

Size response to global warming in high

latitude and Arctic marine zooplankton -

DWARF-ing is likely

Slawomir Kwasniewski, Katarzyna Blachowiak-Samolyk, Emilia Trudnowska

INSTITUTE OF OCEANOLOGY POLISH ACADEMY OF SCIENCES Sopot, Poland

Declining size - a general response to climate warming in Arctic fauna?

Motivation and background

- Global climate change causes increasing temperature (Hansen et al., 2006; IPCC, 2013) that is increasing of the key ecological driver, influencing processes and structures from genes to ecosystems through many biological or coupled bio-physical mechanisms (Reuman et al., 2014)
- Rising of environmental temperatures results in reductions in body size of organisms – the third universal ecological response to "GW", besides the shift of species ranges and shifts in "phenologies" (Daufresne et al., 2009; Gardner et al. 2011; Forster et al., 2012)
- Causes and consequences of size ↓ with temperature ↑, though long studied remain unsolved, theories include Bergmann's Rule (1847 size variation with temperature or latitude in any taxon);
 Temperature-Size-Rule (slower growth at lower temperatures, larger as adults) (Atkinson, 1994; Angilletta et al., 2004; Stillwell, 2010; Forster et al., 2011)

Motivation and background

- Body size
 - affects individual's biological properties (growth, fecundity, competition)
 - determines population and community structure;
 - controls biomass partitioning;

-reorganizes ecosystems and influences matter and energy fluxes. (Daufresne et al., 2009; Yvon-Durocher et al., 2011; Leinaas etal. 2016; Pershing et al., 2005; Beaugrand et al., 2010; Hebert et al., 2017)

- Contemporary research issues focus on questions:
 - -Do organisms tend to be smaller at high temperatures?
 - -Is Bergmann's rule stronger in homeotherms than poikilotherms, stronger at the intra-, inter- or assemblage level?
 - -Is the pattern manifesting phenotypic plasticity or adaptation? (Meiri, 2011)

Study location & sampling

Temperature gradient

T data:

in situ: (J.A. IMR, H.Ch.E. UiT, A.P. IO PAN, F.C. SAMS) models: NorKyst - J.A. IMR, RASM - R.O. IO PAN, SINMOD - I.E. SINTEF)

Zooplankton: Taxonomic structure

Zooplankton: Biovolume

Zooplankton: Potential Production

(Hirst and Bunker, 2003; Zhou et al., 2010)

Zooplankton: size spectra (NBSS)

Zooplankton: Size structure metrics

Zooplankton: Size structure metrics

Individual: Calanus CV PL distribution

Individual: Calanus CV PL distribution

3

Prosome length [mm]

3.5

4

	Cf	Cf	Cf	Cg	Cg	Cg
	Raunefjord	Ulsfjord	Hornsund	Hornsund	Rijpfjord	Barents
mean PL =	2,20	2,54	2,71	3,03	3,15	3,27
s=	0,16	0,15	0,18	0,19	0,18	0,18

0 15

2

2.5

Individual/Population: Psudocalanus

Individual/Population: Psudocalanus

Individual/Population: Microcalanus

Summary & Conclusions

- The zooplankton size spectra did not differ considerably among the studied locations. This suggest the communities were functioning at relatively similar, semi-steady states.
- The taxonomic composition of zooplankton was changing, though not radically, the diversity was decreasing with latitude.
- Several of the investigated body size related characteristics of zooplankton showed decreasing pattern with increasing temperature over the 20° latitude and 8 °C ecological gradients. This is supportive to the study hypothesis and the Bergmann's Rule.

Summary & Conclusions cont.

With the increasing temperature:

POLISH-NORWEGIAN

- At the level of community, the contribution of small copepods decreased and the mean biovolume of copepods increased;
- At the level of population, the mean size and biovolume of, e.g., *Pseudocalanus* or *Microcalanus* groups, increased;
- At the level of individual, the mean PL of, e.g., *Calanus finmarchicus* and *C. glacialis* CV, increased;
- There were departures from the expected pattern, which can be partially understood with regard to site specific environmental characteristics. Explanations of the departures may involve: influence of "phenology", "disturbance" (advection, food shortage), individual variation, inverse relation or lack of response.

DWARF

Summary & Conclusions cont.

Narodowe Centrum

Badań i Rozwoju

Modified from Daufresne et al. 2009

DWARF

Thank you for your attention

http://www.iopan.gda.pl/projects/Dwarf/

