DWARF annual meeting OSLO, 2015-03-26

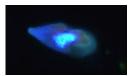
Slawomir Kwasniewski, Emilia Trudnowska, Lukasz Hoppe, Katarzyna Blachowiak-Samolyk

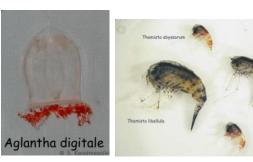
Dr Sławek Kwaśniewski

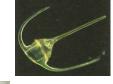
MSc Emilia Trudnowska

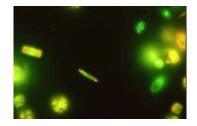
MSc Łukasz Hoppe

Dr hab. Katarzyna Blachowiak -Samolyk


IOPAN, Sopot


WP3 Marine Pelagic Fauna





Limacina helicina © S. Kwasniewski

Rationales of the project

- Body-size reduction is a third universal response to global warming [Daufresne et al., 2009] (next to changes in the phenology [Durant et al., 2007] and in distribution of the species [Visser & Both, 2005]
- Thus, the goal of the project is to test hypothesis that elevated temperatures will induce size reductions in a large range of animals in the Arctic,
- alternatively, to study size responses in biological structures at different levels (genome, cell, body, population and community) to changing thermal regimes.
- The goal will be achieved by exploring variability of size of biological structures at different levels (genome, cell, body, population and community) in response to changing thermal regimes.

The PL distributions were nonoverlapping for populations from Atlantic and Arctic locations but showed some degree of overlap for populations from Atlantic/Arctic water masses

The negative shift for the Arctic *C*. glacialis occurs because water temperature in its marginal areas influenced by Atlantic water ($T > 3^{\circ}C$) is higher than the temperature in its core distribution area ($T < 0^{\circ}C$ in Arctic Water). The temperature in areas of convergence is probably less influential for the boreal *C. finmarchicus*

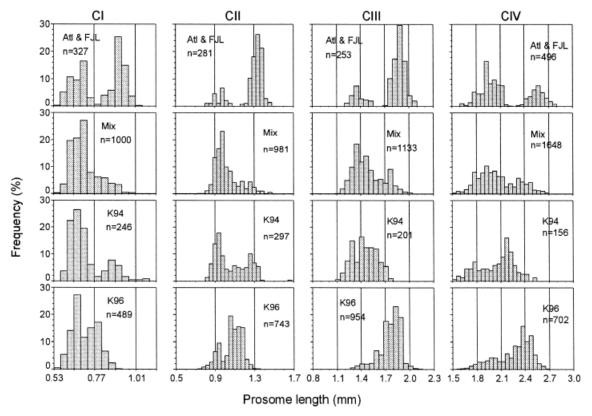
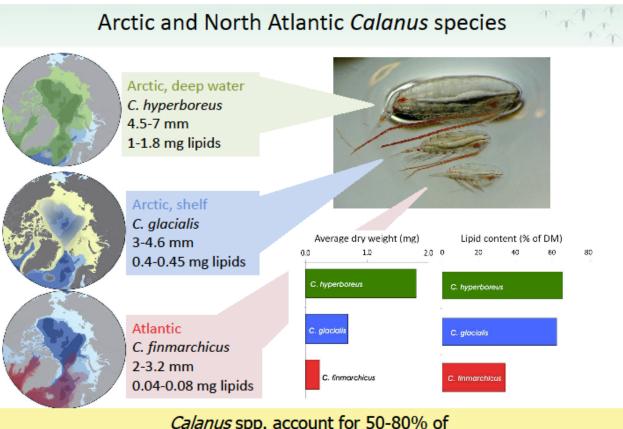
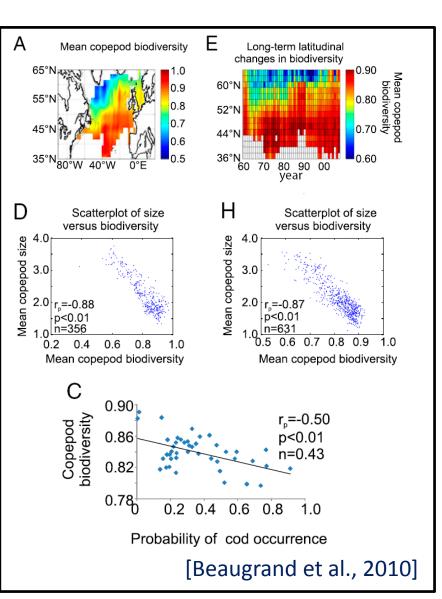



Fig. 4. Prosome length distributions of Calanus CI-CIV from various north latitude locations.



Calanus spp. account for 50-80% of the total mesozooplankton biomass (dry weight) in the Arctic

[Falk-Petersen et al., 2010]

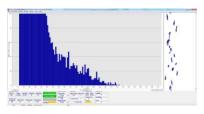
- Importance of temperature & size for living systems
- On the individual level: Physiology
 - metabolism growth reproduction
- On the community level:
 Food web structures
 - predator prey interactions biogeochemical cycles diversity ecosystem functioning

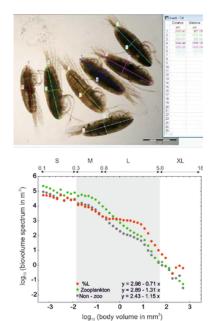
WP 3 aims to document the effects of hydrological conditions on marine plankton composition and size structure with a special focus on C. glacialis, a main inhabitant of Arctic shelves, as well as C. finmarchicus, its main hypothetical, future competitor. Mesozooplankton will be collected with the use of standard net sampling (MPS, net mesh 180 μ m) for size determination of individual species and life stages as well as advanced, high-resolution optical method (Laser Optical Plankton Counter – LOPC) for automatic counting and sizing all plankton particles. The collected specimens will be measured and their size will be converted to biovolume and biomass. Finally the Normalized Biomass Size Spectra (NBSS) of the whole plankton communities in different hydrological regimes will be calculated for production modelling and their trophic relationships.

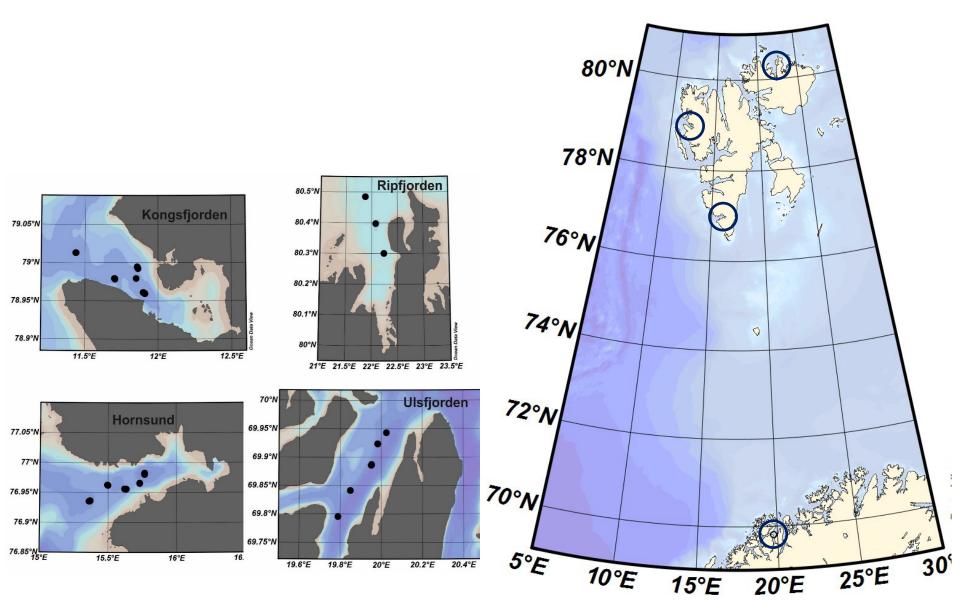
Methods

LOPC 0.1 – 35 mm

MPS 0.18 mm

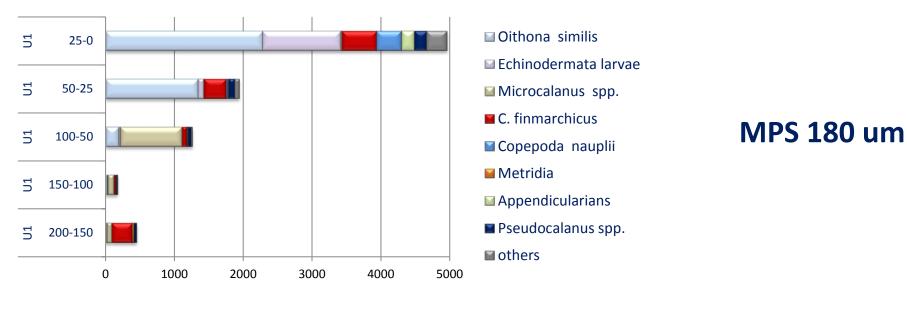

WP2 0.06 mm

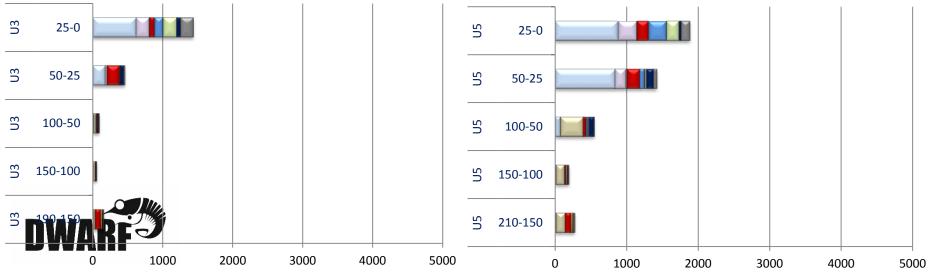

Size spectra Individual/community level



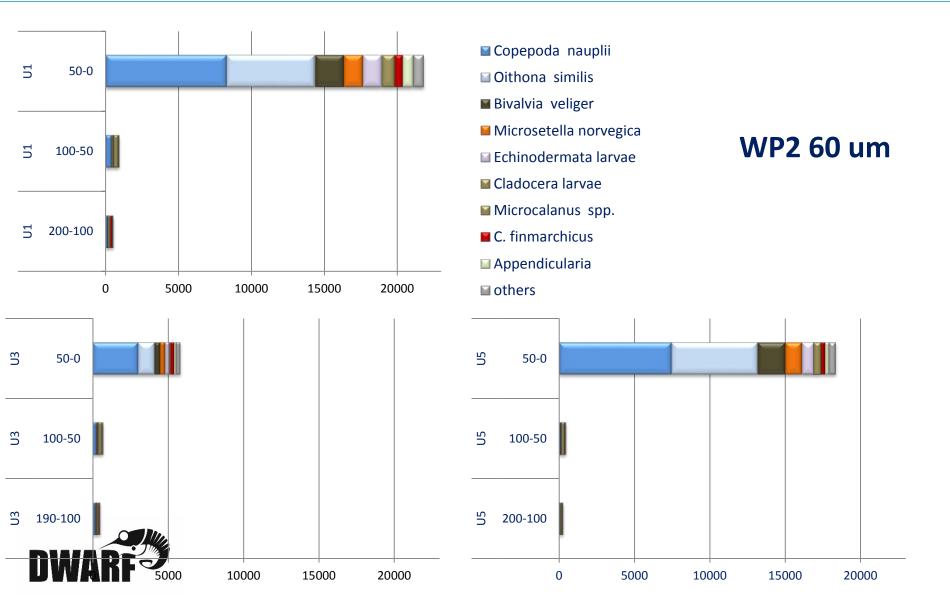
Results so far

DW

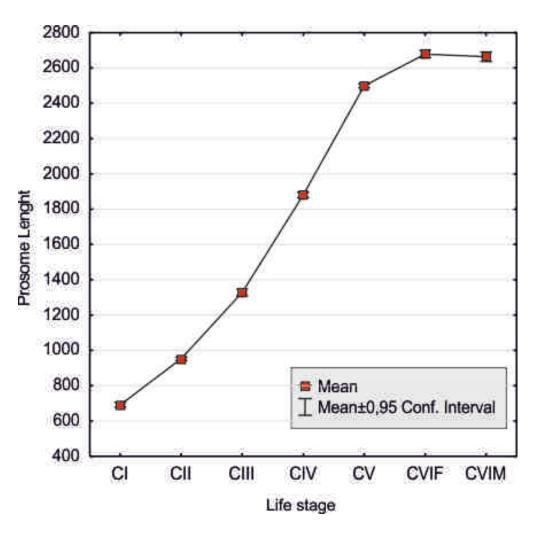




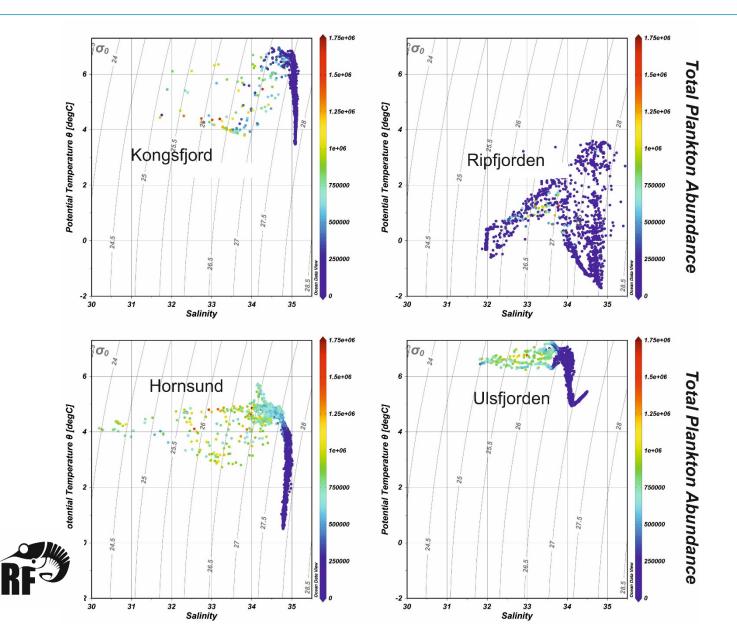
Results so far


Fiord	MPS 180 um	WP2 60 um	LOPC
Ulsfjorden	5 stations	5 stations	5 stations
	& 5 depth layers	& 3 depth layers	& 3 vertical tows
	25 samples	15 samples	15 profiles
Hornsund	5 stations	5 stations	5 stations
	& 5 depth layers	& 3 depth layers	& 3 vertical tows
	25 samples	15 samples	15 profiles
Kongsfjorden	5 stations	5 stations	5 stations
	& 5 depth layers	& 3 depth layers	& 3 vertical tows
	25 samples	15 samples	15 profiles
Rijpfjorden	3 stations	3 stations	3 stations
	& 5 depth layers	& 3 depth layers	& 3 vertical tows
	15 samples	9 samples	9 profiles

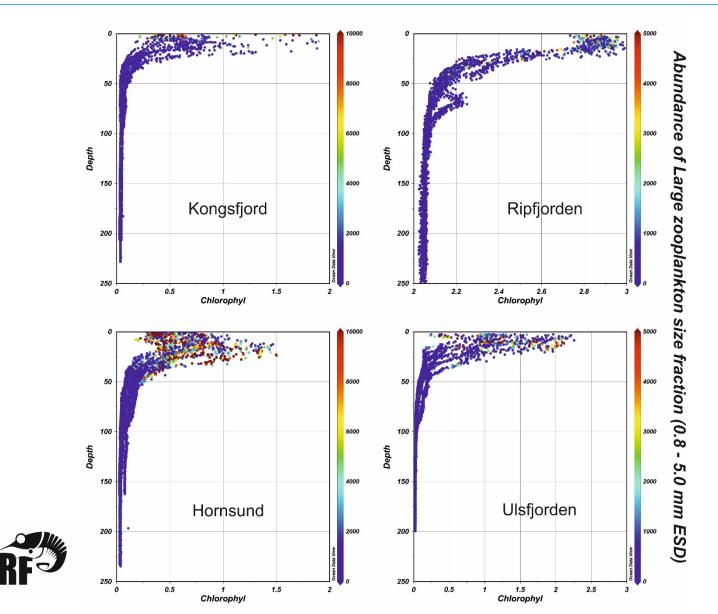
Ulsfjorden – species composition



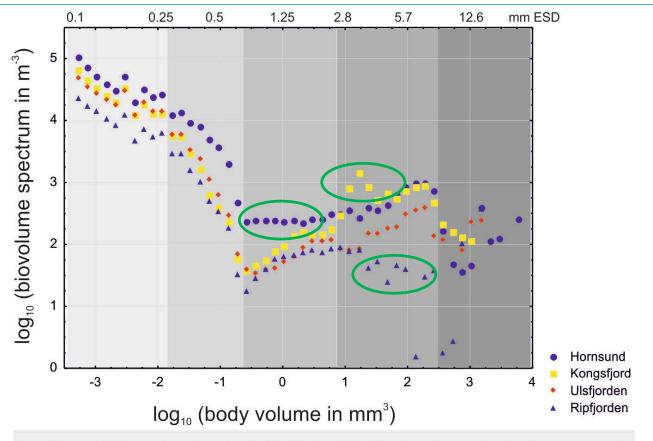
Ulsfjorden – species composition



Ulsfjorden – species size structure


Species	No
C. finmarchicus	1851
Metridia	1065
Acartia	77
C. hyperboreus	74
Cladocera	149
Euphasiaucea	118
Microcalanus	1070
Harpacticoida	278
Nauplii_Copepoda	896
Oithona	964
Paraeuchaeta	63
Pseudocalanus	808
WARE J	

CTD & Total abundance



Vertical profiles of chlorophyll fluorescence and the abundance of larger size fraction in colour

Size spectra

0.1 - 0.3 mm ESD : small particles, Acartia CI-CIII, O. similis, Bivalvia veligers., Triconia, Copepoda Nauplii

- 0.3 0.8 mm ESD : O. similis, Bivalvia veligers, Triconia, Copepoda Nauplii, Pseudocalanus CI-CV, Microcalanus, Metridia CI - CIV, O. atlantica, C. finmarchicus CI - CIII, C. glacialis CI-CII Acartia CIV-CVI, Cyrripedia Iarvae, Polychaeta Iarvae, Euphausiacea calyptopis,
- 0.8 2.5 mm ESD : Metridia CV-CVI, C. finmarchicus CIV-CVI, C. glacialis CIII-CVI, Euphausiacea furcilia, C. hyperboreus CIV, small Themisto, Paraeuchaeta,

2.5 - 10.0 mm ESD : C. hyperboreus CV-CVI, Themisto, Decapoda larvae, Paraeuchaeta, Euphausiacea

10.0 - 35.0 mm ESD : macrozooplankton, not representatively caught

Tasks (acc. project description)

- Task 3.1. Sampling and field work.
- Task 3.2. Assessment of the taxonomic, age and size/biomass structures of mesozooplankton communities based on MPS sampling, including the study on body size of Calanus species.
- Task 3.3. Assessment of the NBSS of mesozooplankton communities based on LOPC surveying.
- Task 3.4. Assessment of the relationships between the taxonomic and size/biomass structures of the mesozooplankton communities and the environmental variables, and of the potential influence of varying structures of mesozooplankton on pelagic food webs and matter and energy fluxes in ecosystems functioning in different temperature regimes.

Deliverables (acc. project description)

- D 3.1. Manuscript of a paper on body size of Calanus species from ecosystems under different temperature regimes, and on the potential importance of the body size differences for the role of Calanus as grazer in pelagic food webs (submitted to a peer-reviewed journal). M34
- D 3.2. Manuscript of a paper on the taxonomic and size/biomass structure of the mesozooplankton communities across different temperature regimes, and on the potential consequence of varying mesozooplankton community structure for matter and energy fluxes in marine ecosystems (submitted to a peer-reviewed journal). M36

Milestones (acc. project description) M14

- M 3.1. Completion of field sampling in summer season at three selected locations. M20 **To be completed**
- M 3.2. Completion of laboratory examinations of community samples, size measurements of Calanus populations. - M27 – In progress
- M 3.3. Retrieving the in situ remote sensing measurements of plankton community size spectra. Gathering of measurements of environmental variables. - M27 – In progress
- M 3.4. Building the data base of relevant measurements. M29 Idle
- M 3.5. Submission of manuscripts. M36 Idle

Plan of future activities

Month	Activity
IV – VI ²⁰¹⁵	Lab work on Hornsund samples
VI	Research cruise and sampling near Bergen
VII – X Lab work on Kongsfjorden sam	
XI - XII	Lab work on Rijpfjorden samples
I — III ²⁰¹⁶	Lab work on Bergen samples
III - V	Lab work continuation
VI - VIII	Data compilation and comparisons
RF IX - XII	Writitng manuscripts

Perspectives for achieving the milestones and deliverables

So far so good

