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Abstract

The article discusses the results of a multidimensional approach to the investigation
of ambient noise. The methodology for the characterisation of ambient noise is
discussed and the results of its application in the classification of sea-states are
considered.
The main problem in classifying sea-state using multidimensional statistical

methods is to determine the distinctive features of ambient noise. The data
were processed in the time and frequency domains. The autoregressive model of
ambient noise was applied in the time domain, and its coefficients were used as
discriminatory terms for classifying and identifying sea-states. The third octave
spectrum was used to extract the distinctive features of ambient noise in the
frequency domain. The data were analysed in the 2–128 Hz frequency band.
The data sets were processed using Fisher’s linear functions. The order of

the autoregressive model and the third octave frequencies were found to classify
the sea state. The distinctive features of ambient noise were determined with respect
to time and frequency. Finally, the parameters of two statistical models were used
to classify sea states.

1. Introduction

There are some fields where sea surface sounds play a significant role
and a knowledge of ambient noise characteristics is often required. Here,
underwater acoustics or hydrometrology can be mentioned as examples.

* This work was supported by grant No. 8T11B02710 from the Polish State Committee
for Scientific Research. Parts of this paper were presented at the conference on Sea Surface
Sound, Southampton, U.K., 1997.
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Various schemes for underwater noise have been developed, usually
based on the descriptions and analyses of statistical descriptions of the
signal and noise processes. One-dimensional, parametric or non-parametric
statistical models are in general use. Tests for independence, homogeneity
and normality are applied in the first stage of underwater noise analysis. The
second stage – statistical analyses of sea noises – includes the determination
of cumulative probabilities, standard deviation, skew, kurtosis, decorrelation
time, etc.

Ambient noise properties, such as spectrum level and statistical charac-
teristics, have been examined experimentally by a number of investigators.
Dyer (1973), and Dyer and Mikhalevskiy (1978) investigated deep-ocean
ambient noise in the ca 20–200 Hz frequency range. Their statistical
descriptions of ambient noise were based on the probability density of the
short-term average mean square pressure in the underwater environment.
Jobst and Adams (1977) analysed low-frequency ambient noise using
statistical tests to establish the independence, time stationarity, Gaussian
distributions of samples and statistical homogeneity of underwater noise.
Wilson (1985) applied hypothesis testing techniques and statistical tests
for randomness, normality and homogeneity in the analysis of surface
reverberation generated by projecting sound at the wind-roughened surface
of a freshwater lake. Near-surface ocean ambient noise measurements at
very low frequencies were investigated by Cotaras et al. (1988). They
analysed the data statistically by determining the cumulative probabilities,
standard deviation, skew, kurtosis and mean spectral level. Bouvet and
Schwartz (1988) reported that knowledge of the ambient noise probability
density function is the central problem in underwater signal detection. He
analysed some models of probability density functions for ambient noises.
Klusek (1990) used the classical statistical analysis of data for investigating
the contribution of underwater noise sources to the acoustic field of a shallow
sea.

The purpose of this paper is to present statistical models for measuring
underwater noise and to apply them to a classification of sea-state. The
main objective is to show that the methods of time series analysis and
discriminant analysis are very useful and powerful tools in the measurement
of sea noise. The data used in this paper were collected off the southern
Baltic coast during a period of one year.

2. Measuring and data preprocessing

The methodology of sea-state classification considered here is supported
by the classification of ambient noise characteristics (Kiciński and Kozaczka,
1996).
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Two approaches for investigating ambient noise characteristics are
presented:

• in the time domain,

• in the frequency domain.

Ambient noise measurements were carried out in coastal waters of the
southern Baltic Sea in 1995. Noise was measured under a variety of
hydrological conditions, given in Tab. 1.

Table 1. Hydrological conditions

Sea-state Wind force Water tem- Air tem- Atmospheric
perature perature pressure

[B] [B] [ ◦ C ] [ ◦ C ] [hPa]

1–6 1–6 –5–22 –10–24 1010–1025

Mounted on a stationary measurement system, the hydrophones were
submerged to 20 metres below the sea surface. The ambient noise output
of the hydrophones was recorded in analogue form on magnetic tape.
Each sample was 60 s long. All tonal measurements of ambient noise were
preselected by perceptive methods. In this way the outlier measurements
were excluded from data set and only ‘quiet’ measurements were included
in the later analysis. Finally, two sets of data were formed. The first one
– consisting of 50 samples – was processed as a training set to categorise
sea-state classes. Analysing the parameters of hydrological conditions,
3 sea-state classes were determined a priori:

• class 1 – sea-state 1–2 B,

• class 2 – sea-state 3–4 B,

• class 3 – sea-state 5–6 B.

All training data were divided into 3 groups. Next, they were indexed
according to the a priori determined sea-state classes.
The second set of data – consisting of 20 samples – was employed as

a testing set in the sea-state identification procedure.
The ambient noise signal and statistical computations were analysed

using a digital signal analyser and a computer system with the STATISTICA
and QUATTRO PRO programs.

3. Models of sea-state classification

The methodology of sea-state investigation is based on a multidimen-
sional statistical description of data and consists of three stages:
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• class determination – grouping objects into classes according to their
‘similarity’,

• allocation – devising a classification rule from a training set of already
classified objects,

• identification – recognising objects as belonging to classes determined
a priori.

3.1. Sea-state classification in the time domain

In the time domain, ambient noise in the sea was treated as a time
series (Box and Jenkins, 1970) at the output of a root mean square (RMS)
detector. The root mean square level of underwater noise was determined
for each record of an ambient noise signal. The average root mean square
levels of ambient noise signal are shown in Fig. 1.

Fig. 1. The average root mean square levels of ambient noise: 1 – sea-state 1–2 B,
2 – sea-state 3–4 B, 3 – sea-state 5–6 B

The autoregessive model (AR) of the signal at the detector output can
be expressed as follows:

y(k) + a1(1)y(k − 1) + ...+ an(n)y(k − n) = en(k), (1)

where

en(k) – denotes the model of residual.
The coefficients of the AR model of ambient noise were applied as

discriminatory terms of the sea-state. For all training data sets, 3rd order
coefficients of the AR model plus constant were estimated. After this,
discriminant analysis was used to classify the measurement data (Fisher’s
linear functions were applied here; Hand, 1981).
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The results of determining discriminant variables are presented in
Tab. 2. The standard Wilk’s λ statistic is used to denote the statistical
significance of the discriminatory power of the current model; this can
range from 1.0 (no discriminatory power) to 0.0 (perfect discriminatory
power). The statistics for overall discrimination are computed as the ratio
of the determinant of within-groups covariance matrix to the determinant
of the total covariance matrix. The partial lambda (λp) is used to determine
the unique contribution of the respective variable to the discrimination
between groups. It is computed as the multiplicative increment in lambda
that results from adding the respective variable. The standard F statistic is
used as a variable to indicate its statistical significance in the discrimination
between groups, that is, it is a measure of the extent to which a variable
makes a unique contribution to the prediction of group membership. Each
significant level p is associated with its respective F .

Table 2. Summary of discriminant function analysis

N = 50 Wilk’s λ λp F p

a0 0.5099 0.7243 8.37 0.0008
a1 0.4909 0.7524 7.23 0.0019
a2 0.5035 0.7336 7.98 0.0011
a3 0.4722 0.7822 6.12 0.0045

It can be seen (Tab. 2) that the variable a0 contributes the most, the
variable a2 the second most, the variable a1 the third most and the variable
a3 the least to the overall discrimination. Generally speaking, the smaller
the value of Wilk’s partial lambda, the greater the contribution to the overall
discrimination.

Table 3. The results of classifying the training data set

Classification matrix of training data

Rows: observed classification
Columns: predicted classification

Classes Percent ST1 2 ST3 4 ST5 6
correct p = 0.56 p = 0.28 p = 0.16

ST1 2 89.28 25 3 0
ST3 4 64.28 5 9 0
ST5 6 62.50 2 1 5

Total 78.00 32 13 5
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The discriminant analysis procedure contains two steps. In the first one,
the coefficients of classification functions are determined and in the second
one, the data is classified. The results of classifying the training data set are
shown in Tab. 3.

3.2. Sea-state classification in the frequency domain

The power spectrum level characterises ambient noise in the frequency
domain. Each recorded ambient noise signal was processed by the digital
signal analyser.
Let

XN = (x1, x2, x3, ..., xN ), (2)

where
xi – i-th component of the power spectrum level,
N – dimensional vector of the measurement space of sea ambient noise in
the frequency domain.

The measurement vectors were preprocessed for dimensionality reduction.
To this end, the third octave spectrum was computed. Taking eq. (2) into
account, the feature vector of sea ambient noise can be expressed as follows:

Yp = (y1, y2, y3, ..., yp) = f(x1, x2, x3, ..., xN ), (3)

where
yi – i-th component of the third octave spectrum level.

Fig. 2. Average spectrum level of ambient noise: 1 – sea-state 1–2 B, 2 – sea-state
3–4 B, 3 – sea-state 5–6 B
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Fig. 3. Average third octave spectrum level of ambient noise: 1 – sea-state 1–2 B,
2 – sea-state 3–4 B, 3 – sea-state 5–6 B

Records of digital data were analysed in the 2–128 Hz frequency
band. All data sets were divided into three subsets (classes) of sea-states
determined a priori: 1–2 B, 3–4 B and 5–6 B. The average spectrum level
and the third octave spectrum of ambient noise were computed for each
class (Figs. 2 and 3). The records of the third octave spectrum of ambient
noise data were used for classifying the data sets. The results of determining
the discriminant variables are presented in Tab. 4. The variables V1...V24
represent the centroid frequency of the third octave spectrum bands covering
2–128 Hz.

Table 4. Summary of discriminant function analysis

N = 50 Wilk’s λ λp F p

V6 0.1895 0.8453 3.38 0.0447
V9 0.2294 0.6984 7.98 0.0013
V10 0.1764 0.9081 1.87 0.1682
V11 0.2413 0.6640 9.35 0.0005
V12 0.2265 0.7071 7.66 0.0016
V13 0.2722 0.5885 12.93 0.0001
V14 0.2044 0.7837 5.10 0.0110
V15 0.2204 0.7269 6.94 0.0027
V16 0.1788 0.8959 2.14 0.1310
V18 0.1732 0.9250 1.49 0.2364
V19 0.1734 0.9237 1.52 0.2305
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The Wilk’s partial λ statistic is used, as before, to denote the statistical
significance of the discriminatory power of the current model. One can
see (Tab. 4) that the variable V13 contributes the most, the variable V11
the second most, the variable V9 the third most and the variable V18 the
least to the overall discrimination. It may be concluded at this point that
the frequencies represented by V13, V11, V12, V15 and V9 are the major
variables allowing to discrimination between the measurement groups. The
results of classifying the training data set are shown in Tab. 5.

Table 5. The results of classifying the training data set

Classification matrix of training data

Rows: observed classification
Columns: predicted classification

Classes Percent ST1 2 ST3 4 ST5 6
correct p = 0.56 p = 0.28 p = 0.16

ST1 2 100.00 28 0 0

ST3 4 64.28 4 9 1

ST5 6 75.00 1 1 6

Total 86.00 33 10 7

3.3. Verification of models

The multidimensional models of ambient noise described above were
employed in sea-state identification. Thus, a data set consisting of 20
samples was tested. The results are presented in Tab. 6.

Table 6. Results of testing measurement models of ambient noise

Number of mea- Measurement model of ambient noise
surement data in time domain in frequency domain

TS1 2 10 7 9

TS3 4 8 3 4

TS5 6 2 1 2

Total 20 11 15

Percent correct 100 55 75
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4. Conclusions

Two models of sea-state classification were considered and tested. The
main aim was to determine the distinctive parameters of a hydroacoustical
signal for ambient noise classification. The sea state was classified using
a distinct multidimensional feature of ambient noise in the time and
frequency domains. As was pointed out above, better results in sea-state
classification can be obtained in the frequency domain by applying the third
octave spectrum as a parametrised signal of ambient noise. The methods of
ambient noise analysis in the time domain can be extended to the ARMA
time series model.
Discriminant analysis of ambient noise measurements were carried out

in the 2–128 Hz frequency band, as this is the most useful band for the
recognition of underwater noise distortions.
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