-exposed and sheltered sites in the northern Baltic proper
Oceanologia 2012, 54(1), 75-107

Ann-Kristin Eriksson Wiklund1,*, Torleif Malm2, Jessica Honkakangas3, Britta Eklund1
1Department of Applied Environmental Research (ITM), University of Stockholm,
S-106 91 Stockholm, Sweden;
e-mail: annkristin.eriksson@itm.su.se
*corresponding author
2Stockholm Marine Sciences Centre, University of Stockholm,
S-106 91 Stockholm, Sweden
3Department of Botany, University of Stockholm,
S-106 91 Stockholm, Sweden

keywords: community structure, diversity, seasonal community, development, Filamentous algae, macroinvertebrates

Received 25 July 2011, revised 17 October 2011, accepted 5 December 2011.


Spring development in the hydrolittoral zone was investigated at five wave-sheltered and five wave-exposed sites on four occasions from late March to late May (every third week). The number of species was higher at the sheltered locations and increased significantly over time. The difference in community structure was significant: over 95% of the Bray-Curtis dissimilarities were due to the biomass of only eleven taxa, and the total Bray-Curtis dissimilarity between exposed and sheltered sites was 75%. Macroalgae made up 70-80% of the total biomass and was dominated by filamentous species. In contrast to previous studies, macroalgal biomass was higher at the exposed sites, which may be due to the fact that this was a~spring study, unlike previous studies, which were conducted during summer.

  References ref

Barrón C., Marbà N., Duarte C. M. ,Pedersen M. F., Lindblad C., Kersting K., Moy F., Bokn T., 2003, High organic carbon export precludes eutrophication responses in experimental rocky shore communities, Ecosystems, 6 (2), 144-153, doi:10.007/s10021-002-0402-3. http://dx.doi.org/10.007/s10021-002-0402-3

Bäck S., Likolammi M., 2004, Phenology of Ceramium tenuicorne in the SW Gulf of Finland, northern Baltic Sea, Ann. Bot. Fenn., 41 (2), 95-101.

Bäck S., Ruuskanen A., 2000, Distribution an maximum growth depth of Fucus vesiculosus along the Finnish coastline, Mar. Biol., 136 (2), 303-307, doi:10.1007/s002270050688. http://dx.doi.org/10.1007/s002270050688

Berger R., Henriksson E., Kautsky L., Malm T., 2003, Effects of filamentous algae an eposite matter on the survival of Fucus vesiculosus L.germlings in the Baltic Sea, Aquat. Ecol., 37 (1), 1-11, doi:10.1023/A:1022136900630. http://dx.doi.org/10.1023/A:1022136900630

Bernes C., 2005, Change beneath the surface: an indepth look at Sweden's marine environment, Monit. 2005 Swedish Environ. Protect. Agency, Stockholm, 192 pp.

Bruno J. F., Stachowicz J. J., Bertness M.., 2003, Inclusion of facilitation into ecological theory, Trends Ecol. Evol.,18 (3), 119-125, doi:10.1016/S0169-5347(02)00045-9. http://dx.doi.org/10.1016/S0169-5347(02)00045-9

Borum J., 1985, Development of epiphytic communities on eelgrass (Zostera marina) along a nutrient gradient in a Danish estuary, Mar. Biol., 87 (1), 211-218, doi:10.1007/BF00539431. http://dx.doi.org/10.1007/BF00539431

Cáceres-Martinez J., Robledo J. A. F., Figueras A., 1994, Settlement an post-larvae behavior of Mytilus galloprovincialis: Field an laboratory experiments, Mar. Ecol.-Prog. Ser., 112, 107-117, doi:10.3354/meps112107. http://dx.doi.org/10.3354/meps112107

Chen D. L., Omstedt A., 2005, Climate-induce variability of sea level in Stockholm: influence of air temperature an atmospheric circulation, Adv. Atmos. Sci., 22 (5), 655-664, doi:10.1007/BF02918709. http://dx.doi.org/10.1007/BF02918709

Choo K. S., Nilsson J., Pedersen M., Snoeijs P., 2005, Photosynthesis, carbon uptake an antioxidant defence in two coexisting filamentous green algae under different stress conditions, Mar. Ecol.-Prog. Ser., 292, 127-138, doi:10.3354/meps292127. http://dx.doi.org/10.3354/meps292127

Christofoletti R. A., Akahashi C. K., Oliveira D. N., Flores A. A. V., 2011, Abundance of sedentary consumers an sessile organisms along the wave exposure gradient of subtropical rocky shores of the south-west Atlantic, J. Mar. Biol. Assoc. UK, 91 (05), 961-961, doi:10.1017/S0025315410001992. http://dx.doi.org/10.1017/S0025315410001992

Cummings V. J., Pridmore R. D., Thrush S. F., Hewitt J. E., 1993, Emergence an floating behaviours of post-settlement juveniles of Macomona liliana (Bivalvia:Tellinacea), Mar. Behav. Physiol., 24 (1), 25-32, doi:10.1080/10236249309378875. http://dx.doi.org/10.1080/10236249309378875

Engkvist R., Malm T., Nilson J., 2004, Interaction between isopo grazing an wave action: a structuring force in macroalgal communities in the southern Baltic Sea, Aquat. Ecol., 38 (3), 403-413, doi:10.1023/B:AECO.0000035162.07481.1f. http://dx.doi.org/10.1023/B:AECO.0000035162.07481.1f

Eriksson B .K. ,Johansson G., 2003, Sedimentation reduces recruitment success of Fucus vesiculosus (Phaeophyceae)in the Baltic Sea, Eur. J. Phycol., 38, 217-222, doi:10.1080/0967026031000121688. http://dx.doi.org/10.1080/0967026031000121688

Eriksson B. K., Johansson G., 2005, Effects of sedimentation on macroalgae: species-specific responses are relate to reproductive traits, Oecologia,143 (3), 438-448, doi:10.1007/s00442-004-1810-1. http://dx.doi.org/10.1007/s00442-004-1810-1

Gebersdorf S. U., Meyercordt J., Meyer-Reil L.-A., 2005, Microphytobenthic primary production in the Bodden estuaries, southern Baltic Sea, at two study sites differing in trophic status, Aquat. Microb. Ecol., 41 (2), 181-198, doi:10.3354//ame041181. http://dx.doi.org/10.3354/ame041181

Granskog M., Kaartokallio H., Kuosa H., Thomas D. N., Vainio J., 2006, Sea ice in the Baltic Sea: a review, Estuar. Coast. Shelf Sci., 70 (1-2), 145-160, doi:10.1016/j.ecss.2006.06.001. http://dx.doi.org/10.1016/j.ecss.2006.06.001

Haage P., 1975, Quantitative investigations of the fucus belt macrofauna. 2. Quantitative seasonal fluctuations , Contrib. Askö Lab., 9, 1-88.

Hartley J. P., 1982, Methods for monitoring offshore macrobenthos, Mar. Pollut. Bull., 13 (5), 150-154, doi:10.1016/0025-326X(82)90084-4. http://dx.doi.org/10.1016/0025-326X(82)90084-4

Håkansson L., 1981, A manual of lake morphometry, Springer-Verlag, Berlin, 78 pp.

Hällfors G., Kangas P., Lappalainen A., 1975, Littoral benthos of the northern Baltic Sea. III. Macrobenthos of the hydrolittoral belt of filamentous algae on rocky shores in Tvärminne, Int. Rev. Ges. Hydrobio., 60 (3), 313-333.

Holm S., 1979, A simple sequential rejective multiple test procedure, Scand. J. Stat., 6 (2), 65-70.

Hunt H. L., Scheibling R. E., 1997, Role of early post-settlement mortality in recruitment of benthic marine invertebrates, Mar. Ecol.-Prog. Ser., 155,269-301, doi:10.3354/meps155269. http://dx.doi.org/10.3354/meps155269

Irwing A. D., Connell S. D., 2006, Physical disturbance by kelp abrades erect algae from the understorey, Mar. Ecol.-Prog. Ser., 324, 127-137, doi:10.3354/meps324127. http://dx.doi.org/10.3354/meps324127

Jansson A. M., 1974, Community structure,mo elling and simulation of the Cladophora ecosystem in the Baltic Sea, Contrib. Askö Lab., 5, 1-130.

Jansson A. M., Kautsky N., 1977, Quantitative survey of har bottom communities in a Baltic archipelago, [in:] Biology of benthic organisms, B. F. Keegan, P. O. Ceidigh & P. J. S. Boaden (eds.), Pergamon Press, London, 359-366.

Johnson R. K., 1985, Feeding effciencies of Chironomus plumosus (L.)an C. anthracinus Zett. (Diptera: Chironomidae)in mesotrophic Lake Erken, Freshwater Biol., 15 (5), 605-612, doi:10.1111/j.1365-2427.1985.tb00231.x. http://dx.doi.org/10.1111/j.1365-2427.1985.tb00231.x

Kautsky H., 1995, Quantitative distribution of sublittoral plant an animal communities along the Baltic Sea gradient, [in:] Biology an ecology of shallow coastal waters. 28th EMBS symposium, 23-28 September 1993, Crete, A. Eleftheriou (ed.), Olsen & Olsen ,Fredensborg, 23-30.

Kautsky H., van der Maarel E., 1990, Multivariate approaches to the variation in phytobenthic communitties an environmental vectors in the Baltic Sea, Mar. Ecol.-Prog. Ser., 60, 169-184, doi:10.3354/meps060169. http://dx.doi.org/10.3354/meps060169

Kautsky U., Wallentinus I., Kautsky N., 1984, Spring bloom ynamics of an epilithic microphytobenthic community in the northern Baltic proper, Ophelia, 3, 89-99.

Keruss M., Seņņikovs J., 1999, Determination of tides in Gulf of Riga an Baltic Sea, Proc. Int. Sci. Colloq. Model. Mat. Proc., 28-29 May 1999, Riga, [available online].

Kiirikki M., 1996, Mechanisms affecting macroalgal zonation in the northern Baltic Sea, Eur. J. Phycol., 31 (1), 61-66, doi:10.1080/09670269600651201. http://dx.doi.org/10.1080/09670269600651201

Kiirikki M., Lehvo A., 1997, Life strategies of filamentous algae in the northern Baltic Proper , Sarsia, 82 (3), 259-267.

Kiirikki M., Ruuskanen A., 1996, How does Fucus vesiculosus survive ice scraping?, Bot. Mar., 39 (1-6), 133-139, doi:10.1515/botm.1996.39.1-6.133.

Koivisto M., Westerbom M., Riihimäki A., 2011, Succession-driven facilitation of macrofaunal communities in sublittoral mussel habitats, Mar. Biol., 158 (5), 945-954, doi:10.1007/s00227-010-1621-3. http://dx.doi.org/10.1007/s00227-010-1621-3

Korpinen S., Jormalainen V., Honkanen T., 2007, effects of nutrients, herbivory an depth on the macroalgal community in the rocky sublittoral, Ecology, 88 (4), 839-852, doi:10.1890/05-0144. http://dx.doi.org/10.1890/05-0144

Kraufvelin P., 2007, Responses to nutrient enrichment,wave action an disturbance in rocky shore communities, Aquat. Bot., 87 (4),262-274, doi:10.1016/j.aquabot.2007.06.011. http://dx.doi.org/10.1016/j.aquabot.2007.06.011

Kraufvelin P., Lindholm A., Pedersen M. F., Kirkerud L. A., Bonsdor D. E., 2010, Biomass, diversity an production of rocky shore macroalgae at two nutrient enrichment an wave action levels, Mar.Biol.,157 (1),29-47, doi:10.1007/s00227-009-1293-z. http://dx.doi.org/10.1007/s00227-009-1293-z

Kraufvelin P., Salovius S., 2004, Animal diversity in Baltic rocky shore macroalgae: can Cladophora glomerata compensate for lost Fucus vesiculosus?, Estuar. Coast. Shelf Sci., 61 (2), 369-378,doi:10.1016/j.ecss.2004.06.011. http://dx.doi.org/10.1016/j.ecss.2004.06.011

Kraufvelin P., Salovius S., Christie H., Mdoy F. E., Karez R., Pedersen M. F., 2006, Eutrophication - induce changes in benthic algae affect the behaviour an fitness of the marine amphipo Gammarus locusta, Aquat. Bot., 84 (4), 199-209, doi:10.1016/j.aquabot.2005.08.008. http://dx.doi.org/10.1016/j.aquabot.2005.08.008

Kraufvelin P., Ruuskanen A. T., Nappu N., Kiirikki M., 2007, Winter colonisation an succession of filamentous macroalgae on artificial substrates an possible relationships to Fucus vesiculosus settlement in early summer, Estuar. Coast. Shelf Sci., 72 (4), 665-674, doi:10.1016/j.ecss.2006.11.029. http://dx.doi.org/10.1016/j.ecss.2006.11.029

Leigh E. G., Paine R. T., Quinn J. F., Suchanek T. H., 1987, Wave energy an intertidal productivity, Proc. Natl. Acad. Sci. USA, 84 (5), 1314-1318, doi:10.1073/pnas.84.5.1314. http://dx.doi.org/10.1073/pnas.84.5.1314

Lotze H. K., Schramm W., Schories D., Worm B., 1999, Control of macroalgal blooms at early evelopmental stages: Pilayella littoralis versus Enteromorpha spp., Oecologia, 119 (1), 46-54, doi:10.1007/s004420050759. http://dx.doi.org/10.1007/s004420050759

Lotze H. K., Worm B., Sommer U., 2000, Propagule banks, herbivory an nutrient supply control population development an dominance patterns in macroalgal blooms, Oikos, 89 (1), 46-58, doi:10.1034/j.1600-0706.2000.890106.x. http://dx.doi.org/10.1034/j.1600-0706.2000.890106.x

Malm T., Isæus M., 2005, Distribution of macro algal communities in the central Baltic Sea, Ann. Bot. Fenn., 42 (4), 257-266.

Menge B. A., 1976, Organization of the New Englan rocky intertidal community: role of predation, competition, an environmental heterogeneity, Ecol. Monogr., 46 (4), 355-393, doi:10.2307/1942563. http://dx.doi.org/10.2307/1942563

Menge B. A., Sutherland J. P., 1987, Community regulation:variation in disturbance, competition, an predation in relation to environmental stress an recruitment, Am. Nat., 130 (5), 730-757, doi:10.1086/284741. http://dx.doi.org/10.1086/284741

Moran M. D., 2003, Arguments for rejecting the sequential Bonferroni in ecological studies, Oikos, 100 (2), 403-405, doi:10.1034/j.1600-0706.2003.12010.x. http://dx.doi.org/10.1034/j.1600-0706.2003.12010.x

Müller D. G., Stache B., 1989, Life history studies on Pilayella littoralis (L.) Kjellman (Phaeophyceae, Ectocarpales)of different geographical origin, Bot. Mar., 32 (1), 71-78, doi:10.1515/botm.1989.32.1.71. http://dx.doi.org/10.1515/botm.1989.32.1.71

Orav-Kotta H., Kotta J., Herkül K., Kotta I., Paalme T., 2009, Seasonal variability in the grazing potential of the invasive amphipo Gammarus tigrinus an the native amphipo Gammarus salinus (Amphipoda:Crustacea)in the northern Baltic Sea, Biol. Invasions., 11 (3), 597-608, doi:10.1007/s10530-008-9274-6. http://dx.doi.org/10.1007/s10530-008-9274-6

Pihl L., Svenson A., Moksnes P. O., Wennehage H., 1999, Distribution of green algal mats throughout shallow soft bottoms of the Swedish Skagerrak archipelago in relation to nutrient sources and wave exposure, J. Sea Res., 41 (4), 281-295, doi:10.1016/S1385-1101(99)00004-0. http://dx.doi.org/10.1016/S1385-1101(99)00004-0

Prathep A., Mars R. H., Norton T. A., 2003, Spatial an temporal variations in sediment accumulation in an algal turf an their impact on associate fauna, Mar. Biol., 142 (2), 381-390.

Qvarfordt S., 2006, Phytobenthic communities in the Baltic Sea:seasonal patterns in settlement and succession, Diss. Stockholm Univ.

Råberg S., Kautsky L., 2007, A comparative bio diversity study of the associate fauna of perennial fucoids and filamentous algae, Estuar. Coast. Shelf Sci., 73 (1-2), 249-258, doi:10.1016/j.ecss.2007.01.005.

Rönnberg O.,1975, The effects of ferry traffic on rocky shore vegetation in the southern Ålan archipelago, Havsforskningsinst. Skrifter, 239, 325-330. http://dx.doi.org/10.1016/j.ecss.2007.01.005

Salovius S., Kraufvelin P., 2004, Filamentous green alga Cladophora glomerata as a habitat for littoral macrofauna in the northern Baltic Sea, Ophelia, 58 (2), 65-78.

Scrosati R. A., Knox A. S., Valdivia N., Molis M., 2011, Species richness an diversity across rocky intertidal elevation gradients in Helgoland:testing predictions from an environmental stress model, Helgol. Mar. Res., 65 (2), 91–102, doi:10.1007/s10152-010-0205-4. http://dx.doi.org/10.1007/s10152-010-0205-4

Snoeijs P., Prentice I. C., 1989, Effects of cooling water discharge on the structure an dynamics of epilithic algal communities in the northern Baltic, Hydrobiologia, 184 (1-2), 99-123, doi:10.1007/BF00014306. http://dx.doi.org/10.1007/BF00014306

Sorlin T., 1988, Floating behaviour in the tel lini bivalve Macoma balthica (L.), Oecologia, 77 (2), 273-277, doi:10.1007/BF00379198. http://dx.doi.org/10.1007/BF00379198

Suursaar Uuml;., Sooauml;auml;r J., 2007, Decadal variations in mean an extreme sea level values along the Estonian coast of the Baltic Sea, Tellus A, 59 (2), 249-260, doi:10.1111/j.1600-0870.2006.00220.x. http://dx.doi.org/10.1111/j.1600-0870.2006.00220.x

Thompson R. C., Crowe T. P., awkins S. J., 2002, Rocky intertidal communities, past environmental changes,present status an predictions for the next 25 years, Environ. Conserv., 29 (02), 168-191, doi:10.1017/S0376892902000115. http://dx.doi.org/10.1017/S0376892902000115

Torn K., Martin G., Kotta J., Kupp M., 2010, Effects of different types of mechanical disturbances on a charophyte dominate macrophyte community, Estuar. Coast. Shelf Sci., 87 (1), 27-32, doi:1016/j.ecss.2009.12.006.

Voipio A., 1981, The Baltic Sea, Elsevier, Amsterdam,418 pp.

Wærn M., 1952, Rocky-shore algae in theöregrun archipelago, Acta Phytogeogr. Suec., 30, 298 pp.

Wallentinus I., 1976, Environmental influences on benthic macrovegetation in the Trosa-Askö area,northern Baltic Proper I.Hydrographical an chemical parameters, an the macrophytic communities, Contrib. Askö Lab., 15, 1-138.

Wallentinus I., 1979, Environmental influences on benthic macrovegetation in the Trosa-Askö area,northern Baltic Proper II. The ecology of macroalgae an submerse phanerogams, Contrib. Askö Lab., 25, 210 pp.

Wallentinus I., 1984, Comparison of nutrient uptake rates for Baltic macroalgae with fifferent thallus morphologies, Mar. Biol., 80 (2), 215-225, doi:10.1007/BF02180189. http://dx.doi.org/10.1007/BF02180189

Wallentinus I., 1991, The Baltic Sea gradient, [in:] Intertidal an littoral ecosystems of the world, A. C. Mathiesen & P. H. Niehuis (eds.), Elsevier, Amsterdam, 83–108.

Wallin A., Qvarfordt S., Norling P., Hautsky H., 2011, Benthic communities in relation to wave exposure an spatial positions on sublittoral boulders in the Baltic Sea, Aquat. Biol. ,12, 119-128, doi:10.3354/ab00329. http://dx.doi.org/10.3354/ab00329

Wærn M., 1952, Rocky-shore algae in the Öregrun archipelago, Acta Phytogeogr. Suec., 30, 298 pp.

West B. T., Welch K. B., Galecki A. T., 2007, Linear mixe models: a practical guide using statistical software, Chapman Hall, Boca Raton, 376 pp.

Westerbom M., Mustonen O., Kilpi M., 2008, Distribution of a marginal population of Mytilus edulis: responses to biotic an abiotic processes at different spatial scales, Mar. Biol., 153 (6), 1153-1164, doi:10.1007/s00227-007-0886-7. http://dx.doi.org/10.1007/s00227-007-0886-7

Worm B., Lotze H. K., 2006, Effects of eutrophication,grazing,an algal blooms on rocky shores, Limnol. Oceanogr., 51 (1 pt. 2), 569-579, doi:10.4319/lo.2006.51.1_part_2.0569. http://dx.doi.org/10.4319/lo.2006.51.1_part_2.0569

Worm B., Lotze H. K., Sommer U., 2001, Algal propagule banks mo ify competition, consumer an resource control on Baltic rocky shores, Oecologia, 128 (2), 281-293, doi:10.1007/s004420100648. http://dx.doi.org/10.1007/s004420100648

full, complete article (PDF - compatibile with Acrobat 4.0), 381 KB

Potential risk of Mesodinium rubrum bloom in aquaculture area of Dapeng'ao cove, China: diurnal changes in the ciliate community structure in the surface water
Oceanologia 2012, 54(1), 109-117

Huaxue Liu1,2, Xingyu Song1,*, Liangmin Huang1, Yehui Tan1, Yu Zhong1, Jian Rong Huang3
1Key Laboratory of Marine Bio-Resources Sustainable Utilization,
South China Sea Institute of Oceanology, Chinese Academy of Sciences,
Guangzhou 510301, China
e-mail: songxy@scsio.ac.cn
*corresponding author
2South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences,
Guangzhou 510300, China;
3School of Life Sciences, Sun Yat-Sen University,
Guangzhou 510275, China

keywords: ciliates, Dapeng'ao cove, Mesodinium rubrum, bloom

Received 6 June 2011, revised 28 November 2011, accepted 12 December 2011.

This research was supported by the Key Innovation Project of the Chinese Academy of Sciences (KZCX2-YW-Q07, KZCX2-YW-T001, SQ200805), National Nature Science Foundation of China (40906057, 41130855) and Special Project of the Social Common Wealth Research of the National Science Research Institute (South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences) (No. 2011TS06).


Diurnal changes in the structure of the ciliate community in surface waters were studied in the aquaculture area of Dapeng'ao cove, China. Two periods of heavy rainfall occurred during the study period, intensifying water column stratification and influencing the water's properties. A total of 21 ciliate taxa from 15 genera were identified; the dominant species was Mesodinium rubrum. The maximum abundance of M. rubrum reached 3.92 × 104 indiv. dm-3, contributing 95.1% (mean value) to the total ciliate abundance. Diurnal changes in M. rubrum abundance were highly variable, the driving force probably being irradiance and food availability. The results suggest that M. rubrum may form blooms in aquaculture areas when there is a suitable physical regime with enriched nutrients, which is potentially harmful to the fish-farming industry.

  References ref

Berger H., 1999, Monograph of the Oxytrichidae (Ciliophora, Hypotrichia), Kluwer Acad. Publ., Dordrecht, 1092 pp. http://dx.doi.org/10.1007/978-94-011-4637-1

Carey P. G., 1992, Marine interstitial ciliates-an illustrated key, Chapman & Hall, London, 351 pp.

Dolan J. R., Vidussi F., Claustre H., 1999, Planktonic ciliates in the Mediterranean Sea: longitudinal trends, Deep-Sea Res. Pt. I, 46 (12), 2025-2039. http://dx.doi.org/10.1016/S0967-0637(99)00043-6

Foissner W., 1993, Colpodea (Ciliophora), Gustav Fischer Verl., Stuttgart, Jena, New York.

Frances P. W., Gary G., 1990, Formation of blooms by the symbiotic ciliate Mesodinium rubrum: the signi-cance of nitrogen uptake, J. Plankton Res., 12 (5), 973-989. http://dx.doi.org/10.1093/plankt/12.5.973

Hayes G. C., Purdie D. A., Williams J. A, 1989,The distribution of ichthyoplankton in Southampton Water in response to low oxygen levels produced by a Mesodinium rubrum bloom, J. Fish. Biol., 34 (5), 811-813. http://dx.doi.org/10.1111/j.1095-8649.1989.tb03363.x

Kahl A., 1930-1935, Urtiere oder rotozoa. I: Wimpertiere oder Ciliata (Infusoria), eine Bearbeitung der freilebenden und ectocommensalen Infusorien der Erde, unter Ausschluss der marinen Tintinnidae, Die Tierwelt Deutschlands, 21, 181-398.

Lindholm T., Lindros P., Mörk A. C., 1990, Depth maxima of Mesodinium rubrum (Lohmann) Hamburger &Buddenbrock-examples from a strati-ed Baltic Sea inlet , Sarsia,75 (1), 53-64.

Liu H. X., Song X. Y., Huang L. M., Zhong Y., Shen P. P.,Q in G., 2011, Diurnal variation of phytoplankton community in a high frequency area of HABs: Daya Bay, China ,Chinese J. Oceanol. Limnol., 29 (4), 800-806. http://dx.doi.org/10.1007/s00343-011-0509-5

Liu X. N., Wang W., 2004, A relationship between red tide outbreaks and urban development along the coasts of Guangdong rovince, J.G eogr. Sci., 14 (2), 219-225. http://dx.doi.org/10.1007/BF02837537

Ota T., Taniguchi A., 2003, Standing crop of planktonic ciliates in the East China Sea and their potential grazing impact and contribution to nutrient regeneration, Deep Sea Res. Pt. II, 50 (2), 423-442. http://dx.doi.org/10.1016/S0967-0645(02)00461-7

Parsons T. R., Maita Y., Lalli C. M., 1984, A manual of chemical and biological methods for seawater analyses, Pergamon Press, Oxford, 173 pp.

Passow U., 1991, Vertical migration of Gonyaulax catenata and Mesodinium rubrum, Mar. Bi o., 110 (3), 455-463.

Pierce R. W., Turner J. T., 1993, Global biogeography of marine ciliates, Mar. Ecol.-Prog. Ser., 94, 11-26. http://dx.doi.org/10.3354/meps094011

Ryther J. H., 1967,Occurrence of red water off Peru, Nature, 214, 1318-1319. http://dx.doi.org/10.1038/2141318a0

Sjoqvist C-O., Lindholm T. J., 2011, Natural co-occurrence of Dinophysis acuminata (Dino flagellata)and Mesodinium rubrum (Ciliophora)in thin layers in a coastal inlet, J. Eukaryot. Microbiol., 58 (4), 365-372. http://dx.doi.org/10.1111/j.1550-7408.2011.00559.x

Song X. Y., Huang L. M., Zhang J. L., Huang H. H., Li T., Su Q., 2009, Harmful algal blooms (HABs) in Daya Bay, China: An in situ study of primary production and environmental impacts, Mar. Pollut. Bull., 58 (9), 1310-1318. http://dx.doi.org/10.1016/j.marpolbul.2009.04.030

Stoecker D. K., Michaels A. E., 1991, Respiration, photosynthesis and carbon metabolism in planktonic ciliates, Mar. Biol., 108 (3), 441-447. http://dx.doi.org/10.1007/BF01313654

Villarino M. L., Figueiras F. G., Jones K. J., Alvarez-Salgad X. A., Richard J., Edwards A., 1995, Evidence of in situ diel vertical migration of red-tide microplankton species in Ria de Vigo (NW Spain), Mar. Biol., 123 (3), 607–617. http://dx.doi.org/10.1007/BF00349239

Wang S. F., Tang D. L., He F. L., Fukuy Y., Azanza R. V., 2008, Occurrences of harmful algal blooms (HABs) associated with ocean environments in the South China Sea, Hydrobiologia, 596 (1), 79-93. http://dx.doi.org/10.1007/s10750-007-9059-4

Wang Z. H., Qi Y. Z., Chen J. F., Xu N., Yang Y. F., 2006, Phytoplankton abundance, community structure and nutrients in cultural areas of Daya Bay, South China Sea, J. Marine Syst., 62 (1-2), 85-94. http://dx.doi.org/10.1016/j.jmarsys.2006.04.008

Williams J. A., 1996, Blooms of Mesodinium rubrum in Southampton Water - Do they shape mesozooplankton distribution?, J. Plankton Res., 18 (9), 1685-1697. http://dx.doi.org/10.1093/plankt/18.9.1685

Zhao D. Z., Zhao L. Z., Zhang F. S., Zhang X. Y., 2004, Temporal occurrence and spatial distribution of red tide events in China's coastal waters, Hum. Ecl. Risk Assess., 10 (5), 945-957. http://dx.doi.org/10.1080/10807030490889030

full, complete article (PDF - compatibile with Acrobat 4.0), 152 KB