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Abstract

The probability density function of the surface elevation of a non-Gaussian
random wave field is obtained. The derivation is based on the maximum entropy
(information) principle with the first four statistical moments of the surface
elevation used as constraints. The density function is found by the use of the
Lagrangian multipliers method and it is shown that only two of four Lagrangian
multipliers are independent. The applied method of numerical solution is described
in detail and the useful nomograms that give the Lagrangian multipliers as
functions of skewness and kurtosis are calculated and incorporated in the paper.
For slightly nonlinear waves the approximate maximum-entropy probability

distribution is developed. The condition of the existence of this approximate
distribution agrees with the empirical criterion for small deviations from the
Gaussian distribution of random water waves.
The theoretical results compare well with field experiment data of Ochi and

Wang (1984), even in the strongly non-Gaussian case.

1. Introduction

Wind waves are treated in general as a random process whose random-
ness follows from the nature of the generating forces and is a consequence
of various instabilities in the wave evolution process. If we assume that the
wind wave is a composition of denumerably many independent harmonic
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components, then by the central-limit theorem the free-surface elevation

becomes Gaussian. In the case of weak nonlinear interactions a certain

deviation from the Gaussian distribution may appear, as shown theoretically

by Longuet-Higgins (1963). Among the experimental data, the probability

distribution of which differs essentially from the Gaussian distribution,

one can list the results of the ‘Lubiatowo ′74’ expedition (Bitner, 1980)

and the data studied by Ochi and Wang (1984). The results of those

experiments reveal the existence of strong deviations from the Gaussian

distribution, particularly in the case of steep waves approaching the coastal

zone. The laboratory investigations of Huang and Long (1980) show clearly

the non-Gaussian character of a free-surface elevation.

The accurate determination of probability distribution is very important

for the prediction of wave characteristics in engineering applications. With

the increasing number of applications of remote sensing techniques based on

optical as well as microwave systems (e.g. Synthetic Aperture Radar (SAR)),

there is a need for the precise determination of probabilistic properties of

a free-surface elevation.

There are three proposals for the non-Gaussian probability distributions

of the surface elevation in the literature. The first one was given by

Longuet-Higgins (1963) who used the Gram-Charlier series in Edgeworth’s

form. The second proposal is due to Tayfun (1980) and Huang et al.

(1983), who devised a formula for the probability density based on the

representation of free-surface elevation in the Stokes expansion of the second

and third order.

Another non-Gaussian probability distribution of a free surface elevation

based on the maximum entropy (information) principle was introduced by

Cieślikiewicz (1988, 1990). This method is an alternative to the earlier

approaches, and since no special representation of the random field of wind

waves is used, one may expect that the method will find applications in

a wide range of wave conditions.

In the present study the maximum-entropy approach is analysed in

greater detail. The theoretical results are compared with the experimental

data of Ochi and Wang (1984). These data, obtained during severe storms

for a wide range of water depths, prove that the present approach is accurate

even for steep waves. The calculated probability functions are highly

consistent with the experimental values. The final part of this paper outlines

the practical use of the non-Gaussian probability density determined by the

maximum-entropy method in oceanography and engineering practice.
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2. Maximum-entropy probability density for a random wind

wave field

Jaynes (1957) introduced the maximum entropy principle as a criterion
for selecting the probability distribution on the basis of partial knowledge
(information) about the system. Essentially, the principle states that the
probability distribution which best describes the available information, but
is maximally non-committal with regard to the unavailable information,
is the one that maximises the Shannon entropy subject to the given
information as constraints. Jaynes (1968) also shows that ‘the probability
distribution which maximises the entropy is numerically identical to the
frequency distribution which can be realised in the greatest number of
ways’ . The maximum entropy principle turns out to be fundamental for
the application to real systems in physics.

In the case of random water waves we prescribe the constraints in
the form of given values of the statistical moments of the free-surface
elevation ξ. Such a choice emerges from the following two reasons: firstly, the
Longuet-Higgins distribution is parametrised by the moments (cumulants,
in fact), and we wish to secure the possibility of comparison; secondly, both
in laboratory and full-scale measurements it is the statistical moments of
a surface elevation that are often determined. Choosing them as constraints
enables the theoretical results to be verified experimentally.

We assume that the mean value of the free-surface elevation ξ is zero.
Further, let the variance µ2 and the moments µ3 and µ4 of the third and
fourth order of this random variable be given. Let Φ(µ2, µ3, µ4) denote the
set of probability density functions p(ξ) which reproduce these moments:

Φ(µ2, µ3, µ4) =

{

p(ξ) : p(ξ) ≥ 0,
+∞
∫

−∞

p(ξ) dξ = 1,

+∞
∫

−∞

ξp(ξ) dξ = 0,

+∞
∫

−∞

ξnp(ξ) dξ = µn for n = 2, 3, 4

}

. (1)

We shall determine the so-called representative distribution for this
set, i.e. the distribution which maximises the entropy on Φ. Owing to the
maximum entropy principle, the representative distribution gives the fullest
and most objective description of the ‘statistical knowledge’ contained in
the moments µ2, µ3 and µ4. The entropy S associated with the distribution
p is defined as a functional of the form

S[p] = −
+∞
∫

−∞

p(ξ) ln p(ξ) dξ. (2)
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We shall find the representative distribution p∗ for the set Φ such that

S[p∗] = max
p∈Φ
S[p] (3)

by the use of the Lagrangian multipliers method.

Consider the functional

S̃[p] = −
+∞
∫

−∞

p(ξ)
[

ln p(ξ) +
4
∑

m=0

αmξ
m
]

dξ (4)

in which αm, m = 0, 1, . . . 4, are the Lagrangian multipliers. From the
condition for the functional S̃ to be extreme

δ S̃[p]

δ p(ξ)

∣

∣

∣

∣

p=p∗
= 0 , (5)

where δ/δp(ξ) denotes a functional derivative, we obtain

p∗(ξ) = A−1 exp
{

−
4
∑

m=1

αmξ
m
}

(6)

in which A−1 = exp{−1− α0}. To ensure the entropy (2) is finite we have
to assume that

α4 > 0. (7)

Using definition (1) of the set of probability density functions Φ, we
can determine the unknown Lagrangian multipliers αm and then the
normalisation factor A. Thus, we have

{

I1 = 0
In = µnI0 for n = 2, 3, 4,

(8)

where

In =

+∞
∫

−∞

ξn exp
{

−
4
∑

m=1

αmξ
m
}

dξ. (9)

The normalisation factor is given by

A = I0. (10)

System (8) consists of four nonlinear equations with respect to four
unknown quantities α1, . . . , α4. Using the obvious relations

+∞
∫

−∞

d

dξ

{

exp
[

−
4
∑

m=1

αmξ
m
]}

dξ ≡ 0,

+∞
∫

−∞

d

dξ

{

ξ exp
[

−
4
∑

m=1

αmξ
m
]}

dξ ≡ 0 (11)
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one can readily verify the following identities (Cieślikiewicz, 1988, 1990)

{

α1I0 + 2α2I1 + 3α3I2 + 4α4I3 ≡ 0
I0 − α1I1 − 2α2I2 − 3α3I3 − 4α4I4 ≡ 0

(12)

which allow, by the use of (8), the expression, for example, of α1 and α2 in
terms of α3 and α4











α1 = −3µ2α3 − 4µ3α4

α2 =
1

2µ2
(1− 3µ3α3 − 4µ4α4).

(13)

Our task finally reduces to solving the system of four nonlinear equations

(8) with unknown quantites α3 and α4. Note that the unknown Lagrangian
multipliers α3 and α4 appear in (8) as parameters of integrals of the type

(9). As we are unable to calculate these integrals analytically, numerical

calculations are needed. It should be noted that the identities (12) play
a key role in the numerical calculations as they provide a very efficient

means of finding an initial guess good enough for conversion to a solution.

The numerical algorithm will be presented in the next section. In section

4 an approximate analytical solution for small deviations of p∗ from the
Gaussian distribution will be presented.

Now let us consider two special cases of the problem. Firstly, we shall

try to determine the representative distribution p∗ for Φ(µ2, µ3) (when only

the moments µ2 and µ3 are given). Then we have

S̃[p] = −
+∞
∫

−∞

p(ξ)
[

ln p(ξ) +
3
∑

m=0

γmξ
m
]

dξ, (14)

and

δS̃

δp
= 0 =⇒ p = B exp(−γ1ξ − γ2ξ2 − γ3ξ3). (15)

If γ3 6= 0, then S[p] =∞ and we thus see that a representative distribution
of Φ(µ2, µ3) does not exist.

Finally, let us consider the problem of finding a representative distribu-

tion p∗ of Φ(µ2) (when only µ2 is given). In this case we obtain

p∗(ξ) =
1√
2πµ2

exp

(

− ξ
2

2µ2

)

(16)

which is the probability density function of the Gaussian distribution. It
follows, therefore, that the representative distribution for Φ(µ2) is Gaussian.
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3. Numerical evaluation of Lagrangian multipliers

For convenience, let us slightly modify our formulation in this section.
It can be easily shown that the probability density function (6) may be
expressed by the following formulae

ρ∗(ξ) = (σB)−1 exp
{

−
4
∑

m=1

βm(ξ/σ)
m
}

, (17)

where

β4 > 0, (18)

and










β1 = −(3β3 + 4λ3β4)

β2 =
1

2
(1− 3λ3β3 − 4λ4β4).

(19)

In these formulae the standard deviation σ, skewness λ3 and kurtosis λ4 are
defined as

σ =
√
µ2, λ3 =

µ3
σ3
, λ4 =

µ4
σ4
. (20)

The following system of equations determines the unknown multipliers
β3 and β4

{

J1 = 0, J2 = J0
J3 = λ3J0, J4 = λ4J0

(21)

in which

Jn =

+∞
∫

−∞

ξn exp
{

−
4
∑

m=1

βmξ
m
}

dξ. (22)

The constant B in (17) is given by

B = J0. (23)

The representation of the probability density function in the form of
eq. (17) is advantageous since the evaluation procedure for B, β1, . . ., β4,
determined by eqs. (19) to (21), does not depend on the variance σ2. The
parameters A, α1, . . . , α4 can be retrieved by using the expressions:

{

A = σB
αm = βm/σ

m for m = 1, . . . , 4.
(24)

In order to determine the parameters of the probability function (17),
we have to solve the system of equations (21) with respect to the unknowns
β3 and β4. The quantities β1 and β2 are given by formulae (19). Because
of the symmetry of the system (21), however, we solve a four-dimensional
problem forgetting, as it were, the identities (19). This proves very
effective on condition that the coordinates of the starting point satisfy
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identities (19). A general algorithm for numerical calculation by the use

of the four-dimensional Newton method is described below.

Let

β = [β1, β2, β3, β4]
T. (25)

By means of (21) we can express our system in the form

F (β) = 0 (26)

in which

F = [J1, J2 − J0, J3 − λ3J0, J4 − λ4J0]T. (27)

Then the iterative algorithm of the Newton method takes the form

J (β(k)) (β(k+1) − β(k)) = −F (β(k)), (28)

where the Jacobian matrix J (β) reads

J =









−J2 −J3 −J4 −J5
−J3 + J1 −J4 + J2 −J5 + J3 −J6 + J4
−J4 + λ3J1 −J5 + λ3J2 −J6 + λ3J3 −J7 + λ3J4
−J5 + λ4J1 −J6 + λ4J2 −J7 + λ4J3 −J8 + λ4J4









. (29)

The numerical calculations are carried out on a grid covering a certain

(λ3, λ4) region. This region is selected such that all points corresponding

to the values of skewness λ3 and kurtosis λ4 from the experimental

data of Ochi and Wang (1984) lie within. The system of equations (21)

is solved at the discrete set of grid points with the grid spacing ∆λ3
= 0.02 and ∆λ4 = 0.04. The two-dimensional mesh covering the region of

interest on plane (λ3, λ4) is fine enough to prepare nomograms for the sought

– after Lagrangian multipliers. These nomograms for β3 and β4 are presented

in Figs. 1a and 1b respectively. In Fig. 1c the nomogram for the constant

B is shown. The two unfilled zones in each of the Figs. 1a, 1b and 1c in

the upper-left and the lower-right corners correspond to regions (λ3, λ4) in

which the convergence of the Newton method proved very poor.

The nomograms for the Lagrangian multipliers β3, β4 and constant B,

which are the parameters of probability density function (17), are very useful

in practical applications of the maximum-entropy probability distribution.

One can avoid the complicated numerical calculations and, given the values

of the skewness λ3 and kurtosis λ4, the parameters β3, β4 and B can be

read off from Figs. 1a, 1b and 1c. Subsequently, the parameters β1 and β2
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can be obtained from eqs. (19). The maximum-entropy probability density
function (17) for a given standard deviation σ, skewness λ3 and kurtosis λ4
can therefore be determined easily.

4. An approximate solution for small deviations from the

Gaussian distribution

In this section, the formulation using αs and A will be used rather
than that with βs and B. A characteristic function of the representative
distribution (6) has the form

θ∗(t) = A−1
+∞
∫

−∞

exp
{

itξ −
4
∑

m=1

αmξ
m
}

dξ. (30)

The addition to the normal density can be extracted by expanding the
function exp{−α1ξ − α3ξ3 − α4ξ4} into a series

θ∗(t)=A−1
+∞
∫

−∞

dξ eitξ−α2ξ
2

∞
∑

n=0

n
∑

k=0

k
∑

l=0

(−1)n
n!

(

n

k

)(

k

l

)

×

× αn−k1 αk−l3 αl4ξn+2k+l. (31)

The following equalities are readily verifiable:

+∞
∫

−∞

ξneitξ−α2ξ
2

dξ = (−i)n d
n

dtn

+∞
∫

−∞

eitξ−α2ξ
2

dξ =

= (−i)n
√

π

α2

dn

dtn
exp

(

− t
2

4α2

)

=

= (i)n
√

π

α2
(2α2)

−n/2 exp

(

− t
2

4α2

)

Hn(t/
√
2α2) (32)

in which Hn(·) denotes the n-th Hermite polynomial. Using (32) we can
describe the characteristic function θ∗ in the form of an infinite sum

θ∗(t)=A−1
√

π

α2
exp

(

− t
2

4α2

)

∞
∑

n=0

n
∑

k=0

k
∑

l=0

(−1)n
n!

(

n

k

)(

k

l

)

×

× αn−k1 αk−l3 αl4 in+2k+l (2α2)−(n+2k+l)/2Hn+2k+l(t/
√
2α2). (33)

Calculating the successive derivatives of the function θ∗ for t = 0 we
obtain the moments of the probability distribution ξ

inµn =
dnθ∗(t)

dθn

∣

∣

∣

∣

t=0
. (34)
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If the distribution (6) differs slightly from the Gaussian, then the

exponent of the function exp{−α1ξ − α3ξ3 − α4ξ4} takes only small values
for ξ such that exp (−α2ξ2) is significantly greater than zero (say, for ξ in
the region

√
α2|ξ| < 3/

√
2, which corresponds to |ξ| < 3σ for the Gaussian

distribution). For sufficiently small deviations, the first two terms of the

outer sum in (33) will give reliable results. A large error for large values of

ξ is non-essential, since the value of exp{−α2ξ2} is then close to zero.
Taking the first two terms of the outer sum in (33) and using the

following formulas for Hermite polynomials

H2n(0) = (−1)n(2n− 1)!!, H2n+1(0) = 0 (35)

formula (34) yields the following system of equations with unknowns A,

α1, ..., α4























































































1 − 3α4

(2α2)
2 = A

√

α2
π

α1
2α2
+
3α3

(2α2)
2 = 0

1

2α2
− 15α4
(2α2)

3 = A

√

α2
π
µ2

− 3α1
(2α2)

2 −
15α3

(2α2)
3 = A

√

α2
π
µ3

3

(2α2)
2 −
105α4

(2α2)
4 = A

√

α2
π
µ4 .

(36)

Solving this system we get







































A =
4

b

√

2πµ2
a

α1 =
2a2µ3
bµ22
, α2 =

a

2µ2

α3 = −
2a3µ3
3bµ32

, α4 =
a2(1− a)
3bµ22

,

(37)

where

a = µ2(4µ2 −
√

16µ22 − 5µ4)/µ4, b = 5− a. (38)
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In order to guarantee the existence of this solution and to satisfy the
condition (7) we have to assume that

µ4 < 3µ
2
2 if µ3 6= 0 or µ4 ≤ 3µ22 if µ3 = 0. (39)

Note that for µ3 → 0 and µ4 → 3µ22 the formulae (37) take the following
form

A =
√

2πµ2, α2 =
1

2µ2
, α1 = α3 = α4 = 0 (40)

leading to the Gaussian representative distribution. A numerical example for
σ = 0.5, λ3 = 0.2 and λ4 = 2.85 is presented in Fig. 2. The density function
(6) with parameters given by formulae (37) is drawn in this figure. For
comparison, the Gaussian density function and a precise numerical solution
obtained by the algorithm of the preceding section are also marked.
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Fig. 2. Maximum-entropy probability distribution of surface elevation for σ = 0.5,

λ3 = 0.2 and λ4 = 2.85

5. Comparison of maximum-entropy and observed

probability distributions of free-surface elevation

In this section the maximum-entropy probability density function (17),
with its parameters determined from experimental values of standard
deviation σ, skewness λ3 and kurtosis λ4 of the free-surface elevation,
is compared with observed frequency histograms. The parameters of
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theoretical distributions, i.e. βs and B in (17), are computed using the
algorithm described in section 3. In that sense they are accurate, although
their approximate values can be taken from the nomograms presented in
Figs. 1a, 1b and 1c.
Below we refer to the results of the Atlantic Ocean Remote Sensing

Land-Ocean Experiment (ARSLOE) undertaken in 1980 at the US Army
Coastal Engineering Research Centre (CERC). The data obtained during
the ARSLOE experiment are used to demonstrate that free-surface elevation
follows the maximum-entropy probability distribution.
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wave displacement [m]
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maximum-entropy distribution

Gaussian distribution

Fig. 3. Comparison of theoretical probability density functions and field data

(Ochi and Wang, 1984) for σ = 0.56, λ3 = 1.26, λ4 = 4.98

In Fig. 3 the density function (17) is compared with the frequency
histogram observed during a very severe storm of significant wave height
2.31 m in very shallow water (the average water depth during the storm
was about 2 m). The observed histogram of free-surface elevations is taken
from the paper of Ochi and Wang (1984). In that paper the skewness and
kurtosis for the analysed record are also given as λ3 = 1.26 and λ4 = 4.98

1

1In the present paper we use the symbol λ4 to denote kurtosis, while Ochi and Wang
(1984) used the same symbol for the normalised cumulant of the 4th order, which is equal
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respectively. These values, together with the standard deviation σ, enabled
the parameters βs and B of the density (17) to be calculated. They are
listed in Tab. 1. Both the observed and theoretical distributions and that
of Longuet-Higgins (1963)

f(ξ) =
1√
2π σ
e−

1

2
ζ2
{

1 +
1

6
λ3H3(ζ) +

+
[ 1

24
(λ4 − 3)H4(ζ) +

1

72
λ23H6(ζ)

]

+ . . .
}

(41)

in which ζ = ξ/σ, are also shown in this figure for comparison. The
maximum entropy probability distribution shows a high degree of agreement
with the observed distribution.

Table 1. Wind wave parameters of the ARSLOE experiment and the respective
values of the normalisation factor and Lagrangian multipliers

Figure h Hs σ λ3 λ4 B β1 β2 β3 β4
[m] [m] [m]

3 2.0 2.31 0.56 1.26 4.98 2.2882 0.8125 0.6438 −0.3620 0.0542
4a 3.7 2.45 0.62 1.03 4.20 2.4023 0.7114 0.5485 −0.3067 0.0506
4b 8.8 3.55 0.89 0.85 3.87 2.4472 0.5470 0.5142 −0.2216 0.0347

There are no other examples in Ochi and Wang (1984) of observed
frequency histograms of the free-surface elevation, with the skewness and
kurtosis explicitly given. However, there are empirical formulae enabling λ3
and λ4 to be calculated in terms of the significant wave height Hs and the
average water depth h given in their paper. The values of Hs and h are
given in that paper for some other examples of the observed probability
distribution, and two of them are used below for further verification of the
maximum-entropy distribution of free-surface elevation. Let us first refer to
the main conclusions of the investigations by Ochi and Wang (1984):

(i) The skewness of the free-surface elevation λ3 depends only on the
significant wave height Hs and the average water depth during the
storm h.

(ii) The kurtosis of the free-surface elevation λ4 is a function of λ3 for
λ3 > 0.2.

(iii) For λ3 < 0.2 there is some dispersion of values of λ4 below three, but
the probability distributions of the free-surface elevations for λ3 and
λ4 in this region appear to be only slightly deviated from the Gaussian
distribution.

to kurtosis – 3. The values of that normalised cumulant taken from Ochi and Wang (1984)
henceforth will be recalculated to kurtosis.
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Fig. 4. Comparison of theoretical probability density functions and field data for

σ = 0.62, λ3 = 1.03, λ4 = 4.2 (a) and σ = 0.89, λ3 = 0.85, λ4 = 3.87 (b)
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Ochi and Wang (1984) proposed the empirical formulae λ3 = λ3(Hs, h)

and λ4 = λ4(λ3) corresponding to conclusions (i) and (ii) respectively.

In Figs. 4a and 4b the maximum-entropy probability density function (17)

5.0

4.6

4.2

3.8

3.4

3.0

2.6

2.2

0.0 0.4 0.8 1.2 1.6

parameter l
3

p
ar

am
et

er
l

4

average water depth:

1.35 m 1.97 m 3.70 m 6.97 m 8.77 m 15.20 m 24.40 m

Fig. 5. Parameter λ4 as a function of parameter λ3 (Ochi and Wang (1984))
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Fig. 6. Probability density functions for σ = 1, λ3 = 0.6, 0.8, 1, 1.2, 1.4

and λ4 = 4.2 (a) and σ = 1, λ3 = 1 and λ4 = 3, 3.4, 3.8, 4.2, 5 (b)
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and the parameters βs and B calculated by using the skewness and kurtosis
estimated from those empirical formulae are compared with the observed
distributions of the free-surface elevations. This comparison is not direct in
the sense that λ3 and λ4 are not exact and are influenced by the goodness of
Ochi and Wang’s empirical formulae. However, in this case the agreement is
also very good. As before, the normal distribution and the distribution (41)
are also marked in Figs. 4a and 4b. The numerical data for the examples
presented are listed in Tab. 1.
Referring to conclusion (iii) above, it should be noted that this empirical

criterion for small deviations from the Gaussian distribution λ3 < 0.2
agrees well with the theoretical condition (39), which can be rewritten as
λ4 < 3. The consistency of these two conditions for the skewness and kurtosis
respectively can be clearly seen from the diagram presented in Fig. 5 (Fig. 7
in Ochi and Wang (1984)), in which the observed values of the kurtosis λ4
are plotted against the skewness λ3.
Figs. 6a and 6b show the numerical examples demonstrating to some

extent the dependence of the shape of density function (17) on the skewness
and kurtosis respectively. The standard deviation is chosen as σ = 1 for all
the examples. The parameters βs and B for the densities plotted in Fig. 6a
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Fig. 7. Probability density functions for σ = 1, (λ3, λ4) = (0.4, 3), (0.6, 3.3),

(0.8, 3.74), (1, 4.2), (1.2, 4.82)
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are calculated for λ3 = 0.6, 0.8, 1, 1.2, 1.4 and the kurtosis λ4 = 4.2, while for
the family of curves presented in Fig. 6b, the following data were chosen:
λ3 = 1 and λ4 = 3, 3.4, 3.8, 4.2, 5. The dependence of the normalisation
constant B on the skewness λ3 is weak, as all the curves in Fig. 6a cross the
vertical axis ξ = 0 at approximately the same point (it is obvious from (17)
that B = [σρ∗(0)]−1). Note that this result is reflected in the formulae (37).

Let us now come back to the above conclusion (ii), whose principal
message is that in the case of the free-surface of wind waves the choice of
pairs (λ3, λ4) is not arbitrary. In other words, only some combinations of the
constraints (µ3, µ4) of the set of probability density functions Φ(µ2, µ3, µ4)
defined in (1) are admissible in nature. Fig. 7 shows the maximum-entropy
probability density functions of the free-surface elevation (17) for pairs
(λ3, λ4) lying on the empirical curve λ4 = λ4(λ3) of Ochi and Wang (1984).

6. Discussion and conclusions

Although the maximum-entropy probability density function in its
general form p(ξ) = exp (−∑Mm=0 αmxm), where αm, m = 0, 1, . . ., M are
Lagrange multipliers, has been known for a long time, it does not seem to be
widely used in practice, despite its attractive physical interpretation it does
not seem to be widely used in practice. Of course, the maximum-entropy
distribution on (−∞,+∞) in the case when only the first two moments
are given as constraints is the normal distribution that is so important in
physics. However, the simplest interesting case of the maximum-entropy
probability distribution on (−∞,+∞) occurs when the first four moments
are given. This case leads to the difficult problem of solving a system of
four nonlinear equations. There are no general methods for solving systems
of more than one nonlinear equation. For problems in more than two
dimensions the root finding becomes virtually impossible without additional
insight. To the author’s knowledge, the maximum-entropy probability
distribution in the case of known first four statistical moments was used
for the first time in Cieślikiewicz (1988, 1990). The parameters of that
distribution, i.e. the Lagrangian multipliers, were found thanks to the
simple identities (12) which transformed the four-dimensional problem into
a two-dimensional one. In the present paper the method of solution is
described in greater detail, and is extended by incorporating the useful
nomograms that yield parameters of the maximum-entropy probability
distribution (the Lagrangian multipliers) when the skewness and kurtosis
coefficients are given.

It is not known a priori if the system of nonlinear equations (8) (or
(21)) has a solution α1, . . ., α4 (or β1, . . ., β4). The general problem of the
existence of a solution to the above-mentioned system is very difficult for
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systematic investigation. In this paper such a solution is found by numerical
calculations over the defined region in the (λ3, λ4) plane. We can hope

that the numerical solutions presented in this paper are approximations to

the ‘real’ solutions. We then gain a deeper insight into the problem of the
existence of a maximum-entropy probability distribution for the considered

case when the first four moments are given. Note that if such a distribution

exists, it is unique, since the integrand of the entropy functional S defined
in (3) is convex and the constraints are linear (Dowson and Wragg, 1973).

It is shown in this paper that the maximum-entropy probability

distribution exists for pairs of skewness and kurtosis (λ3, λ4) that are
‘typical’ of free-surface elevations. This does not, however, mean that the

maximum-entropy distribution agrees with the ‘real’ probability distribution

followed by the free-surface elevation. There is always a certain minimal
level of given information below which the maximum-entropy probability

distribution becomes inadequate. For example, in the case of linear random

waves in deep water, it is enough to know the second moment of the
free-surface elevation (we assume the mean value to be equal to zero).

In this case the maximum-entropy distribution, which is in fact the

normal distribution, describes the stochastic characteristic of the wave
displacement very well. However, it is clearly not true for the highly

nonlinear waves occurring in shallow water during a severe storm. Hence,

the important question arises whether the amount of additional information
contained in two higher statistical moments is sufficient to make the

maximum-entropy distribution satisfactorily close to the underlying true

probability distribution. The answer is one of the main aims of the present
study and appears to be in the affirmative. The hypothesis that a wind

wave random field of free-surface elevations follows the maximum-entropy

probability distribution consistent with the constraints given by the first
four moments has been confirmed by comparison with the field data.

In the case of small deviations from the Gaussian distribution, i.e. for

slightly nonlinear waves, the approximate maximum-entropy probability dis-
tribution is developed. The condition of the existence of that approximation

agrees with the empirical criterion for small deviations from the Gaussian

distribution.

Now, let us discuss the relationship between the method of determining

the probability distribution using the maximum-entropy principle with the

moment constraints, and methods of fitting the probability distribution
to the data based on standard methods of parameter estimation. The

most important thing, of course, is that the maximum-entropy principle

provides the formula for the probability density function, while the standard
methods need the distribution function to be assumed and only its unknown
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parameters are estimated. However, it is quite obvious that the evaluation

procedure for the parameters of the maximum-entropy density function

(i.e. the Lagrangian multipliers), with the moment constraints in the

background, is equivalent to the parameter estimation based on the method

of moments applied to the density function (6) (or (17)). It is shown in the

Appendix that this procedure is also equivalent to the method of maximum

likelihood estimation.

The probability distribution selected by means of the maximum-entropy

principle has a very clear and attractive interpretation. In fact, in making

statistical inferences on the basis of partial information contained in the

measured data, we must use that probability which has maximum entropy

(2) subject to whatever is known – for instance the first statistical moments,

as in our case. This is the only unbiased assignment we can make; using any

other would introduce additional information which by assumption we do

not have.

The argumentation given above is a poorly probabilistic one. However,

it is very important to note that when the nonlinearities of the wave

motion can be neglected, the maximum-entropy probability distribution of

free-surface elevation becomes Gaussian. Thus, for linear random waves the

maximum-entropy distribution, as well as being Gaussian, also possesses

a very strong ‘mechanical’ background. This comes from the central-limit

theorem applied to a sea surface represented by the sum of infinite number

of simple harmonic waves.

The probability distribution (17) can be easily utilised in practi-

cal applications, when the mean value, variance, skewness and kurtosis

are given, by using the nomograms β3 = β3(λ3, λ4), β4 = β4(λ3, λ4) and

B = B(λ3, λ4) in Figs. 1a, 1b and 1c. Of course, these nomograms are

determined for the density function (17) regardless of the application, and

hence may be used in cases other than free-surface elevations of water waves.

For wind waves, however, if it is possible to forecast the first four statistical

moments starting from some basic properties of the wind wave random field

(e.g. wind velocity, fetch, water depth), the a priori probability distribution

in the form of (17) can be predicted. Such a possibility arises, firstly, from

the empirical findings of Ochi and Wang (1984), which show a strong

dependence of kurtosis λ4 on skewness λ3 (i.e. the function λ4 = λ4(λ3)

can be empirically determined). Secondly, it follows from the theoretical

results of Longuet-Higgins (1963), who evaluated the skewness λ3 explicitly

in terms of the spectral density of free-surface elevation of waves in deep

water. The more general formulae, valid in intermediate water depths, can

be found in Cieślikiewicz and Gudmestad (1993).
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Appendix

Let p(ξ;α) denote a distribution function of form (6) where α represents
a family of unknown parameters α1, . . ., α4. Then the likelihood function L
for a random sample of size N is defined as

L(ξ1, ξ2, . . . , ξN ;α) =
N
∏

n=1

p(ξn;α). (A1)

According to the method of maximum likelihood we choose as an estimate
of α the set of values which maximises L for the given values of ξ1, . . ., ξN .
As it is more convenient to work with lnL than with L itself, the required
values of α can be found by solving the following likelihood equations

∂ lnL

∂αm
=
N
∑

n=1

∂ ln p(ξn;α)

∂αm
= 0 for m = 1, . . . , 4 (A2)

with respect to αm, m = 1, . . . , 4.

According to (10) A = I0(α1, . . . , α4), and thus p(ξ;α) of form (6) may
be written

p(ξ;α) = exp
{

− ln I0 −
4
∑

m=1

αmξ
m
}

. (A3)

Therefore, we have for m = 1, . . . , 4

∂ ln p(ξ;α)

∂αm
= − 1
I0

∂I0
∂αm

− ξm. (A4)

Using the above formula in (A2) gives the likelihood equations in the form

N
∑

n=1

(

1

I0

∂I0
∂αm

+ ξmn

)

= 0 for m = 1, . . . , 4. (A5)

From the definition of Im (9) it follows that

∂I0
∂αm

= Im for m = 1, . . . , 4 (A6)

so (A5) can be written as

Im = I0Mm for m = 1, . . . , 4, (A7)

where

Mm =
1

N

N
∑

n=1

ξmn (A8)

is the mth sample moment of the random variable ξ.
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Without any loss of generality we can select the origin of the random
variable ξ such that

M1 = 0. (A9)

Then (A7) reads
{

I1 = 0
Im =MmI0 for m = 2, 3, 4

(A10)

which corresponds nicely to (8). The only difference is that the population
moments µn in (8) are replaced in (A10) by the sample moments Mn.


