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Abstract

Third-order Stokes waves on an arbitrary shear flow are described schematically. A compre
hensive example is given for the linear velocity profile. It is shown that Stokes waves can pro
pagate on shear flow if linear sinusoidal waves exist on this flow.

1. INTRODUCTION

T he wave m otion o f w ater is intrinsically nonlinear. As the result o f  difficulties 
in  the analytical treatm ent o f  nonlinear problem s the nonlinear theory o f  waves is 
no t well form ulated. The state o f  the a rt is presented in papers [13] and  [17]. C om pa
red w ith the potential theory, the ro tational theory o f waves is poorer, as the diffi
culties are m ore serious.

However, a  growing num ber o f  scientists question the assum ption on the po
tential character o f  wave m otion  [11]. The ro tational theory dates back to  1804, 
w hen G erstner found  an  exact solution  to  nonlinear ro tational waves. Dubreil-Ja- 
cotin  in 1934 proved the existence o f  two-dim ensional periodic and symmetrical 
waves o f  finite am plitude assum ing small ro ta tio n  o f w ater particles in oscillatory 
m otion. D ubreil-Jaco tin ’s theory was extended in  [6 ], [8 ], . . .

N onlinear waves on  a  free surface o f  shear flow, w ith its velocity varying with 
depth , are certainly ro ta tional waves, and  have therefore a ttracted  the atten tion  o f 
theoreticians in the past twenty years. T he m ajority o f  studies on  the nonlinear 
ro ta tional theory o f  waves in  shear flow are concentrated, however, exclusively on 
longw aves(so litary  in  [1] and  [15 ]andcno idal in [3], [7], . . . ) .  This is due to  the fact 
th a t exact solutions for any profile o f  velocity can be obtained in the case o f  shallow 
w ater. F o r short waves only a few publications are know n to the A uthor: th ird-order 
solution in [16], num erical m ethods for higher orders in [4], and  som e aspects o f 
energy, rad ia tion  stresses and wave action  in  [10]. In  these three papers [4], [10], 
[16] the linear profile o f  velocity has been analysed.

In  this paper, th ird-order Stokes waves in  an  arb itrary  shear flow are described 
schematically. A n exam ple is also given for the linear velocity profile. T he results 
ob tained coincide w ith analogous results o f  the  classical theory o f the  Stokes waves 
an d  w ith findings o f [16] for the linear velocity profile. I t has been show n th a t third- 
-order Stokes waves can propagate on the free surface o f  shear flow if  linear sinu
soidal waves exist on this flow.
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T he convergence problem  for the series o f stream  function, free surface eleva
tion  and phase celerity is still open.

Consecultive higher-order approxim ations can be found by the procedure pre
sented in this paper.

2. STOKES WAVES FOR ARBITRARY VELOCITY PROFILES

As in the classical theory o f Stokes waves, we shall look for a  solution to  tw oF 
-dim ensional, periodic and  sym m etrical waves having constant phase velocity c. 
A ssum e the system o f co-ordinates w ith its origin on  the free surface, the x-axis 
in  the direction o f  flow and  the j'-axis vertically upwards. In  the free condition  the 
velocity com ponents and  pressure are:

( 2 .1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

#  =  velocity com ponents, pressure, density, free surface elevation and  
constan t depth , respectively. The apostrophe denotes ordinary differentiation w ith 
regard to  the only variable, while the indices x  an d  y  denote partia l derivatives.

F o rm ula  (2.5) is the com m on kinem atic condition  while eq. (2.6) describes the 
dynam ic condition in  the  differential form  up o n  the assum ption o f constan t a t
m ospheric pressure on the  free surface.

T aking in to  account eq. 2.4 one can express u and  v th rough the stream  function 
Φ(χ, y),  for w hich

(2.9)

(2.10)

Putting  (2.9) into (2.2), (2.3), (2.5), (2.6) and (2.7) and reducing p  yields

u, v, p,  p, ξ,

( / + « ) £ '  =  »

f P x + ( P y - P 9 ) v  =  0

j =  £(x)

y=i(x)
v = 0

f = U ( y ) - c

( f + u ) u x + ( f ’+ u y) v =  - p J p  

( f + u ) v x +vvy= - p y / p  

ux + v y= 0

U = U ( y ) ,  F  =  0 , P — —pgy

The wave m otion  m ust satisfy the following equations

an d  the boundary  conditions

in  w hich

for

for

for y = - H

U = < P y ,  V ~  — Φχ

{ / + Φ ν) Δ Φ χ - Φ χ{ / "  +  ΔΦγ) =  0

( f + 4 > y ) t ' = - $ x  for j  = £(x)
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(/+  * ,)t(/+  Φ,) **,-*JJ' + Φ,,)] -  Φ,[0 + Φ, Φχ,-(/+ φ,) Φχχ] = 0 (2.12)
f o r y = ^ ( x ) ,  ΦΛ =  0 fo r y - - H  (2.13)

in w hich ΑΦ =  Φχχ + Φί>]>

I t is w orthw hile to  m ention th a t sim ilar to  the D ubreil-Jacotin  theory one can 
o b ta in  the sim pler form

Α Φ ( χ ,  y ) = Q (Φ)

in w hich Ω(Φ)= U'(y)  if  the flow is free. The function denotes the stream  function 
for the resultant m otion due to  waves and  flow. T he boundary  conditions becom e

Φ , ξ ' = - Φ χ for y  =  ξ ( x )

(Φ2χ + ΦΪ) + 29 ξ = / 2- 9 Η  fo r y - { ( x )

Φχ = 0  fo r y = - H

O ur analysis, however, will be based on  the relationships (2 .1 0 )...(2 .1 3 ), in 
which the contribu tion  o f the velocity d istribu tion  U(y)  is m ore apparent.

U sing the Stokes prim ary m ethod  (while the secondary m ethod em ploys confor- 
m ai m apping) we will expand the unknow n functions Φ, ξ  and  phase celerity c 
in pow er series in  respect o f  the  small param eter ε

Φ ( χ , γ ) = ε Φ 1( χ , γ )  + ε2Φ2( χ ^ ) + ε 3Φ3( χ ,  y ) + . . .

ξ (x) =  £o(x) +  fifi(x) +  εζξ2(χ)  + ε3ξ 3(χ)  +  · · · (2 · 14)

c =  Co +  fiCj + ε 2£ 2 +  ε3ο3 +  ...

U pon  consideration o f  the  following free-surface relationship

F ( x ,  y ) = F { x , 0 ) + ξ F y{ x , 0 ) + ± ξ 2Fyy( x , 0 ) + l · ξ 3Fyyy( x , 0 ) + , . .  (2.15)

in  w hich ξ  is given by (2.14) one can form ulate the boundary  problem s fo r Φα, ξ κ 
and  c„.

The in troduction  o f  (2.14), (2.15) to  (2.10) . . .  (2.13) gives:
a) F o r the zero th  order

/o o ^0  =  0 i n w h ic h /o o = /o ( 0 ) = t / ( 0 ) - c o  (2.16)

(from  (2.16) one can take ς 0 Ξ θ , w ith  the  x-axis on  the quiescent horizontal free 
surface)
b) F o r the first o rder

/ ο4Φ1χ—υ"Φ 1χ=0 fo r — H < 3'< 0 ,  - o o < x < o o  (2-17)

/ ο ί ί  +  Φ ι .“ 0 fo r y = 0  (2.18)

/ ο ( ϋ 'Φ ι , - / ρ Φ ι ^ + β Φ ι , = 0  fo r J;= 0  (2.19)

ΦΐΛ= 0  fo r  y = - H  (2.20)
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in which

f o = U ( y ) - c 0 ( 2 .2 1 )

In  the search fo r solutions to  (2 .1 0 ) ... (2.13) as sym m etrical and  periodic waves 
we will present (2.17) . . .  (2.20) as sinusoidal waves, i.e.

^ i  =  9>iOOcos^* ( 2 .2 2 ) 

A ccordingly, relationships (2 .1 7 ) ... (2.20) will take the form

fo < P ' i - iU "+ k* fo ]< P i= 0  fo r - t f < > > <  0 (2.23)

f 0 ξ'i = k φ l s i n k x  fo r y =  0 (2.24)

f o l U ' 9 i - f o 9 i l = - 9 9 i  fo r y  =  0  (2-25)

P i= 0  fo r y = - H  (2.26)

Eq. (2.23) and  the boundary conditions (2 .2 4 ) ...  (2.26) can also be obtained 
th rough  linearization o f (2.10) . . .  (2.13), as in the  linear theory o f  waves [19].

Even though simple, eq. (2.23) can be solved explicity for only a  very narrow  
class o f  the functions U(y)  w hich satisfy the condition

k * + U " / f o  =  m y 11

in  w hich m  is an  a rb itra ry  num ber, while β  assumes the values 0,2, 4 n / ( l - 2 n )  for 
n =  +  1, ± 2 ,  + 3 , . . .  In  all rem aining cases eq. (2.23) can be solved only in ap p ro 
xim ation. A  certain  simple technique basing on the approxim ation o f  an  arbitrary  
velocity profile by a broken line, w ith  an optim um  condition, is discussed in [19].

Considering the system (2.23) . . .  (2.26) as an eigenvalue problem  for any U(y),  
one encounters som e peculiarities.

P ro o f the  existence o f  the solution (2.22) w ith the eigen function 9 ^(y) and  the 
eigenvalue C0 satisfying (2.23) . . .  (2.26) is difficult, bu t can be found  for a  special 
class o f  velocity profiles. I t  is shown in [2 0 ] th a t the solution (2 .2 2 ) exists on the free 
surface o f a shear flow, the velocity o f which increases w ith y,  bu t shows dow n the 
closer it is to  the  free surface, i.e. U'( y )> 0,  U " ( y ) < 0. Then a wave w ith any wave 
num ber k  can  p ropagate  in the direction o f flow, while waves w ith wave num bers 
less than  a certain critical value (i.e. sufficiently long waves) can  propagate in the  
opposite  direction. A p art from  this, the phase velocity o f any wave is real and bo u n 
ded.

Assum e th a t the  velocity profile perm its the existence o f  the solution (2.22) in 
the  first approx im ation , w hich is never equal to  zero in the interval —Η*ζ)  ^ 0 . 
In  o ther w ords, assum e th a t the following functions aie  know n

i > i = ^ n  9 n ( y > k )  + B n  φ12( y , k )  (2.27)

in  which φΧί, φ12 are tw o independent solutions o f  the eq. (2.23) satisfying the 
condition (2.26) and

co — c0( U , k )  (2.28)
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From  the condition  (2.24) one has

i i=(v>i)y=oco s k x l [ c 0 — U(0)] = a l c o s k x  (2.29)

w ith zero as the constan t o f  integration, so th a t the :t-axis lies on  the undisturbed, 
free surface.
c) F o r  the  second order

It can  be checked th a t in the second approxim ation eq. (2 .10) becomes

/o  ΔΦ2χ~ υ " Φ 2χ=ΦίχΔ Φ „ -Φ ,νΔΦ,χ (2.30>

The conditions (2 .1 1 ) ...  (2.13) will take the form

/ ο ξ 2 + Φ 2χ = - ξ ι Φ 1̂ - ( υ ' ξ 1 + Φ1,)ξ'1 fo r  j  =  0 (2.31)

Μ υ ' Φ 2χ- / 0 Φ2χγ) + 9 Φ2χ= / ο 1 2 Φ ί χ Φ1χ> + υ ' ξ 1 Φ1ΧΪ+ Φ 1χΦίχχ +

~ ( υ " ξ ϊ + Φ,„)  ΦΙΧ+ / 0 ξ1 Φ1χ^  -  ν ’Φ1χ(υ 'ξ 1 + Φίγ) - 9 ξ 1 φ 1χγ (2.32>

fo r j> =  0 , Φ2χ = 0 fo r y = - H  (2.33)

Taking into account (2 .2 2 ) . . .  (2.25), after a  num ber o f  simplifications one obtains. 
(2.30) . . .  (2.32) in the form

k
/o  ΔΦ2χ- υ " Φ 2χ= ~ { ψ \  Ω γ -  φΩ'^  sin 2 k x  (2.34)·

f o Z i  + $ 2 x = ^ - r ( q > i U ' - 2 f o < p ' i ) s i n 2 k x  fo r j  =  0 (2.35)·
~JO

/ ο ( υ ' Φ 2χ- / ο  Φ2^ )  + ΰΦ2Χ- ~  [ /o V i'-3 0 9 > i + ( 2 k 2f o — Un ) <pJ s in 2 k x
At o

fo r y —0  (2.36)

in which

Ω ν— ψγ U l f 0

The appearance o f  sin 2 k x  on  the right hand  sides o f  th e  relationships. 
(2.34) . . .  (2.36) indicates th a t the problem  (2 .3 3 ) ...  (2.36) can  be solved in  the form

Φ2 = φ2( y ) c o s 2 k x , c 1*=0 (2.37)

E q. (2.34) takes the  form

f o < P 2 - i U "  + (2k)2f o l V2= R 2 (2.38)

in  which

1 1 f U " X
* 2  =  j ( ^ a ;  - φ Μ - - φ ΐ Ι — \ (2.39)

It can be checked tha t eq. (2.38) has the  following general solution satisfying the:



10 Fam Van Ninh

relationship  (2.33)
y y

A i D . f  V n ^ - 2 ,  f  9 > 2 2 ^ 2 ,  n , mφ2 = Α 2 ί φ21+ Β 2 ί φ22+ φ 22 ψ  d y - φ  21 - - - -  -d y  (2.40)

- H  - H

in  which

^ 2 — Ψ ι\Ψ22~Ψ2\Ψ 22  (2.41)

an d  φ2ι, <P22 are tw o independent solutions o f  the hom ogeneous equations related 
to  eq. (2.38), which is identical w ith eq. (2.30) if k  is replaced by 2k.  Thus, one has

V>2 i -<Pu(y>  2 fc), 922 = Vi2 ( y , 2 k )  (2.42)

Substituting eqs. (2.37), (2.40) in eq. (2.35) and  integrating the la tter w ith regard 
to  x  one obtains

ξ 2 = a 2 c o s 2 k x  (2.43)

in which

a 2=  - ^ ~ ( 9>i υ ' - 2 φ ' ι / 0) +  p 2j / / 0 fo r y  =  0 (2.44)

T he condition  (2.36) is required  to  determ ine the constan ts A 21, B 21, A IX and  B t l . 
d ) F o r  the  th ird  order

Taking into account eqs. (2.22) and  (2.37) one o b ta in s  the  following th ird-order 
relationship from  eq. (2 . 10)

/ 0ΑΦ3χ— ϋ " Φ 3χ — — k R 3ls i n k x  — 3 k R 33s i n 3 k x  (2.45)

w here

^ 3 1 = ^ 2  Q ' l + W i  Qi -  <p[ Q2 - i v >1 Q '2 + C2 Q i , (2.46)

^ 3 3 - i ( 9'2 6 i ^ i P 2 Q l ~ P l  6 2  +  i ^1 Q 2)> 0 η - ψ " - ^ 2φ„; « =  1,2.

The general solution  o f  eq. (2.45) satisfying the condition  a t the bed can be 
presented in the form :

Φ3— <p3i ( y ) c o s k x +  q>33( y ) c o s 3 k x  (2.47)

in w hich φ31, φ33 m ust satisfy the following relationships

/ o * 3 1 - [ U "  +  * V o ]* 3 1 -* 3 1  (2-48)

/o  V > 3 3 - l U " + m * f o l  9>33 =  *33 (2.49)

I t thus results th a t
y y

9 *, = A W 8 + B $  φ ® +  φg  J  - ^ d y - < p t f  J  ^ ~ d y  (2.50)

-  n  -  n
in  which

fP3i = Vi i(y>nk)>P32 =  <Pi2(y,nk),  W3n =  φ{31 ψ (3\ -  ψ (3{ φ(3\ , n =  l , 3  (2.51)
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(2.55)

C ondition  (2.11) reads: for y —0

/οξ3+φ3χ--{(υ'ξι+ Φ ι’κ 2'+)υ'ξ2+ & υ ' ' + Φ 2,+ξίΦ ί„ - € Λ)ξ'ι +

+  ξΐ * 2Χγ +  ξ2Φ 1χ,  +  Χ 2ΐ Φ ίχ^
A s aconsequence o f (2.22), (2.27), (2.37), (2.40), (2.43), (2.47) and  (2.50) one obtains 

^o >̂3 =  k CΨ3 1 t̂̂  U α1α2 +  2αι(2φ'2 +  2Μ2 — Μ 1) +  ̂ α~ί ^>7]sin^x +

+ Κν>φ33 + α1( υ ' α ι + 2 φ \ )  + \ α ί( Μ ι + 2 φ ' 2) + ̂ α \ φ Ί ] ύ η Μ χ  (2-52)
in  w hich

Mj = ( U'a2+  ^ 2  +  i fli <p'i+iU"a\)y=0

M 2= ( i U " a 21 + i a ^ ' ; - c 2)y=0 (2‘53)

It is easily seen th a t ξ 3 should be

ξ 3= a 31c o s k x  + a 33c o s 3 k x  ( 2 .5 4 )

in  which

^ 3 i - ^ [ i * 3 i +  U'a^ α2 + \ α ί( 2 φ'2 + 2 Μ 2—Μ ί) + ^ α \  f>'/]y=o

α 3 3 = — Γ <Ρ33 +  ̂τα2(υ'α1+2φ '1) +  ~α ι(Μ ι+2φ '2) +  ~  ^ ' , ' Ί
L 3 6  24 J y=o

N o te  th a t condition  (2.12) now reads

/ο(υ'Φ3χ—/οΦ3χγ) + 9Φ3χ—/ο(Λ3 —  Β3) +  (υ'ξι + Φ 1γ)(Α2 — Β2)+/ο X 2 Φιχχ +

+  (/o  * i x , -  υ ' Φ ΙΧ) ( / 2 +  Y2) - g X 3 + Φ1χ( ϋ 2 - E 2) (2.56)
in w hich

^ 2  =  Φ2* + ί ΐ  Φ ΐ Χ ϊ ’ ^ 3  =  ί ΐ  Φ 2χγ +  ζ ϊ  $ l x y  +  i Z l  $ l x y y i

Υι =  Φ 2 ,+ ξ ιΦ ι„ ,  / 2 = υ ' ξ 2 +  ± ύ " ξ Ι - Λ 2 , Α 2= / 0Χ 2νΗ υ ' ξ ι +  Φ 1γ) Φ ίχγ,

Α3=ϊοΧ3γ + (υ'ξ1 + Φ 1γ) Χ 2 ν + σ 2  + Υ2)Φ 1χ>, Β2 = υ ' Χ 2 + (υ"ξί + Φ1γγ) Φ ϊχ ,

Β 3 =  U'X3 + ( t / " i ,  +  Φ[„) Χ 2 +  ( /a , +  y2„) Φ 1Χ, D 2 = /o  X 2x +  ( t T ^  +  Φ „ )  Φ 1χ* ,

Ε 2 =  ΦΙΧΦίΧ}, (2.57)

Sum m arizing the relationships ob tained for C0 one can  present the right hand  
side o f  eq. (2.56) in the form

S ,s in ^ x  +  S 3 sin 3 ^ x  (2.58)

S , = k  { fo (U 'T ,- fo  T [ + n  T3- n  Τ2 +  Ψι Ti-<p[ Τι +  ψ\ c2) +

+  T2iU'T3- f 0 T3+  4 (T2' φί — T2 9’i)] +  T̂7(r 4 — C2 ) +  ̂ T1 +

+  γ ί » η ( 2 ^2  9’1 + γ ^ ι ί ’'1 - γ / ο Γ 3) |  (2.59)
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S 3= k { f 0W ' T 6 - f 0 T ' +  T 'T 3 - T 2 T3'+  Ψί T i  -  φ\ T5]  +  r 5 Tn+ g T 6 +  

+  T2[U'T3—f 0 T3' +  4 (T2  Ρ ι - Γ 2  *J)] +

+ 4 ^ 1 ^ 2 7 ^  9>x — ^  «»! p i + ^ / o 7 ^ 1 (2.60j

T i = ( a  1 ^-ifl2/i+iai9>i),=o> T e = C ^ O iP i ) y = o ,  

T2=i(U'ai + /j)j,=o, r3 = (4^ + aj 9>i),=0

^ 4 ==(^5 9*2 ^  ^ 2)y=O > Tj  =  (U  ^ i - / o ^ l ) j ,=  o>

^S= ( i ^ /,fll + i fll ^i + i ^ 2 + T ^  a l)y=0

(2.61)

It can be seen tha t the term  w ith sin &x is sim ultaneously included in  eq. (2.45) 
and  conditions (2.52), (2.56). C o n tra ry to  (2 .4 5 )an d (2 .5 2 )in w h ich  this term  does no t 
b ring  abou t any serious obstacle in the  search for solutions, eq. (2.56) em bodies 
S i sin k x  o f another, resonant character, often encountered in the  nonlinear theory 
m echan ical oscillations. In  ou r case the  solution o f eq. (2.56) cannot be solved as 
S ! is no t zero.

The Stokes m ethod  (know n as Poincare’s m ethod in  the  theoretical-m echanics) 
enables this obstacle to  be overcome. The basic idea o f this consists in the expansion 
in pow er series o f the small param eter ε, in respect o f which o ther unknow n function 
are  expanded. In  fact, C2 can be chosen so th a t S \ is zero. In  this case C2 will read

In  continuation  o f the above procedure one can ob tain  higher o rd er approxim a
tions for the Stokes wave in shear flows. However, the th ird  order should  be sufficient, 
as the higher approxim ations have lim ited application (see § 5.3.2 in  [5]).

The ultim ate form ulae for Φ, ξ,  and  c in  the  th ird  order app ro x im atio n  read

Φ =  [fi9>j(y) +  ε3 i>3iO 0 ]  cos k x  +  ε2 φ2(γ)  cos 2k x  +  ε3 φ33(γ)  cos 3k x  

ξ = ( εα , +  έ3ίϊ31) cos k x  + ε2α2 cos 2 k x  +  ε3α 33 cos 3k x

(2.55), (2.28) and (2.62), respectively.
D enoting εα1 + ε 3ο 31 by the am plitude a it is possible to  present explicit rela

tionships fo r the coefficients in  eq. (2.63), as functions o f  a and  U(y).
Thus, we have proved th a t the  Stokes th ird -o rder waves can p ropagate  on the 

free surface o f  a  shear flow — provided the  m otion  consists o f  sinusoidal waves o f  
infinitely small am plitude th a t satisfy the linearized equation  and  its boundary  
conditions (2.23) . . .  (2.26).

c 2 =  {[/o ( V 'T ,  - / o  T{ +  n  T3 -  T2 T3 +  cPl T i  -  ψ\ T4) + T4 ΤΊ +  g Τ, +  

+  T2( U 'T 3- / o  Τί  + 4 Ψι n - A < p [  Τ2) +

+ ̂ 2φ 1(2Τ2 ψ^ +%ψι φ [ - f o  Τ3)] Ι (ΤΊ —/ 0 φ \)}γ=0 (2.62)

c = c0 + i-2c2 (2.63)

in which φ,, v>3n, a t , a 3n, c 0, c 2 are  given by (2.27), (2.40), (2.50), (2.29), (2.44),
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The p ro o f o f  the convergence o f  the  series (2.14) is even m ore difficult th an  in 
the classical theory by Stokes. However, one can hope th a t this p ro o f can  be d e r i
ved for a  certain  class o f  the functions U(y)  if  the  param eter ε is small enough, ε 
being wave am plitude or steepness. I t  can  be show n th a t th e  Stokes waves in a  shear 
flow are  unstab le w ith regard  to  sm all pertu rbation  as they contain  the classical 
Stokes waves, the instability o f  w hich has been proved by Benjam in in  his o u tstan 
ding w ork  [2 ] and  confirm ed in o ther experim ental, as well as theoretical studies

It is w orthw hile to  m ention th a t the phase velocity in  D ubreil-Jaco tin’s theory 
can by com puted  by A iry’s form ula

w ith accuracy to  the  first-order am plitude. In  our case, as for the classical Stokes 
waves, the  phase velocity.

C0 is determ ined w ith an  accuracy o f  squared am plitude. This discrepancy does 
not stem from  small vorticity o f  the resultant m otion o f  w ater particles in D ubreil- 
-Jaco tin’s theory, bu t ra ther from  the  m ethod  used in  its p ro o f (N o restrictions 
have been pu t on vorticity  i.e. on the velocity gradient U'(y)  in  our case).

The nonlinearity  o f  the effect o f  flow on  the  Stokes waves is visible no t only 
in the form ulae for velocity C0, C2 and  am plitude a, a2, a3, a3 bu t also th rough  the 
dependence o f  wave m otion on  the direction o f  wave p ropagation . This effect cannot 
be determ ined clearly for any velocity profile. This is discussed la ter by expansion 
o f  the  above procedure fo r the linear velocity profile, w hich can be treated  as a 
first approxim ation  fo r an  a rb itrary  velocity profile.

3. STOKES WAVES ENT FLOW 

WITH LINEAR VELOCITY PR O FttE

W ithout loss o f  generality, th e  p roblem  can be discussed for the following linear 
velocity profiles

[9], [18], . ..

(2.64)

U =  G ( y + H ) (3.1)

a) Z ero th  order
One has ς οΞ=0, as fo r any velocity profile.

b) F irst order
The solution satisfying the solution (2.23) and  (2.26) is

<t>̂ = A 1 sh  k ( y  + H ) c o s k x (3.2)

Substitution o f  (3.2) into (2.25) gives

^ o  =  - ( g  +  ̂ o  th & ff, w here <β0 =  G H —c0 
k

(3.3)



T hc rela tion  (2.29) can be w ritten

A  i
ς 1= α 1 c o s k x ,  a j  = ------- sh k H  (3.4)

^o
c) Second order

Due to  (3.1), (2.39) yields R 2 —0. T he solution (2.40) satisfying (2.38) and  (2.13) 
becom es

<P2= A 2s h 2 k ( y  + H ) c o s 2 k x ,  c t = 0  (3.5)

A fter a  num ber o f  sim plifications the condition  (2.36) gives

- k A \  Γ G(3g + 2G<#o) ,  Ί  
Λ2= ---------~  \ 3 -  , -,-.... - sh 2k H \  (3.6)

8*5fo sh k H ^  k 2V 30 J '

A  com bination  o f  (3.2), (3.5) and  (2.44) yields

k a \  Γ 3ch  k H  G (  3g + 2G V0 V j
{ j - T  [ 2 c t h , H +  j p _ _ _ ^ , H . _ ^ _ a h M ) J * . 2 f a ,  (3 .7 ,

d) T hird  order
Basing on  (3.2) and  (3.5) we ob tain  Q t =  0 and Q2 — 0. Thus the right hand  side 

o f  eq. (2.45) is zero. The solu tion th a t satisfies eq. (2.45) and  the condition  o f  the  
bed  reads

# 3 = ^ 3 s h 3 ^ 0 >  +  H )cos3fcx (3.8)

The ultim ate form ulae for a3, a33, s L and  s3 can  result from  (2.55), (2.59), (2.60) 
an d  (2.61). D ue to  the sophisticated form  o f these form ulae it is only C2 w hich 
will be w ritten dow n as the consequence o f  (2.62)

[ 2 0 ( 8  +  ch4ArH) +  G<i?o(12 +  sh2 * H ) ] , 2 2 k a * G ( g  +  GV,0)
c2 = -------------— —— - — --------2-----------------k a , < # o j -------------------------Θ (3.9)

16(2g +  G ^ o )sh k H  8 (2 g + GV0)

in which

_ ^ ] + c h 2 k H ( l + c t f k H )  g f c h k H ( 2  + c h 2 k H ) G l  

 ̂ ^sh2^ k H s h 2 k H  +  g + G ¥ 0 [  sh* k H  k¥ 0J

G 3g.+ 2G %  

~M?o +

.+2G < eS g /c h 2  kH  G c h k H \  2 _ G c h k H l  

k<€% ^ g  + G ^ 0 \ s h 2 k H  k ^ 0 s h k H j  + sh2k H  k ^ 0 s h k H j

ln  the  sum m ary one obtains:
In  the  second o rder

Φ =  εΦ1 +  ε2Φ2 — εΑ l sh k  (y  + H)  cos k x  +  ε2Α 2 sh 2k  (y  +  H)  cos 2 k x  

ξ —ε α ! cos k x  + ε2α2 cos 2 k x  

D enoting εα by a one obtains



; , -  , m  . - a 2V 0 k  Γ G(3g +  G V o ) . l
s h k ( y + H ) c o s k x ----- ~^r—  3 — ·------ ^—=■----- sh k H \ x

* ’ 8 sh k H  L k 2(e% Jsh k H

x s h 2 k ( y + H ) c o s 2 k x  (3.11)

ξ = a c o s k x ^ ------c thfcffT 24— γ — -------— ( t h k H +  ^̂ *̂  —-Y tao s2 fcc  (3.12)
4 1  sh  k H  k%>0 \  k<$l ) \

In  the th ird -o rder approxim ation

2g(8  +  ch 4kH )  + G ^ o ( l 2  + sh *k H )  a 2k G ( g  + G V o) 0
c =  c n - — ----------— — ------- —r~------------- a k  (&0 Λ--------------------------- (3.13)

16(2g +  G ^o) s h k H  8(2 g + GV<,)

in w hich C0 is given by eq. (3.3).
The dispersion relationship, w ith C 2 on the left-hand side, can often be useful. 

T aking in to  account

c 2

,  , /  2GH 2 e c 2\  
C 2 ) ^ 0 [  1 — -------------------------------- ?V ^o *o )

,  f 2GH a

= * » Γ ^ + -

c2= ( - & 0 + GH + e2 

one  can w rite ,

~2k 2[2g  (8 + c h 4 * fl)  4 - G ^ 0(12+ sh2 kH)^]

8 (2g +  G*#o) sh4 k H

a 2k G ( g  +  G V 0

4 (2g  +  G^o)

In  the case o f  G = 0  the form ulae fo r ξ  and  C 2 read

(3.14)

a 2k  (  3 \
$ = a c o sk x H ------ c th k H I 1 +  - - j-,—  ) (3.15)

2  V 2  sh^ k H )

,  ,  Γ a 2k \ S + c h 4 k H ) l  ,  g

C ° H 1 +  « J M ' J -  ^ - h h k H  <316)

They are classical form ulae fo r the Stokes waves [17]. Form ulae (3.11), (3.12) and
(3.13) coincide with the resuJts given in [16] and derived in o ther ways. However, 
the form er, are m uch simpler. This particularly  is true for the  dispersion relation
(3.13). They indicate explicitly the con tribu tion  o f flow param eters to  the stream  
function, am plitude and phase velocity. This is analysed 111 [16].

F rom  eq. 3.31 one obtains

^ o  — [G th  k H  + (G 2 th 2 k H  + 4gk  th  λΉ )1/2]/2λ: (3 17)

or c0 -  U ( 0 ) = [  -  G th  k H  ±  (G 2 th  k H + 4  g k  th  A tf)1/2] /2 £

Basing on eqs. (3.4) and  (3.17) it can be seen th a t the waves propagating  w ith  the 
flow (i.e. Co — t/(0 )> 0 )  have a  velocity o f  |C 0— U(0) \<  |C 00|, so th a t the am plitude 
increases. F o r the opposite direction o f wave propagation  this is |C 0— t/(0)| >  |C 00|V 
hence the am plitude decreases.



T his explains the com m only-know n fact th a t the flow intensifies the accom pa
nying (dow nstream ) waves and  dam pens the opposite (upstream ) waves.

A m ore detailed analysis also indicates th a t the dow nstream  waves are steeper 
and  longer than  the respective waves in the Stokes theory. F o r the upstream  waves 
the p icture is the  opposite. In  addition , it can  be show n th a t the steppness o f  the 
dow nstream  waves increases w ith the flow gradient. I t is interesting th a t the term  
cos 2 k x  can be om itted in eq. (3.12) fo r th e fre e  surface elevation, no tab ly  fo r certain 
(although substantial) gradients G. In  these cases sinusoidal waves can describe 
the free surface oscillations w ith  an  accuracy o f  the th ird -o rder o f  am plitude.

Finally, another peculiarity o f the  linear velocity profile. Form ulae (3.2), (3.5) 
and  (3.8) show th a t the three first orders of approxim ation  for the stream  function 
■satisfy Laplace’s equation, so th a t the wave m otion  is potential by the  th ird-order 
•approxim ation inclusively.

W e will prove th a t for theflow  profile (3.1) thew ave m otion isp o ten tia l in general. 
In  fact, the  tw o-dim ensional resu ltan t m otion  o f  an  ideal, incom pressible and  
baro tro p ic  liquid due to  poten tia l external forces, satisfies the H elm holtz equation  
t l 2 ]

d Q / d t = 0

iin w hich Ω  is a  vector o f  vorticity.
A ssum e th a t this resu ltan t m otion  is generated in  a  shear flow, characterized 

by param eters (2.1) in undisturbed  condition. D enoting by £2lt the vorticity in  the  
w ave m otion , one can  w rite

d i2 ,
: Ω = ϋ ' + Ω ι hence — - + v U "  =  0 (3.18)

dt

in  w hich v is the velocity com ponent in the wave m otion.
F ro m  eq. (3.18) it follows th a t the  wave m otion  will be poten tia l only if  the velo

c ity  profile is linear, as in  th is case one has i21= co n s t =  0. Accordingly, fo r all 
consecutive approxim ations one obtains

<P,, =  A„ sh nk  (y  +  H ) cos n k x  n =  1, 2 , 3 , ...
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