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A bstract

The non-linear attenuation of the wave motion induced by wind is considered. From the collected 
experimental data is shown that the low frequencies are damping slower than it is given by a 
linear thoery. The opposite behaviour is observed in the high frequency range. The developed 
non-linear perturbation scheme offers a theoretical base for understanding of this unclassical 
attenuation mechanism.

T he dynam ic m otion  o f the sea surface, due to  continuity  o f w ater masses, penetrates 
deeply in to  w ater. P enetration  range depends strongly on th e  intensity  o f the surface 
m otion  and  the  respected frequency. U nder the  assum ption th a t the  observed sur
face geom etry is a  linear superposition  o f  simple harm onic waves com ing from  
various directions, the  pressure dam ping  o f  the particu la r com ponents is described 
by well know n classical form ula [10]:

p  (z) ~  cosh k  (z  +  h ) ,

w h e re :
p  — w ave pressure; 
h — w ater depth;
z  — vertical coordinate o f pressure m easurem ent po in t, positive w hen upward; 
k  — wave num ber related to  wave frequency co by th e  dispersion relation:

co2 = g ' k - t a n h ( k - h ) .  (2)

1. Introduction

* The investigations were carried out under the research programme M R .1.15, coordinated 
by the Institute of Oceanology of the Polish Academy of Sciences.



T he simplicity o f  a ttenuation  fac to r is o f the  practical im portance fo r the  sea. 
surface m easuring procedure. Pressure type gauges therefore are  extensively used 
in m any locations th ro u g h o u t th e  w orld. The use o f  a pressure transducer fo r wave 
m easurem ents present no tab le  advantages in  com parison w ith o ther systems. F irs t 
o f  all, m ost systems are used on the  surface, whereas a pressure transducer can 
be placed subm erged, out o f the  way o f being easily dam aged. M oreover, it offers 
the precision which is quite satisfactory  fo r the routine wave m easurem ents. However,, 
there is still a problem . I t concerns the  translation  o f inform ation on wave pressure 
head variations in to  the  concurren t surface wave heights.

A ttem pts to  determ ine the validity o f  the  classical attenuation  law have been m ade 
in  the past [1], Previous experim ents reported  by D raper [9], Cypluchin [8], Bergan,. 
T orum  and T raetteberg  [2], E steva  and H arris [11], C avaleri, Ewing and Sm ith [6],. 
G race [14] and C avaleri [5] indicate th a t the  deviations from  the linear transm ittance 
function are som etim es greater th an  20% , depending on the frequency.

M oreover, in th e  m onography published by G luchovsky [13] (see also [10]), 
th e  em pirical evidences fo r faster (than  classical) a ttenuation  of the separate, well 
noticeable, sea surface oscillations are collected. A ccording to  G luchovski we have:

cos hk ( z - \ - h )  f r  / z \ ° '8-n

w ü -  “ p r r ' 5'5 ( ï )  J r

where: y — averaged Gluchovski dam ping coefficient, L  — wave length. F u th e r-

Fig. 1. Experimental and theoretical attenuation of wave pressure [2] a) according to linear 
theory; b) according to 5th order theory



m ore, the  energy o f the spectral com ponent attenuates alm ost in  accordance w ith 
the  linear theory.

The review o f the professional literature indicates [1, 12, 23, 27] th a t the 
discrepancies in  the dam ping rate also for the orbital velocities were observed.

In this paper, some possible reasons for the  discovered unclassical pressure dam p
ing are analyzed theoretically. The special efforts are m ade to  dem onstrate the im por
tance o f the non-linear m echanism s. Thus, a m ethod correct to  the  second order 
in wave am plitude is applied for calculation o f the non-linear dam ping coefficient 
ap in  the random  wave field.

Using the theoretical results, the  in terpreta tion  o f the experim ents is given. 
M oreover, the influence o f o ther factors on the pressure attenuation  rate is 
m entioned.

2. Non-linear attenuation function 
for wave pressure

The experim ents carried  ou t fo r the regular and irregular waves have show n 
[2] th a t transm ittance function based on the non-linear wave theories predicts the  
wave a ttenuation  m uch better th an  the linear one (Fig. 1). Particularly  the  app li
cation  o f the fifth o rder Stockes’ approxim ation  fits the experim ental points quite 
satisfactorily. Therefore the  conclusion th a t the non-linear m echanism s are respon
sible fo r the  a ttenuation  is well-founded.

In  this chap ter th e  corresponding non-linear theory  up to  the  second order is 
developed using the pertu rbation  m ethod. It is assum ed th a t all variables can be 
expanded as a  convergent pow er series o f  a small param eter (p roportional to  the 
w ater — surface slope).

2.1 Problem formulation

W e consider unrestricted  w ater basin with constant w ater depth  h. The waves 
a re  generated by wind stationary  in tim e, as well as in space. I f  the effects o f viscosity 
and  turbulence can be regarded as small and the wave m otion is irro ta tional, for 
the  ran d o m  velocity potential 0  and random  sea surface Ç we have:

w here: x ,  y  — horizontal Cartesian co-ordinates w ith the  orgin at the  still w ater 
level.

The resu ltin g  boundary value problem  is sum m arized as. follows [28]:

<P(x, z ,  t) =  &(1\ x , z ,  i) +  cp<2)(x ,  z , t ) + . . . ,  

£ (x , t) =  C(1)(x ,  t) +  C(2)(x , t ) + ,

(4)

(5)

V 2<P = 0 ,  u =  Vtf>; (6)



d $  1
0 C +  — + — u2 =  O, where z = 0  ; (7)

dt 2

dt; d<P d<P dC d<p
-------------1------- · -----1------ ·—- = 0 ,  w here z = 0 ;  (8)
dt dz dx dx dy dy

d $
-— = 0 ,  w here z =  — h .  (9)
dz

I f  we neglect the non-linear term s in (7) and  (8), the  solu tion  o f  lin ea r problem  
takes the  form  ([18, 24]):

<P(1)(x , z ,  i ) =  Z a i '  v ' f X x ’ Z,  0 .  (10a)
i= 1

and

CW ( x , t ) = i a r C\l\ x , t ) ,  (10b)
i = 1

where:

m  g cosh k i( z  + h)  . (1)
<Pi= —  ’ -------- ——— -s m y ,;  C,· - c o s i//t , (11)

a); cos/j k t It

^ i(1)=fci -3 c -a )i - i+ 6 i; 5 c = (x ,y ) ,  (12)

k l = ( k i ’ c o s0 t , k i ’ s in d t); fc,-=|fc;| .  (13)

T he am plitudes and  phases £, are chosen random ly, so th a t a, cos s, and  at sin e, 
are jo in tly  norm al, w ith e, uniform ly distributed an d :

lim  ( E a ?  ) = S i (co) dco+0 (dco)2, (14)
n~*oo (0<ioi<co + da>
where: crt — variance o f  sea surface elevation: S-(co) — spectral density o f  wave 
energy.

Please note th a t in  ou r m odel the  am plitude at and  frequency a>, are associated 
w ith  wave direction 0t . Therefore, the d irectional wave characteristics is only partly  
taken  in to  account.

The second order wave system is one th a t is forced by th e  linear system , i.e. 
all second order am plitudes and  phases are related  to  the  characteristics o f  the  first 
o rder spectrum . In  o rder to  simplify the fu ture algebra we assum e the  po ten tia l and 
sea surface ord inate  o f  the second o rder in  the  forms:

<Pi2\ x , z , t ) =  f i af<p\2\ x , z , t ) +  £  £  a c a j ·  < p $ ( x , z , t ) ,  (15)
i =  1 i=  1 j  =  i + l

C(2)(3c, i)=  i > i 2 - i (2)(3 c ,0 +  Z  i t  ar a j - C $ ( 3c, 0 ·  (16)
i =  1 i = l j  = i + l

F irst sum m ation expresses the  in teraction o f the spectral com ponen ts w ith  the same 
frequency, whereas the  second double sum m ation describes th e  result o f  the  com 
ponent in teraction w ith different frequences. This case will be trea ted  first.



2.2  Non-linear interaction of spectral components 
with different frequencies

T h e  pertu rba tion  m ethod yields the following equations set fo r the  functions cp\f) and  
4 ?) in  the  form  [17, 18]:

V > i? > = 0 , i = l , 2 ,  , n —1; j = i , 2 ,  , n; j> i · ,  (17)

<18>

M . > =  o a t z =  — h .  (21)
dz

Substitution o f  (11) in (20) gives:

3~ T -  + 9 ■ ~ “  9 ■■ [7 7 // >· s i n ( ^ - ^ )  +  i l 17 - ) s i n ( ^ - ^ ) ] » (22)
o r  3z coicpcoj

in  which:

7 7 ·/)= (ct);—ojj) [cos 0 ^ —ta n h k t h · ta n h k j  /i] +

+ — X ( i  _  tan /;2 k j  h ) + ° ^ - i (1 -  ta n h1 /i)T ; (23)
2 1_ ki k j  J

77y- ) =  (ct); — coj) [cos Ojj + ta n h k t h ■ tan/; k j  /i] +

+  — [" C0,<P̂ J ( j  _  tan/?2 k j  h) — (1 — tan /22 k,  / i ) l  · (24)
2 [_ kt k j  J

T h e  solution o f the  differential equation  (22) depends strongly on  the  character 
o f  the interactions involved. I t  is well know n th a t for the second o rder so lution 
only non-resonant interactions can be considered [22],
T herefore we obtain:

3 O c e a n o lo g ia  20

d f f  d<p™ _  d2cp™ d2cp("  S d c p P f t ™

~8t------ 5 T “ Ci 1 ? " +C'  dz2 V & T  " 5 r + " a T 1 7 j  * ( }

(1)_ d f d 2^  d ^ \

d /S 2©;1  ̂ d _ _
+  ̂ ) - d - ^ + ^ - 7 r ) - 2 -T7(uiU;) at z = 0 ; (20)



P<7 > = ----------------------------------------— --------; (27)
(cO i - W j Ÿ - g  \ k i - k j \  ta n h [|fej—/c,-J · /i]

and:

£ 2)= M < / )cos(y/ i+y / j )+ M \ j > cos ( ^  -  ̂ ) , (28)

w here:

W.-CÜ,· |_ 2 \ (Oj  ft); /

1 ,  1• tan/i fe; h · tan  h k j  h — — cos 0fj· ; (29) 

WiOij L 2 \cOi CO j  J

• tan  h k t h - ta n h  k j  h — — cos 0;jl . (30)

T he coefficients A /y are sym m etric, i.e. M iJ =  M Ji.
In  the special case w hen h~* oo, r / 2) assumes the  form  [22]:

. . .  g 2k : k ,if ((Of— 0 ) : ) ·  C O S 2 $ 9 : 1  ,
9 m = “— L i. _ l_ i------. J  | · e ]kj ktl *· sin ( W j - V i )  +

°>iwj  L(û>,-û>i) - g \ k j - k i \

(cO:+a>i)'sin2 ^Oj: . . 1
— z r  ■ i ~e jl ' s in f e + ^ 4  n n(cüi +  cOj·) — ÔT Ifci+fcj-i J  (31)

w hat is in agreem ent w ith Longuet-H iggins’ result [18].

2.3 Non-linear interaction of spectral components 
with the same frequencies

W hen the frequencies co, and u>j are  identical, the  in teraction  m echanism  creates th e  
w ell-known Stokes’ com ponent. Thus, the  derivation o f  the  form ulas fo r th e  
poten tia l (p(r> and surface elevation £<2) will be om itted here. W e sum m arize only

... g 2ki k j  ( ... cos/2[|ic, + fc,j(z +  /i)] .
Ψ ^ = — ^ \ Ρ \ Γ · ------- r 7 ~ 7 ■ , ;  “ η ( ^ + ^ )  +

<i>iU>j (  COSA[|fct+ f c ; | ' / l ]

, .cosA[|fe,— k ,\(z+ h )}  . J
+ P ‘J ------ I r l f  τ Τ , ν  •s in (^ - ^ ) l ·  (25)C0S/2[|fc; — fc;| · /l] J

w here:
/7Î+>

p < /> = ------------------- ^ - 4 ^ ------------ — ------- ;
(co( +  coy·)2 - g  \ki + kj\ · tan/i [|&* +  /Cj| · /i]



the  final expressions as follows:

(2 ) 9 2k f  ( + ) cosh[2k t( z  + h)2 
* ! m ' P “ cosA (2Jc,/,) ( j2 )

w here:

. . .  3 co: cosh2fc; 7i , ,
P< + ) = __·__ L·.____________ i______ · p .(, >=0 n '5 'l

4 gki  sin/?3 · k t ■ h · cosh k t h ’

and:

d 2) =  i  [M i;+ > · cos 2 ^ ; +  M i r >], (34)

in which:

o s )
cOj. 2 · sin/i ki h 

co,- 2 · cos/z K,· h

The term  \  ■ Mj t~■* describes only small departu re  o f the  m ean w ater level from  the 
initial position and it will be neglected below due to  its nonperiodic behaviour.

I t is clear th a t th e  final form  o f the second o rd er velocity po ten tia l </j(2) obeys 
the  sum m ation o f (25) and (32) according to  equation  (15). These results can be 
easily com pared w ith o ther form s developed by Krylov, Strekalov and  C ypluchin 
[17], B itner-Gregersen [4], and  Sharm a and  D ean  [25].

2.4 Autocorrelation and spectral functions 
for sea surface elevation

Since we have C = i(1) +  f (2) by equations (11), (28) and  (34), we can find the energy 
spectrum  o f a hom ogeneous stationary  surface by first form ing the  au tocorrelation  
function and tak ing  its F ourier T ransform  in  the  usual way. W e have:

K 6  t ) = a t ) - a t + T ) = c (1)(o  ■ + t ) + M W h ) +

+  i (2)(0  · C(1)( i + 1 )+ C(2)(0  · C(2\ t + T). (37)

The overbar denotes the averaging in  the  stochastic sense. Inspection o f the  equa tion  
(37) indicates th a t the  particu lar term s are essentially second, th ird  and  fourth  
m om ents.

W e will assume th a t the  linear approxim ation to  the  sea surface C(1)(0  and its 
linear poten tia l function are G aussian. However, the  second o rder sea surface 
C<2) can no t be G aussian, o r the  essential non-linearity  is lost.
Since th is is a pertu rbation  analysis, the  effect o f  M tJ is to  m ake a  sm all correction  
on  the G aussian probability , we can use the  pseudo-G aussian  hypotesis th a t the th ird

s*



an d  fou rth  m om ents will be related  substantially as they are  fo r the  G aussian  case, 
i.e. :

C(1)(0 -C (2)( i+ T )« C (2)(0 -C (1)( i + T ) « 0 ,  (38)

w hile the  first term  in (37) gives

£(1)(i)*Ca ) ( i+ T ) =  £  Y j a i -a j - co sy / tcos(y/ j -coj-T;) .  (39a)
; = i i = i

U sing the  assum ption on the  stationary  process, (39a) becom es ([16]):

ζ (1)( ί ) ·ζ (1)( ί+ τ )=  £  S ^ a ); ) · cos (ΰ ν Ο 'Λ ω . (39b)
i = 1

T he fou rth  m om ent for the variables 2, 3, 4) can be related  to  the second
one by [16]:

u i -u2 - u 3 -uA — u i - u 2 'U3 -u^ + u l 'U3 · u2 -u4. + u 1 · uA- u 2 · u 3 . (40)

Equation  (41) is essentially the  M illionshthikov hypotesis, well know n in the 
turbulence.

Substitu tion  (38), (40) and  (41) in to  (37) gives

K ( t )  =  £  S j1J · cos (co; t )  · Aco +  { M-;+)2 ■ · cos (2a>,· r )  +  
i= l >=i

+  2 X  £  [ M j / )2 · cos ((®, +  (Oj) ■ r) +  cos ((co,·w;) · r) · S£1}} - (Am)2 (41)
i= 1 J = ;+ 1

T he Fourier transfo rm ation  o f  (42) yields the spectral function  in  th e  form :

i = T

Ii = 1
% (« * )  -  ) +  MS,+ )2 ■ S',1 )2 ■ zl CO +  2 X  i ' * · S ^ _  t -Aco +

i= 1

+ 2  |  (42)
i= 1

where: T,(+)= E n t i e r ^ — \  T (~ )= n —k', k ^ n — l. The term  is applied only

fo r even k  ( l=k/2).  Expression (42) presents the  non-linear spectrum  fo r surface 
waves when second o rder term s are taken  in to  account.

2.5 Autocorrelation and spectral functions for wave pressure

The pertu rbation  m ethod yields the  following expressions for the w ave-induced 
pressure (for sim plicity 3c =  0) [28]:

p ( z ,  t) = p(l \ z ,  t) + p(2\ z ,  t ) ,  (43)



where:

p ^ \ z , t ) = - p ^ - r , (44)
at

an d
fc<z>(2) i  r / a ^ (1)\ 2 f d ^ 1 V  /<5<f>(1)\ 2-n  . . c .

/ ^ > 0 _ - , { _  + _ | _ ( _ )  +  ( _ )  + ( — ) Jj. (45)

Substitu tion  o f  (11), (25) and  (32) in to  (44) and (45) gives:

p (1\ z ,  i ) =  0 ,  (46)
i =  1

cos hk : (z  + h)
p \ \ z , t ) = p g - C i(z ) - cosy / i; Q (z ) = ------- —— — , (47)

c o s h k i - h
and:

p <'2\ z , t ) = Y a f - p \ 2\ z , t ) + Y J £  at - a j - p \ j \ Z ' , l ) ,  (48)
i =  1 i =  1 j  =  i + i

in w hich:

p\2\ z ,  t) =  $pg ■ [Nji+)· c o s 2\jJi +  JV jf}] , (49)

Po2)(z ,  0  =  99  [Ari / ) ‘ cos +  y/j) + N (J > ■ cos ( ^ -  y/,-)], (50)

N (+)_ g k i k j  \ ( 1  -  cos djj) · cos ft [(fc,·+ fcj) (z +  ft)]
,J (MjCOj- } 4- cos/i/c,·· ft· c o s h k j h

[ (1 + c o s  0;j) · cos/; [(fcj — /c,)(z +  ft)]  ̂ [ ^   ̂ ^ + ) . cos/i [|fc,+ fc; |(z  +  /i)]]  ^  

4 cosAfcjh · c o s h k j h  ‘ J lJ c o s h i \ k i + k j \ · K ]  J

N ( - ) _  9 k i kJ . ( ( 1  +  c o sOjj)· cosh [_(kj—k j ) ( z  +  ft)] | 
lJ (OiCOj { 4 - coshk i l i -  c o s h k j h

| ( 1  +  cos 0 o·) ■ cosh [(fc,·- /c,)(z +  ft)]  ̂ ^  ^  -j. p ( - )cos/* [lfcj ~  fcj| (z +  ̂  (5 2 ) 

4 c o s h k ; h - c o s h k j h  J 1 ,J cosft [|fcj— fc,| · ft] J

T he corresponding spectral function  for the  wave pressure takes the form :

( ± ) 2 S Pk= C 2k - S ("  + N \ r 2- S £ 2 · Aco+ 2 ·  I  ' N \ : l i - S ^ - S [ l \ - A o , +
\ P 9 j  i=i

+  2 I  (53)
i=l

I t should be noted  th a t the non-linear pressure spectrum  depends on th e  d irectional 
spreading o f the surface wave energy, w hereas the  linear spectrum  is quite independent 
on wave direction.

L et us now  assume th a t tpiJ = Q, i.e. all spectral com ponents p ropagate  in  the 
sam e direction. Therefore equations (51) and  (52) become:



( + ) _ gfr,-fc; f co»*[(fc,-fc,)(* +  *)] ( + )cos h l ( k t+ k j ) ( z + h ) l )
tJ coicoj (_ 2cos/i/c, /i ■ cos h k j h  ‘ 1 " cos h [ ( k l + kj)h'] J ’

f cos/i[(/c i+fcJ- ) ( 2  +  /i)] (_ ) c o s /i [(fc7— fc|)(z +  ft)J]

lj coicoj |  2 c o s  h k t h - c o s h k jh  J ‘ ,J c o s h [ ( k J—k i)h'] J

The coefficients have quite unexpected form s. F o r exam ple, w hich corres
ponds to  the  sum  o f frequencies (coi+coj) depends n o t only on  the  classical term  
~ c o s h[(ki + k j)(z  + h)] bu t also on term  ~ cosh[(kJ — k i)(z+h)] .  T he decaying (with 
depth) of the  last te rm  is m uch slower th an  classical one. In  the  special case cot =cOj, 
the  last term  will be constan t w ith depth , indeed. In  the  sam e way we can argue th a t 
th e  term  ~ c o s / 2 [(Jct +  k j) ( z + h)] in  the  coefficient decays faster th an  it comes 
from  the  linear theory. W e use bo th  conclusions in the  following section extensively.

2.6 Non-linear attenuation of wave pressure with depth

Let us define the non-dim ensional decaying function Z <'p\cok , z) in the form:

Z iP\cok , (56)

A fter substituting (42) and (53) into (56) we get the  non-linear decaying function 
Z 'f )(cuk, z) in  th e  form:

r /w <+>\2<? (1> r i=T(+)/ /v  \ 2o( i ) o ( i )
Z if)(£ot ,z )  =  Q ( z ) | l . 0 + ^ ^  ^ c o  +  2 ^  £  +

i = T ( ->  / m ( - )  \ 2 <?d)  c d )  ~ n  r  <rCl)

+ £  ( i f )

[
j =  T( + ) 0 ( 1) o ( l )  i =  T ( - )  e ( l )  o  “I·)

Z  , 1  (47>

W hen the non-linear in teraction  is neglected, equation  (5b) yields: 
ZP (cok , z ) = C k( z ) .  (58)

N ow , we define the  pressure attenuation  coefficient ap as a  ra te  o f (57) and  (58), i.e. :

ccp(a>k , z) =  Z%\cok , z ) l Z f  \ w k , z ) . (59)

Therefore, if  ap(cok , z ) > 0 fo r given frequency mk, the non-linear pressure decaying 
is w eaker th an  linear one. O n the  contrary , if  <xp(cok, z) < 0 , the  pressure decays faster 
th an  in the  linear case. T he identity  ap =  1.0 reflects the  linear attenuation  (see also
[3])·

In  the chap ter 2.5, in  the  coefficient Ar/ / ) (higher frequencies) we have detected 
term s decaying slowly. Thus, in  this frequency range, the  coefficient ap should be 
som ew hat greater th an  one. In  the low frequency range it should  be sm aller than



one, due to  sim ilar argum ents. Experim ents carried ou t recently [5, 14] seem to 
confirm  these conclusions.

I t should be po in ted  ou t th a t the non-linear a ttenua tion  coefficient <xu fo r the  o r
b ita l velocities can be ob tained  in  the  sim ilar way. However, the  decaying term s in  
th e  high frequency range (coi+coj) are  p roportiona l to  the  cosh[(k ,+ kj)  (z+li)].  
O n the  contrary , fo r the  low  frequency, the  velocities are decaying according to  
cosh[(ki — kj)(z+ lt)] .  Thus, they reflect the  linear-like behaviour in  all frequency 
range. In  general, th e  dam ping coefficients <xp(a>) o r xu(co) depend no t only on  the 
form  o f hiperbolic functions b u t also on the  values o f  param eters N u  and  M u  as 
well as on the shape o f  S'!0  spectrum . Therefore, the  final conclusions m ay be w ith 
draw n only after detailed  num erical calculations carried  ou t fo r each particu la r 
case.

3. Experimental data and numerical calculations

W e now sum m arize the d a ta  available on determ inistic and stochastic correlations 
betw een surface wave heights and  pressure head  variations th rough  1982. Some o f 
th e  d a ta  sources are listed in  th e  References. A lthough the  d a ta  were scattered, 
the  general trend  w as fo r the  em pirical dam ping coefficient a  to  increase th rough  
unity  w ith increasing wave frequency.

D raper [9] reported  th a t waves in  relatively deep w ater obey the classical hydro- 
dynam ical theory, w hereas waves in  shallow w ater m ay produce pressure on  the 
sea bed alm ost 20%  less th a n  th a t  suggested by the  theory . A s usually the  waves 
in  shallow w ater are relatively long ones. Thus, from  theory  given above we con
clude th a t the  coefficient ap should be sm aller th an  1, w hat was observed precisely.

A ccording to  [8], the decaying o f the well-defined particu lar oscillations in 
the  deep sea is faster th an  predicted  by linear theory  fo r periods 4 - 10 s. This con
clusion was conform ed by G luchovski [13], In  the  F igure 2 the  com parison o f  the  
em pirical decaying coefficient and theoretical one based on  the linear theory , is given. 
The faster a ttenuation  is observed in the deep (Fig. 2a) as well as in the  shallow  w ater 
(Fig. 2b). T he analytical form ula (3), p roposed by G luchovski, corresponds to  the  
curve w hich fits the  experim ental da ta  in  th e  best possible way. W ith  respect to  
the  spectral com ponent a ttenuation , G luchovski argues th a t the a ttenuation  is 
in  accordance w ith linear theory .

I t is in  som e con trad iction  w ith Bergan, T orum  and  T raetteberg  experim ents
[2]. The experim ents were m ade in  a  wave channel w ith  a w ater depth  o f  1 m  and 
fo r periods from  1.25 to  3 s. T he pressure was m easured a t the  p o in t subm erged
0.87 m  under water. F igure 1 shows com parisons o f  pressure m easured by the  pres
sure gauge and  pressure calculated from  wave heights using the  linear wave theory  
(Fig. la). In  the  same figure a  sim ilar com parison w ith the fifth o rder wave theory  
is also given (Fig. lb); there  is a fa ir agreem ent between m easured pressures and  
pressures calculated according to  the  fifth order wave theory , indicating th a t the  
influence o f the non-linearities on  the  pressure decaying is substantial and  can no t



Fig. 2. Attenuation of particular sea surface oscillations, [13]; a) deep water; b) shallow water

Fig. 3. Experimental damping coefficient a , for laboratory and occan data, [14]



be om itted. Also the  spectral energy a t a given p o in t and  for the  higher frequencies 
is in  general greater th an  th a t com ing from  the  linear transm ittance function.

The sim ilar com parison was m ade by Esteva and H arris [11]. Two pressure 
gauges were involved in  th is w ork. One pressure sensor was im m ediately above 
the  bottom , w ith the o ther one 1.7 m  above it. During experim ents the  w ater d ep th  
was 4.7 m.
F o r the lower gauge, αρ(ω) increased from  about ~ 0 .95  a t a frequency o f ap p rox i
m ately 0.43 rd /s to  — 1.05 fo r ω  ~  2 rd/s. The upper gauge showed oc„ values con
sistently closer to  unity.

In  the  paper [14], both  field and laboratory  da ta  are  em ployed. The field d a ta  
w ere taken  in the ocean off H onolulu, in  11.3 m  o f w ater, and  involved swell w ith  
periods from  12 to  17 s. The laboratory  da ta  were taken  for w ater depths o f  2.9 
and 3.5 m  and involved periods from  2 to  6 s. A ccording to  [14], the linear theory  
can be used to predict individual surface wave heights from  pressure variations at, 
o r near, the  sea bed as long as an  em pirical correction factor is included. H is em piri
cal dam ping coefficient x  is sm aller th an  unity for small ratios o f w ater dep th  to  wave 
length  (or for small frequencies) and  greater th an  unity  for larger values o f this 
param eter (or for high frequencies) — see F igure 3. Thus, it agrees qualitatively 
w ith the  prediction by the  non-linear theory  given above.

Recently Cavaleri, Ewing, Sm ith [6] published the  results o f an  accurate experi
m ent on an  oceanographic tower. They found th a t generally waves a ttenuate  in  the 
different way th an  it is predicted by the  linear theory, i.e. σ.ρ can  be sm aller o r greater 
th a n  1. The ap coefficient shows approxim ately a linear dependence on frequency eo 
and  the  slope o f th is line depends on  the  depth  o f the  transducer. T he ap value fo r  
some o f the  records has been plo tted  against frequency in F igure 4 [5].

The sim ilar effect was observed for the pore pressure a ttenuation  in  the sandy 
sea bed [20]. F o r example, in F igure 5 the  dependence o f em pirical coefficient ap 
on  the frequency is shown. The pressure gauge was installed 0.5 m  under the sea 
bed; w ater depth  was abou t 7.0 m. A gain, the  deviations from  the linear a ttenuation  
fo r low and high frequency can be easily detected.

Let us consider the  num erical calculation o f the  a ttenuation  coefficient a„ 
using the  form ulas developed above. But there  is still some problem . The coefficient 
ap depends strongly on  the linear frequency spectrum  S i1*. In  fact, it  is unkow n 
function because the  spectra available in literature  arc  usually the  analytical expres
sions o f  the  curves w hich fit the  experim ental d a ta  in  the  best possible m anner. M ore
over, it should be po in ted  ou t th a t the  experim ental da ta  reflect the to ta l super
position  o f  th e  linear and non-linear phenom ena in the  wave m otion. Thus, the  
linear spectrum  m ust be calculated from  given experim ental spectrum  using the  
special num erical procedures. Two such procedures were developed recently by Chybi- 
cki and  Naguszewski and for the  details we address the  readers to  [8], Therefore, the 
problem  o f separation  o f  a given spectrum  on linear and non-linear parts  w ill be 
om itted  here. In  F igure 6, the result o f  spectrum  separation  for th e  record  tak en  
in  the shallow w ater is shown, w here we dem onstrate the  im portance o f the  non- 
linearities in  the  various frequency bands. I f  we subtract the  non-linear p a rt o f
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spectrum  from  experim ental one, we get the  S-(1) function. Now, the  pressure spectrum  
S p(co) and  a ttenuation  coefficient ap can be calculated from  form ulas developed 
in chap ter 2. F igure 7 illustrates the  frequency dependence o f the  coefficient ap fo r 
th e  sam e record as in F igure 6. In  the  basic energetic part o f th e  spectrum  coefficient 
a„ is very close to  1 and it is increasing rapidly  when a> > 3cop . Therefore, the  linear 
a p describes correctly the pressure a ttenuation  in  the  frequency range co<2co„ fo r 
the  wave record  under consideration. In  general however, it is no t ture. M any num eri
cal experim ents carried  ou t by au thors indicate th a t <xp{co) is strongly depending 
on the  energy level in the low frequency range. The following exam ple (see also
[3]) dem onstrates th a t fact very clearly. L et us consider the  w ind-induced waves 
characterized by JO N SW A P spectrum  (T’„ = 4  s; H s= 2.3 m, yi =  5). W ater d ep th  
is 12 m  and pressure is m easured on the  sea bo ttom . The ordinates o f  JO N SW A P 
spectrum  are  listed below:

No. co [rd/s] 5c[m2-s] No. co [rd/s] St[m2 s]

] 0.157 0.0000 10 1.571 0.2350
2 0.314 0.0000 11 1.728 0.2170
3 0.471 0.0000 12 1.885 0.050
4 0.628 0.0000 13 2.042 0.0286
5 0.785 1.08E-8 14 2.199 0.0221
6 0.942 0.00014 15 2.356 0.0169
7 1.099 0.0054 16 2.513 0.0129
8 1.257 0.0237 17 2.670 0.0099
9 1.414 0.0830 18 2.827 0.0077

The resulting coefficient ocp is p lo tted  in  F igure 8 (solid line w ith circles). I t  can be 
seen th a t th e  a„ departu re  from  the  linear value 1 is ra th e r  large, specially in  th e  
frequency range outside o f p ik  frequency. F o r the  lower frequencies ap is m uch sm a ll
er th an  1 and  in  the  high frequency range it becom es h igher th an  1. N ow  we m odify 
slightly the  three first spectrum  ordinates inserting zero instead, identical o rdinates 
equal to  S(co)=0.02. Physically it  m eans th a t we consider the  energy given by low -, 
-frequency oscillations o f su rf beats o r edge waves type. In  F igure 8 the  effect o f  spect
rum  m odification is illustrated  by the  b roken  line. T he resulting ap curve differs now  
from  the  linear constan t value no t only a t th e  very low o r very h igh frequencies b u t 
also in  the  basic energetic range. T he com parison o f x„ w ith the experim ental results 
given by G race (Fig. 3), C avaleri (Fig. 4) and  M assel (Fig. 5) indicates th a t a fte r 
spectrum  m odification, the  theoretical coefficient a„ fits the  experim ental one m uch 
b e tte r th an  th a t before spectrum  m odification. Thus, the  in teraction  betw een very 
low frequency oscillations and •wind-induced oscillations plays an  im portan t role in  
th e  pressure a ttenuation  in  the  frequency range typical o f  w ind waves. T his con
clusion can be confirm ed m ore rigorously on the  basis o f  the  theory  developed above 
[22]. In  addition , it can be dem onstrated  th a t the  accuracy o f the spectral energy 
estim ation in  the higher frequencies is o f  m inor im portance for the coefficient ap 
behaviour.



4. Remarks on the other phenomena influenced 
on the coefficient ap

In th is chap ter we discuss o ther phenom ena w hich m ay be im portan t fo r th e  
pressure a ttenuation  w ith depth.

i) F irst we consider the  influence o f the  dispersion relation. The experim ents, 
as well as an  analytical solution [21], show th a t in the  high frequency range th e  
d ispersion re lation  is no t exactly the  classical one-see (2). In  general, fo r the  given 
frequency co, the  resulting wave num ber k  is sm aller th an  th a t follow ing from  (2),
i.e. :

k ' < k .  (60)

Thus, the  decaying function  (Z ) becomes:

. ,, „ cos /2 k '  ( z+ h )
Z ^ ( c o k, z ) = ------- -A — ’ (61 >

cos/j k  h

and

Fig. 5. Empirical coefficient a , for pore pressure in sandy sea bed, [20]



cosh k '  (z + h )

Z (p) (cok, z) cosh k '  h 
« r  («*. *0 =  ,7 ,-p)- ,  =  _L . ; >  1 -0, (62)Z j (cot , 2 ) cos/j &: (z + /z)

cos/z · kh

w hat is observed exactly in  the high frequency range. M oreover, if  the dispersion 
re la tion  influence is considered, tw o add itional problem s should be po in ted  out:
— the  second order approxim ation used in  the  above theory  is insufficient to  

•developed unclassical dispersion relation;

Fig. 6. Separation of the linear and non-linear part of spectrum



Fig. 7. Attenuation coefficient a , for spectrum given in Fig. 6

— the dispersion relation reflects also the non-linear interaction in  the  wave field. 
T herefore it is im possible to  separate (in the simple way) its influence on the pressure 
decaying from  other causes.

ii) In the  high frequency the wave m otion is contam inated by the turbulence 
present in the field. The interaction  betw een waves and turbulence, although w eak, 
can play some role in  the transm ittance function for wave pressure in  the  same way 
as it was dem onstrated  fo r the  o rb ita l velocity [19],

iii) F rom  the results presented here, it was concluded th a t the coefficient <x„ 
is strongly related to  the  in teraction between long and  sho rt surface waves. The 
investigations [15, 24] indicate clearly th a t they are  ra th e r strong and can no t be 
evaluated by the typical Fourier transform ation  m ethods. Usually the W KBJ tech
nique is recom m ended.

5. Conclusions

In  th is paper we have studied the non-linear pressure a ttenuation  w ith dep th . 
A ccording to  a linear theory  o f the w ind-induced waves, the  attenuation  o f each 
particu lar frequency is described by the  same function, independently o f the 
surface wave spectrum . However, the  collected experim ental da ta  show precisely 
th a t it is no t true  in  general. The low frequencies a ttenuate  slower th a n  it is given 
by the  linear theory. T he opposite behaviour is observed in  the  high frequency range.

The analytic m ethod used in  chapter 2 offers a theoretical base fo r understanding 
th is unclassical behaviour. T he m ethod em ploys the pertu rbation  scheme fo r



Fig. 8. Influence of the spectrum modification on the coefficient

random  surface wave field and the non-linear boundary  value problem  is solved to  
the  second order, i.e. all second o rder am plitudes and phases are related to  the 
characteristics o f the first o rder spectrum . F rom  the present study it follows th a t the 
non-linear interactions generate the additional term s w hich decay slowly (faster) 
in  the  high (low) frequency range and they are responsible for the observed devia-



tions from  the  linear theory. The theoretical analyis as well as the num erical ex
perim ents confirm an  im portan t role o f  the long wave —short wave in teraction for 
th e  coefficient a„ behaviour.
A lso it was pointed  ou t th a t the  p roper dispersion relation and the wave -  turbulence 
in teraction  should be taken  in to  account when the non-linear pressure a ttenuation  
is considered.
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