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Abstract

Developed at IO PAS, Sopot, and first presented at the BALTEX Study Conference
in Visby (Dera et al., 1995), the improved radiation transfer model was applied to
determine the following radiation fluxes in the southern Baltic region: the flux
entering the Earth’s atmosphere 1, the sum of fluxes absorbed Q2 and scattered
upwards (reflected) in the atmosphere @/, the direct solar ray flux reaching the
sea surface @3, the diffuse solar flux (scattered downwards in the atmosphere)
reaching the sea surface 4, the total solar flux reaching the sea surface @Qs, the
total flux reflected by the sea surface QQg, the total flux entering the water column
Q7, the flux scattered upwards by the water body and leaving the sea surface Qg,
the flux absorbed in the water column g, that absorbed by the water itself Q1¢,
that absorbed by admixtures other than phytoplankton pigments (11, and that
absorbed by phytoplankton pigments 12, the photosynthetically stored radiation
flux Q13 and the effective infrared radiation flux at the sea surface Q4.

The model has been developed for the application of satellite images as the
main source of input data. However, since the relevant satellite data are not yet

* This work was carried out within the framework of the BALTEX Programme and
was financially supported by the Polish State Committee for Scientific Research.
The major part of the paper was presented at the Second Study Conference on
BALTEX, Juliusruh, Riigen, Germany, 25-29 May 1998.
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available, a long-term meteorological and bio-optical standard database has been
used in the computations. The mean monthly fluxes and their balances for the
southern Baltic region, divided into 20 sub-regions, have been obtained for each
month of the year.

1. Introduction

The fluxes of radiant energy flowing through the atmosphere, penetrat-
ing the usually wave-roughened sea surface and entering the water column
in the sea, exert a decisive influence on numerous dynamic, thermodynamic,
chemical and biological processes occurring in the sea-atmosphere system.
These fluxes are therefore fundamental components of the energy balance
of the marine environment and, for application in diverse meteorological,
hydrological and climatological models, have to be accurately determined.
Furthermore, in studies and the modelling of the ecologically and biologi-
cally significant cycles of carbon and other essential elements, it is important
to know the quantities of solar energy available to all levels of the biosphere.
The last ten years have witnessed the development of numerous techniques
for utilising the laws of radiation transfer through the atmosphere and sea
in the remote sensing of a variety of environmental properties and processes,
such as the chlorophyll concentration and the rate of primary production of
organic matter in the sea. For these and other reasons, a very large number of
papers deal with the study and modelling of radiant energy transfer through
the atmosphere and sea (see e.g. Timofeyev, 1983; Lenoble, 1985; Trenberth,
1992 and Mobley, 1994). In most of them the problems of cloudless and
cloudy skies have been addressed separately. The models applicable to
cloudless skies generally make use of simplified forms of the radiative transfer
equation (e.g. Bird and Riodan, 1986; Green et al., 1988; Gueymard, 1993).
On the other hand, the effect of cloudiness on the transmission of light
energy is accounted for by empirical relationships derived for given weather
conditions, types of cloud cover and geographical regions. Reviews of such
models can be found in Timofeyev (1983), and Dobson and Smith (1988).
The inaccuracies in these methods of determining the mean annual energy
fluxes reaching the sea surface can be far in excess of 10 W m~2 (Dobson
and Smith, 1988).

The problems of radiant energy transfer in the sea—atmosphere system
in the context of remote sensing are discussed in depth by Raschke
(1996). Pomeranec (1966) carried out a penetrating study of the complete
energy balance of the Baltic, in which the heat balance model was
based on some 70 thousand empirical hydrometeorological data from the
period 1867 to 1955 and the actinometric data available at the time of
writing. Czyszek et al. (1979), Krezel (1985) and Dera and Rozwadowska
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(1991) elaborated further models and statistical relationships of solar
energy fluxes reaching the surface of the Baltic. These workers established
successive approximations of the mean monthly solar energy totals and
approximate formulas for calculating them on the basis of long-term
hydrometeorological and actinometric data obtained from Baltic shore
stations and the available optical data from Baltic research cruises. However,
these were non-spectral data and models, precluding high precision. In
striving for a more accurate description of the energy reaching the Baltic, the
first spectral model of solar radiation transmission through the atmosphere
over the Baltic was developed (Wozniak and Rozwadowska, 1995), and
soon afterwards, a spectral model of the transfer of this radiation across
a real, i.e. wave-roughened and foam-covered, sea surface (Wozniak S.B.,
1996a.,b, 1997) was conceived. At the same time, the numerous underwater
hydro-optical studies carried out in the past decade have borne fruit in
the form of optical and bio-optical models of the water column (Morel,
1988, 1991; Wozniak and Pelevin, 1991; WozZniak et al., 1992, 1997). The
application of these latest models to the case two waters of the Baltic
(Kaczmarek and WozZniak, 1995) enabled the computations to be performed
which are presented in the present paper. The bio-optical model of the water
column is perhaps the most accurate aspect of the model (see the review by
Dera, 1995).

The aim of the present paper is to compute, with the aid of the coupling
spectral model, the set of 14 components of the radiant energy flux that are
the principal components of the energy balance of the atmosphere and the
Baltic Sea. Because most of the available empirical input data (Augustyn,
1985) were given as monthly means for 20 sub-regions of the southern Baltic,
the present description will be restricted to the mean monthly values of these
fluxes there. The ‘classical’ method of estimation (Gulev, 1997) is applied
in which monthly mean values of the hydrometeorological data are taken as
input data to the model.

2. Materials and methods

The fourteen fundamental radiant energy fluxes usually distinguished
in the sea—atmosphere system have been determined in this paper (Fig. 1).
They are: the flux entering the Earth’s atmosphere @)1, the sum of fluxes
absorbed Q2 and scattered upwards (reflected) in the atmosphere Qo/, the
direct solar ray flux reaching the sea surface @3, the diffuse solar flux
(scattered downwards in the atmosphere) reaching the sea surface @4, the
total solar flux reaching the sea surface @5, the total flux reflected by the sea
surface QJg, the total flux entering the water column ()7, the flux scattered
upwards by the water body and leaving the sea surface Jg, the flux absorbed
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in the water column (g, that absorbed by the water itself @19, that absorbed
by admixtures other than phytoplankton pigments )11, and that absorbed
by phytoplankton pigments 12, the photosynthetically stored radiation flux
Q13 and the effective infrared radiation flux at the sea surface Q4.

S incoming solar
P DL ”
- ‘ radlactzlon scattered ’ i}

1 upward otal energy absorbed
Q, and re-emitted by
M atmosphere

direct absorbed by “scattered
1re; \ atmosphere / downward ~ sensible heat

g A (thermals)
total reaching / ] Co /

Fig. 1. Principal energy fluxes in the atmosphere—ocean system (adapted from
Trenberth, 1992, by A. Rozwadowska)

The subscript numbers attached to the fluxes above and in Fig. 1 serve
to identify them in the tables, figures and text.

The model used in the computations can be presented in the form of
a block diagram (Fig. 2). This consists of blocks of input data, model
formulae allowing the desired quantities to be computed, and computed
flux magnitudes. The model formulae have been divided into five modules:
the equation of the geometry of the Sun—Earth system, the atmospheric
optical transmittance model, the sea—surface optical transmittance model,
the water bio-optical model, and formulae for the effective surface infrared
radiation.

Three of the models mentioned above have been developed for the Baltic
region by the optical group at IO PAS Sopot over many years of investiga-
tions, and have been described in numerous papers: the atmospheric spectral
optical model, still in its initial stages, (Wozniak and Rozwadowska, 1995);
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Fig. 2. Block diagram of the algorithm for computing energy fluxes

the spectral optical model of sea surface transmittance (Wozniak S.B.,
1996a,b, 1997); the spectral bio-optical model of the Baltic water column
(Kaczmarek and Wozniak, 1995), based on an earlier model for oceanic
waters (WoZniak et al., 1992). The algorithm itself is described in detail in
Wozniak et al. (in press).

The formula for the effective infrared radiation through the sea surface
was adopted from Bignami et al. (1995). Based as it is on a very large
quantity of carefully measured, marine, empirical data this formula seems
to be the most appropriate of those currently available:

G = IRT—-IR| =
= co Ty — [0 T(0.653 +0.00535 e1)] x (1+01762n3), (1)
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where
IR — upward radiation flux emitted by the sea,
IR | — downward radiation flux emitted by the atmosphere to the sea,

€ = 0.98 — water emittance,

0 =5.6697 x 1078 W m~—2 K—* — Stefan-Boltzmann constant,
el — water vapour pressure [mb],

ng — total cloud cover [range 0-8].

The following quantities serve as the input data of our complex model:

n — total cloud cover [range 0-1],

P — atmospheric pressure [hPa],

T,  — surface air temperature [°C],

e — relative air humidity over the sea surface [range 0-1],

H  — mean height of wind waves [m],

Ujp — wind speed at standard level 10 m [m s~!], also wind direction,
D — wind fetch [m],

hp  — depth of the basin [m],
Co(0) — surface concentration of chlorophyll a [mg m~
T (0) — sea surface temperature SST [°C].

’]

i

To determine the solar zenith angle ©, time and geographical position are
necessary:

t; - local solar time,

Ng — number of the day in the year,
A — latitude,

® - longitude.

The mean diurnal magnitude of each flux in each month of the year
was calculated. The input data were the mean monthly values of the above
quantities, determined from long-term figures for each of the sub-regions on
the modelling grid (roughly for the period 1970-1990). With the exception
of the Sun’s daily path, the diurnal variability of the separate parameters
was not taken into consideration. The Sun’s daily path was accounted for
by repeating the calculations for successive solar altitudes at 30-minute
intervals, the other values being kept constant, and integrating the results.

Both the time intervals and the subdivision of the study area (see the
model grid — Fig. 3) applied in this work were determined solely by the
available empirical input data. The model itself, including all three of its
principal components, i.e. for the atmosphere, sea surface and water column,
does not impose any such limitations in the Baltic region beyond the area
of water covered by ice.
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latitude °N

longitude °E

Fig. 3. The study area with numbered sub-regions

Most of the input data for the model were taken from publications of the
Institute of Meteorology and Water Management (Augustyn, 1985), where
the multi-annual monthly means of the hydrometeorological parameters for
the grid in Fig. 3 are calculated. The spatial and temporal distributions
of the surface concentrations of chlorophyll a were established for this grid
from our own data obtained from the IO PAS data bank!, and from the
data kindly made available to us by the Sea Fisheries Institute, Gdynia,
and to a small extent by HELCOM (in all, around 1700 readings).

At the same time, the parameters of the model equations applied to
specific local conditions and for verifying the computation results were
determined from the available empirical data on the following quantities:

E4(07, A) - downward spectral irradiance at the sea surface (0~ signifies
“in air’) [W m~2 nm~1],

E4(07, total) — downward irradiance at the sea surface in the total spectral
range of solar radiation [W m~2,

Ed(0~, PAR) — downward irradiance at the sea surface for the PAR spectral
range (Photosynthetically Available Radiation) [W m~2],

R(07, \) — spectra of the reflectance function at the sea surface (ratio
of upward to downward irradiance),

Kq(z, \) — vertical and spectral distributions of the downward irradi-
ance diffuse attenuation function [m=!],

'Regional Oceanographic Database of IO PAS: www/iopan.gda.pl/rbdo/index.html
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Cu(2) — vertical distribution of chlorophyll @ + phae. concentration
[mg m~?],
P(z) — vertical distribution of primary production in the sea

mgC m~? day™'],
ap(z, A\) — vertical and spectral distribution of the light absorption
coefficient of phytoplankton pigments [m~!].

Data on these quantities were gleaned from a number of sources:
many are derived from the exploratory voyages of r/v ‘Oceania’, and are
available from the Regional Oceanographic Data Bank of IO PAS; some are
from the voyages of r/v ‘Profesor Siedlecki’ of the Sea Fisheries Institute,
Gdynia, (especially primary production and chlorophyll concentrations) and
r/v ‘Akademik Kurchatov’ of the P.P. Shirshov Institute of the Russian
Academy of Sciences in Moscow. The data are, among other things, the
result of several international experiments (with the participation of these
and other research vessels), e.g. in the ‘Patchiness Experiment 86" (ICES,
1989), the ‘Experiment Sopot’87” or the ULISSE (Ooms, 1996).

The spectra of reflectance function R(0~, \) were prepared especially
for this calculation by M. Darecki, based on experimental results from the
r/v ‘Oceania’ cruises.

3. Results and discussion

Detailed results of the computations of the fourteen mean radiant
energy fluxes together with the radiation balance for the sea surface
Q15 = Qo — Q14 per 1 m? of surface area @; [W m~2] for each month of
the year are given in Tab. 1. These values were calculated for all twenty
sub-regions of the southern Baltic numbered as on the map (Fig. 3).
Tab. 1 also gives the annual means of the various energy fluxes.

Table 1. Mean radiant energy fluxes @); together with the radiation balance for
the sea surface Q15 = Qo — Q14, per 1 m? of surface area [W m~2] for each month
of the year and for the whole year.

Numbers i = 1,2,3,...14 denote the following fluxes (given also in Fig. 1):
Q1 — flux entering the Earth’s atmosphere, ()2 — flux absorbed in the atmosphere,
Q2 — flux scattered upwards (reflected) in the atmosphere, Q3 — direct solar ray
flux reaching the sea surface, Q4 — diffuse solar flux (scattered downwards in the
atmosphere) reaching the sea surface, Q5 — total solar flux reaching the sea surface,
Q¢ — total flux reflected by the sea surface, Q7 — total flux entering the water
column, Qg — flux scattered upwards by the water body and leaving the sea surface,
Q9 — flux absorbed in the water column, Q19 — flux absorbed by the water itself,
Q11 — flux absorbed by admixtures other than phytoplankton pigments, Q12 — flux
absorbed by phytoplankton pigments, Q13 — photosynthetically stored radiation
flux, Q14 — effective infrared radiation flux at the sea surface
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The spatial differences and temporal variabilities of the various fluxes
and the overall radiant energy balance can be illustrated on the basis of these
results. Graphs exemplifying some of the results will be presented below,
with the mean fluxes given in [W m~2] or given as mean daily (or yearly)
energy doses per 1 m? of surface area [J m~=2 day~!].

Fig. 4 illustrates how the proportions of some of the mean diurnal energy
fluxes vary during the year in the Gdansk Deep (sub-region 18 in Fig. 3).
It shows the energies of the following fluxes — Q2 + Qo — the energy absorbed
and reflected in the atmosphere, Qg — the energy reflected by the surface of
the sea, Qg — the overall energy absorbed by seawater and its components:
Q10 — the energy absorbed by the water itself, Q12 — the energy absorbed by
the phytoplankton, Q11 — the energy absorbed by the remaining constituents
of the water, and ()13 — the energy consumed in primary production
— relative to the solar energy reaching the Earth’s atmosphere.
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Fig. 4. Seasonal variation of the fluxes related to the solar flux (Q;/Q1) = f(t),
the percentage of particular flux in relation to the flux reaching the atmosphere
is represented by appropriate coloured area; example for sub-region 18 (Gdansk

Deep)

Obviously, in the summer months, a far smaller percentage of the
incoming solar energy is absorbed and reflected in the atmosphere, and
a larger one reaches the sea surface. There are two reasons for this. Firstly,
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the mean cloudiness over the Baltic in winter is much greater than in
summer and, moreover, the proportion of low clouds in the overall cloud
cover is larger then. Secondly, the winter sun’s rays are incident on the
Earth at smaller angles. Although these features are generally recognised
and can be predicted from the known patterns of weather changes, our
calculations show the averaged variations in the proportions of these energy
fluxes in the southern Baltic in a quantitative fashion.

The magnitudes of the energy reflected from the sea surface do not alter
much during the year. On average they make up around 2% of the energy at
the Earth’s atmosphere boundary, although instantaneous values of Qg/Q1
can range from 1% to 10%.

The total diurnal energies absorbed by the water depend on meteoro-
logical factors, i.e. they are regulated by the transmission of solar radiation
through the atmosphere. Nevertheless, the proportions of energy absorbed
by the separate components of seawater depend on the annual cycle of
biomass concentration changes in the sea. It is clear from Fig. 4 that both
the proportion of energy absorbed by phytoplankton pigments and that
stored during the photosynthesis of organic matter rise considerably during
the spring blooms and remain at a high level until the autumn.

Tab. 2 sets out the numerical values of these proportions in the various
months for a selected sub-region (No. 18 — the Gdansk Deep).

Table 2. The mean values of particular energy fluxes @; as a percentage of
the energy reaching the Earth’s atmosphere @ (e.g. Q;/@1 in %). Example for
sub-region 18

Month 242" 3 4 ) 6 7 8 9 10 11 12 13

January 746 6.9 185 254 248 23.0 0.084 229 164 5.7 0.72 0.019
February 56.9 17.9 25.2 43.1 3.31 39.8 0.144 39.6 28.2 10.1 1.30 0.024
March ol.1 245 244 48.9 295 459 0.176 45.8 31.0 12.3 2.43 0.043

April 44.8 34.5 20.7 55.2 2.78 52.4 0.214 52.2 32.0 12.7 7.58 0.131
May 37.8 43.9 18.4 62.2 2.79 59.4 0.239 59.2 37.0 14.5 7.74 0.139
June 44.3 36.5 19.2 55.7 2.36 53.3 0.215 53.1 34.2 14.1 4.81 0.105
July 40.7 39.9 19.4 59.3 2.54 56.8 0.229 56.5 36.3 15.1 5.15 0.121

August 39.8 41.5 18.7 60.2 2.83 57.4 0.228 57.1 37.4 153 4.45 0.111
September 48.0 32.1 19.9 52.0 3.03 49.0 0.195 48.8 32.2 13.0 3.56 0.095
October 57.3 21.3 21.4 42.7 3.19 39.5 0.158 39.4 26.3 10.4 2.66 0.081
November 72.6 8.5 18.9 27.4 254 24.9 0.101 24.8 16.6 6.4 1.78 0.069
December 75.6 5.9 18.5 24.4 2.27 22.1 0.082 22.1 15.8 5.5 0.74 0.024

year 46.5 33.5 20.0 53.5 2.75 50.8 0.203 50.6 32.7 13.1 4.72 0.101
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Variations in the chlorophyll a concentration (and hence in the biomass)
in the water affect the absorption of radiant energy in the surface seawater.
With the aid of this model it has been calculated, and is shown in
Fig. 5, how for selected concentrations of chlorophyll a (approximating
to the average and extreme values measured in the Baltic) the energy
absorption distribution varies with depth in the sea. For example, at high
concentrations of chlorophyll, 80% of the radiant energy penetrating the sea
surface is absorbed in the first 0.7 m of water. When concentrations are low,
this depth increases to around 3 m.
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Fig. 5. Radiation absorbed in the water column, example for 3 different surface
chlorophyll concentrations C,(0): 35 mg m~3, 3.5 mg m~3 and 0.35 mg m~3

Fig. 6 shows the spatial distributions of the total solar energy flux
absorbed by the sea ()9 for the winter and summer solstice months
(December — Fig. 6a, June — Fig. 6b). The colossal differences in the amounts
of energy absorbed by the sea between winter and summer are obvious,
as is a certain spatial differentiation, though this is small in comparison
to the absolute energy values. In view of the low spatial density of data
(the mid-points of each sub-region are considered — a total of 20 points), the
layout of the isolines on the maps should be treated as giving a rough idea of
the situation. Nevertheless, certain regularities can be inferred from them.
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Fig. 6. Solar radiation absorbed in the southern Baltic Q9 — average distribution
in December (a), June (b)

In December there is an evident latitudinal distribution of the variations
in absorbed energy, which tends to fall off in the northward direction and
which accords with the ever lower position of the Sun above the horizon. In
summer (in June), the isolines of energy absorbed by the sea tend to fall off
from the open sea towards the shores. But this is a complex situation and,
as has been mentioned before, may be encumbered with errors inherent
in the graph. The reason for such a distribution is probably the spatial
differentiation in the cloud cover. It is known that in summer the mean
transmittance of the atmosphere with respect to solar irradiance over the
Baltic is greater than that over the land, which can be accounted for by the
mechanism of cloud formation (Dera and Rozwadowska, 1991).
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The photosynthetically stored radiation (PSR) @13 shown in Fig. 7 is
dependent only to a limited extent on the above-mentioned climatic factors.
The diagram shows clearly that the annual PSR is highest around the
mouths of large rivers. In all probability, the factor principally responsible
for controlling the accumulation of energy during photosynthesis is the
inflow of nutrients from these rivers. In the entire study region, the amount
of energy used up in photosynthesis during the year is scarcely 0.37% of the
energy absorbed by the water during this time.
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Fig. 7. Photosynthetically stored radiation (PSR) Q13 — spatial distribution of
annual totals

A significant quantity from the climatological point of view is the
radiation balance for the sea surface, i.e. the difference between the energy
absorbed below the sea surface and the energy effectively radiated by this
surface Q15 = Qg — Q14. According to our calculations, the mean annual
value of this balance in the southern Baltic is clearly positive — ca 1.7
GJ m~2 year~! (or in average 53.9 W m~2). This makes up some 20% of
the total solar energy re-emitted into the atmosphere from this part of the
Baltic. The spatial variations in the annual value of this balance in the study
area (Fig. 8) are but slight, since its latitudinal extent is rather small. This
differentiation resembles the picture in Fig. 6b, i.e. the spatial differentiation
in the energy absorbed by the sea in June. Obviously, the summer values
of absorbed energy, which are a whole order of magnitude larger than the
winter values, must affect the annual energy balance at the sea surface
to a greater degree. However, the balance Q15 = Q9 — Q14 for particular
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Fig. 8. Radiative energy balance Q15 = Qg — Q14 at the surface of the southern
Baltic — spatial distribution of mean annual totals
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Fig. 9. Seasonal variation of solar radiation absorbed in seawater (Jg9 and the
effective infrared radiation at the sea surface Q14 for 2 selected sub-regions of the
southern Baltic

months in the year is not positive throughout the year. As the examples of
two sub-regions in Fig. 9 show, this varies in accordance with the seasonal
changes in the energy reaching the sea surface. Values are negative in the
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winter months, with a minimum diurnal mean of around —6 MJ m~2 day~!

(-64.9 W m~2) in December, whereas positive values are recorded at other
times of the year, peaking at around +17 MJ m~2 day~! (196.8 W m~2)
in June. The resultant IR radiation flux across the sea surface does not
change much, fluctuating around a value of 7 MJ m~2 day~! (81 W m—2).
Numerous similar and other conclusions can be drawn, according to need,
from the data provided in Tab. 1.

When the model was applied to southern Baltic conditions, its various
elements were subjected to verification. This entailed, inter alia, comparison
of the values computed from the model with readings obtained in situ. Tab. 3
exemplifies some of the results of this verification. The first two refer to the
atmospheric part of the model. The diurnal values of the energy flux reaching
the sea surface ()5, recorded on pyranometers, were compared with the
corresponding values determined from the model, the input data for which
were meteorological parameters measured concurrently (Fig. 10). A similar
validation was carried out for hourly time intervals (item 2 in Tab. 3). The
extent to which the chlorophyll a relationship C,(z) = f(C,(0)) predicted
by the model reflects the actual chlorophyll concentration in the water
column was verified using a large set of data (item 3, Tab. 3). Further, such
aspects of the model as the spectral functions of light attenuation in the sea
(total, or by phytoplankton pigments) K4(\) and K, (A\) were also verified.
In this case for the chlorophyll concentrations measured at a given depth
Ca(z) the model functions K4(A\) = f(Ca(2)) and Kp(A) = f(Ca(2)) were

Table 3. Estimated errors of the model computations

No. Parameter Error [%] Number
systematic statistical of data
- +
1 daily flux on sea surface Q5  —5.9 14.1 141 22
2 irradiation — mean per hour 4.9 43.2 432 375
3 total C, in euphotic zone -6 68 68 1400
4 K\ 4.37 19 34.4 4700
5 Kp(X) -7.6 40.7 43.8 4600
6 K, — mean in PAR range -6.9 36.3 36.2 578
7 absorbed energy:
8 by water Q19 -2.71 4.29 4.29 216
9 by pigments @12 5 9.02 9.02 216
10 by other admixtures Q11 0.06 0.88 0.88 216
11  daily primary production Q13 0.95 46.4  90.3 612




302 S. Kaczmarek, J. Dera

calculated and compared with the values measured in situ (items 4 and 5,
Tab. 3). Primary production in the sea was compared with the modelled
values in such a way that measurements of water temperatures, PAR
just above the sea surface and surface concentrations of chlorophyll were
introduced as input data in the ‘submarine’ part of the model. The modelled
values of primary production computed from these data were compared
with the in situ measurements performed by the C' radioisotope method
(item 11, Tab. 3). This comparison thereby verifies the entire ‘submarine’
part of the model.
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Fig. 10. Computed vs. measured values of the energy reaching the sea surface Qs

As can be seen from Tab. 3, the magnitude of the model’s systematic
errors < € > is no greater than 10%. The statistical error in the model is
understood to be the magnitude of the standard deviation o, calculated
from either linear or logarithmic statistics, i.e. using the expressions given
below:

<& >g= 10Msl@e/Tm) _ 1,
— 100log(@e/zm)—010g) _ 1,

Emin
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and
— 10(10g($C/$m)+‘710g> _ 17

Emax

where

< € >4 — geometric mean of errors,

Emin and emax — statistical range of variability,
Olog  — standard deviation of log(xc/xm).

The magnitudes of the errors given in Tab. 3 are due to the nature of
the model employed in this work. It is a semi-empirical model, developed in
such a way as to make use of mainly time- and space-averaged relationships
between various optical properties of the environment and its hydrological
and meteorological parameters. That is why it is not a diagnostic model
enabling short-term and local values of particular energy fluxes to be
calculated. On the other hand it does enable long-term, e.g. seasonal, aspects
of the energy balance to be well determined from appropriate input data
statistics.

In any case, we have to stress, that the result of calculation depends to
some extent on the time averaging method (see e.g. Gulev, 1997). For this
reason, when we apply the monthly mean meteo data set as input data to the
model, the flux of energy transferred through the atmosphere (and thus the
further component fluxes) may be somewhat overestimated. On the other
hand, the model itself does not contain formulae for the transmission of
light through high clouds; moreover, for lack of a suitable number of marine
meteo data, the existing formulae for low clouds were developed in part from
coastal measurements. It is therefore possible that with the present version
of the model we have underestimated the quantities of energy transmitted
through the atmosphere, as can be seen in item 1 of Tab. 3.

The precision of the model depends on the accuracy and the degree
to which the input data are representative of a particular season and
sub-region. One can thus raise the reliability of the estimated fluxes by
employing satellite monitoring to obtain these data.

4. Conclusions

The result of our model computations are long-term mean values of
the radiant energy fluxes in the southern Baltic region; these calculations
cover all the basic radiant energy fluxes in the sea-atmosphere system.
The systematic errors of the individual model computations are no more
than a few percent. However, as the statistical errors of the model may be
considerable, it should not be applied to computations based on a single
set of short-term input data (e.g. for a single 24 h period) — see Tab. 3
— estimated errors of the model computations.
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Of all the results obtained, the amount of energy absorbed in the sea,
that re-emitted into the atmosphere by the sea surface, and the balance of
these two values, are of fundamental significance for climatological research.
On the other hand, the value of greatest importance for marine ecology is
the energy consumed by the photosynthetic primary production of biomass
in the sea.

The radiant energy balance of the southern Baltic, 7.e. the annual
mean in the entire study area, Q15 = Q9 — Q14 is clearly positive at
around 1.7 GJ m~2 year™! (53.9 W m~2). This is around 20% of the
solar energy reaching the atmosphere in this region. The balance (15 is,
however, negative in the autumn and winter months, 7.e. from October
to February, which means that at this time the sea is releasing stored
energy to the atmosphere. This balance drops to a minimum, around
6 MJ m~2 day~! (-64.9 W m~2) in December, and reaches a maximum,
around +17 MJ m~2 day~! (196.8 W m~2) in June. The effective flux of
energy re-emitted by the sea surface (14 does not vary significantly during
the year, and fluctuates around a value of +7 MJ m~2 day~! (81 W m~2).

The photosynthetically stored radiation ()13 in the water column of the
southern Baltic makes up barely 0.37% of the energy absorbed by the sea
throughout the year, i.e. about 9 MJ m~2 year—! (the average value for the
whole region). This means 0.29 W m~2, or that on average around 230 g of
carbon are assimilated beneath 1 m? of water each year.
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