Oceanologia No. 52 (4) / 10


Invited papers



Invited papers

Solar radiation in the Baltic Sea:
Oceanologia 2010, 52(4), 533-582

Jerzy Dera1, Bogdan Woźniak1,2
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland;
2Institute of Physics, Pomeranian Academy,
Arciszewskiego 22B, PL-76-200 Słupsk, Poland

keywords: solar radiation, Baltic Sea, radiant energy totals, underwater irradiance attenuation, irradiance spectra, euphotic zone

Received 28 October 2010, revised 8 November 2010, accepted 15 November 2010.

The paper was invited by the Chairman of the Polish National SCOR. The work was carried out within the framework of IO PAS's statutory research and also as part of the Satellite Monitoring of the Baltic Sea Environment project - SatBałtyk, co-founded by the European Union through European Regional Development Fund contract No. POIG 01.01.02-22-011/09.


The influx of solar radiation to the Baltic Sea and its penetration into its waters is described on the basis of selected results of optical and bio-optical studies in the Baltic published by various authors during the past ca 50 years. The variability in the natural irradiance of this sea is illustrated on time scales from short-term fluctuations occurring during a single day to differences in mean monthly values over a period of many years. Data on variability of the proportions between UV, VIS and IR energy in the light reaching the sea surface are also discussed. Long-term monthly mean values of the incident solar radiation flux at the surface of the Baltic Proper are given; they were obtained from meteorological and solar radiation measurements and model approximations. The transmittances of these mean monthly radiation fluxes across the surface of the Baltic are given, as are the typical energy and spectral characteristics of the underwater irradiance, its attenuation with depth in the sea and the associated euphotic zone depths, as well as typical ranges of variability of these characteristics in different Baltic basins. Some of these characteristics are illustrated by typical empirical data. These mean values are not fully representative, however, because with the sole use of classical in situ measurement methods from on board research vessels in the Baltic, it has not been possible to gather a sufficiently representative set of empirical data that would adequately reflect the variability of the optical characteristics of all the basins of this sea. The article goes on to introduce the statistical model of vertical distributions of chlorophyll a concentration in the Baltic and the bio-optical model of Baltic Case 2 waters, the use of which contribute very significantly to this description of the optical characteristics and will enable this data set to be hugely expanded to include all the Baltic basins. This opportunity is presented by the optical parameterization of Baltic Case 2 waters, i.e. by the mathematical formulas of the model linking the coefficient of attenuation of downward irradiance with the surface chlorophyll a concentration, as well as the method developed for the efficient and systematic satellite remote sensing of the chlorophyll a concentration over the entire Baltic Sea area.

  References ref

ACRIM, 2010, Active Cavity Radiometer Irradiance Monitor, http://acrim.com/index.htm

Antoine D., Morel A., 1996, Oceanic primary production:1.Adaptation of spectral light photosynthesis model in view of application to satellite chlorophyll observations, Global Biogeochem. Cy., 10 (1), 42-55. http://dx.doi.org/10.1029/95GB02831

Atwater M. A., Brown P. S. Jr., 1974, Numerical computation of the latitudinal variation of solar radiation for an atmosphere of varying opacity, J. Appl. Meteorol., 13 (2), 289-297.

Augustyn M., 1985, Characteristics of the southern Baltic climate, IMGW, Gdynia, 61 pp., (in Polish).

Berger F. H., 2002, Surface radiant and energy flux densities inferred from satellite data for the BALTEX watershed, Boreal Environ. Res., 7 (4), 343-351.

Bignami F., Marullo S., Santoleri R., Schiano M. E., 1995, Longwave radiation budget in the Mediterranean Sea, J. Geophys. Res., 100 (C2), 2501-2514. http://dx.doi.org/10.1029/94JC02496

Crommelynck D., Dewitte S., 1997, Solar constant temporal and frequency characteristics, Sol. Phys., 173 (1), 177-191. http://dx.doi.org/10.1023/A:1004916413800

Czyszek W., Wensierski W., Dera J., 1979, Inflow and absorption of solar light energy in the Baltic waters, Stud. i Mater. Oceanol., 26, 103-140, (in Polish).

Darecki M., Ficek D., Kr.ężel A., Ostrowska M., Majchrowski R., Woźniak S. B., Bradtke K., Dera J., Woźniak B., 2008, Algorithm for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 2: Empirical validation, Oceanologia, 50 (4), 509-538.

Darecki M., Kaczmarek S., Olszewski J., 2005, SeaWiFS ocean color chlorophyll algorithms for the southern Baltic Sea, Int. J. Remote Sens., 26 (2), 247-260. http://dx.doi.org/10.1080/01431160410001720298

Darecki M., Stramski D., 2004, An evaluation of MODIS and SeaWiFS bio optical algorithms in the Baltic Sea, Remote Sens. Environ., 89 (3), 326-350. http://dx.doi.org/10.1016/j.rse.2003.10.012

Darecki M., Weeks A., Sagan S., Kowalczuk P., Kaczmarek S., 2003, Optical characteristics of two contrasting Case 2 waters and their influence on remote sensing algorithms, Cont. Shelf Res., 23 (3-4), 237-250. http://dx.doi.org/10.1016/S0278-4343(02)00222-4

Darula S., Kittler R., Gueymard C. A., 2005, Reference luminous solar constant and solar luminance for illuminance calculations, Sol. Energy, 79 (5), 559-565. http://dx.doi.org/10.1016/j.solener.2005.01.004

Dera J., 1963, Some optical properties of the Gulf of Gdańsk waters as an index of its water mass structure, Acta Geophys. Pol., 13, 15-39, (in Polish).

Dera J., 1970, On two layers of di-erent light conditions in the euphotic zone of the sea, Acta Geophys. Pol., 18, 287-294.

Dera J.,1992, Marine physics, Elsevier Oceanogr. Ser. 53, Amsterdam-Oxford- New York-Tokyo, Warsaw, 510 pp.

Dera J., 1995, Underwater irradiance as a factor affecting primary production, Diss. and Monogr., Inst. Oceanol. PAS, Sopot, 7, 110 pp.

Dera J., 2003, Marine physics, 2nd edn., PWN,Warsaw, 541 pp., (in Polish).

Dera J., 2010, The SatBałtyk project:Satellite Monitoring of the Baltic Sea Environment, Oceanologia, 52 (2), 319-324. http://dx.doi.org/10.5697/oc.52-2.319

Dera J., Gohs L., Hapter R., Kaiser W., Prandke H., Rting W., Woźniak B., 1974a, Untersuchungen zur Wechselwirkung zwischen den optischen,physikalischen, biologischen und chemischen Umweltfaktoren in der Ostsee, Geod. Geophys. Veröff., 4 (13), 5-100.

Dera J., Gohs L., Woźniak B., 1978, Experimental study of the composite parts of the light beam attenuation process in waters of the Gulf of Gdańsk, Oceanologia, 10,5-26.

Dera J., Gordon H. R., 1968, Light field fluctuation in the photic zone, Limnol. Oceanogr., 13 (4), 697-699. http://dx.doi.org/10.4319/lo.1968.13.4.0697

Dera J., Hapter R., Kr.ężel A., Wensierski W., Woźniak B., 1984, Solar radiation energy in the Baltic Sea-summary report, Proc. 15th Conf. Baltic Oceanographers, PAS, Gdynia, 124-142.

Dera J., Hapter R., Malewicz B., 1974b, Fluctuation of light in the euphotic zone and its in uence on primary production of organic matter, Merentutkimuslait. Julk./Havsforskningsinst.Skr.239,58-66.

Dera J., Olszewski J., 1967, On the natural irradiance fluctuation a-ecting photosynthesis in the sea, Acta Geophys. Pol., 15, 351-364.

Dera J., Olszewski J., 1978, Experimental study of the short period irradiance uctuation under an undulated sea surface, Oceanologia, 10, 27-49.

Dera J., Rozwadowska A., 1991, Solar radiation variability over the Baltic Sea due to weather conditions, Oceanologia, 30, 5-36.

Dera J., Sagan S., 1990, A study of the Baltic water optical transparency, Oceanologia, 28, 77-102.

Dera J., Sagan S., Stramski D., 1993, Focusing of sunlight by sea surface waves: new results from the Black Sea, Oceanologia, 34, 13-25.

Dera J., Stramski D., 1986, Maximum e-ects of sunlight focusing under a wind disturbed sea surface, Oceanologia, 23, 15-42.

Ediger D., Raine R., Weeks A. R., Robinson I. S., Sagan S., 2001, Pigment signatures reveal temporal and regional differences in taxonomic phytoplankton composition off the west coast of Ireland, J. Plankton Res., 23 (8), 893-902.

Ficek D., Kaczmarek S., Stoń-Egiert J., Woźniak B., Majchrowski R., Dera J., 2004, Spectra of light absorption by phytoplankton pigments in the Baltic;conclusions to be drawn from a Gaussian analysis of empirical data, Oceanologia, 46 (4), 533-555.

Go-J.A., 1965, Saturation pressure of water on the New Kelvin Scale, Proc. Symp. Humidity and Moisture, Reinhold, New York.

Gohs L., Dera J., G.dziorowska D., Hapter R., Jonasz M., Prandke H., Siegel H., Schenkel G., Olszewski J., Woźniak B., Zalewski S. M., 1978, Untersuchengen zur Wechselwirkung zwischen den optischen, physikalischen, biologischen und chemischen Umweltfaktoren in der Ostsee aus den Jahren 1974, 1975 und 1976, Geod. Geophys. Veröff., 4 (25), 3-176.

Gueymard C. A., 2004, The sun's total and spectral irradiance for solar energy applications and solar radiation models, Sol. Energy, 76 (4), 423-453.

Hapter R., Wensierski W., Dera J., 1973, Natural irradiance in the euphotic zone of the Baltic [Naturalne oświetlenie strefy eufotycznej Bałtyku ], Stud.i Mater. Oceanol., 7, 3-48, (in Polish).

Harder J. W., Thuillier G., Richard E. C., Brown S. W., Lykke K. R., Snow M., McClintock W. E., Fontenla J. M., Woods T. N., Pilewskie P., 2010, The SORCE SIM solar spectrum: comparison with recent observations, Sol. Phys., 263 (1-2), 3-24, doi:10.1007/s11207-010-9555-y.

Hīkanson L., Eckhéll J., 2005, Suspended particulate matter (SPM) in the Baltic Sea - New empirical data and models, Ecol. Model., 189 (1-2), 130-150.

H⌀jerslev N. K., 1986, Optical properties of sea water, [in:] Landolt Bornstein numerical data and functional relationships in science and technology, Oceanogr. New Ser. 3, Springer Verlag, Berlin, 386-462.

Isemer H. J., 1998, Sea ice concentration at the Baltic Proper - a digital 1 data set for 1964 to 1995, Proc. Second Stud. Conf. BALTEX, Juliusruh, Island of Rügen, Germany, 25-29 May 1998, Int. BALTEX Sec. Publ. Ser. 11, 78-79.

Isemer H. J., Rozwadowska A., 1999, Solar radiationfluxes at the surface of the Baltic Proper. Part 2. Uncertainities and comparison with simple bulk parametrisation, Oceanologia, 41 (2), 147-185.

Jegorov B. N., Kirillova T. V., 1973, Total radiation over the ocean in cloudless sky, Trudy GGO, 297, 87-98, (in Russian).

Jerlov N. G., 1976, Marine optics, Elsevier, Amsterdam, 231 pp.

Jerlov N. G., 1978, The optical classi-cation of sea water in the euphotic zone, Inst. Fys. Oceanogr., K⌀benhavns Univ., Rep. No. 36.

Jin Z. H., Charlock T. P., Rutledge K., Stamnes K., Wang Y. J., 2006, Analytical solution of radiative transfer in the coupled atmosphere ocean system with a rough surface, Appl. Optics, 45 (28), 7443-7455.

Kaczmarek S., Dera J., 1998, Radiation flux balance of the sea atmosphere system over the southern Baltic Sea, Oceanologia, 40 (4), 277-306.

Kaczmarek S., Woźniak B., 1995, The application of the optical classi-cation of waters in the Baltic Sea (Case 2 waters), Oceanologia, 37 (2), 285-297.

Kastrov V. G., 1956, Solar radiation in the troposphere in the case of absolutely clear and dry air, Trudy CAO, 16, 26 pp., (in Russian).

Koblentz-Mishke O. I., Woźniak B., Ochakovskiy Yu. E., (eds.), 1985, Usvoenie solnechnoi energii v processe fotosinteza chernomorskogo i baltiiskogo fitoplanktona [Utilisation of solar energy in the photosynthesis of the Black and Baltic Sea phytoplankton ], Inst.Okeanol., AN SSSR, Moskva, 336 pp.,(in Russian).

Kowalczuk P., 1999, Seasonal variability of yellow substance absorption in the surface layer of the Baltic Sea, J. Geophys. Res.,1 04 (30), 30 047-30 058.

Kowalczuk P., Kaczmarek S., 1996, Analysis of temporal and spatial variability of 'yellow substance 'absorption in the southern Baltic , Oceanologia, 38 (1), 3-32.

Kowalczuk P., Olszewski J., 2002, The absorption of yellow substance in the Baltic Sea, Oceanologia, 44 (2), 287-288.

Kowalczuk P., Olszewski J., Darecki M., Kaczmarek S., 2005, Empirical relationships between coloured dissolved organic matter (CDOM)absorption and apparent optical properties in Baltic Sea waters, Int. J. Remote Sens., 26 (2), 345-370. http://dx.doi.org/10.1080/01431160410001720270

Kowalczuk P., Sagan S., Olszewski J., Darecki M., Hapter R., 1999, Seasonal changes in selected optical parameters in the Pomeranian Bay in 1996-1997, Oceanologia, 41 (3), 309-334.

Kowalczuk P., Stedmon C. A., Markager S., 2006, Modeling absorption by CDOM in the Baltic Sea from season,salinity and chlorophyll , Mar. Chem., 101 (1-2), 1-11. http://dx.doi.org/10.1016/j.marchem.2005.12.005

Krężel A., 1982, Analiza rzeczywistego dopływu energii promieniowania słonecznego do powierzchni Morza Bałtyckiego [Analysis of the real solar radiation energy input to the Baltic sea surface], Ph. D. thesis, Gdańsk Univ.,( in Polish).

Krężel A., 1985, Solar radiation at the Baltic Sea surface, Oceanologia,21, 5-32.

Krężel A., 1997, A model of solar energy input to the sea surface, Oceanol. Stud., 26 (4), 21.

Krężel A., Kozłowski Ł., 2004, Cloud transmission retrieval over the Baltic with the use of METEOSAT data, XVII Ocean Optics Conf., Fremantle, Australia.

Krężel A., Kozłowski Ł., Paszkuta M., 2008, A simple model of light transmission through the atmosphere over the Baltic Sea utilizing satellite data, Oceanologia, 50 (2), 125-146.

Krężel A., Ostrowski M., Szymelfenig M., 2005, Sea surface temperature distribution during upwelling along the Polish Baltic Sea coast, Oceanologia, 47 (4), 415-432.

Lindau R., 2002, Energy and water balance of the Baltic Sea derived from merchant ship observations, Boreal Environ.Res., 7 (4), 417-424. Liu K. N., 1980, An introduction to atmospheric radiation, Acad. Press, New York-London- Toronto-Sydney-San Francisco, 392 pp.

Majchrowski R., 2001, Influence of irradiance on the light absorption characteristics of marine phytoplankton, Rozpr. i monogr., 1, Pom. Akad. Pedagog., Słupsk, 131 pp., (in Polish).

Majchrowski R., Woźniak B., Dera J., Ficek D., Kaczmarek S., Ostrowska M., Koblentz Mishke O. I., 2000, Model of the 'in vivo' spectral absorption of algal pigments. Part 2. Practical applications of the model, Oceanologia, 42 (2),191-202.

Majchrowski R., 2001, Influence of irradiance on the light absorption characteristics of marine phytoplankton, Rozpr. i monogr., 1, Pom.Akad.Pedagog., Słupsk, 131 pp., (in Polish).

McDonald J. E., 1960, Direct absorption of solar radiation by atmospheric water, J. Meteor., 17, 319-328. http://dx.doi.org/10.1175/1520-0469(1960)017<0319:DAOSRB>2.0.CO;2

Mecherikunnel A. T., 1998, Solar total irradiance:a reference value for solar minimum, Sol. Phys., 177 (1-2), 11-23. http://dx.doi.org/10.1023/A:1004972315783

Morel A., Antoine D., Babin M., Dandonneanu Y., 1996, Measured and modeled primary production in the northeast Atlantic (EUMELI JGOFS program):the impact of natural variations in photosynthetic parameters on model predictive skill, Deep Sea Res.,43 (8), 1273-1304. http://dx.doi.org/10.1016/0967-0637(96)00059-3

Morel A., Prieur L., 1977, Analysis of variations in ocean color, Limnol.Oceanogr., 22 (4), 709-722. http://dx.doi.org/10.4319/lo.1977.22.4.0709

Olszewski J., 1973, Analiza warunków widzialności podwodnej w morzu na przykładzie Zatoki Gdańskiej, Oceanologia, 2, 153-225.

Olszewski J., Darecki M., 1999, Derivation of remote sensing re ectance of Baltic waters from above surface measurements, Oceanologia,41 (1), 1-13.

Olszewski J., Sagan S., Darecki M., 1992, Spatial and temporal changes of some optical parameters in the Southern Baltic, Oceanologia,33, 87-103.

Omstedt A. ,Nohr Ch., 2004, Calculation of the water and heat budgets of the Baltic Sea using ocean modelling and available meteorological, hydrological and ocean data, Tellus A, 56 (4), 400-414. http://dx.doi.org/10.1111/j.1600-0870.2004.00070.x

Ostrowska M., 2001, The application of uorescence methods to the study of marine photosynthesis, Diss. and monogr., Inst. Oceanol. PAS, Sopot, 15, 194 pp., (in Polish).

Ostrowska M.,Majchrowski R.,Stoń-Egiert J., Woźniak B., Dera J., 2007, Remote sensing of vertical phytoplankton pigment distributions in the Baltic: new mathematical expressions. Part 1: Total chlorophyll a distribution, Oceanologia, 49 (4), 471-489.

Ota Y., Higurashi A., Nakajima T., Yokota T., 2010, Matrix formulations of radiative transfer including the polarization e-ect in a coupled atmosphere ocean system, J. Quant. Spectrosc. Ra., 111 (6), 878-894. http://dx.doi.org/10.1016/j.jqsrt.2009.11.021

Otremba Z., 2004, Modeling the bidirectional re ectance distribution functions (BRDF) of sea areas polluted by oil, Oceanologia, 46 (4), 505-518.

Otremba Z., Król T., 2002, Modeling of the crude oil suspension impact on inherent optical properties of coastal seawater, Pol. J. Environ. Stud., 11 (4), 407-411.

Otremba Z., Piskozub J., 2001, Modelling of the optical contrast of an oil film on a sea surface, Opt. Express, 9 (8), 411-416. http://dx.doi.org/10.1364/OE.9.000411

Payne R. E., 1972, Albedo of the sea surface, J. Atmos. Sci., 29 (5), 959-970. http://dx.doi.org/10.1175/1520-0469(1972)029<0959:AOTSS>2.0.CO;2

Platt U., Pfeilsticker K., Vollmer M., 2007, Radiation and optics in the atmosphere, 1165-1203, [in:] Handbook of lasers and optics, F. Träger (ed.), Springer, New York, 1358 pp.

Podstawczyńska A., 2010, UV and global solar radiation in Łódź, Central Poland, Int. J. Climatol., 30 (1), 1-10.

Pomeranec K. S., 1966, The Baltic Sea heat, Rep. PIHM, 1,19-48, (in Polish).

Rozwadowska A., 1991, A model of solar energy input into the Baltic Sea, Stud. i Mater. Oceanol., 59 (6), 223-242.

Rozwadowska A., 1992, Variability of solar radiation energy in ow to the southern Baltic, Doctoral diss., Inst. Oceanol. PAS,Sopot, 128 pp., (in Polish).

Rozwadowska A., 1994, Long period variability of solar radiation over the South Baltic, Vol. 1, Proc. 19th Conf. Baltic Oceanographers, Sopot, 149-157.

Rozwadowska A., 1996, Influence of clouds on the broadband spectral irradiance at the Baltic surface, Oceanologia, 38 (3), 297-315.

Rozwadowska A., 2004, Optical thickness of stratiform clouds over the Baltic inferred from on board irradiance measurements, Atmos. Res., 72 (1-4), 129-.147.

Rozwadowska A., Isemer H. J., 1998, Solar radiationfluxes at the surface of the Baltic Proper. Part 1. Mean annual cycle and influencing factors, Oceanologia, 40 (4), 307-330.

Ruddick K. G., Ovidio F., Rijkeboer M., 2000, Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters, Appl. Optics, 39 (6), 897-912. http://dx.doi.org/10.1364/AO.39.000897

Russak V., 1994, Is the radiation climate in the Baltic Sea region changing?, Ambio, 23 (2), 160-163.

Sagan S., 1991, Light transmission in the waters of the Southern Baltic, Diss. and Monogr., Inst. Oceanol. PAS, Sopot, 2, 149 pp., (in Polish).

Sagan S., 2008, The inherent water optical properties of Baltic waters, Diss. and Monogr., Inst. Oceanol. PAS, Sopot, 21, 244 pp., (in Polish).

Sagan S., Dera J., 1994, Baltic patchiness in terms of optical properties, ICES Coop. Res. Rep. No. 201, 109-115.

Sagan S., Olszewski J., Darecki M., 1992, Spatial and temporal changes of some optical parameters in the Southern Baltic, Oceanologia,33,1-16.

Schatten K. H., Orosz J. A., 1990, Solar constant secular changes, Sol. Phys., 125 (1), 179-184. http://dx.doi.org/10.1007/BF00154787

Siegel H., Gerth M., Ohde T., Heene T., 2005, Ocean colour remote sensing relevant water constituents and optical properties of the Baltic Sea, Int. J. Remote Sens., 26 (2), 315-334. http://dx.doi.org/10.1080/01431160410001723709

Snyder R. L., Dera J., 1970, Wave induced light-eld fluctuation in the sea, J. Opt. Soc. Am., 60 (8), 1072-1079. http://dx.doi.org/10.1364/JOSA.60.001072

Spencer J. W., 1971, Fourier series representation of the position of the Sun, Search, 2 (5), 172 pp.

Steemann Nielsen E., 1975, Marine photosynthesis with special emphasis on the ecological aspect, Elsevier, Amsterdam, 141 pp.

Stramski D., 1986, Fluctuations of solar irradiance induced by surface waves in the Baltic, Bull. PAS Earth Sci., 34,333-344.

Stramski D., Dera J., 1988, On the mechanism for producing ashing light under a wind disturbed water surface, Oceanologia, 25, 5-22.

Tanaka T., Wang M. H., 2004, Solution of radiative transfer in anisotropic plane parallel atmosphere, J. Quant. Spectrosc. Ra., 83 (3-4), 555-577. http://dx.doi.org/10.1016/S0022-4073(03)00105-5

Thomas G. E., Stamnes K., 1999, Radiative transfer in the atmosphere and ocean, Cambridge Univ. Press, Cambridge, 546 pp. http://dx.doi.org/10.1017/CBO9780511613470

Thuillier G., Hersé M., Simon P. C., Labs D., Mandel H., Gillotay D., Foujols T., 2003, The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1 2 3 and EURECA missions, Sol. Phys., 214 (1), 1-22. http://dx.doi.org/10.1023/A:1024048429145

Timofeyev N. A., 1983, Radiation regime of the oceans, Nauk. Dumka, Kiyev, 247 pp., (in Russian).

Warneck P., 1988, Chemistry of the natural atmosphere, Acad. Press, London, 757 pp.

Willson R. C., 1993, Solar irradiance, [in:] Atlas of satellite observations related to global change, R. J. Gurey, J. L. Foster & C. L. Parkinson (eds.), Cambridge Univ. Press, Cambridge, 5-18.

Woods T. N., Chamberlin P. C., Harder J. W., Hock R. A., Snow M., Eparvier F. G., Fontenla J., McClintock W. E., Richard E. C., 2009, Solar Irradiance Reference Spectra (SIRS) for the 2008 Whole Heliosphere Interval (WHI), Geophys. Res. Lett., 36, L01101, doi:10.1029/2008GL036373. http://dx.doi.org/10.1029/2008GL036373

Woźniak B., Dera J., 2007, Light absorption in sea water, Springer, New York, 452 pp.

Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz Mishke O. I., 1999, Modelling the in uence of acclimation on the absorption properties of marine phytoplankton, Oceanologia, 41 (2), 187-210.

Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz Mishke O. I., 2000a, Model of 'in vivo 'spectral absorption of algal pigments, Ocean Optics XV Conf. [CD ROM ], 1062, O-. Naval Res.Ocean, Atmos. Space S&T Dept., 11.

Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz Mishke O. I., 2000b, Model of the 'in vivo 'spectral absorption of algal pigments. Part 1. Mathematical apparatus, Oceanologia, 42 (2), 177-190.

Woźniak B., Dera J., Gohs L., 1977, Osłabianie i absorpcja światła w wodzie bałtyckiej, Stud. i Mater. Oceanol., 17, 25-30.

Woźniak B., Dera J., Koblentz Mishke O. I., 1992a, Bio optical relationships for estimating primary production in the ocean, Oceanologia, 33, 5-38.

Woźniak B., Dera J., Koblentz Mishke O. I., 1992b, Modelling the relationship between primary production,optical properties, and nutrients in the sea, Ocean Optics 11, Proc. SPIE, 1750, 246-275. http://dx.doi.org/10.1117/12.140655

Woźniak B., Hapter R., 1985, Statistical analysis of long term solar radiation in flow and penetration in the euphotic zone of the southeren Baltic, [in:] Utilisation of solar energy in the photosynthesis process of the Black and Baltic Sea phytoplankton ,O.I.Koblentz Mishke,B.Woźniak &Yu.E.Ochakovskiy, (eds.), Inst. Okeanol., AN SSSR, Moskva, 176-204,( in Russian).

Woźniak B., Hapter R., Dera J., 1989, Light curves of marine plankton photosynthesis in the Baltic, Oceanologia, 27, 61-78.

Woźniak B., Kr.ężel A., Darecki M., Woźniak S. B., Majchrowski R., Ostrowska M., Kozłowski Ł., Ficek D., Olszewski J., Dera J., 2008, Algorithm for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 1: Mathematical apparatus, Oceanologia,50 (4), 451-508.

Woźniak B., Ostrowska M., 1991, Photosynthesis pigments:their individual optical (absorption and fluorescence) properties, Stud. i Mater. Oceanol., 59,137-158.

Woźniak B., Rozwadowska A., Kaczmarek S., Woźniak S. B., Ostrowska M., 2003, Seasonal variability of the solar radiation flux and its utilisation in the Southern Baltic, ICES Coop. Res. Rep. No. 257, 280-298.

Woźniak B., Woźniak S. B., Tyszka K., Dera J., 2005a, Modelling the light absorption properties of particulate matter forming organic particles suspended in seawater. Part 1. Model description,classi-cation of organic particles, and example spectra of the light absorption coe-cient and the imaginary part of the refractive index of particulate matter for phytoplankton cells and phytoplankton like particles, Oceanologia,47 (2), 129-164.

Woźniak B., Woźniak S. B., Tyszka K., Ostrowska M., Ficek D., Majchrowski R., Dera J., 2006, Modelling the light absorption properties of particulate matter forming organic particles suspended in seawater. Part 3. Practical application, Oceanologia, 48 (4), 479-507.

Woźniak B., Woźniak S. B., Tyszka K., Ostrowska M., Majchrowski R., Ficek D., Dera J., 2005b, Modelling the light absorption properties of particulate matter forming organic particles suspended in seawater. Part 2. Modelling results, Oceanologia, 47 (4), 621-662.

Woźniak S. B., 1996a, Sea surface slope distribution and foam coverage as functions of the mean height of wind waves, Oceanologia, 38 (3), 317-332.

Woźniak S. B, 1996b, Mathematical spectral model of solar irradiance reflectance and transmittance by a wind ru-ed sea surface. Part 1. The physical problem and mathematical apparatus, Oceanologia, 38 (4), 447-467.

Woźniak S. B, 1997, Mathematical spectral model of solar irradiance reflectance and transmittance by a wind ru-ed sea surface. Part 2. Modelling results and application, Oceanologia, 39 (1), 17-34.

Woźniak S. B., Zapadka T., Woźniak B., 2001, Comparison between various formulae for sea surface net infrared radiation flux and a new empirical formula for southern Baltic region, Proc. 3rd Stud. Conf. Baltex, 2-6 July, Åland, Finland,257-258.

You Y., Stramski D., Darecki M., Kattawar G. W., 2010, Modeling of wave induced irradiance uctuations at near surface depths in the ocean:a comparison with measurements, Appl. Optics, 49 (6), 1041-1053. http://dx.doi.org/10.1364/AO.49.001041

Zapadka T., Kr.ężel A., Woźniak B., 2008, Longwave radiation budget at the Baltic Sea surface from satellite and atmospheric model data, Oceanologia,50 (2), 147-166.

Zapadka T., Woźniak S. B., 2000, Preliminary comparison between various models of the long wave radiation budget of the sea and experimental data from the Baltic Sea, Oceanologia, 42 (3), 359-369.

Zapadka T., Woźniak B., Dera J., 2007, A more accurate formula for calculating the net longwave radiation flux in the Baltic Sea, Oceanologia,49 (4), 449-470.

Zapadka T., Woźniak S. B., Woźniak B., 2001, A simple formula for Baltic Sea surface net infrared radiation flux, Oceanologia, 43 (3), 265-277.

full, complete article (PDF - compatibile with Acrobat 4.0), 1.0 MB


Solar radiation at the surface in the Baltic Proper:
Oceanologia 2010, 52(4), 583-597

Sirje Keevallik*, Kai Loitjärv
Marine Systems Institute, Tallinn University of Technology,
Akadeemia tee 21, EE-12618 Tallinn, Estonia;
e-mail: sirje.keevallik@gmail.com
*corresponding author

keywords: solar radiation, Baltic Sea, actinometric measurements, BALTEX

Received 21 June 2010, revised 18 October 2010, accepted 29 October 2010.

This research was supported by targeted financing from the Estonian Ministry of Education and Science (grant SF0140017s08). Radiation data were drawn from the BALTEX meteorological data archive.


Radiation data recorded at 12 sites around the central part of the Baltic Sea during 1996-2000 drawn from the BALTEX (Baltic Sea Experiment) meteorological data archives are used to study the spatio-temporal variability of daily global radiation totals. The annual average daily global radiation total varies from about 10 MJ m-2 at Visby (on Gotland) and Kołobrzeg (on the coast of Poland) to less than 9 MJ m-2 at Zīlāni (inland Latvia), Šilutė (Lithuania) and Jokioinen (Finland). The monthly average daily global radiation total over the whole region extends from 0.93 in December to 19.0 in June. The variability in global radiation is analysed on the basis of the fraction of the daily total at the top of the atmosphere. The spatial and temporal variability is the least in August - this shows that the variation in the cloud cover and atmospheric properties at this time of year is the smallest. The spatial correlation is the strongest between the two Finnish stations - Vantaa and Jokioinen. It is also high between Stockholm and Norrköping, on the east coast of Sweden. The correlation coefficients are the largest over the whole area in April. Radiation data from coastal stations are compared with an earlier parameterization based on ship observations (Rozwadowska & Isemer 1998, Isemer & Rozwadowska 1999). It is concluded that in climatological research, actinometric data from Visby can be used to characterize the radiation field over the northern part of the Baltic Proper and those from Kołobrzeg to characterize the radiation field over the southern part of this sea.

  References ref

BACC - BALTEX Assessment of Climate Change, 2008, Assessment of climate change for the Baltic Sea basin The BACC Author Team, Springer, Berlin, Heidelberg, 473 pp.

BALTEX - Baltic Sea Experiment, 1995, Initial implementation plan Int. BALTEX Secr. Publ., GKSS Res. Center, Geesthacht, 84 pp.

BMDC - Meteorological Data Centre for BALTEX,2002,Deutscher Wetterdienst, Offenbach a. M., 35 pp.

Isemer H. J., Rozwadowska A., 1999, Solar radiation uxes at the surface of the Baltic Proper. Part 2. Uncertainties and comparison with simple bulk parameterisations Oceanologia, 41 (2), 147-185.

Krężel A., 1997, A model of solar energy input to the sea surface Oceanol. Stud., 26 (4), 21-34.

Leppäranta M., Myrberg K., 2009, Physical oceanography of the Baltic Sea Springer/Praxis Publ., Berlin, Heidelberg, 378 pp.

Mietus M., 1998, The Climate of the Baltic Sea Basin. Marine meteorology and related oceanographic activities Rep. No. 41, WMO/TD No. 933, Geneva, 64 pp.

Morcrette J. J., 1991, Radiation and cloud radiative properties in the European Centre for Medium-Range Weather Forecasts forecasting system, J. Geophys. Res.,96 (D5),9121-9132. http://dx.doi.org/10.1029/89JD01597

Niemelä S., Räisänen P., Savijärvi H., 2001, Comparison of surface radiative ux parameterizations. Part II. Shortwave radiation Atmos.Res.,58 (2),141-154.

Ritter B., Geleyn J. F., 1992, A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations Mon. Weather Rev., 120 (2), 303-325. http://dx.doi.org/10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2

Rozwadowska A., Isemer H. J., 1998,Solar radiation uxes at the surface of the Baltic Proper. Part 1. Mean annual cycle and in uencing factors Oceanologia, 40 (4), 307-330.

Russak V., Kallis A.(eds.), 2003, Handbook of Estonian solar radiation climate EMHI, Tallinn, 384 pp.

Sass B. H., Rontu L., Räisänen P., 1994, HIRLAM-2 radiation scheme: Documentations and tests HIRLAM Tech. Rep. No. 16, SMHI, Norrköping.

Savijärvi H.,1990,Fast radiation parameterisation schemes for mesoscale and short-range forecast models J. Appl. Meteorol., 29 (6), 437-447. http://dx.doi.org/10.1175/1520-0450(1990)029<0437:FRPSFM>2.0.CO;2

full, complete article (PDF - compatibile with Acrobat 4.0), 762.8 kB

Variability in aerosol optical properties at Hornsund, Spitsbergen
Oceanologia 2010, 52(4), 599-620

Anna Rozwadowska1,*, Piotr Sobolewski2
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland;
e-mail: rozwadowska@iopan.gda.pl
*corresponding author
2Institute of Geophysics, Polish Academy of Sciences,
Księcia Janusza 64, PL-01-452 Warsaw, Poland

keywords: Arctic aerosols, aerosol optical thickness, backward trajectory, meteorological conditions, Hornsund, Spitsbergen

Received 20 September 2010, revised 21 October 2010, accepted 15 November 2010.

This research was carried out as part of the statutory programme of the Institute of Oceanology PAN in Sopot, Poland (No. I.1.1/2010).


Spectra of the aerosol optical thickness from the AERONET station at Hornsund in 2005-2008 were employed to study the interseasonal and intraseasonal variability in aerosol optical thickness for λ=500 nm (AOT(500)) and the Ångström exponent in the southern part of Spitsbergen in spring and summer. The dependences of aerosol optical properties on long-range transport and local meteorological conditions, i.e. wind direction and speed and humidity, were analysed. Backward trajectories computed by means of NOAA HYSPLIT model (Draxler & Rolph 2003) were used to trace the air mass history. The mean values of AOT(500) for spring and summer were 0.110 ± 0.007 (mean and standard deviation of the mean) and 0.048 ± 0.003 respectively. The average values of the Ångström exponent do not differ and take respective values of 1.44 ± 0.03 and 1.45 ± 0.03. In both seasons, the highest AOT(500) cases (the highest 20% of AOT values) can be explained by long-range transport from Europe, Asia (spring and summer) and North America (summer). In summer, the impact of distant sources on AOT is strongly modified by cleansing processes en route to Hornsund. Local meteorological conditions at the station are of secondary importance as regards the intraseasonal variability of aerosol optical properties in the southern part of Spitsbergen.

  References ref

Dörnbrack A., Stachlewska I. S., Ritter C., Neuber R., 2010, Aerosol distribution around Svalbard during intense easterly winds, Atmos. Chem. Phys., 10 (4), 1473-1490.

Draxler R. R., Rolph G. D., 2003, HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website http://www.arl.noaa.gov/ready/hysplit4.html, NOAA Air Resour. Lab., Silver Spring,MD.

Draxler R., Stunder B., Rolph G., Stein A., Taylor A., 2009, HYSPLIT4 user's guide Ver.4.9, http://www.arl.noaa.gov/documents/reports/hysplituser guide.pdf

Eck T. F., Holben B. N., Reid J. S., Dubovik O., Smirnov A., O'Neill N. T., Slutsker I., Kinne S., 1999, Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, J. Geophys. Res., 104 (D24), 31 333 .31 350.

Eneroth K., Kjellström E., Holmen K., 2003, A trajectory climatology for Svalbard; investigating how atmospheric ow patterns in uence observed tracer concentrations, Phys.Chem. Earth, 28 (28-32), 1191-1203.

Engvall A. C., Krejci R., Ström J., Tre-eisen R., Scheele R., Hermansen O., Paatero J., 2008, Changes in aerosol properties during spring-summer period in the Arctic troposphere, Atmos. Chem. Phys., 8 (3), 445-462.

Generoso S., Bey I., Attié J. L., Bréon F. M., 2007, A satellite- and model-based assessment of the 2003 Russian fires: Impact on the Arctic region, J. Geophys. Res., 112, D15302, doi:10.1029/2006JD008344.

Heidam N. Z., Christensen J., Wahlin P., Skov H., 2004, Arctic atmospheric contaminants in NE Greenland: levels, variations, origins, transport, transformations and trends 1990-2001, Sci. Total. Environ., 331 (1-3),5-28.

Herber A., Thomason L. W., Gernandt H., Leiterer U., Nagel D., Schulz K. H., Kaptur J., Albrecht T., Notholt J., 2002, Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999, J. Geophys. Res., 107 (D10), 4097. http://dx.doi.org/10.1029/2001JD000536

Hillamo R.,Kerminen V.M.,Aurela M.,Mäkelä T.,Maenhaut W.,Leek C.,2001, Modal structure of chemical mass size distribution in the high Arctic aerosol, J. Geophys. Res., 106 (D21), 27 555-27571.

Hirdman D., Sodemann H., Eckhardt S., Burkhart J. F., Je-erson A., Me-ord T., Quinn P. K., Sharma S., Ström J., Stohl A., 2010, Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output, Atmos. Chem. Phys., 10 (2), 669-693. Junge C. E., 1963, Air chemistry and radioactivity, Acad. Press, New York, 111-208.

Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Leetmaa A., Reynolds R., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K. C., Ropelewski C.,Wang J., Jenne R., Joseph D., 1996, The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc., 77 (3), 437-470.

Law K. S., Stohl A., 2007, Arctic air pollution: Origins and impacts Science, 315 (5818), 1537-1540.

Leck C., Bigg E. K., 2005a, Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer Tellus B, 57 (4), 305-316.

Leck C., Bigg E. K., 2005b, Source and evolution of the marine aerosol - A new perspective, Geophys. Res. Lett., 32, L19803, doi:10.1029/2005GL023651.

Myhre C. L., Toledano C., Myhre G., Stebel K., Yttri K. E., Aaltonen V., Johnsrud M., Frioud M., Cachorro V., de Frutos A., Lihavainen H., Campbell J.R., Chaikovsky A. P., Shiobara M., Welton E. J., T⌀rseth K., 2007, Regional aerosol optical properties and radiative impact of the extreme smoke event in the European Arctic in spring, Atmos. Chem. Phys., 7 (22), 5899-5915. http://dx.doi.org/10.5194/acp-7-5899-2007

Nagel D., Herber A., Thomason L. W., Leiterer U., 1998, Vertical distribution of the spectral aerosol optical depth in the Arctic from 1993 to 1996, J. Geophys. Res., 103 (D2), 1857-1870. http://dx.doi.org/10.1029/97JD02678

Niedźwiedź T., 2009, A calendar of atmospheric circulation types for Spitsbergen A computer file, Univ. Silesia, Dept. Climatol., Sosnowiec, Poland.

O'Neill N.T., Eck T. F., Smirnov A., Holben B. N., Thulasiraman S., 2003, Spectral discrimination of coarse and fine mode optical depth J.Geophys. Res., 108 (D17), 4559, doi:10.1029/2002JD002975. http://dx.doi.org/10.1029/2002JD002975

Petelski T., Piskozub J., 2006, Vertical coarse aerosol uxes in the atmospheric surface layer over the North Polar Waters of the Atlantic J. Geophys. Res., 111, C06039, doi:10.1029/2005JC003295. http://dx.doi.org/10.1029/2005JC003295

Quinn P. K., Miller T. L., Bates T. S., Ogren J. A., Andrews E., Shaw G. E., 2002, A 3 year record of simultaneously measured aerosol, chemical and optical properties at Barrow Alaska, J. Geophys. Res., 107 (D11),4130, doi:10.1029/2001JD001248. http://dx.doi.org/10.1029/2001JD001248

Quinn P. K., Shaw G., Andrews E., Dutton E. G., Ruoho Airola T., Gong S. L., 2007,Arctic haze: current trends and knowledge gaps Tellus B, 59 (1), 99-.114.

Rozwadowska A., Zieliński T., Petelski T., Sobolewski P., 2010, Cluster analysis of the impact of air back-trajectories on aerosol optical properties at Hornsund, Spitsbergen Atmos. Chem. Phys., 10 (3), 877-893. http://dx.doi.org/10.5194/acp-10-877-2010

Shindell D. T., Chin M., Dentener F., Doherty R. M., Faluvegi G., Fiore A. M., Hess P., Koch D. M., MacKenzie I. A., Sanderson M. G., Schultz M. G., Schulz M., Stevenson D. S., Teich H., Textor C., Wild O., Bergmann D. J., Bey I., Bian H., Cuvelier C., Duncan B. N., Folberth G., Horowitz L. W., Jonson J., Kaminski J. W., Marmer E., Park R., Pringle K. J., Schroeder S., Szopa S., Takemura T., Zeng G., Keating T. J., Zuber A., 2008, A multi-model assessment of pollution transport to the Arctic Atmos. Chem. Phys., 8 (17), 5353-5372.

Stohl A., Andrews E., Burkhart J. F., Forster C., Herber A., Hoch S. W., Kowal D., Lunder C., Me-ord T., Ogren J. A., Sharma S., Spichtinger N., Stebel K., Stone R., Ström J., T?rseth K., Wehrli C., Yttri K. E., 2006, Pan- Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer, 2004, J. Geophys. Res.,1 11, D22214, doi:10.1029/2006JD007216.

Stone R. S., Anderson G. P., Andrews E., Dutton E. G., Shettle E. P., Berk A., 2007, Incursions and radiative impact of Asian dust in northern Alaska Geophys. Res. Lett., 34, L14815, doi:10.1029/2007GL029878. http://dx.doi.org/10.1029/2007GL029878

Stone R. S., Herber A., Vitale V., Mazzola M., Lupi A., Schnell R. C., Dutton E. G., Liu P. S. K., Li S. M., Dethlo-K., Lampert A., Ritter C., Stock M., Neuber R., Maturilli M., 2010, A three dimensional characterization of Arctic aerosols from airborne Sun photometer observations: PAM ARCMIP, April 2009, J. Geophys. Res., 115, D13203, doi:10.1029/2009JD013605. http://dx.doi.org/10.1029/2009JD013605

Ström J., Umegard J., Torseth K., Tunved P., Hansson H. C., Holmen K., Wismann V., Herber A., Konig Langlo G., 2003, One year of particle size distribution and aerosol chemical composition measurements at the Zeppelin Station, Svalbard, March 2000-March 2001 Phys. Chem. Earth, 28 (28-32), 1181-1190.

Tomasi C., Vitale V., Lupi A., Di Carmine C., Campanelli M., Herber A., Tre-eisen R., Stone R.S., Andrews E., Sharma S., Radionov V., von Hoyningen Huene W., Stebel K., Hansen G. H., Myhre C. L., Wehrli C., Aaltonen V., Lihavainen H., Virkkula A., Hillamo R., Ström J., Toledano C., Cachorro V. E., Ortiz P., de Frutos A. M., Blindheim S., Frioud M., Gausa M., Zielinski T., Petelski T., Yamanouchi T., 2007, Aerosols in polar regions: A historical overview based on optical depth and in situ observations J. Geophys. Res., 112,D16205, doi:10.1029/2007JD008432. http://dx.doi.org/10.1029/2007JD008432

Treffeisen R., Tunved P., Ström J., Herber A., Bareiss J., Helbig A., Stone R. S., Hoyningen Huene W., Krejci R., Stohl A., Neuber R., 2007, Arctic smoke - aerosol characteristics during a record air pollution event in the European Arctic and its radiative impact, Atmos. Chem. Phys., 7 (11), 3035-3053. http://dx.doi.org/10.5194/acp-7-3035-2007

Zieger P., Fierz Schmidhauser R., Gysel M., Ström J., Henne S., Yttri K. E., Baltensperger U., Weingartner E., 2010, Effects of relative humidity on aerosol light scattering in the Arctic Atmos. Chem. Phys., 10 (8), 3875-3890.

full, complete article (PDF - compatibile with Acrobat 4.0), 2.5 MB

Particulate organic carbon in the southern Baltic Sea: numerical simulations and experimental data
Oceanologia 2010, 52(4), 621-648

Lidia Dzierzbicka-Głowacka*, Karol Kuliński, Anna Maciejewska, Jaromir Jakacki, Janusz Pempkowiak
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland;
e-mail: dzierzb@iopan.gda.pl
*corresponding author

keywords: POC, phytoplankton, zooplankton, detritus

Received 1 June 2010, revised 1 September 2010, accepted 6 October 2010.

The study was financially supported by the Polish State Committee of Scientific Research (grant No. N N305 111636), ECOOP WP10 Project, FP6 CarboOcean Project, Baltic_C - the BONUS B Project.


Particulate Organic Carbon (POC) is an important component in the carbon cycle of land-locked seas. In this paper, we assess the POC concentration in the Gdańsk Deep, southern Baltic Sea. Our study is based on both a 1D POC Model and current POC concentration measurements. The aim is twofold: (i) validation of simulated concentrations with actual measurements, and (ii) a qualitative assessment of the sources contributing to the POC pool.
       The POC model consists of six coupled equations: five diffusion-type equations for phytoplankton, zooplankton, pelagic detritus and nutrients (phosphate and total inorganic nitrogen) and one ordinary differential equation for detritus at the bottom. The POC concentration is determined as the sum of phytoplankton, zooplankton and pelagic detritus concentrations, all expressed in carbon equivalents. Bacteria are not simulated in this paper.
       The observed large fluctuations of POC concentrations are attributed to its appreciable seasonal variability. The maximum concentration of POC varied between 870 mgC m-3 in May and 580 mgC m-3 in September, coinciding with the period of maximum dead organic matter and phytoplankton biomass concentrations. The results of the numerical simulations are in good agreement with observed values. The difference between the modelled and observed POC concentrations is equal to 3-28% and depends on the month for which the calculations were made, although no time trend of the difference is observed. The conclusion is that the numerical simulations are a sufficiently good reflection of POC dynamics in the Baltic.

  References ref

Andersson A.,Rudehäll Å., 1993, Proportion of plankton biomass in particulate organic carbon in the northern Baltic Sea, Mar. Ecol. Prog. Ser., 95, 133-139. http://dx.doi.org/10.3354/meps095133

Billen G., Lancelot C., Maybeck M., 1991, N, P and Si retention along the aquatic continuum form land to ocean, [in:] Ocean margin process in global change, R.F.C.Mantoura,J.M.Martin &R.Wollast (eds.),Phys.Chem.,Earth.Sci. Res., Rep.9,19-44.

BMEPC-Baltic Marine Environment Protection Commission,1983,Guidelines for the Baltic monitoring programme for the second stage, BSEP 12, Helsinki Commiss.

Burska D., Pryputniewicz D., Falkowska L., 2005, Stratiffcation of particulate organic carbon and nitrogen in the Gdańsk Deep (southern Baltic Sea), Oceanologia, 47 (2), 201-217.

Czyszek W., Wensierski W., Dera J., 1979, Solar radiation energy in ow and absorption in Baltic water, Stud. Mater. Oceanol., 26, 105-140, (in Polish).

Chester R., 2003, Marine geochemistry, 2nd edn., Blackwell Sci., London, 506 pp.

De Haas H., van Weering T. C. E., de Stigter H., 2002, Organic carbon in shelf seas: sink or sources,processes and products, Cont. Shelf Res., 22, 691-717. http://dx.doi.org/10.1016/S0278-4343(01)00093-0

Doney S. C., Linsay K., Moore J. K., 2003, Global ocean carbon cycle modeling, [in:] Ocean biogeochemistry, M. J. R. Fasham (ed.), Springer Verl., Berlin, Heidelberg, 217-238.

Dzierzbicka-Głowacka L., 2005, Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 1. A Coupled Ecosystem Model, Oceanologia, 47 (4), 591-619.

Dzierzbicka-Głowacka L., 2006, Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 2. Numerical simulations, Oceanologia, 48 (1), 41-71.

Dzierzbicka-Głowacka L., Bielecka L., Mudrak S., Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdańsk Deep), Biogeosciences, 3 (4), 635-650.

Edler L. (ed.), 1979, Recommendation on methods of marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll, Baltic Mar. Biol. Publ. No. 5, 38 pp.

Ferrari G. M., Dowell M. D., Grossi S., Targa C., 1996, Relationship between the optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in the southern Baltic Sea region, Mar. Chem., 55 (3-4), 299-316. http://dx.doi.org/10.1016/S0304-4203(96)00061-8

Grasshoff K. ,Ehrhardt M., Kremling K. (eds.), 1983, Methods of seawater analysis, 2nd. edn., Verlag Chem., Weinheim, 419 pp.

Grzybowski W., Pempkowiak J., 2003, Preliminary results on low molecular weight organic substances dissolved in the waters of the Gulf of Gdańsk , Oceanologia, 45 (4), 693-704.

Haitzer M., Höss S., Traunspurger W., Steinberg C., 1999, Relationship between concentration of dissolved organic matter (DOM)and the effect of DOM on the bioconcentration of benzo[a ]pyrene, Aquat. Toxicol., 45 (2-3), 147-158. http://dx.doi.org/10.1016/S0166-445X(98)00097-6

Hedges J. I., 2002, Why dissolved organics matter, [in:] Biogeochemistry of marine dissolved organic matter, D. A. Hansell & C. A. Carlson (eds.), Elsevier Sci., San Diego, 1-33.

Jeffrey S. W., Humphrey G. F., 1975, New spectrophotometric equations for determining chlorophylls a, b, c in higher plants, algae and natural phytoplankton,Biochem. Physiol. Pflanzen,1967, 191-194.

Kuliński K., Pempkowiak J., 2008, Dissolved organic carbon in the southern Baltic Sea: Quantification of factors affecting its distribution, Estuar. Coast. Shelf Sci., 78 (1), 38-44. http://dx.doi.org/10.1016/j.ecss.2007.11.017

Kuosa H., Kivi K., 1989, Bacteria and heterotrophic agellates in the pelagic carbon cycle in the northern Baltic Sea, Mar. Ecol. Prog. Ser., 53, 93-100. http://dx.doi.org/10.3354/meps053093

Lassig J.,Leppänen J.M.,Niemi ?A.,Tamelander G.,1978,Phytoplankton primary production in the Gulf of Bothnia 1972-1975 as compared with other parts of the Baltic Sea, Finn. Mar. Res., 244, 101-115.

Lignell R., 1990, Excretion of organic carbon by phytoplankton:its relation to algal biomass, primary productivity and bacterial secondary productivity in the Baltic Sea, Mar. Ecol. Prog. Ser., 68, 85-99. http://dx.doi.org/10.3354/meps068085

IMGW, 1996-1999, Environmental conditions in the Polish zone of the southern Baltic Sea during 1995 (...1998), B. Cyberska, Z. Lauer & A.Trzosińska (eds.), Mater. Oddz. Mor. Inst. Meteorol. Gosp. Wod., Gdynia, (in Polish with English summ.).

IMGW, 2000, Environmental conditions in the Polish zone of the southern Baltic Sea during 1999,W. Krzymiński, E. Łysiak Pastuszak &M. Mińtus (eds.), Mater. Oddz. Mor. Inst. Meteorol. Gosp. Wod., Gdynia, 299 pp., (in Polish with English summ.).

Mudrak S., 2004, Short and long term variability of zooplankton in coastal Baltic waters: using the Gulf of Gdańsk as an example,Ph. D. thesis, Gdańsk Univ., Gdynia, 328 pp.+ Annex, (in Polish).

Pempkowiak J., 1985, The input of biochemically labile and resistant organic matter to the Baltic Sea from the Vistula River, [in:] Transport of carbon and minerals in major world rivers, Pt. 3, E. T. Degens, S. Kempe & R. Herrera (eds.), Mitt. Geol. Paläont.I nst. Univ. Hamburg, SCOPE/UNEP Sonderbd., 58, 345-350.

Pempkowiak J., Widrowski M., Kuliński W., 1984, Dissolved organic carbon and particulate carbon in the southern Baltic in September, 1983, Proc. 14th Conf. Baltic Oceanogr., IMGW, Gdynia, 699-713.

Rost B., Riebesell U., 2004, Coccolithophores and the biological pump:responses to environmental changes, [in:] Coccolithophores:from molecular processes to global impact, H. R. Thierstein & J. R. Young (eds.), Springer, Berlin, 99-125.

Rozwadowska A., Isemer H. J., 1998, Solar radiation uxes at the surface of the Baltic Proper. Part 1. Mean annual cycle and in uencing factors, Oceanologia, 40 (4), 307-330.

Sabine C. L., Feely R. A., Gruber N., Key R. M., Lee K., Bullister J. L., Wanninkhof R., Wong C. S., Wallace D. W. R., Tilbrook B., Millero F. J., Peng T. H., Kozyr A., Ono T., Rios A. F., 2004, The oceanic sink for anthropogenic CO2 , Science, 305 (5682), 367-371. http://dx.doi.org/10.1126/science.1097403

Steele J. H., Henderson E. W., 1992, The role of predation in plankton models, J. Plankton Res., 14 (1), 157-172. http://dx.doi.org/10.1093/plankt/14.1.157

Thomas H., Bozec Y., de Baar H. J. W., Elkalay K., Frankignoulle M., Schiettecatte L. S., Kattner G., Borges A. V., 2005, The carbon budget of the North Sea, Biogeosciences, 2 (1), 87-96. http://dx.doi.org/10.5194/bg-2-87-2005

Thomas H.,Bozec Y.,Elkalay K.,de Baar H.J.W.,2004,Enhanced open ocean storage of CO2 from shelf sea pumping, Science, 304 (5673), 1005-1008. http://dx.doi.org/10.1126/science.1095491

Turnewitsch R., Springer B. M., Kiriakoulakis K., Vilas J. C., Arístegui J., Wolff G., Peine F., Werk S., Graf G., Waniek J. J., 2007, Determination of particulate organic carbon (POC) in seawater: the relative methodological importance of artificial gains and losses in two glassfiber based techniques, Mar. Chem., 105 (3-4), 208-228. http://dx.doi.org/10.1016/j.marchem.2007.01.017

Voipio A. (ed.), 1981, The Baltic Sea, Elsevier Sci., Amsterdam, 418 pp.

Voss M., Emeis K. C., Hille S., Neumann T., Dippner J. W., 2005, Nitrogen cycle of the Baltic Sea from an isotopic perspective, Global Biogeochem. Cy.,19, GB3001, doi:10.1029/2004GB002338.

Wangersky P. J., 1977, The role of particulate matter in the productivity of surface waters, Helgol. Mar. Res., 30 (1), 546-564.

Witek Z., 1995, Biological production and its utilization within a marine ecosystem in the western Gdańsk basin, Sea Fish. Inst., Gdynia, 145 pp., (in Polish).

Witek Z. (ed.), 1993, Structure and function of marine ecosystem in Gdańsk Gulf on the basis of studies performed in 1987, Stud. Mater. Oceanol., 63 (Mar. Biol. 9), 5-125.

full, complete article (PDF - compatibile with Acrobat 4.0), 1.2 MB

Biogeochemical alteration of the benthic environment by the zebra mussel Dreissena polymorpha (Pallas)
Oceanologia 2010, 52(4), 649-667

Anastasija Zaiko1,*, Ričardas Paškauskas1,2, Alina Krevš2
1Coastal Research and Planning Institute, Klaipeda University,
H. Manto 84, LT-92294 Klaipeda, Lithuania;
e-mail: anastasija@corpi.ku.lt
*corresponding author
2 Institute of Botany, Nature Research Centre,
Žaliųjų ežerų 49, LT-2021 Vilnius, Lithuania

keywords: ecosystem engineer, soft bottom, nitrogen, phosphorus, mineralization, oxygen consumption

Received 20 July 2010, revised 21 September 2010, accepted 27 September 2010.

This study was supported by the Lithuanian State Sciences and Studies Foundation Project BINLIT (contract C-04/2008/2) "Biological invasions in Lithuanian ecosystems under the climate change: causes, impacts and projections", and EU FP7 project MEECE (contract 212085) Marine Ecosystem Evolution in a Changing Environment.


The aim of this study was to verify whether the biogeochemical features (e.g. concentration of nutrients, oxygen consumption, mineralization rate, Eh) of sediments changed by the zebra mussel or its shell deposits differ from those in the ambient soft bottom, and how these differences are related to the structure of benthic macroinvertebrates. In 2006 three sampling sessions were carried out in the Curonian Lagoon, SE Baltic Sea, at three pre-defined sites, corresponding to different bottom types: zebra mussel bed, zebra mussel shell deposits and bare soft sediments. Similarity analysis of biogeochemical parameters indicated that bottom sediments covered with zebra mussel shell deposits were rather distinct from the other bottom types because of the lowest total organic matter mineralization rate and highest organic carbon, total phosphorus and total nitrogen content. The parameters measured in the zebra mussel bed did not deviate conspicuously from the values observed in bare bottoms, except for the higher rate of oxygen consumption in the upper sediment layer. Unsuitable anoxic conditions on the one hand and the "attractive" shelters provided by zebra mussels on the other hand may promote the epifaunal life style in the habitats formed by dense zebra mussel clumps.

  References ref

Aristova G. I., 1965, The Kurskij Gulf benthos, Proc. AtlantNIIRO, Kaliningrad, 14, 19-39, (in Russian).

Beekey M. A., McCabe D. J., Marsden J. E., 2004, Zebra mussels affect benthic predator foraging success and habitat choice on soft sediment, Oecologia, 141 (1), 164-170. http://dx.doi.org/10.1007/s00442-004-1632-1 v Bially A., MacIsaac H. J., 2000, Fouling mussels (Dreissena spp.) colonize soft sediments in Lake Erie and facilitate benthic invertebrates, Freshwater Biol., 43 (1), 85-97. http://dx.doi.org/10.1046/j.1365-2427.2000.00526.x

Botts P. S., Patterson B. A., Schloesser D. W., 1996, Zebra mussel effect on benthic invertebrates: physical or biotic?, J. N. Am. Benthol. Soc., 15 (2), 179-184. http://dx.doi.org/10.2307/1467947

Bruesewitz D. A., Tank J. L., Bernot M. J., Richardson W. B., Strauss E. A., 2006, Seasonal effects of the zebra mussel (Dreissena polymorpha) on sediment denitrification rates in Pool 8 of the Upper Mississippi River, Can. J. Fish. Aquat. Sci., 63 (5), 957-969. http://dx.doi.org/10.1139/f06-002

Bubinas A., 1983, Zoobenthos, [in:] Biogeochemistry of the Kursiu Gulf, V. Gudelis & O. Pustelnikov (eds.), Vilnius, 44-59, (in Lithuanian).

Daunys D., 2001, Patterns of the bottom macrofauna variability and its role in the shallow coastal lagoon, Summ. Ph. D. diss., Univ. Klaipėda.

Daunys D., Zemlys P., Olenin S., Zaiko A., Ferrarin C., 2006, Impact of the zebra mussel Dreissena polymorpha invasion on the budget of suspended matter in a shallow lagoon ecosystem, Helgoland Mar. Res., 60 (2), 113-120. http://dx.doi.org/10.1007/s10152-006-0028-5

Dermott R., Mitchell J., Murray I., Fear E., 1993, Biomass and production of zebra mussels (Dreissena polymorpha) in shallow waters of northeastern Lake Erie, [in:] Zebra mussels: biology, impacts, and control, T. F. Nalepa & D. W. Schloesser (eds.), Lewis Publ., Chelsea, MI, 399-414.

Dusoge K., 1966, Composition and interrelations between macrofauna living on stones in the littoral of Mikolajskie Lake, Ekol. Pol., 14, 755-762.

Effler S. W., Boone S. R., Siegfried C. A., Walrath L., Ashby S. L., 1997, Mobilization of ammonia and phosphorus by zebra mussels (Dreissena polymorpha) in the Seneca River, New York, [in:] Zebra mussels and aquatic nuisance species, F. M. D'Itri (ed.), Lewis Publ., Boca Raton, 187-207.

Effler S. W., Brooks C. M., Whitehead K., Wagner B., Doerr S. M., Perkins M. G., Siegfried C. A., Walrath L., Canale R. P., 1996, Impact of zebra mussel invasion on river water quality, Water Environ. Res., 68 (2), 205-214. http://dx.doi.org/10.2175/106143096X127622

Fahnenstiel G. L., Lang G. A., Nalepa T. F., Johengen T. H., 1995, Effects of zebra mussel (Dreissena polymorpha) colonization on water quality parameters in Saginaw Bay, Lake Huron, J. Great Lakes Res., 21 (4), 435-448. http://dx.doi.org/10.1016/S0380-1330(95)71057-7

Galkus A., Jokšas K., 1997, Sedimentary material in the transitional aquasystem, Inst. Geogr., Vilnius, 198 pp., (in Lithuanian with English summary).

Gasiŭnas I., 1959, Forage macrozoobenthos of the Kuršiu Marios, [in:] Kuršiu marios, K. Jankevicius, I. Gasiŭnas, A. Gediminas, V. Gudelis, A. Kublickas & I. Maniukas (eds.), Lithuanian Acad. Sci., Vilnius, 191-292, (in Russian).

Gasiŭnaitė Z. R., Daunys D., Olenin S., Razinkovas A., 2008, The Curonian Lagoon, [in:] Ecology of Baltic coastal waters, U. Schiewer (ed.), Ecol. Stud. 197, Springer-Verl., Berlin, Heidelberg, 197-215.

Griffiths R. W., 1993, Effects of zebra mussel (Dreissena polymorpha) on the benthic fauna of Lake St. Clair, [in:] Zebra mussels: biology, impacts, and control, T. Nalepa & D. W. Schloesser (eds.), Lewis Publ., Boca Raton-Ann Arbor- London-Tokyo, 415-437.

Gutierrez J. L., Jones C. G., Strayer D. L., Iribarne O. O., 2003, Mollusks as ecosystem engineers: the role of shell production in aquatic habitats, Oikos, 101 (1), 79-90. http://dx.doi.org/10.1034/j.1600-0706.2003.12322.x

Haynes J. M., Stewart T. W., Cook G. E., 1999, Benthic macroinvertebrate communities in Southwestern Lake State Ontario following invasion of Dreissena: continuing change, J. Great Lakes Res., 25 (4), 828-838. http://dx.doi.org/10.1016/S0380-1330(99)70780-X

Heath R. T., Fahnenstiel G. L., Gardner W. S., Cavaletto J. F., Hwang S. J., 1995, Ecosystem-level effects of zebra mussels (Dreissena polymorpha): an enclosure experiment in Saginaw Bay, Lake Huron, J. Great Lakes Res., 21 (4), 501-516. http://dx.doi.org/10.1016/S0380-1330(95)71062-0

Hecky R. E., Smith R. E. H., Barton D. R., Guilford S. J., Taylor W. D., Charlton M. N., Howell T., 2004, The nearshore phosphorus shunt: a consequence of ecosystem engineering by dreissenids in the Laurentian Great Lakes, Can. J. Fish. Aquat. Sci., 61 (7), 1285-1293. http://dx.doi.org/10.1139/f04-065

HELCOM, 1988, Guidelines for the Baltic monitoring programme for the third stage. Part D. Biological determinants, Baltic Sea Environ. Proc., 27D, 23-28.

Holland R. E., 1993, Changes in planktonic diatoms and water transparency in Hatchery Bay, Bass Island area, western Lake Erie since the establishment of the zebra mussel, J. Great Lakes Res., 19 (3), 617-624. http://dx.doi.org/10.1016/S0380-1330(93)71245-9

James W. F., Barko J. W., Eakin H. L., 1997, Nutrient regeneration by the zebra mussel (Dreissena polymorpha), J. Freshwater Ecol., 12 (2), 209-216. http://dx.doi.org/10.1080/02705060.1997.9663528

Jirka A. M., Carter M., May D., Fuller F., 1976, Ultramicro semi-automated method for the simultaneous determination of total Kjeldahl nitrogen in wastewaters, Environ. Sci. Technol., 10 (10), 1038-1044. http://dx.doi.org/10.1021/es60121a003

Johengen T. H., Nalepa T. F., Fahnenstiel G. L., Goudy G., 1995, Nutrient changes in Saginaw Bay, Lake Huron, after the establishment of the zebra mussel (Dreissena polymorpha), J. Great Lakes Res., 21 (4), 449-464. http://dx.doi.org/10.1016/S0380-1330(95)71058-9

Jurevičius R., 1959, Hydrodynamic conditions in the Curonian Lagoon, [in:] Kuršiu Marios, K. JankeviŃius, I. Gasiŭnas, A. Gediminas, V. Gudelis, A. Kublickas & I. Maniukas (eds.), Lithuanian Acad. Sci., Vilnius, 69-108, (in Russian).

Karatayev A. Y., Burlakova L. E., Padilla D. K., 1997, The effects of Dreissena polymorpha (Pallas) on aquatic communities in Eastern Europe, J. Shell Res., 16 (1), 187-203.

Karatayev A. Y., Burlakova L. E., Padilla D. K., 2002, Impacts of zebra mussels on aquatic communities and their role as ecosystem engineers, [in:]Invasive aquatic species of Europe - distribution, impact and management, E. Leppäkoski, S. Gollasch & S. Olenin (eds.), Kluwer Acad. Publ., Dordrecht- Boston-London, 433-446.

Karatayev A. Y., Burlakova L. E., Padilla D. K., 2005, Contrasting distribution and impacts of two freshwater exotic suspension feeders, Dreissena polymorpha and Corbicula uminea, [in:] The comparative roles of suspension-feeders in ecosystems, R. F. Dame & S. Olenin (eds.), NATO Sci. Ser. IV: Earth Environ. Sci., Vol. 47, Springer, Dordrecht, 239-262.

Karatayev A. Y., Lyakhnovich V. P., Afanasjev S. A., Burlakova L. E., Zakutskiy V. P., Lyakhov S. M., Miroshnichenko M. P., Moroz T. G., Nekrasova M. Y., Nechvalenko S. P., Skalskaya I. A., Kharchenko T. G., Protasov A. A., 1994, Role of zebra mussel in biocenosis, [in:] Freshwater zebra mussel Dreissena polymorpha (Pall.) (Bivalvia, Dreissenidae): systematics, ecology, practical meaning, J. I. Starobogatov (ed.), Nauka, Moscow, 180-196, (in Russian).

Kuznecov S. I., Dubinina G. A., 1980, Methods of investigation of aquatic microorganisms, Nauka, Moscow, 288 pp., (in Russian).

Lucy F., Sullivan M., Minchin D., 2005, Nutrient levels and the zebra mussel population in Lough Key, (2000-MS-5-M1) Synth. Rep., Environ. Prot. Agency, 23 pp.

MacIsaac H. J., Sprules W. G., Leach J. H., 1991, Ingestion of small-bodied zooplankton by zebra mussels (Dreissena polymorpha): can cannibalism on larvae in uence population dynamics?, Can. J. Fish. Aquat. Sci., 48 (11), 2151-2160.

Makarewicz J. C., Bertram P., Lewis T. W., 2000, Chemistry of the offshore surface waters of Lake Erie: pre- and post-Dreissena. Introduction (1883-1993), J. Great Lakes Res., 26 (1), 82-93. http://dx.doi.org/10.1016/S0380-1330(00)70675-7

Merkienė R., čeponytė V., 1994, Unified sewage and surface waters quality assessment methods, 1, Aplinkos apsaugos ministerija, Vilnius, 65 pp., (in Lithuanian).

Minchin D., Lucy F., Sullivan M., 2002, Zebra mussel: impacts and spread, [in:] Invasive aquatic species of Europe - distribution, impact and management, E. Leppäkoski, S. Gollasch & S. Olenin (eds.), Kluwer Acad. Publ., Dordrecht- Boston-London, 135-146.

Monakov A. V., 1998, Feeding of freshwater invertebrates, Russian Acad. Sci., A. N. Severtsov Inst. Ecol. Evol. Prob., Moscow, 319 pp., (in Russian).

Nalepa T. F., 1994, Decline of native unionid bivalves in Lake St. Clair after infestation by the zebra mussel, Dreissena polymorpha, Can. J. Fish. Aquat. Sci., 51 (10), 2227-2233. http://dx.doi.org/10.1139/f94-225

Olenin S., 1987, Zoobenthos of the Curonian Lagoon: results of biological monitoring, 1980-1984, [in:] Chemistry and biology of seas, A. Simonov & I. Agarova (eds.), Proc. Oceanogr. Inst., Hydrometeoizdat Publ., Moscow, 175-191, (in Russian).

Olenin S., 1988, Some aspects of biocenotic and trophological structure of the bottom fauna in the Curonian Lagoon, Reg. Hydrometeorol. 12, Vilnius, 46-55, (in Russian with English summary).

Olenin S., 1997, Comparative study of the south-eastern Baltic coastal zone and the Curonian Lagoon bottom communities, Proc. 13th Baltic Marine Biol. Symp., A. Andrushaitis (ed.), Riga, Inst. Aquat. Ecol., Univ. Latvia, 151-159.

Olenin S., Orlova M., Minchin D., 1999, Dreissena polymorpha (Pallas, 1771), [in:] Case histories on introduced species: their general biology, distribution, range expansion and impact, S. Gollasch, D. Minchin, H. Rosenthal & M. Voigt (eds.), Logos-Verl., Berlin, 37-42.

Potapova L., 1980, Determination of carbon in organic matter of the bottom sediments, Nauka, Moscow, 394-396, (in Russian).

Pustelnikov O., 1983, Kursiu Marios Lagoon as a sedimentation environment, [in:] Biogeochemistry of the Kursiu Marios Lagoon, Vilnius, 11-23, (in Russian).

Rosemond A. D., Anderson C. B., 2003, Engineering role models: do non-human species have the answers?, Ecol. Eng., 20 (5), 379-387. http://dx.doi.org/10.1016/j.ecoleng.2003.09.002

Schloesser D. W., Nalepa T. F., 1994, Dramatic decline of unionid bivalves in offshore waters of western Lake Erie after infestation by the zebra mussel, Dreissena polymorpha, Can. J. Fish. Aquat. Sci., 51 (10), 2234-2242. http://dx.doi.org/10.1139/f94-226

Seitzinger S., 1988, Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance, Limnol. Oceanogr., 33 (4, pt. 2), 702-724. http://dx.doi.org/10.4319/lo.1988.33.4_part_2.0702

Slepnev A. Y., Protasov A. A., Videnina Y. L., 1994, Development of a Dreissena polymorpha population under experimental conditions, Hydrobiol. J., 30, 26-33.

Starobogatov J. I., Andreyeva S. I., 1994, Areal of zebra mussel and its history, [in:] Freshwater zebra mussel Dreissena polymorpha (Pall.) (Bivalvia, Dreissenidae): systematics, ecology, practical meaning, J. I. Starobogatov (ed.), Nauka, Moscow, 47-56, (in Russian).

Stewart T. W., Haynes J. M., 1994, Benthic macroinvertebrate communities of southwestern Lake Ontario following invasion of Dreissena, J. Great Lakes Res., 20, 479-493. http://dx.doi.org/10.1016/S0380-1330(94)71164-3

Stewart T. W., Miner J. G., Lowe R. L., 1998, Quantifying mechanisms for zebra mussel effects on benthic macroinvertebrates: organic matter production and shell-generated habitat, J. N. Am. Benthol Soc., 17 (1), 81-94. http://dx.doi.org/10.2307/1468053

Strayer D. L., Smith L. C., 1996, Relationships between zebra mussels (Dreissena polymorpha) and unionid clams during the early stage of the zebra mussel invasion of the Hudson River, Freshwater Biol., 36 (3), 771-779.

Strayer D. L., Smith L. C., Hunter D. C., 1998, Effects of the zebra mussel (Dreissena polymorpha) invasion on the macrobenthos of the freshwater tidal Hudson River, Can. J. Zool., 76 (3), 419-425.

Thayer S. A., Haas R. C., Hunter R. D., Hushler R. H., 1997, Zebra mussel (Dreissena polymorpha) effects on sediment, other zoobenthos, and the diet and growth of adult yellow perch (Perca avescens) in pond enclosures, Can. J. Fish. Aquat. Sci., 54 (8), 1903-1915. http://dx.doi.org/10.1139/cjfas-54-8-1903

Trimonis E., Gulbinskas S., Kuzavinis M., 2003, The Curonian Lagoon bottom sediments in the Lithuanian water area, Baltica, 16, 13-20.

Zaiko A., 2009, Habitat engineering role of the invasive bivalve Dreissena polymorpha (Pallas, 1771) in the boreal lagoon ecosystem, Doctoral diss., Klaipeda Univ., 35 pp.

Zaiko A., Daunys D., Olenin S., 2009, Habitat engineering by the invasive zebra mussel Dreissena polymorpha (Pallas) in a boreal coastal lagoon: impact on biodiversity, Helgoland Mar. Res., 63 (1), 85-94.

Zemlys P., Daunys D., Olenin S., 2001, Modelling of the zebra mussel impact on the Curonian Lagoon ecosystem, Rep. Klaipeda Univ., (in Lithuanian).

Zettler M.-L., Daunys D., 2007, Long-term macrozoobenthos changes in a shallow boreal lagoon: Comparison of a recent biodiversity inventory with historical data, Limnologica, 37 (2), 170-185.

full, complete article (PDF - compatibile with Acrobat 4.0), 348.3 kB

Distribution and fate of polycyclic aromatic hydrocarbons (PAHs) in recent sediments from the Gulf of Gdańsk (SE Baltic)
Oceanologia 2010, 52(4), 669-703

Ludwik Lubecki, Grażyna Kowalewska*
Marine Pollution Laboratory, Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland;
e-mail: Kowalewska@iopan.gda.pl
*corresponding author

keywords: sediment pollution, sediments, hydrocarbons, risk assessment, PAHs, coastal zone, Baltic, Gulf of Gdańsk

Received 2 August 2010, revised 24 September 2010, accepted 30 September 2010.

This work was carried out within the framework of the statutory project of IO PAS, Sopot and partly funded by Ministry of Science and Higher Education of Poland (contract No. 4246/B/P01/2008/34).


Polycyclic aromatic hydrocarbons (PAHs) were determined in recent (0-10 cm) sediments from the Gulf of Gdańsk during 2003-07 and correlated with environmental parameters. Located in the south-eastern part of the Baltic and receiving the waters of the River Wisła (Vistula), this area of negligible tides and strong anthropogenic stress, highly eutrophic as a consequence, is an exceptional model basin for studying the fate of hydrophobic organic contaminants introduced to the sea. Environmental conditions determine the distribution and composition patterns of parent PAHs in Gulf of Gdańsk sediments. PAHs were associated mainly with fine particle sediments, rich in organic carbon, with hypoxia/anoxia near the bottom. The highest PAH contents were found in the Gdańsk Deep (ca 110 m), where the mean concentration of Σ12PAHs was ~3600 ng g-1, and no distinct temporal trend was observed. Lighter PAHs were found to be depleted in deeper regions. It was estimated that the Wisła discharges ~50% of the total PAH load deposited in recent Gulf sediments.

  References ref

AMPS, 2004, Discussion document on Sediment Monitoring Guidance for the EU Water Framework Directive, Expert Group on Analysis and Monitoring of Priority Substances, AMPS subgroup on sediment monitoring, 1-15.

ATSDR, 1995, Toxicological profile for Polycyclic Aromatic Hydrocarbons (PAHs), Agency for Toxic Substances and Disease Registry, U. S. Department of Health and Human Services, Public Health Service, http://www.atsdr.cdc.gov/toxpro .les/tp69.html

Baumard P., Budzinski H., Garrigues P., Dizer H., Hansen P. D., 1999, Polycyclic aromatic hydrocarbons in recent sediments and mussels (Mytilus edulis) from the Western Baltic Sea: occurrence, bioavailability and seasonal variations, Mar. Environ. Res.,47 (1),17-47. http://dx.doi.org/10.1016/S0141-1136(98)00105-6

Baumard P.,Budzinski H., Michon Q., Garrigues P., Burgeot T., Bellocq J., 1998, Origin and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment records, Estuar. Coast. Shelf Sci., 47 (1), 77-90. http://dx.doi.org/10.1006/ecss.1998.0337

Benlahcen K. T., Chaoui A.,B udzinski H., Bellocq J., Garrigues P. H., 1997, Distribution and sources of polycyclic aromatic hydrocarbons in some Mediterranean coastal sediments, Mar. Pollut. Bull., 34 (5), 298-305. http://dx.doi.org/10.1016/S0025-326X(96)00098-7

Bodnár E.,Polyák K.,Hlavay J.,2005,Material transport between the atmosphere and sediment of the Lake Balaton, Microchem.J., 79, 221-230. http://dx.doi.org/10.1016/j.microc.2004.05.009

Bouloubassi I., Méjanelle L., Pete R., Fillaux J., Lorre A., Point V., 2006, PAH transport by sinking particles in the open Mediterranean Sea: A 1 year sediment trap study, Mar. Pollut. Bull., 52 (5), 560-571. http://dx.doi.org/10.1016/j.marpolbul.2005.10.003

Boyd T. J., Montgomery M. T., Steele J. K., Pohlman J. W., Reatherford S. R., Spargo B. J., Smith D. C., 2005, Dissolved oxygen saturation controls PAH biodegradation in freshwater estuary sediments, Microbial. Ecol., 49 (2), 226-235. http://dx.doi.org/10.1007/s00248-004-0279-0

Bradshaw C., Kumblad L., Fagrell A., 2006, The use of tracers to evaluate the importance of bioturbation in remobilising contaminants in Baltic sediments, Estuar. Coast. Shelf Sci., 66 (1-2), 123-134. http://dx.doi.org/10.1016/j.ecss.2005.08.002

Cardellicchio N., Buccolieri A., Giandomenico S., Lopez L., Pizzulli F., Spada L., 2007, Organic pollutants (PAHs,PCBs)in sediments from the Mar Piccolo in Taranto (Ionian Sea,Southern Italy), Mar. Pollut. Bull., 55 (10-12), 451-458. http://dx.doi.org/10.1016/j.marpolbul.2007.09.007

Charlesworth M., Service M., Gibson C. E., 2002, PAH contamination of western Irish Sea sediments, Mar. Pollut. Bull., 44 (12), 1421-1434. http://dx.doi.org/10.1016/S0025-326X(02)00306-5

Cortazar E., Bartolomé L., Arrasate S., Usobiaga A., Raposo J. C., Zuloaga O., Etxebarria N., 2008, Distribution and bioaccumulation of PAHs in the UNESCO protected natural reserve or Urdaibai, Bay of Biscay, Chemosphere, 72 (10), 1467-1474. http://dx.doi.org/10.1016/j.chemosphere.2008.05.006

Dahle S., Savinov V. M., Matishov G. G., Evenset A., Næs K., 2003, Polycyclic aromatic hydrocarbons (PAHs)in bottom sediments of the Kara Sea shelf, Gulf of Ob and Yenisei Bay, Sci. Total Environ., 306 (1-3), 57-71. http://dx.doi.org/10.1016/S0048-9697(02)00484-9

Dz. U., 2002, Rozporządzenie Ministra Środowiska z dnia 16 kwietnia 2002 r. w sprawie rodzajow oraz stęęeń substancji, ktore powodują, ęe urobek jest zanieczyszczony, Nr 55, poz. 498.

EU, 2000, Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, Official Journal of the European Communities, Brussels, L 327, 22.12.2000.

Falandysz J., Albanis T., Bachmann J., Bettinetti R., Bochentin I., Boti V., Bristeau S., Daehne B., Dagnac T., Galassi S., Jeannot R., Oehlmann J., Orlikowska A., Sakkas V., Szczerski R., Valsamaki V., Schulte Oehlmann U., 2006, Some chemical contaminants of surface sediments at the Baltic Sea coastal region with special emphasis on androgenic and anti androgenic compounds, J. Environ. Sci. Health, Part A, 41 (10), 2127-2162.

Fernández N., Bellas J., Lorenzo J. I., Beiras R., 2008, Complementary approaches to assess the environmental quality of estuarine sediments, Water Air Soil Poll., 189 (1-4), 163-177. http://dx.doi.org/10.1007/s11270-007-9565-z

Filipkowska A., Lubecki L., Kowalewska G., 2005, Polycyclic aromatic hydrocarbon analysis in different matrices of the marine environment, Anal. Chim. Acta, 547 (2),243-254. http://dx.doi.org/10.1016/j.aca.2005.05.023

Folk R. L., Ward W. C., 1957, Brazos River bar: a study of significance of grain size parameters, J. Sediment. Petrol., 27 (1), 3-26.

Gaudette H. E., Flight W. R., Toner L., Folger D. W., 1974, An inexpensive titration method for the determination of organic carbon in recent sediments, J. Sediment. Petrol., 44 (1), 249-253.

Genthner B. R. S., Townsend G. T., Lantz S. E., Mueller J. G., 1997, Persistence of polycyclic aromatic hydrocarbon components of creosote under anaerobic enrichment conditions, Arch. Environ. Contam. Toxicol., 32 (1), 99-105. http://dx.doi.org/10.1007/s002449900160

Gogou A., Bouloubassi I., Stephanou E. G., 2000, Marine organic geochemistry of the Eastern Mediterranean:1.Aliphatic and polyaromatic hydrocarbons in Cretan Sea surficial sediments, Mar. Chem., 68 (4), 265-282. http://dx.doi.org/10.1016/S0304-4203(99)00082-1

HELCOM, 2008, Convention on the Protection of the Marine Environment of the Baltic Sea Area 1992 (Helsinki Convention), Helsinki Commiss., www.helcom.fi.

IMGW, 2000, Warunki środowiskowe polskiej strefy południowego Bałtyku w 1999 roku, W. Krzymiński, E. Łysiak Pastuszak & M. Miętus (eds.), W. Krzymiński, E. Łysiak & M. Miętus (eds.), Mater. Oddz. Mor. Inst. Meteorol. Gosp. Wod., Gdynia, 299 pp.

Janas U., Wocial J., Szaniawska A., 2004, Seasonal and annual changes in the macrozoobenthic populations of the Gulf of Gdańsk with respect to hypoxia and hydrogen sulphide, Oceanologia, 46 (1), 85-102.

Jankowski A., 1996,V ertical water circulation in the southern Baltic and its environmental implications, Oceanologia, 38 (4), 485-503.

Kannen A., Jedrasik J., Kowalewski M., Oldakowski B., Nowacki J., 2004, Assessing catchment coast interactions for the Bay of Gdańsk, [in:] Managing the Baltic Sea, G. Schernewski & N. Löser (eds.), Coastline Rep., 2, 155-165.

Kępińska U., Wypych K., 1990, Osady denne, [in:] Zatoka Gdańska, A. Majewski (ed.), Inst. Meteorol. Gosp. Wod., Wydz. Geol., Warszawa, 55-65.

King A. J., Readman J. W., Zhou J. L., 2004, Dynamic behaviour of polycyclic aromatic hydrocarbons in Brighton marina,UK, Mar. Pollut. Bull., 48 (3-4), 229-239. http://dx.doi.org/10.1016/S0025-326X(03)00393-X

Kowalewska G., 1999, Phytoplankton - the main factor responsible for transport of polynuclear aromatic hydrocarbons from water to sediments in the Southern Baltic ecosystem, ICES J. Mar. Sci., 56 Suppl., 219-222.

Kowalewska G., Konat J., 1997, Distribution of polynuclear aromatic hydrocarbons (PAHs)in sediments of the southern Baltic Sea, Oceanologia,39 (1), 83-104.

Kowalewska G., Konat-Stepowicz J., Wawrzyniak-Wydrowska B., Szymczak-yła M., 2003, Transfer of organic contaminants to the Baltic in the Odra Estuary, Mar. Pollut. Bull., 46 (6), 703-718. http://dx.doi.org/10.1016/S0025-326X(03)00062-6

Kowalewska G., Witkowski A., Toma B., 1996, C hlorophylls c in bottom sediments as markers of diatom biomass in the southern Baltic Sea, Oceanologia, 38 (2), 227-249.

Krein A., Schorer M., 2000, Road runoff pollution by polycyclic aromatic hydrocarbons and its contribution to river sediments, Water Res., 34 (16), 4110-4115. http://dx.doi.org/10.1016/S0043-1354(00)00156-1

Lauenstein G. G., Kimbrough K. L., 2007, Chemical contamination of the Hudson Raritan Estuary as a result of the attack on the World Trade Center: Analysis of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in mussels and sediment, Mar. Pollut. Bull., 54 (3), 284-294. http://dx.doi.org/10.1016/j.marpolbul.2006.10.006

Law R., Andrulewicz E., 1983, Hydrocarbons in water,sediment and mussels from the southern Baltic Sea, Mar. Pollut. Bull., 14 (8), 289-293. http://dx.doi.org/10.1016/0025-326X(83)90537-4

Leipe T., Kersten M., Heise S., Pohl C., Witt G., Liehr G., Zettler M., Tauber F., 2005, Ecotoxicity assessment of natural attenuation e .ects at a historical dumping site in the western Baltic Sea, Mar. Pollut. Bull., 50 (4), 446-459. http://dx.doi.org/10.1016/j.marpolbul.2004.11.049

Liu Y., Chen L., Jianfu Z., Qinghui H., Zhiliang Z., Hongwen G., 2008, Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of rivers and an estuary in Shanghai, China, Environ.Pollut., 154 (2), 298-305. http://dx.doi.org/10.1016/j.envpol.2007.10.020

Majewski A., 1990, Morfometria i hydrografiaa zlewiska, [in:] Zatoka Gdańska, A. Majewski (ed.), Inst. Meteorol. Gosp. Wod., Wyd. Geol., Warszawa, 10-19.

Majewski A.,1994,Naturalne warunki środowiskowe Zatoki Gdańskiej i jej obrze໙a, [in:] Zanieczyszczenie i odnowa Zatoki Gdańskiej, J. Bła.ejowski & D. Schuller (eds.), Mater. Seminar. Gdynia 1991, UG, Gda.sk, 35-42.

Means J. C., 1995, Influence of salinity upon sediment water partitioning of aromatic hydrocarbons, Mar. Chem., 51 (1), 3-16. http://dx.doi.org/10.1016/0304-4203(95)00043-Q

Medeiros P. M., Bícego M. C., 2004, Investigation of natural and anthropogenic hydrocarbon inputs in sediments using geochemical markers. I. Santos, SP Brazil, Mar. Pollut. Bull., 49 (11-12), 761-769. http://dx.doi.org/10.1016/j.marpolbul.2004.06.001

Meier H. E. M., Feistel R., Piechura J., Arneborg L., Burchard H., Fiekas V., Golenko N., Kuzmina N., Mohrholz V., Nohr C., Paka V. T., Sellschopp J., Stips A., Zhurbas V., 2006, Ventilation of the Baltic Sea deep water: A brief review of present knowledge from observations and models, Oceanologia, 48 (S), 133-164.

Muniz P., Danulat E., Yannicelli B., García Alonso J., Medina G., Bícego M.C., 2004, Assessment of contamination by heavy metals and petroleum hydrocarbons in sediments of Montevideo Harbour (Uruguay), Environ. Int., 29 (8), 1019-1028. http://dx.doi.org/10.1016/S0160-4120(03)00096-5

Nikolaou A., Kostopoulou M., Lofrano G., Meric S., Petsas A., Vagi M., 2009, Levels and toxicity of polycyclic aromatic hydrocarbons in marine sediments, Trends Anal. Chem., 28 (6), 653-664. http://dx.doi.org/10.1016/j.trac.2009.04.004

NOAA, 1999, Sediment quality guidelines developed for the National Status and Trends Program, 6/12/99,http://response.restoration.noaa.gov

Notar M., Leskovšek H., Faganeli J., 2001, Composition, distribution and sources of polycyclic aromatic hydrocarbons in sediments of the Gulf of Trieste, Northern Adriatic Sea, Mar. Pollut. Bull., 42 (1), 36-44. http://dx.doi.org/10.1016/S0025-326X(00)00092-8

Oros D. R., Ross J. R. M., 2004, Polycyclic aromatic hydrocarbons in San Francisco Estuary sediments, Mar. Chem., 86 (3-4), 169-184. http://dx.doi.org/10.1016/j.marchem.2004.01.004

OSPAR, 1997, Agreed background/reference concentrations for contaminants in sea water, biota and sediment. Agreed ecotoxicological assessment criteria for trace metals,PCBs,PAHs,TBT and some organochlorine pesticides, OSPAR Commission, meeting document No. OSPAR 97/15/1, Annexes 5 and 6, http://www.ospar.org

Page D. S., Boehm P. D., Douglas G. S., Bence A. E., Burns W. A., Mankiewicz P. J., 1999, Pyrogenic polycyclic aromatic hydrocarbons in sediments record past human activity: a case study in Prince William Sound, Alaska, Mar. Pollut. Bull., 38 (4), 247-260. http://dx.doi.org/10.1016/S0025-326X(98)00142-8

Palm A., Cousins I., Gustafssonö., Axelman J., Grunder K., Broman D., Brorström Lundén E., 2004, Evaluation of sequentially coupled POP fluxes estimated from simultaneous measurements in multiple compartments of an air water sediment system, Environ. Pollut., 128 (1-2), 85-97. http://dx.doi.org/10.1016/j.envpol.2003.08.023

Pazdro K., 2007, Oszacowanie narażenia organizmÓw w morskich ekosystemach przybrzeżnych na ksenobiotyki z grupy trwałych zanieczyszczeń organicznych (TZO), Rozpr. Monogr. 20, IO PAN, Sopot, 195 pp.

Pettersen H., Axelman J., Broman D., 1999, The relative contribution of spatial, sampling and analytical variation to the PAH and PCB concentrations in Baltic Sea sediments, Chemosphere, 38 (5), 1025-1034. http://dx.doi.org/10.1016/S0045-6535(98)00348-8

Pieczka F. B., 1980, Geomorfologia i osady denne Basenu Gdańskiego, [in:] Peribalticum: problemy badawcze obszaru bałtyckiego, B. Rosa (ed.), GTN, Gdańsk, 79-118.

Pikkarainen A. L., 2004, Polycyclic aromatic hydrocarbons in Baltic Sea sediments, Polycyclic Aromat. Comp., 24 (4-5), 667-679. http://dx.doi.org/10.1080/10406630490472293

Rantamäki P., 1997, Release and retention of selected polycyclic aromatic hydrocarbons (PAH)and their methylated derivatives by the common mussel (Mytilus edulis) in the brackish water of the Baltic Sea, Chemosphere, 35 (3), 487-502. http://dx.doi.org/10.1016/S0045-6535(97)00114-8

Ricking M., Schulz H. M., 2002, PAH pro-les in sediment cores from the Baltic Sea, Mar. Pollut. Bull., 44 (6), 565-570. http://dx.doi.org/10.1016/S0025-326X(02)00062-0

Roose P., Brinkman U. A. T., 2005, Monitoring organic microcontaminants in the marine environment: principles, programmes and progress, Trac Trend. Anal. Chem., 24 (11), 897-926.

Saha M., Togo A., Mizukawa K., Murakami M., Takada H., Zakaria M. P., Chiem N. H., Tuyen B. C., Prudente M., Boonyatumanond R., Sarkar S. K., Bhattacharya B., Mishra P., Tana T. S., 2009, Sources of sedimentary PAHs in tropical Asian waters:Di .erentiation between pyrogenic and petrogenic sources by alkyl homolog abundance, Mar. Pollut. Bull., 58 (2), 189-200. http://dx.doi.org/10.1016/j.marpolbul.2008.04.049

Schlautman M. A., Yim S., Carraway E. R., Lee J. H., Herbert B. E., 2004, Testing a surface tension based model to predict the salting out of polycyclic aromatic hydrocarbons in model environmental solutions, Water Res., 38, 3331-3339. http://dx.doi.org/10.1016/j.watres.2004.04.031

Schulz H. M., Emeis K. C., 2000, Sources and pathways of natural and anthropogenic hydrocarbons into the natural dump Arkona Basin (southern Baltic Sea), Environ. Geol., 39 (8), 839-848. http://dx.doi.org/10.1007/s002549900038

Simpson C. D., Mosi A. A., Cullen W. R., Reimer K. J., 1996, Composition and distribution of polycyclic aromatic hydrocarbon contamination in surficial marine sediments from Kitimat Harbor, Canada, Sci. Total Environ., 181 (3), 265-278. http://dx.doi.org/10.1016/0048-9697(95)05026-4

Soclo H. H., Garrigues P. H., Ewald M., 2000, Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments:case studies in Cotonou (Benin)and Aquitaine (France)areas, Mar. Pollut. Bull., 40 (5), 387-396. http://dx.doi.org/10.1016/S0025-326X(99)00200-3

Sprovieri M., Feo M. L., Prevedello L., Manta D. S., Sammartino S., Tamburrino S., Marsella E., 2007, Heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in surface sediments of the Naples harbour (southern Italy), Chemosphere, 67 (5), 998-1009. http://dx.doi.org/10.1016/j.chemosphere.2006.10.055

Staniszewski A., 2005, Pochodzenie materii organicznej w osadach dennych Bałtyku Południowego, Ph .D. thesis, Inst. Oceanol. PAN, Sopot, 185 pp.

Stout S. A., Magar V. S., Uhler R. M., Ickes J., Abbott J., Brenner R., 2001, Characterization of naturally occurring and anthropogenic PAHs in urban sediments - Wyckoff/Eagle Harbor Superfund site, Environ. Forensics, 2 (4), 287-300. http://dx.doi.org/10.1080/15275920127957

Szczepańska T., Uścinowicz S. 1994, Atlas geochemiczny Południowego Bałtyku, PIG, Warszawa.

Szymczak-Żyła M., Kowalewska G., 2007, Chloropigments a in the Gulf of Gdańsk (Baltic Sea)as markers of the state of this environment, Mar. Pollut. Bull., 55 (10-12), 512-528.

Tam N. F. Y., Ke L., Wang X. H., Wong Y. S., 2001, Contamination of polycyclic aromatic hydrocarbons in surface sediments of mangrove swamps, Environ. Pollut., 114 (3), 255-263.

Tolosa I., de Mora S., Sheikholeslami M. R., Villeneuve J. P., Bartocci J., Cattini C., 2004, Aliphatic and aromatic hydrocarbons in coastal Caspian Sea sediments, Mar. Pollut. Bull., 48 (1-2), 44-60.

Viganò L., Arillo A., Buffagni A., Camusso M., Ciannarella R., Crosa G., Falugi C., Galassi S., Guzzella L., Lopez A., Mingazzini M., Pagnotta R., Patrolecco L., Tartari G., Valsecchi S., 2003, Quality assessment of bed sediments of the Po River (Italy), Water Res., 37 (3), 501-518. http://dx.doi.org/10.1016/S0043-1354(02)00109-4

Viguri J., Verde J.,I rabien A., 2002, Environmental assessment of polycyclic aromatic hydrocarbons (PAHs)in surface sediments of the Santander Bay, Northern Spain, Chemosphere, 48 (2), 157-165. http://dx.doi.org/10.1016/S0045-6535(02)00105-4

Wang X. C., Zhang J. X., Chen R. F., 2001, Distribution and partitioning of polycyclic aromatic hydrocarbons (PAHs)in di .erent size fractions in sediments from Boston Harbor, United States, Mar. Pollut. Bull., 42 (11), 1139-1149. http://dx.doi.org/10.1016/S0025-326X(01)00129-1

Whitehouse B. G., 1984, The effects of temperature and salinity on the aqueous solubility of polynuclear aromatic hydrocarbons, Mar. Chem., 14 (4), 319-332. http://dx.doi.org/10.1016/0304-4203(84)90028-8

Witt G., 1995, Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea, Mar. Pollut. Bull., 31 (4-12), 237-248.

Witt G., 1999, Polycyclic aromatic hydrocarbons (PAHs)in sediments of the Baltic Sea and of the German coastal waters, Chemosphere, 38 (7), 1603-1614. http://dx.doi.org/10.1016/S0045-6535(98)00387-7

full, complete article (PDF - compatibile with Acrobat 4.0), 314.2 kB

The inflow of 234U and 238U from the River Odra drainage basin to the Baltic Sea
Oceanologia 2010, 52(4), 705-725

Bogdan Skwarzec*, Agnieszka Tuszkowska, Alicja Boryło
Department of Analytical Chemistry, Faculty of Chemistry, University of Gdańsk,
Sobieskiego 18/19, PL-80-952 Gdańsk, Poland;
e-mail: bosk@chem.univ.gda.pl
*corresponding author

keywords: Uranium, 234U, 238U, River Odra, Poland

Received 28 September 2009, revised 11 August 2010, accepted 2 September 2010.

The authors would like to thank the Minister of Sciences and Higher Education for the financial support of this work under grant number: DS/8460-4-0176-0 and BW-8000-5-0249-9.


In this study the activity of uranium isotopes 234U and 238U in Odra river water samples, collected from October 2003 to July 2004, was measured using alpha spectrometry. The uranium concentrations were different in each of the seasons analysed; the lowest values were recorded in summer. In all seasons, uranium concentrations were the highest in Bystrzyca river waters (from 27.81 ± 0.29Bq m-3 of 234U and 17.82 ± 0.23 Bq m-3 of 238U in spring to 194.76 ± 3.43 Bq m-3 of 234U and 134.88 ± 2.85 Bq m-3 of 238U in summer). The lowest concentrations were noted in the Mała Panew (from 1.33 ± 0.02 Bq m-3 of 234U and 1.06 ± 0.02 Bq m-3 of 238U in spring to 3.52 ± 0.05 Bq m-3 of 234U and 2.59± 0.04 Bq m-3 of 238U in autumn). The uranium radionuclides 234U and 238U in the water samples were not in radioactive equilibrium. The 234U / 238U activity ratios were the highest in Odra water samples collected at Głogów (1.84 in autumn), and the lowest in water from the Noteć (1.03 in winter and spring). The 234U / 238U activity ratio decreases along the main stream of the Odra, owing to changes in the salinity of the river's waters. Annually, 8.19 tons of uranium (126.29 G Bq of 234U and 100.80 G Bq of 238U) flow into the Szczecin Lagoon with Odra river waters.

  References ref

Andersson P. S., Porcelli D., Gustafssonö., Ingri J., Wasserburg G. J., 2001, The importance of colloids for the behavior of uranium isotopes in the low salinity zone of a stable estuary, Geochim. Cosmochim. Ac., 65 (1), 13-25. http://dx.doi.org/10.1016/S0016-7037(00)00514-7

Bagatti D., Cantone M. C., Giussani A., Veronese I., Roth P., Werner E., Höllriegl V., 2003 ,Regional dependence of urinary uranium baseline levels in non exposed subjects with particular reference to volunteers from Northern Italy, J. Environ. Radioactiv., 65 (3), 357-364. http://dx.doi.org/10.1016/S0265-931X(02)00107-8

Baxter M. S., 1996, Technologically enhanced radioactivity: Another view, J. Environ. Radioactiv., 32 (1-2), 3-17. http://dx.doi.org/10.1016/0265-931X(95)00076-M

Bem H., 2005, Radioaktywność w środowisku naturalnym (Radioacivity in the natural environment), Komisja Ochrony-rodowiska, PAN, Łódź, 100 pp.

Bolivar J. P., García Tenorio R., García Leon M., 1995, Fluxes and distribution of natural radionuclides in the production and use of fertilizers, Appl. Radiat. Isotopes, 46 (6/7), 717-718. http://dx.doi.org/10.1016/0969-8043(95)00137-9

Boryło A., Nowicki W., Skwarzec B., 2009, Isotopes of polonium (210Po)and uranium (234U and 238U)in the industrialised area of Wiślinka (North Poland), Int. J. Environ. An. Ch., 89 (8-12), 677-685. http://dx.doi.org/10.1016/0969-8043(95)00137-9

Bou Rabee F., Bakir Y., Bem H., 1995, Contribution of uranium to gross alpha radioactivity in some environmental samples in Kuwait, Environ.Int., 21 (3), 293-298.

Brzyska W., 1987, Lantanowce i aktynowce, WNT, Warszawa, 172 pp.

Carvalho F. P., 1995, 210Pb and 210Po in sediments and suspended matter in the Tagus estuary, Portugal;local enhancement of natural levels by wastes from phosphate ore processing industry, Sci. Total Environ., 159 (2-3), 201-214. http://dx.doi.org/10.1016/0048-9697(95)04332-U

Carvalho F. P., Oliveira J. M., Lopes I., Batista A., 2007, Radionuclides from past uranium mining in rivers of Portugal, J. Environ. Radioactiv., 98 (3), 298-314. http://dx.doi.org/10.1016/j.jenvrad.2007.05.007

Chabaux F., Riotte J., Dequincey O., 2003, U Th Ra fractionation during weathering and river transport, [in:] Uranium series geochemistry, B. Bourdon, G. M. Henderson, C. C. Lundstrom & S. P. Turner (eds.), Mineral. Soc. Amer., 533-576.

Chałupnik S., Michalik B., Wysocka M., Skubacz K., Mielnikow A., 2001, Contamination of settling ponds and rivers as a result of discharge of radium bearing waters from Polish coal mines, J. Environ. Radioactiv., 54 (1), 85-98. http://dx.doi.org/10.1016/S0265-931X(00)00168-5

Cothern C. R., Lappenbusch W. L., 1983, Occurrence of uranium in drinking water in US, Health Phys., 45 (1), 89-99. http://dx.doi.org/10.1097/00004032-198307000-00009

Flues M., Moraes V., Mazzilli B. P., 2002, The in uence of a coal-red plant operation on radionuclides in soil, J. Environ. Radioactiv., 63 (3), 285-294. http://dx.doi.org/10.1016/S0265-931X(02)00035-8

ICRP - International Commission on Radiological Protection, 1994, Age dependent doses to members of the public from intake of Radionuclides. Part 3. Ingestion dose coe-cients, ICRP Publ.69, Pergamon Press, New York, 74 pp.

Kenneth K. G., Orloff., Mistry K., Charp P., Metcalf S., Marino R., Shelly T., Melaro E., Donohoe A. M., Jones R. L., 2004, Human exposure to uranium in groundwater, Environ.Res., 94 (3), 319-326. http://dx.doi.org/10.1016/S0013-9351(03)00115-4

Kronfeld J., Godfrey Smith D. I., Johannessen D., Zentilli M.,2004,Uranium series isotopes in the Avon Valley, Nova Scotia, J. Environ.Radioactiv., 73 (3), 335-352. http://dx.doi.org/10.1016/j.jenvrad.2003.11.002

Kronfeld J., Vogel J. C., 1991, Uranium isotopes in surface waters from southern Africa, Earth Planet. Sci. Lett., 105 (1-3), 65-73. http://dx.doi.org/10.1016/0012-821X(91)90130-A

Kumru M. N., 1997, Possible uranium rich areas in the Aegean region of Turkey, Appl. Radiat. Isotopes, 48 (2), 295-299. http://dx.doi.org/10.1016/S0969-8043(96)00047-4

Legett R. W., 1994, Basis for the ICRP's age speci-c biokinetic model for uranium, Health Phys., 67 (6), 589-610.

Longtin J. P., 1988, Occurrence of radon, radium and uranium in ground water, J.Am. Water Works Ass., 80 (7), 84-93.

Makinia J., Dunnette D., Kowalik P., 1996, Water pollution in Poland, Eur. Water Pollut. Contr., 6 (2), 26-33.

Martinez Aguirre A., Garcia Orellana I., Garcia Leon M., 1997, Transfer of natural radionuclides from soils to plants in a marsh enhanced by the operation of non nuclear industries, J. Environ. Radioactiv., 35 (2), 149-171. http://dx.doi.org/10.1016/S0265-931X(96)00048-3

Meinrath A., Schneider P., Meinrath G., 2003, Uranium ores and depleted uranium in the environment with a reference to uranium in the biosphere from the Erzgebrige/Sachsen Germany, J. Environ. Radioactiv., 64 (2-3), 175-193. http://dx.doi.org/10.1016/S0265-931X(02)00048-6

Michalik B., Chałupnik S., Wysocka M., Skubacz K., 2002, Ecological problem of the coal industry and the ways to solve them, J. Min. Sci., 38 (6), 601-607. http://dx.doi.org/10.1023/A:1024994411256

MKOOpZ - Międzynarodowa Komisja Ochrony Odry przed Zanieczyszczeniem, 1999, Program szybkiego działania dla ochrony rzeki Odry przed zanieczyszczeniem 1997 -2002, MKOOpZ, Wroc.aw.

Nakaoka A. ,Fukushima M., Takagi S., 1984, Environmental e-ects of natural radionuclides from coal-red power plants, Health Phys., 47 (3), 407-416. http://dx.doi.org/10.1097/00004032-198409000-00006

Pietrzak Flis Z., Rosiak L., Suplińska M.M., Chrzanowski E., Dembinska S., 2001, Daily intakes of 238U, 234U, 232Th, 230Th, 238Th and 226Ra in the adult population of central Poland ,Sci. Total Environ., 273 (1-3), 163-169. http://dx.doi.org/10.1016/S0048-9697(00)00849-4

Pietrzak-Flis Z., Suplińska M. M., Rosiak L., 1997, The dietary intake of 238U, 234U, 232Th, 230Th, 238Th and 226Ra from food and drinking water by inhabitants of the Wałbrzych region, J. Radioanal. Nucl. Ch., 222 (1-2), 189-193.

Ray S. B., Mohanti M., Somayajulu B. L. K., 1995, Uranium isotopes in the Mahandai River - estuarine system, India, Estuar. Coast. Shelf Sci., 40 (6), 635-645. http://dx.doi.org/10.1006/ecss.1995.0043

Rodriguez Alvarez M. J., Sanchez F., 1995, Behavior of uranium along the Jucar river (eastern Spain). Determination of 234U/238U and 235/238U ratios, J. Radioanal. Nucl. Chem., 190, 113-120. http://dx.doi.org/10.1007/BF02035642

Ruszkiewicz K., Świątkowski A., 2008, Zagrożenie radioaktywne polskich rzek oraz Morza Bałtyckiego. Ochrona wód przed zanieczyszczeniem, Gosp. Wod., 1, 17-22.

Sam A. K., Ahmed M. M. O., El Khangi F. A., El Nigumi Y. O., Holm E., 1999, Radiological and chemical assessment of Uro and Kurun rock phosphates, J. Environ. Radioactiv., 42 (1), 65-75. http://dx.doi.org/10.1016/S0265-931X(97)00096-9

Skwarzec B., 1995, Polon, uran i pluton w ekosystemie południowego Bałtyku, Rozpr. Monogr. 6, IOPAN, Sopot, 183 pp.

Skwarzec B., 1997, Radiochemical methods for the determination of polonium, radiolead,uranium and plutonium in the environmental samples, Chem. Anal., Warsaw, 42 (1), 107-115.

Skwarzec B., 2009, Determination of radionuclides in aquatic environment, [in:] Analytical measurement in the aquatic environments, J. Namie.nik &P.Szefer (eds.), CRC Press, Boca Raton- London-New York, 241-259.

Skwarzec B., Boryło A., Strumińska D.I., 2002, 234U and 238U isotopes in water and sediments of the southern Baltic, J. Environ. Radioactiv., 61 (3), 345-363. http://dx.doi.org/10.1016/S0265-931X(01)00144-8

Skwarzec B.,Boryło A., Strumińska D.I., 2004, Activity disequilibrium between 234 U and 238U isotopes in southern Baltic, J. Water Air Soil Poll., 159 (1), 165-173. http://dx.doi.org/10.1023/B:WATE.0000049172.52726.82

Skwarzec B., Jahnz Bielawska A., Boryło A., 2010, The inflow of uranium 234 and 238U from Vistula River catchment area to the Baltic Sea, Radiochim. Ac., (in press). http://dx.doi.org/10.1524/ract.2010.1730

Skwarzec B., Strumińska D.I., Boryło A., 2001, The radionuclides 234U, 238 U and 210Po in drinking water in Gdańsk agglomeration (Poland), J. Radioanal. Nucl. Ch., 250 (2), 315-318. http://dx.doi.org/10.1023/A:1017903814852

Skwarzec B., Strumińska D.I., Boryło A., 2003, Radionuclides of 210Po, 234U and 238U in drinking bottled mineral mater in Poland, J. Radioanal. Nucl. Ch., 256 (2), 361-363. http://dx.doi.org/10.1023/A:1023970308882

Skwarzec B., Strumińska D. I., Bory$#322;o A., 2006, Radionuclides of iron (55Fe), nickel (63Ni), polonium (210Po), uranium (234U, 235U, 238U) and plutonium (238 Pu, 239+240Pu, 241Pu)in Poland and Baltic Sea environment, Nukleonika, 51 (Supp.2), 45-51.

Sullivan M. F., 1980, Absorption of actinide elements from the gastro intestinal tract of neonatal animals, Health Phys., 38 (2), 173-185. http://dx.doi.org/10.1097/00004032-198002000-00005

Sullivan M. F., Gorham L. S., 1982, Further studies on the absorption of actinide elements from the gastro intestinal tract of neonatal animals, Health Phys., 43 (4), 509-519. http://dx.doi.org/10.1097/00004032-198210000-00005

Tomza I., Lebecka J., 1981, Radium bearing waters in coal mines: occurrence methods of measurements and radiation hazard, Proc. Int. Conf. on Radiation Hazards in Mining, Golden, CO, Kingsport Press.

Tuszkowska A., 2009, Spływ radionuklidów polonu, uranu i plutonu z dorzecza Odry, Ph. D. thesis, Fac. Chem., Univ. Gda.sk.

USEPA- U. S. Environmental Protection Agency, 2001, Office of Water, Current Drinking Water Standards, IOWS.

Vargas M. J., Tome F. V., Schanchez A. M., 1995, Behavior of uranium, thorium and 226Ra in surface waters from a river passing through a granite region in the southwest of Spain, Nucl. Geophys., 9, 567-578.

WHO - World Health Organisation, 1998, Guidelines for drinking water quality, Geneva.

full, complete article (PDF - compatibile with Acrobat 4.0), 330.8 kB


First records of Ponto-Caspian gammarids in the Gulf of Gdańsk (southern Baltic Sea)
Oceanologia 2010, 52(4), 727-735

Aldona Dobrzycka-Krahel, Halina Rzemykowska
Institute of Oceanography, University of Gdańsk,
al. Marszałka Piłsudskiego 46, PL-81-378 Gdynia, Poland;
e-mail: oceadk@ug.edu.pl; halina.rzemykowska@gmail.com;

keywords: non-indigenous species, Ponto-Caspian gammarids, Pontogammarus robustoides, Dikerogammarus haemobaphes, Dikerogammarus villosus, Obesogammarus crassus, Gulf of Gdańsk, Baltic Sea

Received 6 October 2010, revised 8 October 2010, accepted 15 October 2010.


The paper reports the first records of non-indigenous Ponto-Caspian gammarid species: Pontogammarus robustoides (G. O. Sars, 1894), Obesogammarus crassus (G. O. Sars, 1894), Dikerogammarus haemobaphes (Eichwald, 1841) and the latest colonizer - Dikerogammarus villosus (Sowinsky, 1894) - in the Gulf of Gdańsk (southern Baltic Sea).

  References ref

Arbaciauskas K., 2005, The distribution and local dispersal of Ponto-Caspian peracarida in Lithuanian fresh waters with notes on Pontogammarus robustoides population establishment, abundance and impact, Oceanol. Hydrobiol. Stud., 34 (Suppl.1), 93-111.

Bącela K., Grabowski M., Konopacka A., 2008, Dikerogammarus villosus (Sowinsky, 1894) (Crustacea, Amphipoda) enters Vistula- the biggest river in the Baltic basin, Aquat. Invas., 3 (1), 95-98. http://dx.doi.org/10.3391/ai.2008.3.1.16

Bącela K., Konopacka A., 2005, The life history of Pontogammarus robustoides, an alien amphipod species in Polish waters, J. Crustacean Biol., 25 (2), 190-195. http://dx.doi.org/10.1651/C-2519

Bącela K., Konopacka A., Grabowski M., 2009, Reproductive biology of Dikerogammarus haemobaphes: an invasive gammarid (Crustacea: Amphipoda) colonizing running waters in Central Europe, Biol. Invasions, 11 (9), 2055-2066. http://dx.doi.org/10.1007/s10530-009-9496-2

Berezina N., Golubkov S., Gubelit J., 2005, Grazing effects of alien amphipods on macroalgae in the littoral zone of the Neva Estuary (Eastern Gulf of Finland, Baltic Sea), Oceanol. Hydrobiol. Stud., 34 (Suppl.1), 63-82.

Berezina N. A., Panov V. E., 2003, Establishment of new gammarid species in the eastern Gulf of Finland (Baltic Sea) and their effects on littoral communities Proc. Est. Acad. Sci. Biol. Ecol., 52 (3), 284-304.

Bij de Vaate A., Jażdżewski K., Ketelaars H. A. M., Gollash S., Van der Velde G., 2002, Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe, Can. J. Fish. Aquat. Sci., 59 (7), 1159-1174. http://dx.doi.org/10.1139/f02-098

Bruijs M. C. M., Kelleher B., Van der Velde G., Bij de Vaate A., 2001, Oxygen consumption, temperature and salinity tolerance of the invasive amphipod Dikerogammarus villosus: indicators of further dispersal via ballast water transport Arch. Hydrobiol., 152 (4), 633-646.

Casellato S., Visentin A., La Piana G., 2007, The predatory impact of Dikerogammarus villosus on fish [in:] Biological invaders of inland waters: profiles, distribution and threats Invading Nature-Springer Ser.Invasion Ecology, Vol. 2, Part 5, 495-506.

Cummins K. W., Klug J., 1979, Feeding ecology of stream invertebrates, Annu.Rev. Ecol. Syst., 10, 147-172. http://dx.doi.org/10.1146/annurev.es.10.110179.001051

Dedyu I. I., 1980, Amphipods of the fresh and brackish waters of the South-West USSR Shtiintsa, Kishinev, 223 pp., (in Russian).

Dick J. T. A., Platvoet D., 2000, Invading predatory crustacean Dikerogammarus villosus eliminates both native and exotic species, Proc. Roy. Soc. Lond. B, 268, 977-983. http://dx.doi.org/10.1098/rspb.2000.1099

Dick J. T. A., Platvoet D., Kelly D., 2002, Predatory impact of the freshwater invader Dikerogammarus villosus (Crustacea : Amphipoda), Can. J. Fish. Aquat. Sci., 59 (6), 1078-1084. http://dx.doi.org/10.1139/f02-074

Gasjunas I., 1972, Enrichment of fodder basis of water bodies of Lithuania by acclimatized crustaceans-like organisms from the Caspian Seas complex [in:] On the breeding of fish and crustaceans-like organisms in the water bodies of Lithuania. Vilnius, P. J. Virbickas (ed.), 57-68, (in Russian).

Grabowski M., Bącela K., Konopacka A., 2007a, Alien Crustacea in Polish waters - Amphipoda Aquat. Invas., 2 (1), 25-38. http://dx.doi.org/10.3391/ai.2007.2.1.3

Grabowski M., Bącela K., Konopacka A., 2007b, How to be an invasive gammarid (Amphipoda: Gammaroidea)- comparison of life history traits Hydrobiologia, 590 (1), 75-84. http://dx.doi.org/10.1007/s10750-007-0759-6

Gruszka P., 1999, The River Odra estuary as a gateway for alien species immigration to the Baltic Sea basin, Acta Hydroch. Hydrob., 27 (5), 374-382. http://dx.doi.org/10.1002/(SICI)1521-401X(199911)27:5<374::AID-AHEH374>3.0.CO;2-V

Gruszka P., Wawrzyniak-Wydrowska B., ėurawska J., 2003, Alien crustacean species in the River Odra estuary (Baltic Sea), Abstract Publ. Baltic Sea Sci. Cong., Helsinki, August 24-28,2003, p.130 and poster.

Gruszka P., Woźniczka A., 2008, Dikerogammarus villosus (Sowinsky, 1894) in the River Odra estuary- another invader threatening Baltic Sea coastal lagoons Aquat. Invas., 3 (4), 395-403. http://dx.doi.org/10.3391/ai.2008.3.4.4

Herkül K., Kotta J., Püss T., Kotta I., 2009, Crustacean invasions in the Estonian coastal sea, Est. J. Ecol.,58 (4), 313-323. http://dx.doi.org/10.3176/eco.2009.4.06

Jażdżewski K., 1980, Range extensions of some gammaridean species in European inland waters caused by human activity Crustaceana,Suppl.6,84-107.

Jażdżewski K., Konopacka A., 2000,Immigration history and present distribution of alien crustaceans in Polish waters Proc. 4th Int. Crustacean Cong., Brill, Leiden, Vol.2, J. C. von Vaupel Klein & F. R. Schram (eds.), Crustacean Iss., 12, 55-64.

Jażdżewski K., Konopacka A., Grabowski M., 2004, Recent drastic changes in the gammarid fauna (Crustacea, Amphipoda) of the Vistula River deltaic system in Poland caused by alien invaders Divers. Distrib., 10 (2), 81-87. http://dx.doi.org/10.1111/j.1366-9516.2004.00062.x

Jażdżewski K., Konopacka A., Grabowski M., 2005, Native and alien malacostracan Crustacea along the Polish Baltic Sea coast in the twentieth century Oceanol. Hydrobiol. Stud., 34 (Suppl.1), 175-193.

Kalinkina N. M., Berezina N. A., 2010, First record of Pontogammarus robustoides Sars, 1894 (Crustacea: Amphipoda) in the Gulf of Riga (Baltic Sea) Aquat. Invas., 5 (Suppl.1), 5-7. http://dx.doi.org/10.3391/ai.2010.5.S1.002

Kley A., Maier G., 2006, Reproductive characteristics of invasive gammarids in the Rhine-Main-Danube catchment, South Germany Limnologica, 36 (2), 79-90.

Konopacka A., 2004, Inwazyjne skorupiaki obunogie (Crustacea, Amphipoda) w wodach Polski Prz. Zool., 48 (3-4), 141-162.

Konopacka A., Jażdżewski K., 2002, Obesogammarus crassus (G. O. Sars, 1894) - one more Ponto-Caspian gammarid species in Polish waters Fragm. Faun., 45, 19-26.

Mordukhaj Boltovskoj F. D., Greze I. I., Vasilenko S. V., 1969, Otrjad amfipody ili raznonogie- Amphipoda Latreille, 1816-1817 [in:] Opredelitel fauny Chernogo i Azovskogo morej, V. A. Vodjanickij (ed.), Izd. Nauk. Dumka, Kiev, 440-524.

Muskó I. B., 1990, Qualitative and quantitative relationships of Amphipoda (Crustacea) living on macrophytes in Lake Balaton (Hungary), Hydrobiologia, 191 (1), 269-274. http://dx.doi.org/10.1007/BF00026062

Müller J. C., Schramm S., Seitz A., 2002, Genetic and morphological differentiation of Dikerogammarus invaders and their invasion history in Central Europe Freshwater Biol., 47 (11), 2039-2048.

Mürle M., Becker A., Rey P., 2003, Ein neuer Flohkrebs im Bodensee: Dikerogam-marus villosus (Grosser Höcker ohkrebs), Available at:http/www.bodenseeufer.de

Olenin S., Leppäkoski E., 1999, Non-native animals in the Baltic Sea: alteration of benthic habitats in coastal inlets and lagoons Hydrobiologia, 393 (0), 233-243. http://dx.doi.org/10.1023/A:1003511003766

Platvoet D., Dick J. T. A., Konijnendijk N., van der Velde G., 2006, Feeding on micro-algae in the invasive Ponto-Caspian amphipod Dikerogammarus villosus (Sowinsky, 1894), Aquat. Ecol., 40 (2), 237-245. http://dx.doi.org/10.1007/s10452-005-9028-9

Romanova N. N., 1959, Survival of some Amphipoda under different salinities, Proc. All Union Res., Inst. Fish. Oceanogr., 38, 277-291.

Santagata S. ,Gasiunaite Z. R., Verling E., Cordell J. R., Eason K., Cohen J. S., Bącela K., Quilez Badia G., Johengen T. H., Reid D. F., Ruiz G. M., 2008, Effect of osmotic shock as a management strategy to reduce transfers of non-indigenous species among low-salinity ports by ships, Aquat. Invas., 3 (1), 61-76. http://dx.doi.org/10.3391/ai.2008.3.1.10

Surowiec J., Dobrzycka Krahel A., 2008, New data on the non-indigenous gammarids in the Vistula Delta and the Vistula Lagoon Oceanologia, 50 (3), 443-447.

Tricarico E., Mazza G., Orioli G., Rossano C., Scapini F., Gherardi F., 2010, The killer shrimp, Dikerogammarus villosus (Sowinsky, 1984), is spreading in Italy Aquat. Invas., 5 (2), 211-214. http://dx.doi.org/10.3391/ai.2010.5.2.14

Van der Brink F. W. B., Van der Velde G., 1991, Amphipod invasion on the Rhine, Nature, 352 (6336), p. 576. http://dx.doi.org/10.1038/352576a0

Wawrzyniak-Wydrowska B., Gruszka P., 2005, Population dynamics of alien gammarid species in the River Odra estuary, Hydrobiologia, 539 (1), 13-25. http://dx.doi.org/10.1007/s10750-004-3081-6

Wijnhoven S., Van Riel M. G., Van der Velde G., 2003, Exotic and indigenous freshwater gammarid species: physiological tolerance to water temperature in relation to ionic content of the water, Aquat. Ecol., 37 (2), 151-158. http://dx.doi.org/10.1023/A:1023982200529

Zaiko A., Olenin S., Daunys D., Nalepa T., 2007, Vulnerability of benthic habitats to the aquatic invasive species, Biol. Invas., 9 (6), 703-714. http://dx.doi.org/10.1007/s10530-006-9070-0

full, complete article (PDF - compatibile with Acrobat 4.0), 283.1 kB