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a b s t r a c t

Satellite remote sensing offers new means of quantifying particulate organic carbon,

POC, concentration over large oceanic areas. From SeaWiFS ocean color, we derived

10-year data of POC concentration in the surface waters of the global ocean. The 10-year

time series of the global and basin scale average surface POC concentration do not

display any significant long-term trends. The annual mean surface POC concentration

and its seasonal amplitude are highest in the North Atlantic and lowest in the South

Pacific, when compared to other ocean basins. POC anomalies in the North Atlantic,

North Pacific, and global concentrations seem to be inversely correlated with El Niño

index, but longer time series are needed to confirm this relationship. Quantitative

estimates of POC reservoir in the oceanic surface layer depend on the choice of what

should represent this layer. Global average POC biomass is 1.34 g m�2 if integrated over

one optical depth, 3.62 g m�2 if integrated over mixed layer depth, and up to 6.41 g m�2

if integrated over 200-m layer depth (when assumed POC concentration below MLD is

20 mg m�3). The global estimate of total POC reservoir in the surface 200-m layer of the

ocean is 228.61�1013 g. We expect that future estimates of POC reservoir may be even

larger, when more precise calculations account for deep-water organic-matter maxima

in oligotrophic regions, and POC biomass located just below the seasonal mixed layer in

spring and summer in the temperate regions.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The past decade has witnessed a significant increase in
appreciation of the role of biology in shaping biogeo-
chemical fluxes in the ocean and its potential responses
to global climate change. The production of particulate
organic carbon, POC, during photosynthesis is one of the
pathways for the drawdown of carbon from the surface
ocean and its removal into deep ocean waters. During
photosynthesis, dissolved inorganic carbon, DIC, is used
together with nutrients to form POC, in that way
decreasing the partial pressure of carbon dioxide, pCO2,
ll rights reserved.
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of surface ocean waters. The production is eventually
followed by the sinking of the POC particles out of surface
waters, and a fraction of them becomes incorporated into
the bottom sediments. These processes are referred to as
‘‘the biological pump’’ (Ducklow et al., 2001).

Oceanic POC particles include the autotrophic and
heterotrophic microorganisms and biologically derived
detrital particles suspended in seawater. Although POC
represents only a small fraction of the total carbon present
in the global ocean, its importance results from high
turnover rates. It has been estimated that the living
phytoplankton component of POC contributes about 50%
of global primary production on Earth (Behrenfeld et al.,
2005). Total POC biomass in ocean surface waters has
been estimated at around 4-5 Gt C (Gardner et al., 2006),
while the flux from the dissolved inorganic phase to
the particulate organic reservoir (carbon uptake through

www.sciencedirect.com/science/journal/dsri
www.elsevier.com/locate/dsri
dx.doi.org/10.1016/j.dsr.2009.04.009
mailto:mstramska@chors.sdsu.edu,
mailto:mstramska@ucsd.edu
mailto:mstramska@ucsd.edu


ARTICLE IN PRESS

M. Stramska / Deep-Sea Research I 56 (2009) 1459–14701460
primary production) has been projected at around
50 GtCyr�1 (Behrenfeld et al., 2006; Carr et al., 2006).
Thus, the oceanic POC reservoir is much smaller than the
fluxes controlling this reservoir. This implies that even
small changes in POC reservoir can be a sign of substantial
changes in the related fluxes. In addition, the importance
of POC for biogeochemical processes in the ocean results
from the fact that POC can sink in the water across
isopycnals, scavenging other particles and transporting
carbon and associated elements to deep waters until they
settle as sediments or are remineralized. Therefore, the
analysis of the distribution and magnitude of the oceanic
pool of POC is important for understanding the role of the
marine biosphere in the global carbon cycle.

One of the major difficulties in quantifying POC
reservoirs and fluxes is the fact that the temporal and
spatial variations of POC concentration in the upper ocean
cover a broad range of scales. It has been extremely
difficult to characterize this variability using only mea-
surements taken from ships or other in situ observing
platforms. Recently, development of ocean color POC
algorithms (Stramski et al., 1999; Loisel et al. 2002;
Stramska and Stramski, 2005; Pabi and Arrigo, 2006;
Stramski et al., 2008) and the availability of satellite ocean
color data has dramatically improved this situation by
providing the capabilities for long-term monitoring of the
ocean with global coverage.

In this paper, algorithms described by Stramski et al.
(2008) were used to derive, from SeaWiFS data, the
10-year time series of POC concentration in the surface
waters of the global ocean. Our main goal is to develop
a better understanding of the large-scale geographical
variability of POC concentration in the ocean, and to
investigate long-term trends. In addition, we attempt to
derive global and basin scale estimates of POC biomass
contained in the oceanic surface waters. Evaluation of the
global marine POC reservoir provided in this paper can be
used for comparisons with ocean ecosystem and biogeo-
chemical models. We believe that our assessment of POC
reservoir will benefit studies on ocean carbon cycle and
the role of POC in this cycle.
Table 1
Summary of the POC band-ratio algorithms used in this paper.

POC ¼ Ai[Rrs(l)/Rrs(555)]�Bi

Rrs(l)/Rrs(555) Ai Bi R2 RMSE

(mg m�3)

MNB

(%)

NRMS

(%)

N

Rrs(443)/Rrs(555) 203.2 1.034 0.871 21.29 2.26 21.68 53

Rrs(490)/Rrs(555) 308.3 1.639 0.906 18.38 2.28 21.71 52

The Rrs(l)/Rrs(555) is the blue-to-green band ratio of remote sensing

reflectance, POC is in mg m�3, and Ai and Bi are regression coefficients,

fitted by least-squares linear regression analysis using log10-transformed

data of POC and Rrs(l)/Rrs(555). All regression coefficients and statistical

parameters have been recalculated to represent the non-transformed

data. The light wavelength l is either 443 or 490, R2 is the determination

coefficient, RMSE the root mean square error, MNB the mean normalized

bias, NRMS the normalized root mean square error, and N the number of

observations (see Stramski et al., 2008 for more details).
2. Data sources and methods

In this section, the input data and methods used
to estimate POC are briefly described. Ocean surface
POC concentrations were derived from normalized water-
leaving radiances, Lwn(l), available from the Sea-viewing
Wide Field-of-view Sensor (SeaWiFS) mission on the
OrbView-2 satellite (e.g., Hooker and McClain, 2000).
SeaWiFS collects radiometric data at eight spectral bands
in the visible and near-infrared spectral region and
provides global coverage approximately every two days.
The standard data processing procedures used to derive
Lwn(l) from recorded data involve atmospheric correction
and removal of pixels with land, ice, cloud, or heavy
aerosol load (O’Reilly et al., 1998, 2000). In this study, the
daily normalized water-leaving radiances at 443, 490,
and 555 nm were used. These data were obtained from the
NASA Ocean Color FTP site (http://oceancolor.gsfc.nasa.
gov/ftp.html) as the Level 3 standard mapped images
(SMI), which are projections of the Global-Area-Coverage
data onto a global, equal-angle grid with a nominal 9 km
� 9 km resolution (reprocessing version 5.2).

We have converted the Lwn(l) data to remote sensing
reflectances, Rrs(l), using the following relationship (e.g.
Mobley, 1994):

RrsðlÞ ¼ LwnðlÞ=F0ðlÞ (1)

where l indicates the spectral waveband, Rrs(l) is the
spectral remote-sensing reflectance in sr�1, Lwn(l) is the
normalized water leaving radiance in mW cm�2 nm�1 sr�1,
and F0 is the extraterrestrial solar irradiance taken
as F0(443) ¼ 190.154, F0(490) ¼ 196.473, and F0(555) ¼
183.010 in mW cm�2 nm�1. These F0 values, derived by
averaging the Thullier spectrum at the nominal wave-
lengths of SeaWiFS, were taken from the table of SeaWiFS
bandpass averaged quantities made available by NASA
(http://oceancolor.gsfc.nasa.gov/DOCS/RSR_tables.html).
In the next step of data processing, we have transformed
the remote sensing reflectances to daily surface POC
concentrations using two algorithms developed by
Stramski et al. (2008) and summarized in Table 1. Note
that Stramski et al. discussed several POC algorithms, and
reported that the two algorithms listed in Table 1 had
the best error statistics. Instead of selecting one of these
algorithms, we have decided to apply both of them, which
allowed us to quantify a range of divergence between
the algorithms. Our calculations show that algorithm 2
(based on Rrs(490)/Rrs(555)) leads to somewhat higher
POC estimates in the euthrophic waters and lower POC
estimates in the oligotrophic waters in comparison to
POC concentrations derived using algorithm 1 (based on
Rrs(443)/Rrs(555)). For example, yearly average global POC
concentration estimates are on average about 2.5% higher,
and POC estimates in the eutrophic waters of the North
Atlantic are about 14% higher when algorithm 2 is used in
comparison to algorithm 1. At the present time, we do not
have sufficient evidence to decide which of the two
algorithms leads to more precise POC estimates; therefore,
our final results reported in this paper are based on

http://oceancolor.gsfc.nasa.gov/ftp.html
http://oceancolor.gsfc.nasa.gov/ftp.html
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averaging the POC estimates derived using the two
algorithms. We hope that with more in situ data collected
in the future, it will be possible to further improve and
document the performance of ocean color POC algorithms.

Note that both POC algorithms are nonlinear. In order
to minimize the biases, which could be accrued if
calculations were completed on temporal averages (such
as monthly composites) of satellite radiometric data,
our calculations always started with the daily fields of
remote sensing reflectances to estimate daily fields of POC
concentrations. The derived set of daily POC concentra-
tions (in mgC m�3) covers 10 successive years (1998-
2007) of SeaWiFS data. From daily POC imagery, we have
calculated 21-day moving averages to fill in the missing
data. We have also calculated monthly averages and
10-year averaged monthly mean surface POC concentra-
tions, which are presented in this paper (Fig. 1). Finally,
from 21-day moving average imagery, we have calculated
time series of large area mean surface POC concentrations.
Fig. 1. Maps of the 10-year averaged (1998-2007) monthly mean surface

POC concentration derived in this study for the months of February, July,

and September.
This spatial averaging provides POC estimates representa-
tive of mean conditions over relatively large sections of
the ocean, removes the small and mesoscale features,
and reduces (but does not eliminate) gaps in the time
series due to missing data. Gaps, which were left unfilled,
were still present after this spatial averaging in the polar
regions in winter.

Other data sets used in this study include two SeaWiFS
standard data products, surface chlorophyll a concentra-
tion, Chl, and diffuse attenuation coefficient, K(490). Chl
and K(490) data were also downloaded from the NASA
Ocean Color FTP site (http://oceancolor.gsfc.nasa.gov/
ftp.html). POC and Chl data were used to derive bulk
POC/Chl ratios. The diffuse attenuation coefficient was
used to obtain estimates of the optical attenuation depth,
zopt, and POC biomass integrated in one attenuation depth,
POCopt. One optical attenuation depth of the ocean is the
maximum depth from which a remotely sensed signal
is radiated. In our calculations, one optical attenua-
tion depth was estimated as zopt ¼ 1/K(490) (Gordon
and McCluney, 1975), while POCopt was calculated as
POCopt ¼ POC/K(490) (Campbell et al., 1995; Gardner
et al., 2006).

Another estimate of POC reservoir derived in this paper
is based on the mixed layer depth, MLD, climatology
available from the Laboratoire d’Océanographie Dynami-
que et de Climatologie, Université Pierre et Marie Curie in
Paris (de Boyer Montégut et al., 2004). The mixed layer,
ML, of the ocean is defined as the layer near the ocean
surface with vertically quasi-uniform oceanic tracers
(temperature, salinity, density) above a layer of more
rapid vertical changes (e.g., Lorbacher et al., 2006). The
intense vertical turbulent mixing near the ocean surface is
the cause of the observed vertical uniformity. We have
assumed that, similarly to other water properties, POC
concentration within the ML is also nearly homogenous.
This assumption allowed us to estimate the geographic
distribution of POC reservoir located in the oceanic mixed
layer, POCMLD. The estimated POCMLD at a given location
was taken as a product of the surface POC concentrations
derived from ocean color and MLD. Note that in
comparison with older MLD estimates (Kara et al., 2003;
Monterey and Levitus, 1997), the newer MLD climatology
that we have chosen to use (de Boyer Montégut et al.,
2004) is based on larger hydrographic data sets. In
addition, these newer MLD estimates were established
with 0.2 1C temperature criterion applied to the individual
unsmoothed profiles, while the 0.5 1C or 0.8 1C threshold
values were applied to already averaged profiles in earlier
MLD estimates (Kara et al., 2003; Monterey and Levitus,
1997). We have decided to use the more recent MLD
estimates, as it seems that the older (larger) temperature
criteria tend to represent changes of the main thermocline
rather than changes in the depth of the mixed top water
column. Nevertheless, it is important to understand that
our final estimates of POCMLD depend on the choice of the
MLD estimates used in such calculations. For example, the
newer climatology yields somewhat lower MLD estimates
in the northern North Atlantic than the older climatology,
which means that our derived POCMLD would be higher if
we used older MLD climatology.

http://oceancolor.gsfc.nasa.gov/ftp.html
http://oceancolor.gsfc.nasa.gov/ftp.html
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The third approach to estimate the POC reservoir in the
oceanic surface waters is based on using a layer with a
constant depth of water. This approach is more compli-
cated as the assumption about a constant POC concentra-
tion within the layer is invalid when the assumed water
depth is greater than the MLD. Nevertheless, we have
explored this approach briefly. In our simplified approach
we have used an oceanic surface layer that is 200-m deep
and estimated POC biomass, POC200, in this layer. In our
calculations, we have assumed that POC concentration is
homogenous throughout the mixed layer and equals
surface POC concentrations derived from ocean color. If
the MLD is less than 200-m deep, the POC concentration
below ML is assumed to reach a background concentration
of 10 or 20 mg m�3 (both scenarios are examined). This
background POC concentration is in agreement with in

situ data (see, for example, BATS POC data at bats.bios.
edu/bats_form_bottle.html). Note however, that in this
approach we do not account for a possibility of increased
POC concentration above the background concentration
below MLD, which can, for example, accompany a deep-
water phytoplankton maximum.

The Oceanic El Niño Index, calculated as the 3-month
running mean of Extended Reconstructed Sea Surface
Temperature (ERSST.v3) SST anomalies in the Niño 3.4
region (51N-51S, 1201-1701W) has been used for compar-
ison with POC data. This index has been made available by
the NOAA Climate Prediction Center (www.cpc.noaa.gov/
products/_monitoring/ensostuff/ensoyears.shtml).
Fig. 2. Example maps of POC/Chl ratio.
3. Results and discussion

Example, 10-year averaged (1998-2007) monthly mean
surface POC concentration maps in the global ocean are
presented in Fig. 1. These examples include POC maps for
the months of February, July, and September. The seasonal
changes in the POC distributions are quite distinct in Fig. 1.
In the global ocean, the highest values of surface POC
concentration are observed in summer of the northern
hemisphere in the northern North Atlantic. Low 10-year
averaged monthly means of POC concentrations are
present in the oligotrophic subtropical gyres (with the
lowest values in the South Pacific at 10-301S). Between the
gyres, there is a zone of somewhat higher POC concentra-
tion located in the region of equatorial divergence. Note
that many major patterns of global POC concentration in
the open ocean are oriented zonally. This is not true in
coastal regions. The coastal upwelling regions (western
coasts of Americas and Africa) show consistently higher
POC concentrations than adjacent waters, and the seaso-
nal changes in POC concentrations are evident in the
upwelling regions as well. Notice, however, that in
some coastal areas characterized by high concentrations
of suspended solids which originate, for example, from
continental runoff (e. g., Amazone and Orinoco Rivers
plumes), our algorithm may produce erroneous POC
concentrations. The well-known problems of ocean color
algorithms (including Chl algorithms) in case 2 waters
remains a difficult issue that requires additional work. In
the future, this problem can be minimized when we have
more information about optical relationships in different
geographic regions and optical properties of various water
components.

In the past, the concentration of chlorophyll a was the
basic data product derived from ocean color, and it was
often used as a metric for phytoplankton biomass in the
ocean. If POC concentration was needed, it was estimated
from Chl by assuming certain POC/Chl ratios. In Fig. 2, we
have plotted example maps of POC/Chl ratio as estimated
from ocean color. In these estimates, we have used our
daily POC concentrations derived in this study and daily
Chl SeaWiFS data product. The daily POC/Chl ratios
were then binned into monthly means and averaged
for the 10-year time period (1998-2007). As can be seen,
estimated POC/Chl ratio varies broadly in the global ocean
in spite of the fact that averaging applied to the daily data
somewhat decreased the range of overall variability.
The highest values of POC/Chl ratio are observed between
November and March in the oligotrophic waters of the
South Pacific (10-301S), while low values are present in
the northern eutrophic waters during summer of the
northern hemisphere. Spatial and temporal variability
of POC/Chl ratio is the reason why it is more practical
to determine POC concentrations directly from ocean
color using POC algorithms than to try to estimate POC
from Chl.

In Fig. 3, we have plotted time series of the average
surface POC concentrations for different ocean basins and
for the global ocean. These time series have been obtained
from 21 day moving-average spatial POC maps for which
all pixels were averaged over the entire area of each ocean
region. The geographical boundaries of the ocean basins
used in our calculations are the same as in Antoine et al.

http://www.bats.bios.edu/bats_form_bottle.html
http://www.bats.bios.edu/bats_form_bottle.html
http://www.cpc.noaa.gov/products/_monitoring/ensostuff/ensoyears.shtml
http://www.cpc.noaa.gov/products/_monitoring/ensostuff/ensoyears.shtml
http://www.cpc.noaa.gov/products/_monitoring/ensostuff/ensoyears.shtml
http://www.cpc.noaa.gov/products/_monitoring/ensostuff/ensoyears.shtml
http://www.cpc.noaa.gov/products/_monitoring/ensostuff/ensoyears.shtml
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Fig. 3. Time series of the spatially averaged surface POC concentrations

for different ocean basins and for the global ocean.

Fig. 3. (Continued)
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(1996). In particular, we have assumed that the Southern
Ocean is delimited by the parallel of 501S, which is
approximately the average latitude for the Antarctic
convergence. We have also assumed that the North
Atlantic and North Pacific are restricted by the latitude
of 701N, where the Arctic zone starts. We do not present
separate estimates of average POC concentration for the
Arctic because of the significant problem with ice and
cloud free pixels in this region. This problem is also
encountered in the Southern Ocean, but because of the
larger ocean area, the problem of missing data seems to be
less significant here except during austral winter, when
there were not enough ice and cloud free pixels to create
the time series. In the surface POC concentration time
series for the global ocean, all ocean pixels in SeaWiFS
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images that were not removed by atmospheric correction
algorithms have been averaged. The most striking ob-
servation (Fig. 3) is that there are large differences
between average POC concentrations in different ocean
basins. The South Pacific is characterized by the lowest
yearly average of POC concentration and consistently low
POC concentrations throughout the year. The North
Atlantic, North Pacific, and Southern Ocean waters are
characterized by relatively high surface POC concentra-
tions in comparison to the other oceans. Note also that
even if significant interannual variability in the spatial
distribution of POC concentration is evident in daily and
monthly POC images in every year for a given location
(not shown), the time series of large area averaged surface
POC concentration for each of the ocean regions (Fig. 3)
display quite consistent annual patterns in different years
(i.e. annual amplitude and timing of the seasonal increase
of averaged surface POC concentration are quite similar in
different years). The North Atlantic region is characterized
by the largest seasonal amplitude of POC concentration,
with a prominent spring/summer maximum of about
120 mg m�3 (+/�10 mg m�3) present on day 140-150 and
corresponding to the development of seasonal phyto-
plankton blooms in the northern North Atlantic. The
timing of the seasonal maximum in regional average POC
concentration in the North Pacific is similar, but the
amplitude is significantly lower than in the North Atlantic.
The Southern Ocean is characterized by significant
increase in the surface POC concentration during the
productive season in austral spring/summer months. It
also seems that the Southern Ocean is characterized by a
somewhat stronger interannual variability of the average
POC concentration than the other regions. Because of the
large area covered by the North Pacific and North Atlantic
waters and relatively high amplitude in the seasonal
patterns of POC concentration in these regions, the
average POC concentration for the global ocean is highest
at the time of spring/summer season in the northern
hemisphere. The highest values in the global average time
series are observed in May – July. However, the seasonal
variability of the globally averaged surface POC concen-
tration is relatively weak, and the 10-year mean time
series of the globally averaged POC are in the range of 60 –
75 mg m�3. Note that there is also relatively little inter-
annual variability in the annual pattern of the globally
averaged surface POC concentration.

To better visualize the long-term trends in POC
concentrations, we have plotted in Fig. 4 the 10-year
time series of POC anomalies for each of the ocean
basins. These anomalies were calculated as the difference
between the regional time series of surface POC concen-
tration in a given year and the 10-year averaged time
series. The anomalies have the highest values in the North
Atlantic and Southern Ocean (with standard deviations of
3.2 and 3.4 mg m�3, respectively), and the lowest values in
the Southern Pacific (standard deviation of 1.3 mg m�3).
The global and regional POC anomalies do not reveal any
significant long-term trend in POC concentrations. Pat-
terns of interannual variability are documented in Fig. 4
and appear to be more pronounced in the North Atlantic,
North Pacific, and Southern Ocean than in other regions. It
seems that the anomalies in the North Atlantic and North
Pacific are inversely correlated with the Oceanic El Niño
Index, ONI, which is also shown in Fig. 4. Longer ocean
color time series than are available presently will be
needed in order to investigate the issue of long-term POC
variability more thoroughly.

The information about global and basin scale POC
concentrations gains particular significance if we can use
it to estimate POC biomass contained within the surface
ocean waters. Global and regional mass balances for all
compartments of ocean carbon reservoir are necessary in
order to quantify the role of the ocean as a source and sink
for atmospheric CO2 and its impact on earth’s climate.
For that reason we have attempted to assess a standing
stock of POC in oceanic surface waters and to calculate
contributions by different oceans. We have derived three
estimates of POC biomass. The first estimate, POCopt, is
based on the optical attenuation depth, zopt. The second
estimate, POCMLD, utilizes the mixed layer concept. The
third estimate, POC200, is based on a water layer with
constant 200-m depth.

Note that using MLD provides a sensible link to the
physical structure of the water column, while there is no
sound physical rationale for applying the optical depth for
estimating POC reservoir. Nevertheless, POCopt is pre-
sented here for comparisons with previously published
assessment of oceanic POC reservoirs (Gardner et al.,
2006). Notice that, according to our calculations, zopt

varies between a few meters in the eutrophic waters to
less than sixty meters in the extremely oligotrophic
waters. In contrast, MLD can reach a few hundred meters,
for example, in the winter season in the North Atlantic.
These large differences between zopt and MLD are
illustrated in Fig. 5, which shows examples of zopt and
MLD maps. The fact that MLD is on average significantly
deeper than zopt implies that POCMLD represents POC
biomass integrated over a deeper water layer than POCopt.
Therefore, POCMLD usually includes greater biomass of
POC than POCopt. Example maps of POCopt and POCMLD are
shown in Fig. 6. The estimates of POCopt for the month of
February shown in Fig. 6 are within the range 1 – 2 g m�2.
In contrast the values of POCMLD can be as high as
10 g m�2. Thus, POCMLD accounts for a larger portion of the
total POC biomass present in the oceanic surface waters
than POCopt.

Note that even if the estimates of POCMLD are
significantly higher than POCopt, POCMLD should still be
considered as an underestimate of the total POC biomass
present in the oceanic surface layer. There are a few
reasons for this. First, in our calculations we disregard
deep algal biomass maxima and assume uniform POC
concentrations with depth. Second, we do not account for
POC biomass that can be produced and reside under the
mixed layer if the critical depth is greater than the MLD.
The critical depth is defined as the depth for which
24-hour vertically integrated water column productivity is
equal to water column integrated losses (Sverdrup, 1953;
Siegel et al., 2002; Marra, 2004). These community loss
processes include autotrophic and heterotrophic respira-
tion, grazing, and vertical export by sinking particles.
Finally, in our calculations we do not account for the POC
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Fig. 4. The 10-year time series of surface POC concentration anomalies. Anomalies were calculated as the difference between the time series of regionally

averaged surface POC concentration in a given year and the 10-year averaged POC time series. The Oceanic El Niño Index (ONI) has been made available by

the NOAA Climate Prediction Center (www.cpc.noaa.gov/products/_monitoring/ensostuff/ensoyears.shtml).
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biomass, which can be separated from the ML during the
process of seasonal decrease of the MLD with increasing
stratification of the ocean in the spring/summer season.
An example of in situ data, showing that increased
biomass is present under a shoaling ML when the
phytoplankton bloom develops in the North Atlantic has
been described, for example, by Stramska et al. (1995).
Our current methods do not allow us to properly account
for the organic matter located just below ML in such
situations.

Global distributions of POCMLD shown in Fig. 6 (middle
and bottom panels) indicate that seasonal trends in
POCMLD are controlled by seasonal trends in MLD. For
example, in the regions where seasonal amplitude of the
MLD is large (North Atlantic and Southern Ocean) the
seasonal maximum POCMLD is observed at the same time
when the MLD is deepest. This indicates that the seasonal
increase of surface POC concentration does not compen-
sate for the decrease of POC biomass contained within the
ML caused by the decrease of the MLD. This observation
supports the notion that future improved estimates of
POC biomass in the surface ocean should account not only
for the POCMLD but also for the POC biomass, which is
located just below the ML.

The third estimate of POC biomass, POC200, is expected
to be smaller than POCMLD if the MLD is greater than

http://www.cpc.noaa.gov/products/_monitoring/ensostuff/ensoyears.shtml
http://www.cpc.noaa.gov/products/_monitoring/ensostuff/ensoyears.shtml
http://www.cpc.noaa.gov/products/_monitoring/ensostuff/ensoyears.shtml
http://www.cpc.noaa.gov/products/_monitoring/ensostuff/ensoyears.shtml
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Fig. 5. Example maps of one optical attenuation depth (top panel) and

mixed layer depth (middle and bottom panels). Note that the range of

values is larger for MLD than for zopt, and that MLD undergoes significant

seasonal changes.

Fig. 6. Maps of the POC biomass integrated over the depths shown in Fig.

5. These maps were obtained as monthly averages of the daily POCopt

(top panel) and POCMLD (middle and bottom panels).
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200-meters, because POC biomass located within the ML
below 200-m depth is not taken into account in the
POC200 estimate. If the MLD is less than 200-meters,
POC200 is larger than POCMLD, since, in this case, account-
ing for the background POC concentration below the MLD
increases integrated POC biomass. Recall that in our
calculations of POC200, we have assumed that background
POC concentration is 10 or 20 mg m�3.

A summary of the global and regional estimates of the
POCopt, POCMLD, and POC200 is provided in Table 2. Our
estimate of global POC reservoir based on POCopt is
48.10�1013 g, which is about 12% higher than similar
estimate reported before by Gardner et al. (2006). The
difference between the two estimates can be most likely
attributed to differences in the remote sensing POC
algorithms used in each study (see Stramski et al. 2008
for the discussion of POC algorithms). While inspecting
data in Table 2, we observe that estimates of POCopt are
quite similar in different regions. One of the reasons for
this similarity is the fact that zopt decreases with the
increase of concentration of organic matter in surface
waters. This means that an increase in POC concentration
is accompanied by a parallel decrease of zopt. In con-
sequence, with increasing POC concentration, POCopt

represents biomass integrated over shallower water
layers, and this is why POCopt does not vary significantly.
In contrast, POCMLD and POC200 show considerable
regional differences. The highest POCMLD and POC200

estimates are for the Southern Ocean and North Atlantic,
the regions were POC concentration is high and MLD is
deep. The greatest contribution to total global POC stock
integrated over MLD are made by the Southern Ocean
(31%) and North Pacific (17%). Our calculations show that
global average POCopt is about 32% of the global average
POCMLD and about 27 or 21% of the global POC200

(assuming background POC concentration below MLD of
10 or 20 mg m�3, respectively). However, as noted before,
POCMLD and POC200 probably also underestimate total POC
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Table 2
Global and regional estimates of the average POC biomass (in g m�2) integrated down to one attenuation depth (POCopt), mixed layer depth (POCMLD), and

200-m depth (POC200).

Region POCopt (g m�2) POCMLD

(g m�2)

POCMLD stock

(1013 g)

POCMLD stock

(%)

POC200 (g m�2) POC200 stock

(1013 g)

POC200 stock

(%)

Global 1.34 3.62 130.68 100 6.41 (5.0) 228.61 (178.36) 100 (100)

N. Atlantic 1.38 4.09 19.63 15 7.10 (5.61) 34.09 (26.95) 15 (15)

S. Atlantic 1.35 3.53 10.90 8 6.43 (4.98) 20.07 (15.54) 9 (9)

N. Pacific 1.32 2.98 22.38 17 6.06 (4.53) 46.13 (34.51) 20 (19)

S. Pacific 1.28 2.73 17.75 13 5.60 (4.16) 37.01 (27.52) 16 (15)

Indian 1.34 3.46 18.30 14 6.29 (4.85) 33.81 (26.06) 15 (15)

S. Ocean 1.38 5.79 40.50 31 7.78 (6.74) 54.55 (47.27) 24 (26)

POC stock (global and regional) was calculated as the annual average POCMLD and POC200 biomass multiplied by the regional area. The contribution (in %)

of each region to global POC stock is also shown. Note that the two numbers shown in columns for POC200 represent estimates of POC200 assuming that

POC concentration below MLD is 20 or 10 mg m�3 (the later estimates are shown in brackets).
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biomass contained in oceanic surface waters. In the future,
improved estimates of POC biomass should account for
POC biomass residing in some geographical regions under
the seasonal thermocline, which may lead to somewhat
higher POC biomass estimates.

One possible (but difficult and laborious) approach to
improving POC biomass estimates could be based on a
development of regional relationships for which surface
concentrations and detailed vertical POC profiles are
known. The application of such regional relationships in
combination with a knowledge of the typical vertical
structure of the water column for a given region and
season could then yield the best possible satellite-derived
POC reservoir in the oceanic surface layer. (A similar
approach has been used by Antoine et al., 1996 for
integrating Chl biomass and PP modeling.) Improved
estimates of POC reservoir could be also obtained with
the application of ocean models which would resolve
vertical profiles of POC concentration. More in situ data is
needed for better understanding of regional relationships
before information about vertical POC profiles can be
incorporated into the estimates of POC reservoirs from
remote sensing. Until such data are available, our
preliminary estimates of POC reservoir in the oceanic
surface waters presented in this paper can be treated as a
first approximation of this reservoir.

Zonally averaged 10-year mean surface POC concentra-
tion, POCopt, POCMLD, and POC200 plotted as a function
of latitude are shown in Fig. 7. Zonally averaged primary
productivity, PP, and export, PE, estimates are displayed
for comparison in Fig. 8. These PP and PE are obtained
from data published by Dunne et al. (2007), and have been
derived from the 7 years of SeaWiFS data (1998-2004).
As can be seen in Figs. 7 and 8, POC concentrations,
integrated POC biomass estimates, PP, and PE have the
highest values in the north (70 – 501N) and the lowest
values in the oligotrophic regions around 301N and 301S.
In the equatorial zone, PP is almost as high as in the zone
of 70 – 501N, but POC concentration, POC biomass, and PE
do not reach such high values. More to the south all the
estimates increase from low values at around 301S
to higher values at 401S, but these increased values are
more evident in POC concentration and POC biomass
(in particular POCMLD and POC200) and extend in broader
zonal area than PP and PE.

Ocean color data are an invaluable source of informa-
tion about global biogeochemical processes, but one needs
to be aware of potential errors. Recall, that space-borne
ocean color instruments quantify water leaving radiance
at selected visible and near-infrared wavebands. These
radiance spectra are than used to estimate geophysical
parameters, such as Chl or POC via application of bio-
optical algorithms. Therefore, errors in the final biogeo-
chemical estimates can be conceptually divided into
two categories. In the first category are errors in the
primary measurement of satellite-based sensors (spectral
radiances). These errors propagate in bio-optical algo-
rithms, which use spectral radiances as input. In the
second category are errors caused by the limitations of the
bio-optical algorithms.

Errors in the first category result from the fact that an
ocean color satellite sensor such as SeaWiFS receives
about 90% of its signal from the atmosphere, while only
10% comes from the ocean (e.g., Gordon and Morel, 1983).
In order to derive radiance leaving the water, the atmo-
spheric contribution must be accurately estimated and
subtracted from the total radiance recorded at the top
of the atmosphere. One of the problems is that current
atmospheric correction algorithms do not correct ade-
quately for absorbing aerosols (e.g., Kahru and Mitchell
1999; Schollaert et al., 2003; Nobileau and Antoine, 2005;
Hyde et al., 2007; Wang et al., 2009). Another difficulty is
a possible failure of the black pixel assumption in highly
scattering waters (e.g., Siegel et al., 2000; Morel and
Bélanger, 2006; Morel and Gentili, 2008). The analyses
carried out by the NASA Ocean Biology Processing Group
(OBPG) indicate that SeaWiFS radiance accuracy is within
9–19% in a global data set and within 6–12% in the deep-
water (41000 m) subset (Werdell and Bailey, 2005; Bailey
and Werdell, 2006; Bryan et al., 2007).

Errors in the second category are due to imperfection
of the bio-optical algorithms. For example, in the case
of SeaWiFS Chl algorithm (OC4v4), the normalized root
mean square error (NRMS) was estimated to be 24%
(O’Reilly et al., 2000). As noted above, final errors in
secondary derived ocean color products are also impacted
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Fig. 7. Average surface POC concentration, POCopt, POCMLD, and POC200 plotted as a function of latitude. POC200 is shown as solid line when POC

concentration below MLD is assumed to be 20 mg m�3 and as dashed line when POC concentration below MLD is assumed to be 10 mg m�3. All estimates

are based on SeaWiFS data from 1998-2007.
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by errors in the input data (spectral radiances). Thus, the
secondary product accuracy may be lower than the
accuracy of the algorithm from which the product is
derived. Nevertheless, the NRMS documented by the OBPG
during global SeaWiFS Chl validation activity was very
similar to the NRMS documented before for the Chl
algorithm itself (Bailey and Werdell, 2006). Independent
evaluation of the global SeaWiFS Chl data product carried
out by Gregg and Casey (2004) showed the normalized
root mean square (NRMS) error of 27.7% in the open ocean
(water depth 4 200 m) and 33% in the coastal regions. In
comparison, the NRMS for the POC algorithms estimated
by Stramski et al. (2008) are approximately 22% (see Table 1).
This estimate is based on a relatively small data set.
It is vital to collect more in situ POC data in the future in
order to further validate the performance of the POC
algorithms. Nevertheless, evaluation of POC algorithms
based on comparisons with our own and historical data
sets (Stramska and Stramski, 2005; Stramski et al., 2008)
allows us to assume that the overall performance of POC
algorithms is similar to the performance of Chl algo-
rithms. As is the case with Chl algorithms, it is anticipated
that the performance of POC algorithms is less dependable
in the coastal regions than in the open ocean regions.
Note however, that the respective area of the ocean
with deptho1000 m is less than 12% and coastal waters
(deptho200 m) are only about 7.5% of the global ocean.
Because of the small percentage area of the coastal
regions, potentially inferior performance of POC algo-
rithms in optically complex coastal waters should not
significantly affect global trends discussed in this paper.

4. Summary and conclusions

Analysis of spatial distribution of POC concentration
and integrated biomass is important for understanding
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Fig. 8. Primary productivity (PP) and export (PE) estimates plotted as a function of latitude (as derived from the 1998-2004 SeaWiFS data by Dunne et al.,

2007).
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the potential of the marine biosphere to affect the global
carbon cycle. The development of the ocean color POC
algorithms provides a new capability to obtain long term
spatially resolved time series of POC data for detecting
real trends in ocean and global carbon cycling. In this
paper we have used 10 years of SeaWiFS data to derive
global surface POC concentration time series and esti-
mates of POC biomass in oceanic surface waters.

Our results indicate that the 10-year time series of the
global and basin scale average surface POC concentrations
do not exhibit significant long term trends. There are
considerable differences between ocean basins. The mean
POC concentration and the seasonal amplitude are highest
in the North Atlantic and lowest in the South Pacific, when
compared to other ocean basins. Surface POC concentra-
tion anomalies in the North Atlantic, North Pacific, and
global ocean seem to be inversely correlated with El Niño
index, but longer time series are needed to confirm this
relationship. Quantitative estimates of the POC reservoir
in the oceanic surface layer depend on the choice of what
should represent this layer (Table 2). The global estimate
of POC reservoir contained within the optical depth is the
lowest, while the estimates of POC reservoir embedded
within the MLD and the 200-m surface water layers are
much higher. Global average POC biomass is 1.34 g m�2 if
integrated over one optical depth, 3.62 g m�2 if integrated
over mixed layer depth, and up to 6.41 if integrated over
200-m layer depth (if the background POC concentration
below MLD is assumed to be 20 mg m�3). This means that
the estimate of global POC reservoir in surface waters is as
high as 228.61�1013 g of carbon, if calculations are based
on POC integrated over the 200-m surface water layer.
Our calculations may underestimate the total POC
reservoir present in oceanic surface waters because we did
not account for the elevated POC concentrations that in
some situations can be present in the water column below
MLD. For example, we did not account for POC located
in the organic matter maxima in the oligotrophic ocean
regions or below ML in temperate regions during the
development of spring phytoplankton blooms (when MLD
is shoaling). More effort is needed in the future to improve
POC reservoir estimates. These should include work on
validation and improvements of the ocean color remote
sensing POC algorithms, development of regional ap-
proaches, which would take into account regional features
of vertical POC distribution in specific regions and
seasons, and work on merging surface POC data derived
from ocean color with ocean models.
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