
Challenges of using Argo in marginal seas Baltic Sea as use case

Simo Siiriä, Birgit Klein, Laura Tuomi, Ingrid Angel Benavides

Marginal Seas Argo DMQC workshop, Sopot, Poland 18.04.2023-19.04.2023

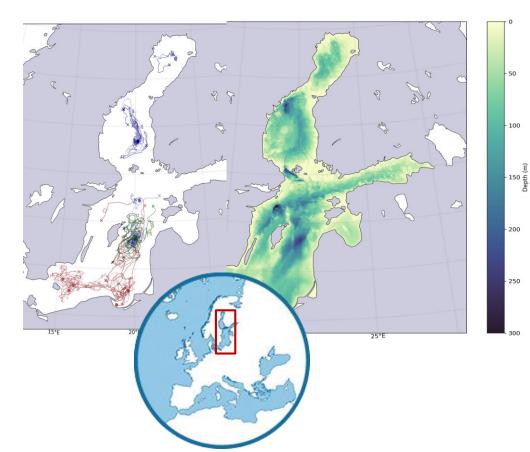
(Short) history of Argo floats in Baltic Sea

EURO-ARGO.EU

Baltic Argo Activities

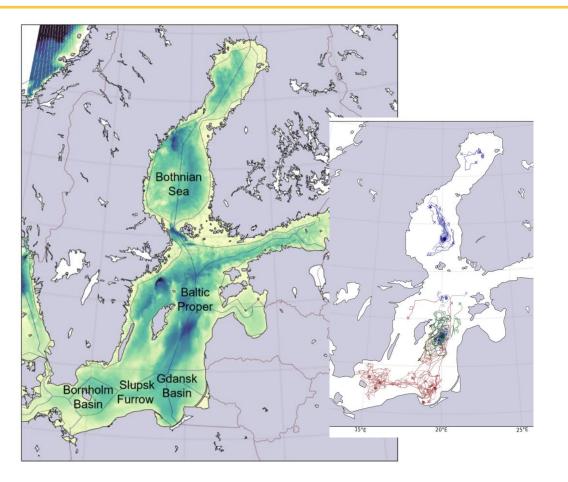
Float types applied

- Apex (Webb)
 - First ones in Baltic Sea
 - Most FMI's floats, AWI
- Arvor (NKE)
 - IO-PAN, FMI floats,
 - Euro Argo RISE floats, MOCCA-floats
- One Arvor-C (NKE) with bottom lander
- Provor (NKE)
 - IOW BGC floats
 - Prototypes with extra sensors upcoming



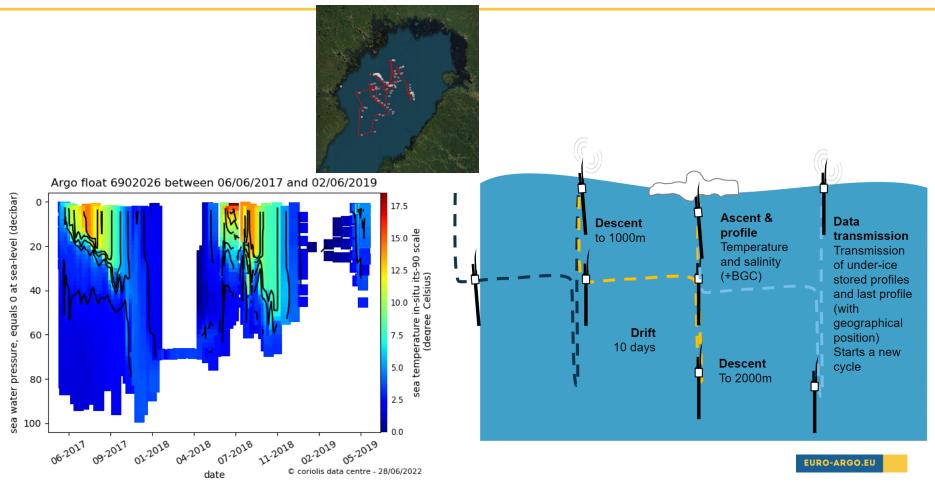
- Typical profiles 100-200 m
 - in comparison to 2000 m in oceans
 - deep stable layer rather rare
- Bottom contact always a risk
 - Possibility of getting stuck
 - But profiling too shallow means loss of data
- Area need to be selected carefully
 - Deep enough
 - possibility to stay in region

Baltic Sea argo operations


- Conditions deviate from the open deep ocean characteristics:
 - Shallow: average depth 55 m
 - Typical operation depth 100-200 m

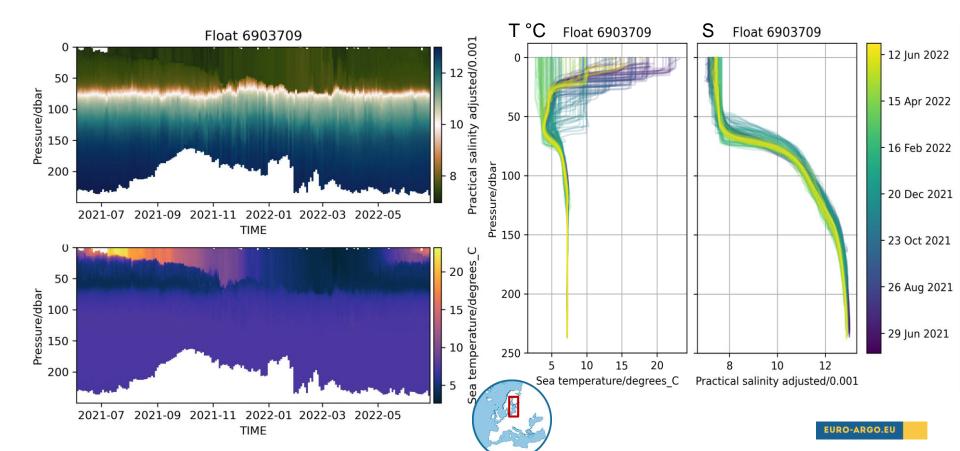
EURO-ARGO.EU

- Shores always near
 - Stranding a possibility
 - Deep enough area limited
- Everything is EEZ
 - Float can drift on several EEZ's
 - Permissions for deployments and recoveries
- Area need to be selected carefully
 - Not every place is optimal
 - Suitable currents
 - Traffic/other activities


• Everything EEZ

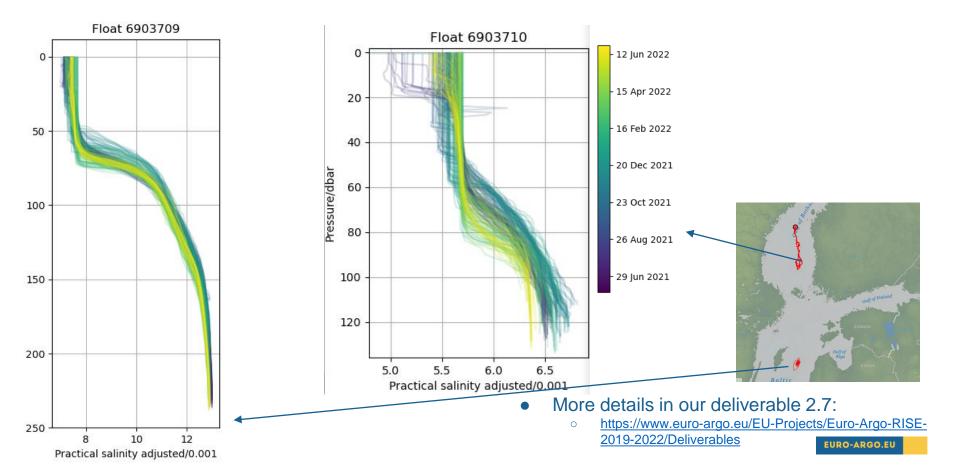
EURO-ARGO.EU

- Ice will break the float
 - Method to avoid collisions
- Ice Sensing Algorithms are solution
 - But can't get GPS while under
- Not needed everywhere

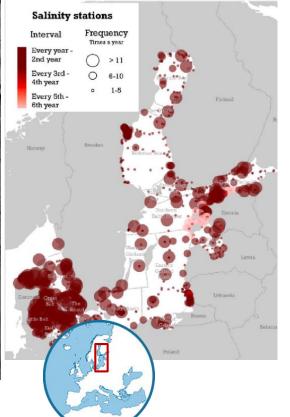


Challenge: Varied hydrography and bathymetry

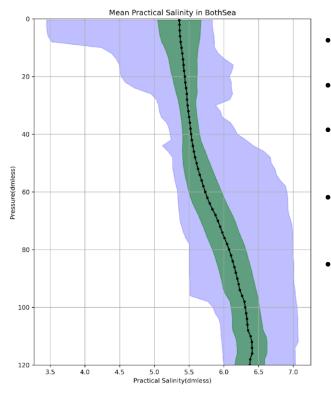
- Strong density differences
 - Floats need to be calibrated with certain deployment area in mind
 - Even in same area strong density gradients are challenging for some float types
- Depths vary a lot
 - If float moves from original area the configuration might need to be adjusted



Baltic Sea argo operations, example

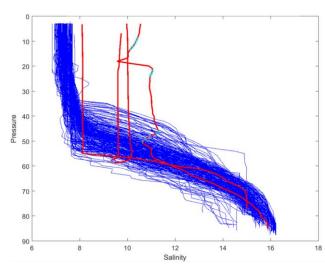

Expected values vary a lot

Some good sides too:

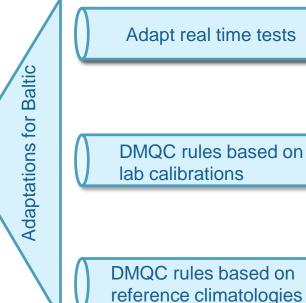


- +Reference database is good because of international monitoring obligations (HELCOM)
- +Small area makes it possible to recover the floats
 - Less time to drift per float
 - Can be recalibrated/verified
 - Not all float can be recovered
- Higher variability requires new uncertainty thresholds for correctability
 - +due to large signals this is not a serious limitation

- More details in our deliverable 2.7:
 - <u>https://www.euro-argo.eu/EU-Projects/Euro-Argo-RISE-</u> 2019-2022/Deliverables



Revisiting the RTQC tests



Mean value, 1 std, min/max range

- Real time tests were checked for applicability to Baltic
- Density inversion, digit rollover, stuck value are examined
- New test for 'incorrect near surface salinities' has been devised and tested
- For the min/max tests at Coriolis local variants are proposed to replace the global ones
- Of these more in later presentations

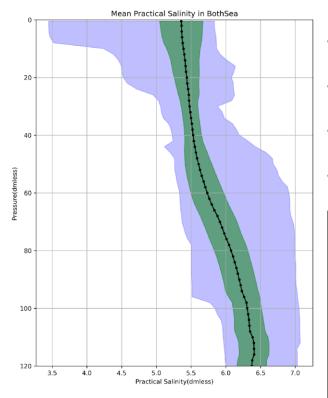
Checked performance of existing real time tests and made recommendations set of rules for Baltic. Improved near real-time quality control in the Baltic C

Rules based on the laboratory calibrations of recovered floats were devised

DMQC operators are given thresholds for application C

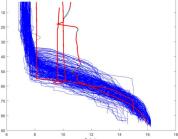
DMQC rules based on reference climatologies Methods for comparing reference and float data were devised and tested

DMQC operators are advised how to construct time 2 series of differences to evaluate potential salinity drift;


THANKS!

EURO-ARGO.EU

euroargo@ifremer.fr 🛫 @EuroArgoERIC



Mean value, 1 std, min/max range

- Real time tests were checked for applicability to Baltic
- Density inversion, digit rollover, stuck value are examined
- New test for 'incorrect near surface salinities' has ^a been devised and tested
- For the min/max tests at Coriolis local variants are proposed to replace the global ones

Recommendations for RTQC (real-time quality control tests)

- Disable the digit rollover and stuck values tests for the Baltic.
- Continue to use a threshold of 0.03 kg/m3 for density inversions in the Baltic and apply thermal lag corrections in delayed-mode.
- Add a regional real time test for Baltic to catch excessively high surface salinities. The
 proposed test would look at salinities at depth of 10-25 m and assign a QC of 3 to the entire
 profiles if these are larger than a regionally varying threshold.
- Communicate and discuss the proposed new set of rules at the next ADMT. If these are endorsed, then communicate with the GDAC/DAC about the reprocessing of all Baltic floats, for implementation.
- Explore if the implementation of the min/max near real-time quality control is appropriate for the Baltic.

DMQC methods for the Baltic

SENSOR SERIAL NUMBER: 4793							
CALIBRATION DATE: 27-Mar-13 COEFFICIENTS:		WMO number	Float serial. No	CTD serial no.	Float type	Country/ Programme	Deployment date
		6901901	5397	3511	APEX	Argo Finland	17.05.2012
g = -9.821290e-001		6902013	5396	3503	APEX	Argo Finland	13.06.2013
h = 1.423607e - 001	SENSOR SERIAL NUMBER: 4793	6902014	6711	4793	APEX	Argo Finland	14.08.2013
i = -3.273814e - 004	CALIBRATION DATE: 29-Mar-15	6902017	5397	3511	APEX	Argo Finland	31.05.2014
i = 4.338152e - 005		6902018	6710	5051	APEX	Argo Finland	31.05.2014
	COEFFICIENTS:	6902019	7191	5699	APEX	Argo Finland	21.08.2014
		6902020	6711	4793	APEX	Argo Finland	05.08.2015
	g = -9.821266e-001	690202 1	6710	5051	APEX	Argo Finland	22.09.2015
	h = 1.423310e-001	6902022	5396	3503	APEX	Argo Finland	13.05.2016
	i = -3.134470e - 004	6902023	5397	3511	APEX	Argo Finland	13.07.2016
	i = 4.250802e-005	6902024	7191	5699	APEX	Argo Finland	03.08.2016
	J 11200020 000	<mark>6902036</mark>	7507	7248	APEX	Argo Poland	29.11.2016
		6902025	7958	8893	APEX	Argo Finland	09.05.2017
SENSOR SERIAL NUMBER: 4	SENSOR SERIAL NUMBER: 4793		7959	8894	APEX	Argo Finland	06.06.2017
CALIBRATION DATE: 24-Jan-17		6902027	6711	4793	APEX	Argo Finland	15.06.2017
		6902028	6710	5051	APEX	Argo Finland	06.08.2017
COEFFICIENTS: g = -9.836474e-001 h = 1.427120e-001 i = -4.180454e-004 j = 5.025814e-005	Recovery of floats is practised routi the Baltic. Floats are redeployment many time (example SN4793) and drift can be calculated from SBE's laboratory and	S			ť		30.EU
Conductivity $(S/m) = (g + h * f^2 + i * f^3 + j)$	(1 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 +					and the second	

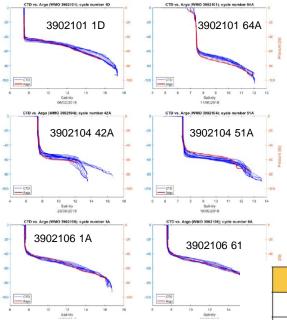
Recommendations for real time quality control

- Disable 'digit rollover' and 'stuck value test'
- Add regional test for excessively high surface salinities

Recommendations for DMQC of non recovered floats:

- for non recovered floats find best matches to ref data between 30 km ± 30 days
- create times series of differences and check for trends

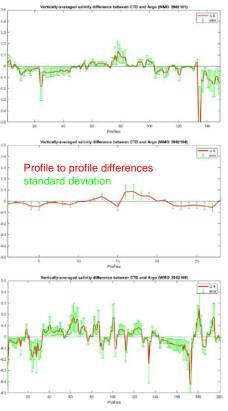
Recommendations for DMQC of recovered floats:


- Aim for recovery on annual or biannual basis, recalibrate the float before redeployment
- After consecutive lab calibrations only correct for significant drift (>0.1 conductivity units /12 month)
- Give DMQC operators access to the calibration sheets

Further things to do:

- Organize DMQC workshop to train operators in next spring in Poland (April 2023)
- Build capacity of DMQC operators, identity issues from practical applications EURO-ARGO.EU

DMQC methods for the Baltic


Argo data, reference data

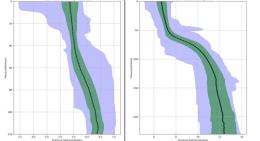
Tests have been performed to define search criteria and thresholds.

If floats can not be recovered than dmqc will aim at finding nearby profiles from the reference data set within 30 days and 30 km and will build time series of differences in layers.

Layers suitable for comparison are either mixed layer or bottom depending on area.

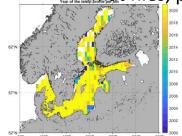
Float WMO	Salinity (10-30 m)	Temperature (70-90 m)
3902101	0.0508	0.6892
3902104	0.0316	0.8689
3902106	0.0706	0.4608

EURO-ARGO.EL



FMI reference dataset in FTP server

- Climatolocical dataset
 - Bothnian Sea (BothSea)
 - Baltic Proper (RP)


🖵 ear_dmqc@ftp.fmi.fi 🗙 📡	New Session	
₹ 🚰 ▼ 🗑 ▼ 🗣 ▼ ″ 🔁 "	📕 FMI 🔹 🗸 🚰 🕶 🕻 🖛 🕶 🗠 🔂 🔂 🔂 Find I	Files 🔚
Upload - " + "	📲 🚇 Download 👻 📝 Edit 👻 🗶 📝 🕞 Properties 🖆 New 🕶 🗄 🛨	- 4
(/FMI/	
	Name	Size
	ICES_Statistics_Practical_Salinity_dmnless_by_depth_in_BothSea.csv	12 KB
	ICES_Statistics_Practical_Salinity_dmnless_by_depth_in_BP.csv	25 KB
	ICES_Statistics_Temperature_degC_by_depth_in_BothSea.csv	12 KB
	ICES_Statistics_Temperature_degC_by_depth_in_BP.csv	25 KB
	ICESCTD00-20.csv	184 109

- Generated from ICES
 - Rain data: ICFSCTD00-20.csv

- Reference dataset
 - Gathered from ICES data

Dlan to undate vearly							
🙀 ear_dmqc@ftp.fmi.fi 🗙 🕎 New Session							
* 🚰 • 🝸 • 🖛 • » 🖬 »	📙 FMI_wmo_ma 🔻 🚰 📲 🕻 🖛 🕶 🔹 🖻 🎓 🏠 🛃 🗟 Find F	iles 🔚					
🕞 Upload 🔹 🦷 🎽 🐂	🙀 Download 🗸 📝 Edit 🗸 💢 🖓 Properties H	- 🛛					
/BSH/FMI_wmo_matfiles_beforeQC/							
	Name	Size					
	€						
	plots						
		1 085 KB					
	ctd_1501.mat	31 716 KB					
	ctd_1502.mat	5 946 KB					
	ctd_1601.mat	678 KB					
	ttd_1602.mat	1 188 KB					

.mat files, plots, and scripts to do them.