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Abstract

An attempt was made to estimate the periods of the main seiches in the
Kirrbucht, a shallow water basin with an irregular coastline. A quasi-linear
hydrodynamic-numerical model of the storm surges (wind-driven circulation) in
a shallow density-homogeneous basin was used. The results of calculations of sea
level oscillations generated in the basin in response to a temporally and spatially
constant wind field (stress) were treated as a time series in order that the seiche
periods could be calculated. The standard discrete Fourier transformation was ap-
plied to estimate amplitude spectra. The periods of the three significant modes were
found to be equal to 3.21 min, 4.94 min and 6.59 min. The latter two are proba-
bly fundamental ones: they are the transverse and longitudinal modes respectively.
The influence of non-linear terms and lateral fricton on the seiche periods is also
discussed.

1. Introduction

Wind impulses generate periodic water movements which, when the wind
suddenly stops blowing or rapidly changes direction and/or velocity, take
the form of seiches – free periodic oscillations or normal modes (Proudman,
1953; Defant, 1961; Fairbridge, 1966). Their characteristic periods and
phases depend on the principal characteristics of the water basin, i.e. its bot-
tom topography and its morphometry (shoreline shape). These phenomena
can be observed in time series of different, measurable in situ hydrophysical
parameters, e.g. current velocity components, sea level or temperature. Thus
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a knowledge of the periods (and phases) of the seiches allows the free oscil-
lations to be distinguished from other phenomena. If necessary they should
be filtered from the data, so that the time variability of the processes under
investigation can be estimated more accurately.

The period of a seiche is readily estimated in a basin with a straight-
forward shape from Merian’s formulae (Proudman, 1953; Defant, 1961;
Fairbridge, 1966; Druet, 1978):

– in the case of a narrow elongated enclosed basin with a flat bottom
topography:

Tsn =
2L

n
√

(gH0)
, (1)

where
Tsn – period of n-th order seiche (n – mode of free oscillations),
n = (1, 2, 3,...) – integers, defining the harmonic modes (or number of

nodes) of the seiche,
L, H0 – the characteristic horizontal dimension and the charac-

teristic depth of the water basin,
g – acceleration due to gravity,
√

(gH0) – phase velocity of the long, non-dispersive waves;

– in the case of a 2D rectangular enclosed basin with a flat bottom
topography:

Tsn =
2

√

(gH0)

(

m2

L2x
+
n2

L2y

)

−1/2

, (2)

where
m,n = (1, 2, 3,...) – integers defining the coexisting harmonic modes or the

number of nodes in the transverse and longitudinal
directions,

Lx, Ly, H0 – characteristic horizontal dimensions of the rectangular
basin: length (Lx), breadth (Ly), in x and y directions
and the characteristic (or mean) depth of the water
basin (mean) respectively,

g – acceleration due to gravity,
√

(gH0) – phase velocity of the long, non-dispersive waves.

The periods and amplitudes of the seiches can be estimated by means
of an analysis of the in situ time series of standard hydrological parameters
(current components, sea level, temperature etc.). In order to discover more
detailed characteristics of the space-time structure of the seiches, mathe-
matical modelling is applied (cf. Krauss, 1973; Druet, 1978, for more infor-
mation). Where a water basin has a more irregular shoreline and/or a more
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complex bottom topography, more complicated physical and mathematical
models, equations and methods have to be applied (cf. e.g. Hollan, 1983).

In this paper we propose a simple method of estimating the periods of the
main harmonic modes of the free oscillations. The idea is based on the appli-
cation of the results of a hydrodynamic-numerical model, of the type used
to calculate storm surges, wind-driven circulation etc. (cf. Simons, 1973;
Ramming and Kowalik, 1980; Kowalik and Murty, 1993). More precisely,
the model involves a time series of sea level oscillations generated during
numerical calculations at each grid point which are then used to detect
the periodic structure of the oscillations by means of standard time series
analysis i.e. the Discrete Fourier Transformation (DFT) (Bendat and
Piersol, 1986). A similar approach was used by Lewandowicz and Staśkiewicz
(1983) with respect to Puck Bay.

The principal objective of this paper is to apply the method to dis-
cover the periods of the free oscillations in a shallow basin with an irregular
shoreline: the Kirrbucht is a good example of this kind of water basin.

Located in the southern Baltic off north-eastern Germany (Fig. 1),
the Kirrbucht is a very small shallow water basin (maximum bottom depth
< 13 m) with an indented shoreline (Fig. 2). The dynamics of the water in

Fig. 1. Location of the Kirrbucht and the adjacent basins

this shallow basin are believed to be mainly of the wind-driven type and play
an important role in the formation of the hydrological background for the
marine environment. Owing to the lack of in situ measurements to estimate
the water dynamics, numerical modelling is the simplest way of estimating
some basic features of the water movements or assessing the orders of mag-
nitude of the temporal and spatial scales of variability in the hydrophysical
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(dynamic) parameters. Some of these time scales are periods of free oscilla-
tions that can be easily estimated en passant during the calculation of storm

surges or the water circulation with the aid of hydrodynamic-numerical
models.

Fig. 2. Bottom topography [m] of the Kirrbucht used in the model. The numbered
dots indicate the points on the numerical grid at which the time series of sea level
fluctuations were used in calculations. Lines A–A and B–B indicate the connections
of the Kirrbucht with adjacent basins

Because of the small size of the Kirrbucht and its shallow depth, it
can be assumed that the water density is homogeneous and that the water
movements in the closed basin are generated mainly by wind stress.

The calculations were carried out for southerly and westerly winds blow-

ing with a constant velocity of 8 m s−1 in order to estimate the longi-
tudinal and the transverse seiche modes.1 The influence of lateral friction
and non-linear terms in the equations of motion on seiche periods is also

discussed.

1The longitudinal and transverse seiche modes are here regarded as the y-axis and the
x-axis seiche modes respectively.
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2. Model equations

In order to estimate the general features of the water dynamics
the Hansen hydrodynamic-numerical model (Hansen, 1962; Ramming and
Kowalik, 1980) was used. This kind of model has been found useful in
the calculation of storm surges, tides and currents in a variety of seawater
bodies.

The model is based on the following set of equations of motion and
the continuity equation describing 2D water dynamics in shallow seawater
basins of homogeneous density (cf. Simons, 1973; Ramming and Kowalik,
1980; Kowalik and Murty, 1993):

∂Mx

∂t
+
∂

∂x

(

MxMx

H

)

+
∂

∂y

(

MxMy

H

)

− fMy =

= −H∂pa
∂x
− ρ0gH

∂ζ

∂x
+ τ sx − τ bx +Al△Mx, (3)

∂My

∂t
+
∂

∂x

(

MxMy

H

)

+
∂

∂y

(

MyMy

H

)

+ fMx =

= −H∂pa
∂y
− ρ0gH

∂ζ

∂y
+ τ sy − τ by +Al△My, (4)

∂ζ

∂t
+

1

ρ0

(

∂Mx

∂x
+
∂My

∂y

)

= 0. (5)

The initial conditions for eqs. (3)–(5) can be written in the following form:

for t = 0, ζ = 0, Mx = 0, My = 0. (6)

The lateral boundary conditions take the form:

Mn =

{

0 at the solid (closed) boundary,
Φ(L) at the liquid (open) boundary,

(7)

Mτ =

{

0 at the solid (closed) boundary,
Φ1(L) at the liquid (open) boundary,

(8)

where

Mx =

Ho
∫

−ζ

ρ0udz, My =

Ho
∫

−ζ

ρ0vdz,

where
Mx, My – x- and y-mass transport components along the OX and

OY axes,
u, v – current velocity vector components along the OX, OY

axes respectively,
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Al – lateral eddy viscosity coefficient (assumed constant),
f = 2ω sinϕ – Coriolis parameter (ω = 0.729× 10−5 rad s−1 – angular

velocity of the Earth’s rotation about its own axis;
ϕ – latitude),

ρ0 – seawater density (assumed constant),
g – acceleration due to gravity,
τ sx , τ

s
y – tangential wind stress components at the free sea surface,

τ bx, τ
b
y – tangential water shear stress components at the sea bot-

tom,
ζ – sea level (ordinate of free sea surface),

△ = ∂2

∂x2
+ ∂2

∂x2
– horizontal Laplace operator,

pa – atmospheric pressure (assumed constant),
t – time,
Ho – undisturbed water basin depth,
H = Ho + ζ – total water basin depth,
Mn, Mτ – mass transport vector components, normal and tangen-

tial to the lateral boundary L respectively,
Φ(L), Φ1(L) – functions describing the water balance at the open sea

boundary (i.e. river mouth or link with adjacent sea
area).

The tangential wind stress components τ sx , τ
s
y , and the tangential bottom

water stress components τ bx, τ
b
y , were calculated by means of the well-tried

formulae used in hydrodynamic-numerical models (Simons, 1973; Ramming
and Kowalik, 1980; Jankowski, 1988; Kowalik and Murty 1993):

– wind stress components:

τ sx = ρaCDWaWx, τ sy = ρaCDWaWy, (9)

– bottom shear water stress components:

τ bx = RMx, τ by = RMy, R =
r

H2

√

M 2x +M2y , (10)

where
Wa =

√

W 2x +W 2y – absolute wind vector velocity,

Wx, Wy – components of the wind vector velocity,
ρa, CD – air density and drag coefficient respectively,
r – bottom friction coefficient.

In our calculations the standard values for the air density ρa = 1.3× 10−3

g cm−3, the drag coefficient CD = 2.6× 10−3 and the bottom friction coeffi-
cient r = 2.5× 10−3 usually used in calculations of storm surges and water
circulation in natural basins (Simons, 1973; Ramming and Kowalik, 1980)
were applied.

The main purpose of this paper was to apply the quasi-linear hydrody-
namic-numerical model to estimate the periods of the fundamental seiche
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modes. In order to assess the role of nonlinearity of the equations of motion
and lateral eddy exchange on seiche periods, the non-linear terms (the terms
underlined once in eqs. (3)–(5)) and those with the lateral viscosity (the
terms underlined twice in eqs. (3)–(5)) were taken into account during the
calculations.

The coefficient of the lateral turbulent exchange of momentum (lateral
eddy viscosity, friction coefficient) Al is dependent on the spatial and tem-
poral scales of the dynamic processes and in general satisfies the Richardson
law (cf. Defant, 1961; Ozmidov, 1968)

Al = c0L
4/3, (11)

where L denotes the horizontal scale of the turbulent eddies, an empirical
constant of proportionality with an order of magnitude of 0.01 cm2/3 s−1

(cf. Ozmidov, 1968).
In practical numerical calculations some values of the lateral eddy fric-

tion coefficient Al were used to perform the tests and select a value which is
physically and numerically appropriate to the sought-after solution. From
the physical point of view the influence of lateral friction in a small and
shallow water basin is minimal compared to bottom friction. However, be-
cause of the irregularities of both bottom and shoreline, the lateral friction
terms can be included in the numerical model, where they are treated as
smoothing terms in order to filter out the parasite instabilties generated
during numerical computations due to the above-mentioned irregularities.
In our model we used the latter approach when carrying out the calculations
for selected values of the order of Al (0, 101, 102, 103, 104 [cm2 s−1]).

The underlined terms in eqs. (3)–(5) were rejected from the calculations
in some experiments for the quasi-linear case and in the experiments where
lateral friction was absent.

The mass transport and sea level eqs. (3)–(5) were solved by numerical
methods. The explicit numerical scheme of Hansen’s hydrodynamic-numeri-
cal method (Hansen, 1962; Ramming and Kowalik, 1980) was used. The
finite difference forms of eqs. (3)–(5) are described in the appendix.

3. Results and discussion

The calculations were performed for winds blowing from the south and
from the west with a constant velocity of 8 m s−1 (S 8 m s−1 and W 8 m s−1

respectively) on the assumption that the Kirrbucht is a closed basin, filled
with water of homogeneous density. The connections of the Kirrbucht with
adjacent basins (depicted in Fig. 2 by lines A–A and B–B) were neglected
in all the results reported here. The grid space steps of the numerical grid
were as follows: hx = 9.10 m, hy = 7.20 m and the time step, estimated
according to the stability criterion (appendix, eq. (19)) was τ = 0.5 s.
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The duration of the calculations in each of the numerical experiments
performed was 20 h.

Some runs were carried out with a time impulse of forcing – i.e. after 1,
5 and 10 h of simulation time the wind stress and the bottom shear stress
components were put equal to zero (ceasing of forcing functions and that
of describing energy dissipation in the model) to discover the response of
the basin and to generate free flow conditions. The results referring to the
periods recorded on the spectra were almost identical, both for short wind
impulses and for those of 10 h duration; it is the latter that are reported in
the present paper.

The time series of the sea level oscillations during computations were
registered at 8 points in the Kirrbucht area (see Fig. 2 for location of the
points). Example ‘time series’ of sea level variations generated during the

numerical calculations at point 1 are shown in Fig. 3 for the W 8 m s−1

wind for the quasi-linear case and without lateral friction.

Fig. 3. Example of a time series of sea level oscillations [cm] generated by the
hydrodynamic-numerical model at point 1 (for point location – see Fig. 2) for the
quasi-linear case and with the lateral eddy viscosity coefficient Al = 0 cm2 s−1 for
a W 8 m s−1 wind

The discrete Fourier transformation (Bendat and Piersol, 1986) was
applied to each ‘time series’ of the sea level fluctuations registered at all
8 points.
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Fig. 4 presents the amplitude spectra for the time series derived from
calculations recorded at point 1 for both wind directions for the quasi-linear
case (the case without non-linear terms in the equations of motion (3)–(5))
and with Al = 0 cm2 s−1.

Table 1. Values of amplitudes and phases of the main seiches at 8 selected points
estimated by the model for the case of a W 8 m s−1 wind when the lateral eddy
exchange coefficient Al = 0 cm2 s−1 (quasi-linear case). Location of points – see
Fig. 2

Point Seiche period Amplitude Relative amplitude Phase
number [min] An [cm] An / Amax [grad]

1 3.2086 0.004604 0.0905 145.7
4.9383 0.050867 1.0000 357.4
6.5934 0.015343 0.3016 10.3

2 3.2000 0.000466 0.0168 34.4
4.9383 0.027843 1.0000 357.5
6.5934 0.011491 0.4127 10.8

3 3.2086 0.003071 0.4179 331.7
4.9383 0.006179 0.8408 358.2
6.5934 0.007349 1.0000 11.6

4 3.2086 0.003222 0.4674 331.3
4.9383 0.004362 0.6328 358.3
6.5934 0.006893 1.0000 11.6

5 3.2172 0.000394 0.0127 84.8
4.9383 0.031004 1.0000 357.5
6.5934 0.012070 0.3893 10.6

6 3.2086 0.002956 0.3793 332.0
4.9383 0.007794 1.0000 358.2
6.5934 0.007746 0.9939 11.6

7 3.2086 0.001237 0.0994 330.0
4.9383 0.012452 1.0000 176.4
6.5934 0.005619 0.4513 13.8

8 3.2086 0.001098 0.0858 329.3
4.9383 0.012796 1.0000 176.5
6.5934 0.005477 0.4280 13.8

Fig. 5 shows the amplitude spectra calculated for the quasi-linear case
and without lateral friction of the time series recorded at all 8 points in the
basin area (see Fig. 2) for both wind directions. The amplitudes and phases
of the 3 principal seiche modes derived from the spectra are shown in Tab. 1
(W 8 m s−1 wind) and in Tab. 2 (S 8 m s−1 wind).
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Fig. 4. Examples of amplitude spectra estimated with the aid of the discrete Fourier
transformation for time series of sea level fluctuations at point 1 (for point location
– see Fig. 2) in the case of W 8 m s−1 (a) and S 8 m s−1 (b) winds for the quasi-linear
case without lateral friction (Al = 0 cm2 s−1)
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Fig. 5. Amplitude spectra estimated with the aid of the discrete Fourier transform-
ation for time series of sea level fluctuations at 8 points (for point location – see
Fig. 2) in the case of W 8 m s−1 (a) and S 8 m s−1 (b) winds for the quasi-linear
case without lateral friction (Al = 0 cm2 s−1)
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Table 2. Values of amplitudes and phases of the main seiches at 8 selected points
estimated by the model for the case of a S 8 m s−1 wind when the lateral eddy
exchange coefficient Al = 0 cm2 s−1 (quasi-linear case). Location of points – see
Fig. 2

Point Seiche period Amplitude Relative amplitude Phase
number [min] An [cm] An / Amax [grad]

1 3.2086 0.003684 0.2144 153.0
4.9383 0.010551 0.6142 6.1
6.5934 0.017179 1.0000 9.9

2 3.2000 0.000308 0.0240 28.8
4.9383 0.005793 0.4515 6.6
6.5934 0.012831 1.0000 10.0

3 3.2086 0.002490 0.3057 336.7
4.9383 0.001321 0.1621 10.1
6.5934 0.008145 1.0000 10.3

4 3.2086 0.002616 0.3424 336.7
4.9383 0.000955 0.1250 12.0
6.5934 0.007639 1.0000 10.4

5 3.2172 0.000251 0.0187 95.1
4.9383 0.006436 0.4784 6.5
6.5934 0.013454 1.0000 10.2

6 3.2086 0.002395 0.2789 336.7
4.9383 0.001647 0.1918 9.3
6.5934 0.008587 1.0000 10.4

7 3.2086 0.000995 0.1620 338.0
4.9383 0.002537 0.4131 182.0
6.5934 0.006140 1.0000 11.3

8 3.2086 0.000883 0.1476 338.1
4.9383 0.002593 0.4336 182.1
6.5934 0.005980 1.0000 11.5

In order to investigate the influence of the horizontal friction on the cal-
culated seiche periods, we performed some experiments for selected values
of the lateral eddy viscosity coefficient Al. Fig. 6 depicts the results of the
estimates of the amplitude spectra for time series of sea level variations at
point 1 calculated by the quasi-linear model for both wind directions with
different values of the lateral eddy viscosity coefficient: Al = 0 cm2 s−1;
101 cm2 s−1; 102 cm2 s−1; 103 cm2 s−1 and 104 cm2 s−1 respectively.
The amplitudes and phases of the three main seiche modes derived from
the spectra estimated for the different values of the lateral eddy viscosity
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Fig. 6. Amplitude spectra estimated with the aid of the discrete Fourier transform-
ation for time series of sea level fluctuations at point 1 (for point location – see
Fig. 2) in the case of W 8 m s−1 (a) and S 8 m s−1 (b) winds for the quasi-linear
case for different values of the lateral eddy viscosity coefficent Al: 0, 101, 102, 103,
104 [cm2 s−1]
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Table 3. Values of amplitudes and phases of the main seiches at point 1 estimated
by the model for the case of a W 8 m s−1 wind for selected values of the lateral
eddy exchange coefficient Al (quasi-linear case)

Al Period Amplitude Relative amplitude Phase
[cm2 s−1] [min] An [cm] An / Amax [grad]

0 3.2086 0.004604 0.0905 145.7
4.9383 0.050867 1.0000 357.4
6.5934 0.015343 0.3016 10.3

101 3.2086 0.004610 0.0904 145.7
4.9383 0.051013 1.0000 357.5
6.5934 0.015388 0.3016 10.5

102 3.2086 0.004639 0.0893 145.6
4.9383 0.051971 1.0000 358.0
6.5934 0.015727 0.3026 11.8

103 3.2086 0.003975 0.0828 145.2
4.9383 0.048011 1.0000 358.2
6.5934 0.014735 0.3069 13.1

104 3.2345 0.001040 0.0913 115.4
4.9383 0.011388 1.0000 348.1
6.6298 0.003266 0.2868 332.2

coefficient Al are shown in Tab. 3 and in Tab. 4 for the W 8 m s−1 and
S 8 m s−1 winds respectively.

It is clear from the above results that the fundamental seiche mode
in the Kirrbucht area (a closed basin) has periods equal to ca 6.59 min
(longitudinal mode) and 4.94 min (transverse mode). The inclusion of lateral
friction causes a considerable change in the periods of the main modes only
when Al ≥ 104 cm2 s−1.

The crude estimates of the lateral eddy coefficient using eq. (11) for the
basin area parameters are as follows:

– for l ∼ 20 m (the smallest space-grid scale along the x-axis ∼ 2hx)
gives Al ∼ 2.5× 102 cm2 s−1;

– for l ∼ 100 m (∼ 10hx) gives Al ∼ 2.2× 103 cm2 s−1.

The above generally confirms the results of the investigations into the
influence of lateral friction on the seiche mode characteristics.

The following numerical experiments were carried out to investigate
the role of the non-linear terms in equations of motion (3)–(5) (the terms
underlined once). The calculations were performed in the same manner as
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Table 4. Values of amplitudes and phases of the main seiches at point 1 estimated
by the model for the case of a S 8 m s−1 wind for selected values of the lateral
eddy exchange coefficient Al (quasi-linear case)

Al Period Amplitude Relative amplitude Phase
[cm2 s−1] [min] An [cm] An / Amax [grad]

0 3.2086 0.003684 0.2144 153.0
4.9383 0.010551 0.6142 6.1
6.5934 0.017179 1.0000 9.9

101 3.2086 0.003687 0.2139 153.0
4.9383 0.010580 0.6137 6.2
6.5934 0.017238 1.0000 10.0

102 3.2086 0.003712 0.2097 153.1
4.9383 0.010759 0.6078 6.8
6.5934 0.017702 1.0000 11.4

103 3.2086 0.003187 0.1844 153.2
4.9383 0.009214 0.5333 6.2
6.5934 0.017279 1.0000 14.4

104 3.2258 0.000784 0.2139 134.0
4.9383 0.002226 0.6070 359.8
6.6298 0.003668 1.0000 339.5

in the quasi-linear case for both wind directions and for selected values of
the coefficient Al. In this case, the perturbations due to the irregularities
in the bottom relief and of the shoreline allowed a stable periodical nu-
merical solution for a long calculation time (far longer than 20 h) to be
obtained only when the lateral friction coefficient was > 102 cm2 s−1. Thus
for comparison with the results for the quasi-linear case, the results of the
present calculations are given here for two values of Al (103 cm2 s−1 and
104 cm2 s−1).

Fig. 7 presents the amplitude spectra calculated for the non-linear case
and with the lateral friction coefficient Al = 103 cm2 s−1 of the time series
recorded at all 8 selected points in the basin area (location of points – see
Fig. 2) for both wind directions. The amplitudes and phases of the three
principal seiche modes derived from the spectra are presented in Tab. 5
(W 8 m s−1 wind) and in Tab. 6 (S 8 m s−1 wind).

Fig. 8 depicts the estimated amplitude spectra for the time series of
sea level variations at point 1 calculated for the non-linear case for both
wind directions with two values of the lateral eddy viscosity coefficient: Al
= 103 cm2 s−1 and 104 cm2 s−1 respectively. The amplitudes and phases
of the main three seiche modes derived from the spectra estimated with
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Fig. 7. Amplitude spectra estimated with the aid of the discrete Fourier transform-
ation for time series of sea level fluctuations at 8 points (for point location – see
Fig. 2) in the case of W 8 m s−1 (a) and S 8 m s−1 (b) winds for the non-linear
case and a lateral friction coefficient of Al = 103 cm2 s−1
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Table 5. Values of amplitudes and phases of the main seiches at 8 selected points
estimated by the model for the case of a W 8 m s−1 wind when the lateral eddy
exchange coefficient Al = 103 cm2 s−1 (non-linear case). Location of points – see
Fig. 2

Point Seiche period Amplitude Relative amplitude Phase
number [min] An [cm] An / Amax [grad]

1 3.2086 0.004012 0.0794 141.0
4.9383 0.050497 1.0000 356.0
6.5934 0.015198 0.3010 11.8

2 3.2000 0.000455 0.0165 34.6
4.9383 0.027628 1.0000 356.1
6.5934 0.011393 0.4124 12.3

3 3.2086 0.002640 0.3623 328.1
4.9383 0.006122 0.8400 357.3
6.5934 0.007287 1.0000 13.4

4 3.2086 0.002772 0.4060 327.6
4.9383 0.004316 0.6320 357.4
6.5934 0.006829 1.0000 13.5

5 3.2172 0.000371 0.0121 83.5
4.9383 0.030765 1.0000 356.2
6.5934 0.011937 0.3880 12.3

6 3.2086 0.002542 0.3293 328.4
4.9383 0.007721 1.0000 357.1
6.5934 0.007676 0.9942 13.2

7 3.2086 0.001065 0.0860 326.2
4.9383 0.012378 1.0000 174.7
6.5934 0.005583 0.4511 14.4

8 3.2086 0.000943 0.0741 325.9
4.9383 0.012719 1.0000 174.8
6.5934 0.005444 0.4280 14.4

both values of the lateral eddy viscosity coefficient Al are shown in Tabs. 7
and 8 for W 8 m s−1 and S 8 m s−1 winds respectively.

The results of the numerical calculations with the non-linear model con-
firmed the conclusions about the role of the lateral friction derived from the
results of the quasi-linear case. The inclusion of non-linear terms did not
alter the quasi-linear estimates of the main seiche periods.

The mode periods calculated using Merian’s formulae (1) and (2) yield
the following estimates of the periods of fundamental modes:
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– for the mean depth of the basin estimated at 5 m, g = 9.80 m s−2;

– for horizontal characteristic lengths: L = 1350 m – 6.43 min and
L = 1050 m – 5.0 min respectively.

These estimates are close to the findings based on the model calculations.

Table 6. Values of amplitudes and phases of the main seiches at 8 selected points
estimated by the model for the case of a S 8 m s−1 wind when the lateral eddy
exchange coefficient Al = 103 cm2 s−1 (non-linear case). Location of points – see
Fig. 2

Point Seiche period Amplitude Relative amplitude Phase
number [min] An [cm] An / Amax [grad]

1 3.2086 0.003072 0.1830 150.5

4.9383 0.010098 0.6014 2.8

6.5934 0.016791 1.0000 12.9

2 3.1667 0.017429 0.2873 119.6

4.9383 0.005547 0.4422 3.2

6.5934 0.012544 1.0000 13.0

3 3.2086 0.002067 0.2593 335.0

4.9383 0.001259 0.1579 7.6

6.5934 0.007972 1.0000 13.5

4 3.2086 0.002176 0.2913 335.0

4.9383 0.000904 0.1210 9.8

6.5934 0.007471 1.0000 13.5

5 3.2172 0.000217 0.0165 94.4

4.9383 0.006162 0.4686 3.2

6.5934 0.013151 1.0000 13.1

6 3.2086 0.001989 0.2368 335.1

4.9383 0.001573 0.1873 6.8

6.5934 0.008399 1.0000 13.5

7 3.2086 0.000822 0.1362 337.1

4.9383 0.002436 0.4035 177.8

6.5934 0.006037 1.0000 14.4

8 3.2086 0.000729 0.1240 337.6

4.9383 0.002496 0.4246 177.9

6.5934 0.005879 1.0000 14.5
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Fig. 8. Amplitude spectra estimated with the aid of the discrete Fourier trans-
formation for time series of sea level fluctuations at point 1 (for point location
– see Fig. 2) in the case of W 8 m s−1 (a) and S 8 m s−1 (b) winds for the
non-linear case for different values of the lateral eddy viscosity coefficent Al: 103, 104

[cm2 s−1]
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Table 7. Values of amplitudes and phases of the main seiches at point 1 estimated
by the model for the case of a W 8 m s−1 wind for selected values of the lateral
eddy exchange coefficient Al (non-linear case)

Al Period Amplitude Relative amplitude Phase
[cm2 s−1] [min] An [cm] An / Amax [grad]

103 3.2086 0.004012 0.0794 141.0
4.9383 0.050497 1.0000 356.0
6.5934 0.015198 0.3010 11.8

104 3.2345 0.001037 0.0908 116.4
4.9383 0.011424 1.0000 347.8
6.6298 0.003264 0.2857 332.3

Table 8. Values of amplitudes and phases of the main seiches at point 1 estimated
by the model for the case of a S 8 m s−1 wind for selected values of the lateral
eddy exchange coefficient Al (non-linear case)

Al Period Amplitude Relative amplitude Phase
[cm2 s−1] [min] An [cm] An / Amax [grad]

103 3.2086 0.003072 0.1830 150.5
4.9383 0.010098 0.6014 2.8
6.5934 0.016791 1.0000 12.9

104 3.2258 0.000783 0.2138 134.9
4.9383 0.002249 0.6142 358.5
6.6298 0.003662 1.0000 339.5

4. Conclusions

The calculations of the periods of free sea level oscillations generated
in the Kirrbucht during numerical simulations with the H–N model yielded
the following results for two cases of wind direction with constant velocity
8 m s−1:

• the fundamental longitudinal mode has a period equal to 6.59 min
(y-direction),

• the fundamental transverse mode has a period equal to 4.94 min
(x-direction),

• another significant mode of period equal to 3.21 min present in the am-
plitude spectra is probably a second-order longitudinal mode (y-axis,
y-direction).
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The inclusion of non-linear terms and lateral friction did not alter the
periods; as expected, this merely changed the amplitudes of the seiches and
their harmonic mode phases.

The results of the model calculations are believed to be verifiable of an
estimation of the seiche parameters on the basis of planned in situ mea-
surements of hydrological data. But in our opinion, the results in this paper
provide some preliminary information on the time scales on which one can
expect resonance phenomena in the Kirrbucht water dynamics in response
to the impulse of a spatially homogeneous and temporally constant wind
field.
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Appendix

Method of numerical solution of mass transport and sea level
equations

The explicit numerical scheme of the Hansen Hydrodynamic-Numerical
Method (Hansen, 1962) was used (see also Ramming and Kowalik, 1980).
The finite difference form of the mass transport eqs. (3)–(5) can be written
as follows (Ramming and Kowalik, 1980; Kowalik and Murty, 1993):

M t+τxm+1,n = (1− 2Rτ)M t−τxm+1,n + 2fτMy + 2τGxm+1,n +

− ρ0gHm+1,n
τ

hx

(

ζtm+2,n − ζtm,n
)

+

+ Al
τ

2h2x

(

M t−τxm+1,n+2 +M t−τxm+1,n−2 +

+ M t−τxm+3,n +M t−τxm−1,n − 4M t−τxm+1,n

)

+

− τ

hx

(

UPUX × UPUX
H

− UTUX × UTUX
H

)

+

+
τ

hy

(

VPUY × UPUY
H

− V TUY × UTUY
H

)

, (12)

M t+τym,n+1 = (1− 2Rτ)M t−τym,n+1 − 2fτMx + 2τGym,n+1 +

− ρ0gHm,n+1
τ

hy

(

ζtm,n+2 − ζtm,n
)

+

+ Al
τ

2h2y

(

M t−τym+2,n+1 +M t−τym−2,n+1 +

+ M t−τym,n+3 +M t−τym,n−1 − 4M t−τym,n+1

)

+

− τ

hx

(

UPVX × VPVX
H

− UTVX × V TVX
H

)

+

+
τ

hy

(

VPV Y × VPV Y
H

− V TV Y × V TV Y
H

)

, (13)

ζt+2τm,n = ζtm,n −
τ

ρ0

(

1

hx
(M t+τxm+1,n −M

t+τ
xm−1,n) +

+
1

hy
(M t+τym,n+1 −M

t+τ
ym,n−1)

)

, (14)
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where

Gxm+1,n = Hm+1,n
(pam+2,n − pam,n)

2hx
+ τ sxm+1,n , (15)

Gym,n+1 = Hm,n+1
(pam,n+2 − pam,n)

2hy
+ τ sym,n+1, (16)

My = 0.25(M t−τym+2,n+1 +M t−τym+2,n−1 +M t−τym,n+1 +M t−τym,n−1), (17)

Mx = 0.25(M t−τxm+1,n+2 +M t−τxm−1,n+2 +M t−τxm+1,n +M t−τxm−1,n), (18)

UPUX = 0.5 × (M t−τxm+1,n +M t−τxm+3,n),

UTUX = 0.5 × (M t−τxm+1,n +M t−τxm−1,n),

VPUY = 0.5 × (M t−τym+2,n+1 +M t−τym,n+1),

UPUY = 0.5 × (M t−τxm+1,n +M t−τxm+1,n+2),

V TUY = 0.5 × (M t−τym+2,n−1 +M t−τym,n−1),

UTUY = 0.5 × (M t−τxm+1,n +M t−τxm+1,n−2),

UPVX = 0.5 × (M t−τxm+3,n +M t−τxm+3,n−2),

VPVX = 0.5 × (M t−τym,n+1 +M t−τym+2,n+1),

UTVX = 0.5 × (M t−τxm+1,n +M t−τxm+1,n−2),

V TVX = 0.5 × (M t−τym,n+1 +M t−τym−2,n+1),

VPV Y = 0.5 × (M t−τym,n+1 +M t−τym,n+3),

V TV Y = 0.5 × (M t−τym,n+1 +M t−τym,n−1).

The stability condition for the above finite difference scheme are as follows
(this is similar to the standard CFL criterion) (Ramming and Kowalik, 1980;
Kowalik and Murty, 1993):

τ ≤ h√
2gHmax

, (19)

where
Hmax – maximal basin depth,
τ – time step,
h – space step: h = max(hx, hy),
hx, hy – space steps of the H–N numerical grid along axes OX and OY

respectively.


