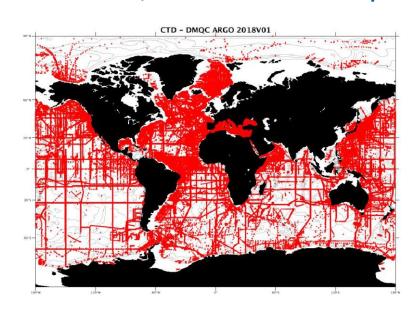
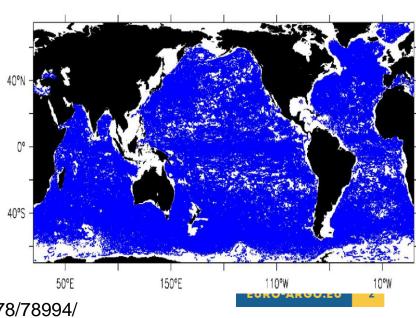


Envisioned set-up of reference data base for DMQC

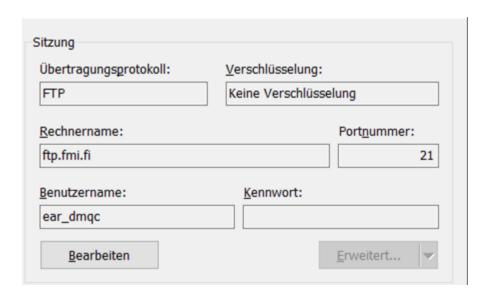
Simo-Matti Siiriä and Birgit Klein


Marginal Seas Argo DMQC workshop, Sopot, Poland 18.04.2023-19.04.2023


The reference data set for dmqc in the Baltic

In Argo the quality control of the float data in the deep ocean is achieved by comparison to reference data collected for the DMQC operators for use in the OWC software. These historical salinities profiles are only those of high quality and are transformed into a common data format.

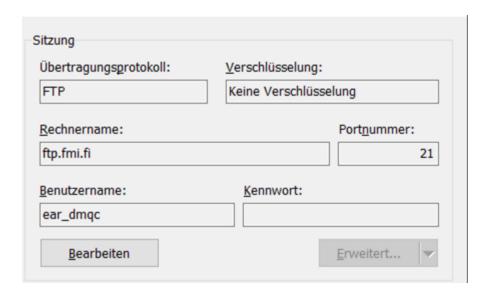
Updates to the reference data are made available to the DMQC operators from a password protected ftp server. Data delivered to the server can only be used for DMQC, all other use is prohibited.


In the OWC software two sources of reference data are made available: CTD data from ship hydrography and good float data

Source: DMQC Cookbook for Core Argo parameters https://archimer.ifremer.fr/doc/00678/78994/

Reference data for the dmqc of floats in the Baltic

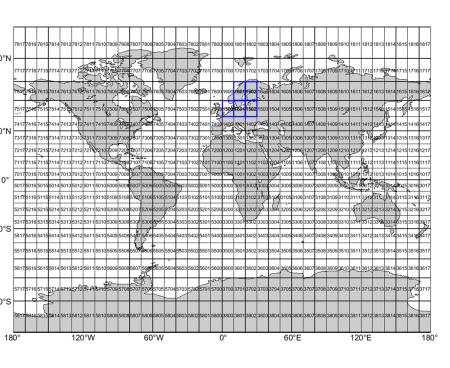
Password secured ftp server established for dmqc purposes (request password from Simo-Matti Siiriä (FMI) Simo-Matti.Siiria@fmi.fi if needed


To mimic the structure used in the DMQC of floats from the deep ocean, the collection of reference material is organized on an ftp server.

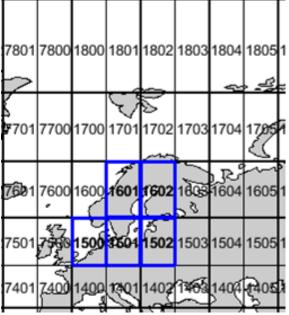
Subdirectories are established for BSH, FMI and IOPAN to exchange CTD data, statistics and scripts.

Reference data for the dmqc of floats

FMI is updating the reference data available from ICES and provides statistics for the Bothnian Sea and Baltic proper

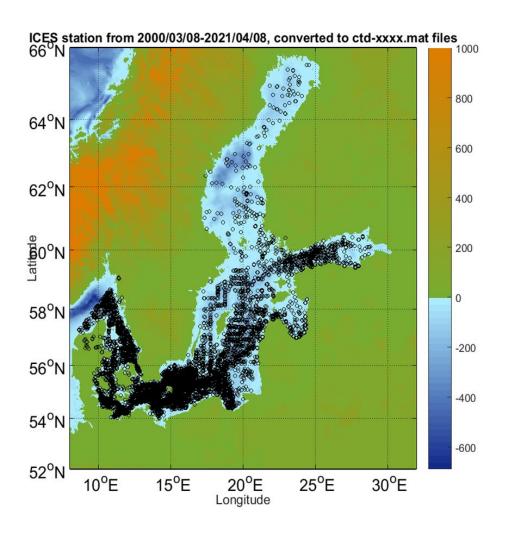


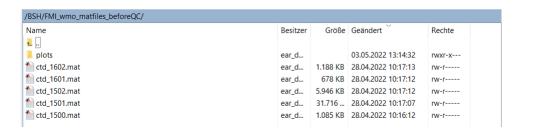
Latest update in 2022, procedure for updates: will be downloaded annually by FMI

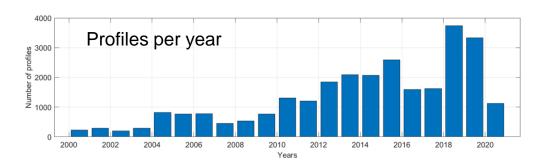

Reference data for the dmqc of floats

In the regular OWC setup
reference data are exchanged
as CTD_xxxx.mat
Where xxxx is a four digit code
from WMO to point to a
10x10 ° box

BSH is creating the normally used CTD_xxxx.mat files for the dmqc from the ICES reference data under the FMI_wmo_matfiles_beforeQC folder and for the polish data from the IOPAN folder


5 Boxes are available for Baltic (normally not contained in regular releases for the global ocean):


1500, 1501, 1502 1601, 1602



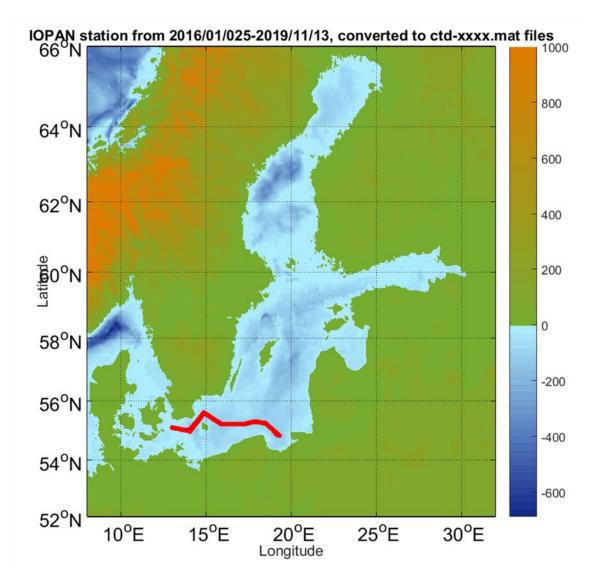
Reference data for the dmqc of floats in wmo_boxes

BSH has sorted present version the ICES data into the wmo_boxes

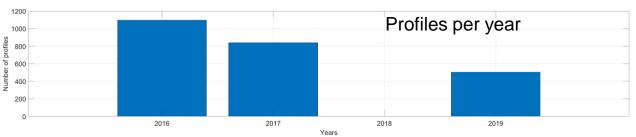
Reference data for the dmqc of floats

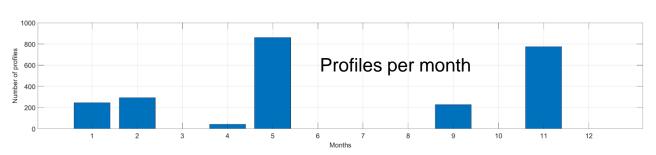
IOPAN data from the monitoring cruises are not available through ICEs. -> IOPAN is providing these data from the polish research cruises on the ftp server.

IOPAN also provides min/max statistics for the three southern basins (Slupsk, Gdansk, Bornholm)

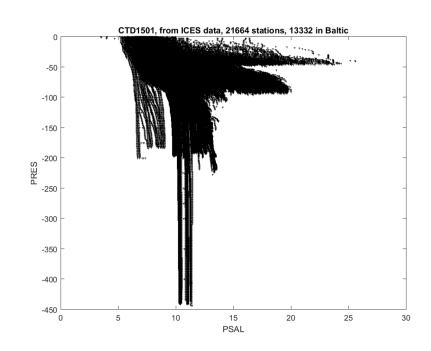

Latest update on data from
Poland is 2022 and updates are
intended annually
Data are sorted into wmo_boxes
in the BSH folder on the ftp server
and have the same format there
as the ICES data

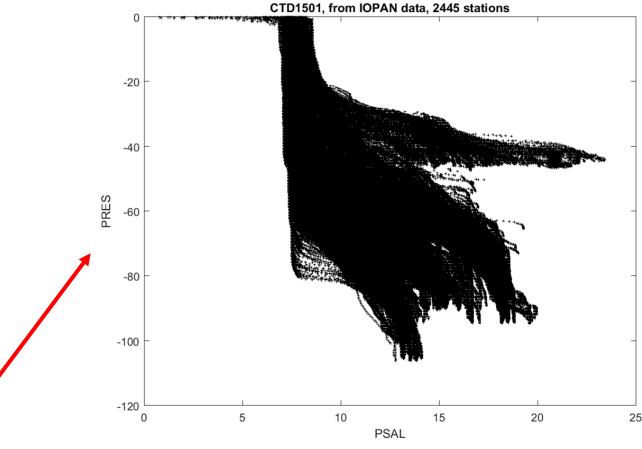
/IOPAN/				
Name	Besitzer	Größe	Geändert	Rechte
<u>L</u>				
T_Statistic_Slupsk.xls	ear_d	37 KB	21.06.2022 14:20:01	rw-r
T_Statistic_Gdansk.xls	ear_d	41 KB	21.06.2022 14:20:01	rw-r
T_Statistic_Bornholm.xls	ear_d	38 KB	21.06.2022 14:20:01	rw-r
🖐 Southern Baltic_Temp_IOPAS.png	ear_d	658 KB	21.06.2022 14:20:00	rw-r
🖐 Southern Baltic_Sal_IOPAS.png	ear_d	682 KB	21.06.2022 14:20:00	rw-r
S_Statistic_Slupsk.xls	ear_d	37 KB	21.06.2022 14:19:59	rw-r
S_Statistic_Gdansk.xls	ear_d	42 KB	21.06.2022 14:19:59	rw-r
S_Statistic_Bornholm.xls	ear_d	39 KB	21.06.2022 14:19:58	rw-r
fill Baltic_DMQC.mat	ear_d	6.159 KB	04.05.2022 15:11:40	rw-r
🐈 3902133salinity.png	ear_d	118 KB	28.04.2022 13:09:01	rw-r
🐈 3902109salinity.png	ear_d	145 KB	28.04.2022 13:09:00	rw-r
🐈 3902106salinity.png	ear_d	152 KB	28.04.2022 13:08:48	rw-r
🐈 3902104salinity.png	ear_d	123 KB	28.04.2022 13:08:47	rw-r
🐈 3902101salinity.png	ear_d	137 KB	28.04.2022 13:08:47	rw-r
🌪 3901941salinity.png	ear_d	129 KB	28.04.2022 13:08:46	rw-r
🐈 3901940salinity.png	ear_d	109 KB	28.04.2022 13:08:46	rw-r
🐈 3902115salinity.png	ear_d	127 KB	28.04.2022 13:07:48	rw-r
🐈 3902110salinity.png	ear_d	133 KB	28.04.2022 13:07:47	rw-r
mean_of_physicochemical_properties.pptx	ear_d	293 KB	18.03.2022 15: <u>47:06</u>	rw-r




Reference data for the dmqc of floats in wmo_boxes

Sorting of IOPAN data into the wmo_box CTD_1501.mat

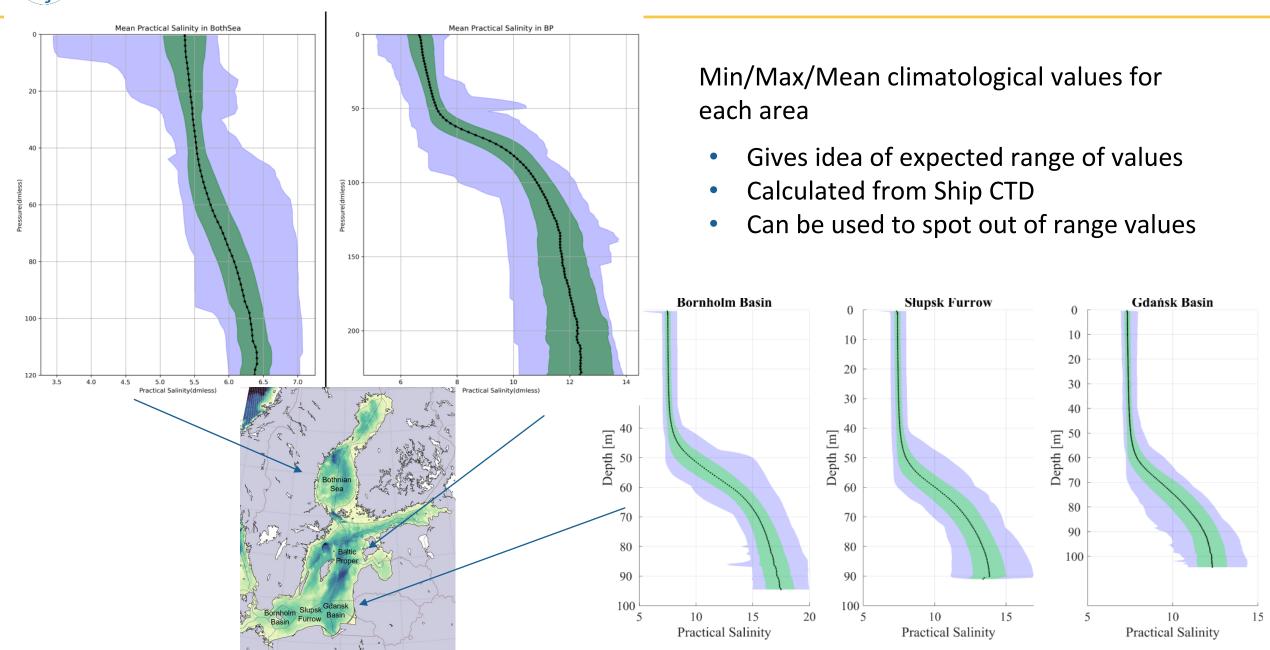




Structure of reference data in wmo_boxes

Content of mat file ctd_1501.mat created from IOPAN data

dates	1x2445	Date
lat	1x2445	Latitude of profiles
long	1x2445	Longitude of profiles
pres	533x2445	Pressure array (nlevel x nprofiles)
ptmp	533x2445	Pot. Temperature array (nlevel x nprofiles
qclevel	1x2445	Information on origin/quality of data
sal	533x2445	Salinity array (nlevel x nprofiles)
source	1x2445	Information on origin of data
temp	533x2445	Temperature array (nlevel x nprofile)



Comparison of CTD Box 1501 from IOPAN data vs ICES data

Climatologies, Min/Max per area

DMQC methods for the Baltic

SENSOR SERIAL NUMBER: 4793 CALIBRATION DATE: 27-Mar-13

COEFFICIENTS:

g = -9.821290e-001 h = 1.423607e-001 i = -3.273814e-004i = 4.338152e-005

SENSOR SERIAL NUMBER: 4793 CALIBRATION DATE: 29-Mar-15

COEFFICIENTS:

g = -9.821266e-001 h = 1.423310e-001 i = -3.134470e-004 j = 4.250802e-005

	WMO number	Float serial. No	CTD serial	Float type	Country/ Programme	Deployment date
			no.			
	6901901	5397	3511	APEX	Argo Finland	17.05.2012
	6902013	5396	3503	APEX	Argo Finland	13.06.2013
	6902014	6711	4793	APEX	Argo Finland	14.08.2013
	6902017	5397	3511	APEX	Argo Finland	31.05.2014
	6902018	6710	5051	APEX	Argo Finland	31.05.2014
	6902019	7191	5699	APEX	Argo Finland	21.08.2014
	6902020	6711	4793	APEX	Argo Finland	05.08.2015
_	690202 1	6710	5051	APEX	Argo Finland	22.09.2015
	6902022	5396	3503	APEX	Argo Finland	13.05.2016
	6902023	5397	3511	APEX	Argo Finland	13.07.2016
	6902024	7191	5699	APEX	Argo Finland	03.08.2016
	6902036	7507	7248	APEX	Argo Poland	29.11.2016
	6902025	7958	8893	APEX	Argo Finland	09.05.2017
	6902026	7959	8894	APEX	Argo Finland	06.06.2017
	6902027	6711	4793	APEX	Argo Finland	15.06.2017
_	6902028	6710	5051	APEX	Argo Finland	06.08.2017

SENSOR SERIAL NUMBER: 4793 CALIBRATION DATE: 24-Jan-17

COEFFICIENTS:

g = -9.836474e-001 h = 1.427120e-001 i = -4.180454e-004 i = 5.025814e-005

Recovery of floats is practised routinely in the Baltic.

Floats are redeployment many times (example SN4793) and drift can be calculated from SBE's laboratory analysis Conductivity (S/m) = $(g + h * f^2 + i * f^3 + j * f^4)/10 (1 + \delta * t + \epsilon * p)$

Float Recovery and calibration sheets

- Recovered floats are maintained and calibrated
 - Difference with previous calibration sheets can be used to evaluate sensor drift
- DMQC operators can use calibration sheets to calculate sensor drift rates
 - Limit where mission data validity questionable?
- Central directory in Argo data management for calibration sheets?
 - might be good idea
 - systematic format between different manufacturers?
- Python script for making the evaluation in works.

 Could be converted for matlab if need be

Sea-Bird Electronics, Inc.

13431 NE 20th Street, Bellevue, WA 98005-20

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seab

SENSOR SERIAL NUMBER: 3503 SBE 41cp CONDUCTIVITY CALIBRATION DATE: 19-Jun-15 PSS 1978: C(35,15,0) = 4.2

COEFFICIENTS:

= -1.028007e+000CPcor = -9.5700e-008= -3.432114e-004WBOTC = -4.2500e-0074.724081e-005

BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREQ (Hz)	INST COND (Siemens/m)	RE (Si€
22.0000	0.0000	0.00000	2627.11	0.00000	0.
1.0000	34.8628	2.97956	5185.88	2.97956	-0.
4.4999	34.8431	3.28699	5380.60	3.28699	-0.
15.0000	34.8003	4.26986	5959.86	4.26986	0.
18.5000	34.7912	4.61540	6150.29	4.61542	0.
23.9940	34.7814	5.17339	6445.61	5.17337	-0.
29.0000	34.7763	5.69650	6710.37	5.69648	-0.
32.5000	34.7735	6.06937	6892.70	6.06939	0.

f = INST FREQ * sqrt(1.0 + WBOTC * t) / 1000.0Conductivity = $(g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$ Siemens / meter