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Abstract

3400 measurements of algal cell size using the microscopic technique are discussed.
The algal population is observed to evolve. The size distribution is well approx-
imated by the ϕ-normal distribution. There is variability in the form of the size
distribution.

1. Introduction

Let F (x) be the distribution function of the random variable X
describing the size parameter in the investigated population of suspensions,
and N(x) = N0 [1− F (x)] the dispersion distribution. N0 is the number
of cells in unit volume of suspension. The empirical distribution function
Fn(x) and the number N0 can be determined independently (Bricaud and
Morel, 1986). The observed distribution of suspensions is an instantaneous
distribution. Strong turbulent motion (mostly in the case of emulsions and
mineral suspensions) or growth processes (in cells) are responsible for the
rapid variability in dispersion distribution. The variability of distribution
type and of its parameters with respect to time, and the variability of
the physical properties of the suspension (depending on the distribution)
are not well understood. This is probably due to experimental difficulties
and the lack of simple methods of constructing functions that adequately
approximate empirical distributions, especially for densities with larger
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numbers of extreme values. Even though a number of papers on this topic
have appeared – an extensive list of references is given in Jonasz and
Fournier (1996) – the known theoretical functions are, in our opinion,
unsuitable for analysing temporal changes in the dispersion distribution.
We have recently attempted such an analysis of laboratory emulsions and
suspensions in natural waters of low salinity by making use of the variations
in optical properties of suspensions (Kopeć and Pawlak, in press). In the
present work we took direct microscopic measurements of the size parameter
of algal cells. Our observations have shown that four out of five distribution
functions examined possess more than one inflection point, which precludes
the application of many of the theoretical distribution functions commonly
used for approximations. We therefore utilised ϕ-normal distributions, which
differ from the normal distribution in that they contain a correction term.
The coefficients of this are determined using an optimisation method, the
concept of which is taken from the paper by Jonasz and Fournier (1996).

2. ϕ-normal distributions

Let ϕ be a differentiable function increasing strictly within the interval
(a, ∞), such that lim

x→∞
ϕ(x) =∞, lim

x→a+
ϕ(x) = −∞. The distribution

of random variable X is ϕ-normal, since the distribution of the vari-
able Y = ϕ(X) is normal, i.e. its distribution function takes the form

F (y) = P (Y < y) = Φ
(

y−m
σ

)

. As a result of strict monotonicity, we have

P (X < x) = P [ϕ(X) < ϕ(x)], hence for the distribution function and the

density of the X variable for u = ϕ(x)−m
σ
, we obtain

F (x) = P (Y < ϕ(x)) = Φ

[

ϕ(x)−m
σ

]

= Φ(u),

G(x) = Φ ′(u)
ϕ ′(x)

σ
=
1

σ
√
2π
exp

(

−1
2
u2
)

ϕ ′(x). (1)

Obviously, when ϕ(x) = x, distribution (1) becomes a normal one, and
when ϕ(x) = lnx it converts into a log-normal one. Since ϕ does not depend
on either m or σ, the parameters can be estimated in the usual way using
the maximum likelihood method. In particular, if x1, ..., xr are the centres
of class intervals in a separating series and k1, ..., kr are the corresponding
numbers of cells in each class, the estimators of parameters m and σ are

m̂ =
1

N

r
∑

i=1

ki ϕ(xi), σ̂2 =
r
∑

i=1

ki [ϕ(xi)− m̂]2, N =
r
∑

i=1

ki. (2)

By differentiating formulas (1) we can readily infer that the inflection points
of the distribution function F satisfy the equation

σ2ϕ ′′(x)− [ϕ(x)−m]ϕ ′ 2(x) = 0. (3)
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Hence, every inflection point of function ϕ is an inflection point of the
distribution function F if ϕ ′(x) = 0 or ϕ(x) = m.
Pawlak (1998) demonstrated that if the empirical distribution functions

deviate significantly from the normal distribution functions only within
some small interval of the argument, a good approximation of empirical
distributions is then given by the ϕ-normal distribution, where ϕ(x)
= X −R(x). As R(x) is a correction term to the normal distribution, it
should be limited, disappear at ±∞, ensure the monotonicity of the ϕ
function (R′(x) ≤ 1) and the existence of inflection points. Furthermore,
it should deviate from x (generating a normal distribution) to the highest
degree within the measurement interval. From the mathematical point of
view the rational function

R(x) = A
x−B

(x−B)2 + C , C > 0, (4)

can be regarded as the simplest function of this kind.
In order to satisfy the above postulates, parameters A, B and C should

fulfil additional requirements. This is readily accomplished for the function

ϕ(x) = x−
√
C

E

z + p

z2 + 1
, z =

x−B√
C
, (5)

since then

ϕ ′(x) = 1− E(z)
E
, E(z) =

1− 2pz − z2
(1 + z2)2

, (6)

and the extreme value of E(z) is easily determined from the equation

z3 + 3pz2 − 3z − p = 0. (7)
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Fig. 1. Diagrams of the function E(z) for different values of the parameter p
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This allows the value of E to be established, for which the conditions for
monotonicity and the existence of inflection points are fulfilled. Plots of the
function E(z) for several values of p are presented in Fig. 1.

3. Method and results of measurements

A population of the alga Scenedesmus obliquus, prepared in distilled
water and stored for five days, was subjected to investigation. 3400
measurements of cell sizes were made using the microscopic technique
described in a number of papers, e.g. Gurgul, 1991; Dera, 1992; Gurgul
et al., 1992. 5 series of measurements corresponding to the consecutive
days of storage were obtained. The measurements of cell diameters were
accurate to within 1 µm. The results were grouped in separating series, the
width of each class being equal to 2 µm. Thus, 8 size classes were obtained
with centres at points 5, 7, 9, ..., 19. The number of cells was appended to
each class. The number of cells in unit volume was obtained by measuring
their number in the standard volume v0 = 0.45 mm

3 on a Bürcker table.
A separating series, an empirical distribution function and the number of
cells in volume v0 were found each day.

Table 1. Separating series of cells sizes in S. obliquus algae

Day No. 1 2 3 4 5 6 7 8

Class (4, 6〉 (6, 8〉 (8, 10〉 (10, 12〉 (12, 14〉 (14, 16〉 (16, 18〉 (18, 20〉 Totals

Centre
of class 5 7 9 11 13 15 17 19
interval

1 48 86 250 237 40 45 18 14 738
2 number 35 103 170 176 60 42 23 1 610
3 of cells 32 107 190 211 63 31 8 0 642
4 43 132 266 219 84 40 1 0 785
5 41 136 171 188 58 28 3 0 625

The results are set out in Tab. 1. The agreement between the empirical
distributions and the normal distribution was examined using the χ2 test.
The values of these statistics recorded in the samples are given in Tab. 2.
The line below these gives the critical significance levels – the values for
which the critical values of the χ2 statistics are equal to the recorded ones.
Since these are markedly lower than the usual significance levels (0.05–0.02),
the hypothesis about the agreement with the normal distribution must be
rejected. This makes it impossible to use tests based on this distribution
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Table 2. The parameters of theoretical distributions. The last line describes the
maximum deviation of function generating distributions from a normal distribution

Distributions 1 2 3 4 5

P 1 1.5 –1 3 –0.5

Parameters B 10.76029 14.80349 13.20129 13.30937 12.79585

C 4.289131 2.690551 1.05509 0.631764 0.363530

χ2 3.02562 1.255 1.77 1.805 7.363
critical
significance level 0.80562 0.974 0.94 0.937 0.289

normal 177 40 20.8 16.6 17.0
1.4×10−35 4.31×10−7 0.002 0.01 0.009

max | ϕ(x)− x | 2.941 1.77 0.973 1.01 0.452

(test for differences, variance analysis) to examine the variability of mean
values. For the same reasons the hypothesis about the agreement with the
log-normal distribution must also be rejected for all distributions, since the
critical significance levels for this distribution are very much lower than for
the normal one (< 4× 10−6). In order to examine agreements with ϕ-normal
distributions, we determined coefficients B and C for selected values of
p by minimising the χ2 statistics. This was done by calculating χ2 for

parameters B = B0 + r cos
(

2π i
k

)

, C = C0 + r sin
(

2π i
k

)

, i = 1, 2, ..., k

with k chosen arbitrarily. That point in the circle in which χ2 reaches
a minimum becomes the centre of a new circle. The value of r decreases
automatically during every iteration up to some fixed minimum value,
the finding of which is the condition for halting the procedure. At each
iteration, m and σ were calculated using the maximum likelihood method.
All the distributions obtained display agreement with 6 degrees of freedom,
with the empirical distributions at a significance level of at least 0.25.
Tab. 2 gives the values of constants, χ2 statistics and the significance levels
for optimum distributions. The values of χ2 and the critical significance
levels for the normal distribution are appended for comparison. Apart from
the first-day distribution, optimum values of constants were obtained for
E = maxE(z). For that first distribution E was made equal to 1.8 minE(z),
because it was the only distribution for which there was no inflection point
with a vanishing derivative. This is illustrated in Fig. 2. For a better picture
of the accuracy of the approximation, the empirical and theoretical counts
in the relevant class intervals for the distributions from the second, third and
fourth day of observations are given in Tab. 3. For the other distributions,
the approximations are not quite so good.
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Fig. 2. Derivatives of the function ϕ(x). The numbers correspond to the
consecutive days of observation

Table 3. Empirical (LE) and theoretical (LT) numbers of cells in a class for
distributions 2, 3, and 4

Distributions Class intervals Totals
(4, 6〉 (6, 8〉 (8, 10〉 (10, 12〉 (12, 14〉 (14, 16〉 (16, 18〉 (18, 20〉

2 LE 35 103 170 176 60 42 23 1 610
LT 35 100 178 167 63 43 23 1

3 LE 32 107 190 211 63 31 8 0 642
LT 35 101 192 208 64 33 8 1

4 LE 43 132 266 219 84 40 1 0 785
LT 42 142 259 215 85 40 2 0

4. Evolution of the population and distributions

Tab. 4 shows that the population evolved during the period of observa-
tion. It also shows that on different days there were substantial differences in
the proportions of large and small cells in the population. The proportion
of large cells falls from 6 to 0.5%, while that of small ones rises from 22
to 29%. The mean cell size decreases on consecutive days from 10.2 to
9.58 µm. The number of cells in unit volume does not vary in such a uniform
manner; the maximum was reached on the fourth day of observation. The
standard deviation reached a maximum on the second day and a minimum
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on the fourth. The usual test for mean differences shows that they are
significant, e.g. between the first and second, and the fifth mean values
at the 0.0014 level. The differences between the first and second, and the
fourth mean values, and between the third and fifth mean values differ
from zero at a level < 0.01. The differences between the others cannot
be regarded as significant. For significance levels < 0.01 the differences
between mean values can be regarded as significant, despite deviations of
the relevant distributions from the normal. The distributions therefore do
differ significantly. Clearly, agreement of distributions does not necessarily
follow from the non-significance of differences in mean values.

Table 4.Mean values and proportion of cells of different sizes to the overall number
of observations

Day Number of Mean Standard Small Medium Large
cells in value deviation < 9 [µm] 10–15 [µm] > 15 [µm]
unit volume m σ % numbers of observations

1 350 10.11653 2.839896 22 72 6

2 390 10.13443 2.844315 26 68 6

3 346 9.906542 2.462299 25 73 2

4 448 9.746497 2.39494 25.5 74 0.5

5 342 9.5824 2.487732 29 70 1

For the ultimate verification of the hypothesis about the significance
of differences between all distributions, every empirical distribution was
compared with the optimum ϕ-normal distribution for the other four
distributions. In all cases, the χ2 statistics were > 20, which, with 6 degrees
of freedom, yields a critical significance level of < 0.0028. It therefore follows
that the optimum ϕ-normal distribution is a good approximation of the
relevant empirical distribution, but does not display agreement with any
other empirical distribution. We thus conclude that the hypothesis about
the agreement between empirical distributions on different days must be
rejected for all distributions.
More about the relation between the empirical distributions and the

normal distribution can be said on the basis of Fig. 3 and from the data
in the last line of Tab. 2. That contains the maximum differences between
the ϕ functions generating the ϕ-normal distributions used here and the
function y = x generating the normal distribution. The table shows that
the absolute value of this deviation decreases from 2.9 to 0.45. However,
it is evident from Fig. 3 that generating functions oscillate around the
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Fig. 3. Functions ϕ(x) generating theoretical distributions (y = x generates
a normal distribution). The numbers correspond to the consecutive days of
observation

function generating the normal distribution with decreasing amplitude. The
hypothesis that a normal distribution is a boundary distribution in this case
becomes reliable. However, the distributions recorded at the onset of the
observation period differ from it significantly.

5. Conclusions

• A population of S. obliquus algae stored for 5 days in distilled water at
room temperature was subject to significant changes. The mean value
of the size parameter decreased from 10.2 to 9.58 µm. This difference

was significant at the 0.0014 level. The proportion of large cells fell
from 6 to 0.5%, while that of the small ones rose from 22 to 29%.

• Except in one case, the size parameter distributions were very well
approximated by ϕ-normal distributions with generating function co-
efficients obtained by minimising the χ2 statistics. From the statistical
point of view no distribution could be regarded as a normal one.

• The distributions from the consecutive days differed substantially from
one another with respect to the generating function parameters and
were statistically significant.
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• The value of χ2 for approximating the distributions on consecutive
days of observations by a normal distribution decreased from 177 to 17,
and the critical significance level rose to 0.01. The maximum deviation
of the functions generating distributions on the consecutive days
of observations from the function generating a normal distribution
decreased from 2.9 to 0.45. In our opinion this justifies the hypothesis
that a normal distribution is a boundary distribution in this and in
other, similar processes; however, the distributions observed in the
initial developmental phases of a population can differ significantly
from it.
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