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Abstract

The numerical studies and the computer simulations of time-space variability of
phytoplankton concentration field in the near surface layer of a stratified sea were
the aim of the research work conducted; the task was focused on finding the main
mechanisms governing this variability. In the two-dimensional model applied the
following hydrophysical processes were taken into consideration: in particular the
fine-scale dynamic processes such as interlayers, Kelvin-Helmholtz hydrodynamic
instability, as were biological, and chemical processes such as primary produc-
tion, phytoplankton mortality, phytoplankton grazing by zooplankton, concentra-
tion of nutrients and their uptake and regeneration.

1. Introduction

Finding the causes responsible for the variability in phytoplankton distri-
bution in water – a spatial discontinuity referred to as patchiness – continues
to occupy numerous scientists. The great interest in this problem stems from
its importance to both marine life and resource management. Investigations
into the physics and dynamics of the upper sea layer carried out during the
last 30 years have changed our outlook upon the structure of phenomena
and processes of great importance in the marine environment. The study of
the fine-scale structure has not only changed our views on this water layer,
hitherto considered to be horizontally and vertically uniform, but has also
generated interest in the influence of fine-scale hydrophysical processes on
the life of organisms in this layer. Their life-cycles are controlled by the
variabilities in the solar energy influx, the optical properties of the water,
the nutrient supply and the dynamics of the water masses.
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The complexity of the hydrophysical and biological processes in the
marine environment and the links between these processes require modern
techniques, i.e. mathematical modelling and computer simulations, for their
study. Although field work provides the most reliable information on these
mechanisms and processes, it requires comprehensive and costly in situ ob-
servations conducted under a variety of hydrological conditions for long
periods of time. They are nevertheless essential for the collection of suf-
ficient statistical data sets for an adequate diagnosis of the state of the
environment and for making forecasts.

Computer experiments permit a considerable reduction in costs, because
model studies enable different hydrological situations to be simulated and
hypotheses and assumptions concerning the mechanisms to be tested. As
opposed to in situmeasurements, such model studies can be repeated several
times. The simulation results provide fresh data sets. On this basis, new
tasks for field studies can be specified, and new hypotheses or theoretical
models concerning processes or separate mechanisms, can be formulated.

To some extent, of course, mathematical modelling is limited by the
available knowledge of particular processes, the methods used to parametrise
the links between them and the possibilities of realising them in the model.
This explains the present widespread use of mathematical models and com-
puter simulations as tools leading to the discovery of natural laws. They are
used in particular to solve problems of an interdisciplinary nature, which is
what oceanographic studies usually are (Dzierzbicka-G lowacka, 1994).

2. Mathematical model

The principal assumptions of the two-dimensional model describing
the function of phytoplankton distribution in a stratified sea are defined
as follows:

a) the physical, chemical and biological processes have been selected on
the basis of the bibliography;

b) in the model area:

(1) the coordinate system is situated at the free surface (the z axis is
directed vertically downwards, and the x and y axes are directed
eastwards and northwards respectively);

(2) the vertical distribution of seawater density is absolutely stable
i.e. the average density and salinity increase, while the tempera-
ture decreases with depth, dρ̄/dz > 0, dS̄/dz > 0, dT̄ /dz < 0;
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c) it is additionally assumed that the study area is uniform towards
the y axis, but non-uniform towards the x and z axes: (∂/∂y = 0;
∂/∂x 6= 0; ∂/∂z 6= 0 ).

The phytoplankton concentration is taken to be a dynamically passive
physical quantity (i.e. it is incapable of making autonomous movements),
and will henceforth be represented by the chlorophyll a concentration, which
depends on

• the hydrodynamic state of the environment (mass transfer and ex-
change in the aquatic medium);

• the intensity of natural production sources Pr;

• losses caused by phytoplankton respiration R;

• losses caused by phytoplankton mortality m;

• losses due to phytoplankton grazing by zooplankton gw;

• the physiological nutrient uptake by phytoplankton RV ;

• processes of nutrient regeneration from zooplankton excretion RP .

On condition that the density distribution is absolutely stable, neither
upwelling nor downwelling can occur. Therefore, the vertical component of
flow velocity is nearly zero and nutrients are not transferred along the z
axis.

In the equation for nutrients, expressions describing the vertical and
horizontal advection are omitted, while in the equation for phytoplankton

vertical advection is neglected; nevertheless, it is assumed that suspended
matter can settle and that the sinking velocity wz in the water is described
by Stokes’ formula (Dera, 1992).

In this paper all the assumptions have been made for a stratified sea,
i.e. the water-mass flux is horizontal, parallel to the x axis, and its aver-
age velocity is depth-dependent i.e. u = u(z). Hence, the flow velocity field
is stationary and uniform along the x axis. The influence of the vertical
gradient of the horizontal velocity ∂u/∂z on phytoplankton and nutrient
concentrations in a turbulent flux is controlled by a turbulent mixing pro-
cess, the intensity of which depends on the value of the turbulent diffusion
coefficient in the vertical Kz; it is directly dependent on the Richardson
number Ri.

Employing the constraints described above, the mathematical model re-
solves itself into a system of two partial equations of the diffusion type for
the concentration of phytoplankton V and nutrients P , with source func-
tions describing production and loss:
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∂V

∂t
=
∂
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)

+
∂

∂z

(

Kz
∂V
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)

− u
∂V

∂x
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∂V

∂z
+ π1V
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∂P

∂t
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∂

∂x

(

Kx
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∂x

)

+
∂

∂z

(

Kz
∂P

∂z

)

+ π2V,

where
π1 = Pr(x, z, t)− gw(x, z, t)−m(x, z, t)−R(x, z, t),
π2 = RP (x, z, t)−RV (x, z, t),
V = V (x, z, t),
P = P (x, z, t).

The turbulent diffusion coefficients in the vertical and horizontal for both
the phytoplankton and the nutrients are assumed the same in these equa-
tions, and they are estimated in the same way as the diffusion of a passive
mixture: KVz = KPz = Kz, K

V
x = KPx = Kx (Druet and Zieliński, 1993).

Equations (1) are solved with the following initial and boundary
conditions

for t = 0 (the initial vertical distributions Vo(x, z) and Po(x, z) are
known)

V (x, z, 0) = Vo(x, z) = Vo(z) 0 ≤ x ≤ X

P (x, z, 0) = Po(x, z) = Po(z) 0 ≤ z ≤ Z, (2)

for z = 0 (free surface)

wzV (x, z, t) |z=0 = KVz
∂V (x, z, t)

∂z

∣
∣
∣
∣
z=0

∂P (x, z, t)

∂z
= 0, (3)

for z = 2ze (double the depth of the euphotic layer)

wzV (x, z, t) |z=2ze = KVz
∂V (x, z, t)

∂z

∣
∣
∣
∣
z=2ze

P (x, z, t) = P1(x, z) = const, (4)

for x = 0

uV (x, z, t) |x=0 = KVx
∂V (x, z, t)

∂x

∣
∣
∣
∣
x=0

P (x, z, t) = p(x, z), (5)
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for x = X

uV (x, z, t) |x=X = KVx
∂V (x, z, t)

∂x

∣
∣
∣
∣
x=X

P (x, z, t) = p(x, z). (6)

These conditions imply that the phytoplankton suspension and the nutri-
ents are neither transferred from the euphotic layer to the near-water layer
of the atmosphere nor to the water masses situated below a depth equal
to twice the thickness of the euphotic layer. Although this is an arbitrary
constraint of real conditions, it does not fundamentally affect the qualitative
description of these processes.

2.1. Algorithm of the two-dimensional model solution

Equation system (1) with conditions (2)–(4) is solved numerically by
using the indirect Crank-Nicholson method (Potter, 1982) for a rectangular
region 0 ≤ z ≤ Z and 0 ≤ x ≤ X by digitising this region with a variable

Fig. 1. Calculation grid of the indirect Crank-Nicholson method
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region 0 ≤ z ≤ Z and 0 ≤ x ≤ X by digitising this region with a variable

step δ into j elements (the number of elements fulfils the condition (1 ≤ j

≤ m)), and by digitising it with a variable horizontal step ∆ into i elements

(the number of elements fulfils the condition (1 ≤ i ≤ n)). In this method

the scheme illustrating the time-space grid on which the equation system

has been integrated is presented in Fig. 1.

In this method the first equation of equation system (1) can be written

in the form

αjV
t+1
i,j+1 + ξi,jV

t+1
i,j + βjV

t+1
i,j−1 + γiV

t+1
i+1,j + εiV

t+1
i−1,j = Sti,j, (7)

with appropriate initial and boundary conditions

αjV
t+1
1,j+1 + ξ1,jV

t+1
1,j + βjV

t+1
1,j−1 + γ1V

t+1
2,j = St1,j for i = 1,

αjV
t+1
n,j+1 + ξn,jV

t+1
n,j + βjV

t+1
n,j−1 + εnV

t+1
n−1,j = Stn,j for i = n,

α1V
t+1
i,2 + ξi,1V

t+1
i,1 + γiV

t+1
i+1,1 + εiV

t+1
i−1,1 = Sti,1 for j = 1,

ξi,mV
t+1
i,m + βmV

t+1
i,m−1 + γiV

t+1
i+1,m + εiV

t+1
i−1,m = Sti,m for j = m,

α1V
t+1
1,2 + ξ1,1V

t+1
1,1 + γ1V

t+1
2,1 = St1,1 for i = 1,

j = 1,

ξn,mV
t+1
n,m + βmV

t+1
n,m−1 + εnV

t+1
n−1,m = Stn,m for i = n,

j = m, (8)

where V represents the phytoplankton concentration at the grid node (i, j)

and at time instant t, while α, ξ, β, γ, ε and S denote coefficients arising

from the form of the first equation of equation system (1) for the (i, j) node

and for the instant t, which are given in the form of the relationships

αj = −te

[
Kj+1 −Kj−1

8δ2
+
Kj
2δ2
−
wj
4δ

]

, (9)
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βj = −te

[

−
Kj+1 −Kj−1

8δ2
+
Kj
2δ2

+
wj
4δ

]

, (10)

γi = −te

[
Ki+1 −Ki−1

8∆2
+
Ki

2∆2
−
ui
4∆

]

, (11)

εi = −te

[

−
Ki+1 −Ki−1

8∆2
+
Ki

2∆2
+
ui
4∆

]

, (12)

ξi,j = 1 + te

(
Kj
δ2

+
Ki
∆2

)

, (13)

Sti,j = V ti,j[1 + te ·Gi,j ] − αjV
t
i,j+1 − βjV

t
i,j−1 +

− γiV
t
i+1,j − εiV

t
i−1,j, (14)

Gi,j = −
Kj
δ2
−
Ki
∆2
−
wj+1 − wj−1

2δ
−
ui+1 − ui−1

2∆
+

+ Pr −Ri −m− gw, (15)

where the following properties of the grid are utilised (Fig. 1):

te – time step,

∆ = xi+1 − xi,

δ = zj+1 − zj .

Assuming that Vi,j = U(i−1)m+j = Uk and substituting it in eq. (7) we

arrive at the equation

αjU
t+1
k+1 + ξkU

t+1
k + βjU

t+1
k−1 + γiU

t+1
k+m + εiU

t+1
k−m = Stk, (16)

which can be rewritten as the matrix equationAU =S. (17)

Matrix A in eq. (17) is decomposed into three matrices: the diagonal D,

the upper triangular O and the bottom lower triangular matrix L.
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The following symbols are used in matrices A, D, O, L:

· – a null element,
. . . – a non-zero element.

Hence:

m−2
︷ ︸︸ ︷

m
︷︸︸︷

nm−(m+1)
︷ ︸︸ ︷

Anm×nm
=































ξ1 α1 0 · 0 γ1 0 · · 0

β1 ξ2 α2 0 · 0 γ2 0 · ·

0 β2 ξ3 α3 0 · 0 γ3 · ·

· ·
. . .

. . .
. . . · · ·

. . . 0

0 · ·
. . .

. . .
. . . · · · γ

ε1 0 · ·
. . .

. . .
. . . · · 0

0 ε2 0 · ·
. . .

. . .
. . . · ·

· 0 ε3 0 · ·
. . .

. . .
. . . 0

· · ·
. . . · · 0 β ξ α

0 · · 0 ε 0 · 0 β ξ































}

m−2

}
m

}

nm−(m+1)

where A =D +O +L ,
D =































ξ1 0 · · · · · · · 0

0 ξ2 · · · · · · · ·

· · ξ3 · · · · · · ·

· · · ξ4 · · · · · ·

· · · ·
. . . · · · · ·

· · · · ·
. . . · · · ·

· · · · · ·
. . . · · ·

· · · · · · ·
. . . · ·

· · · · · · · ·
. . . 0

0 · · · · · · · 0 ξ































,
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O =































0 α1 0 · · γ1 0 · · 0

· 0 α2 0 · · γ2 · · ·

· · 0 α3 0 · ·
. . . · ·

· · · ·
. . . · · ·

. . . 0

· · · · ·
. . . · · · γ

· · · · · ·
. . . · · 0

· · · · · · ·
. . . · ·

· · · · · · · ·
. . . ·

· · · · · · · · · α

0 · · · · · · · · 0































,

L =































0 · · · · · · · · 0

β1 0 · · · · · · · ·

0 β2 0 · · · · · · ·

· 0 β3 0 · · · · · ·

0 · ·
. . . · · · · · ·

ε1 0 · ·
. . . · · · · ·

0 ε2 0 · ·
. . . · · · ·

· 0
. . . · · ·

. . . · · ·

· · ·
. . . · · ·

. . . · ·

0 · · 0 ε 0 · ·
. . . 0































.

All the diagonal elements differ from zero, so the matrix equation can
always be written asA′U =S′, (18)
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where A′

=D−1A ,

D−1
=































1/ξ1 0 · · · · · · · 0

0 1/ξ2 · · · · · · · ·

· · 1/ξ3 · · · · · · ·

· · · 1/ξ4 · · · · · ·

· · · ·
. . . · · · · ·

· · · · ·
. . . · · · ·

· · · · · ·
. . . · · ·

· · · · · · ·
. . . · ·

· · · · · · · ·
. . . 0

0 · · · · · · · 0 1/ξ































.

Matrix A′ in eq. (18) can be decomposed into three matrices:
the identity matrix I, the upper triangular matrix O′ and the lower tri-
angular matrix L′.
A′

=
































1 α1
ξ2

0 · · γ1
ξm+1

0 · · 0

β2
ξ1

1 α2
ξ3

0 · · γ2
ξm+2

0 · ·

0 β3
ξ2

1 α3
ξ4

0 · ·
. . . · ·

· 0
. . .

. . .
. . . · · ·

. . . ·

· · ·
. . .

. . .
. . . · · · γ

ξ

εm+1
ξ1

· · ·
. . .

. . .
. . . · · ·

0 εm+2
ξ2

· · ·
. . .

. . .
. . . · ·

· 0
. . . · · ·

. . .
. . .

. . . ·

· · ·
. . . · · · β

ξ
1 α

ξ

0 · · · ε
ξ

· · · β
ξ

1
































,
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where A′

= I +O′

+L′, (19)

I =































1 0 · · · · · · · 0

0 1 0 · · · · · · ·

· 0 1 · · · · · · ·

· · · 1 · · · · · ·

· · · ·
. . . · · · · ·

· · · · ·
. . . · · · ·

· · · · · ·
. . . · · ·

· · · · · · ·
. . . · ·

· · · · · · · ·
. . . 0

0 · · · · · · · 0 1































,

O′

=































0 α1/ξ2 0 · · γ1/ξm+1 0 · · 0

· 0 α2/ξ3 0 · · γ2/ξm+2 0 · ·

· · 0 α3/ξ4 · · ·
. . . · ·

· · · ·
. . . · · ·

. . . ·

· · · · ·
. . . · · · γ/ξ

· · · · · ·
. . . · · 0

· · · · · · ·
. . . · ·

· · · · · · · ·
. . . ·

· · · · · · · · · α/ξ

0 · · · · · · · · 0































,
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L′ =






























0 · · · · · · · · 0

β2/ξ1 0 · · · · · · · ·

0 β3/ξ2 0 · · · · · · ·

· 0 β4/ξ3 0 · · · · · ·

· · ·
. . . · · · · · ·

εm+1/ξ1 · · ·
. . . · · · · ·

· εm+2/ξ2 · · ·
. . . · · · ·

· 0
. . . · · ·

. . . · · ·

· · ·
. . . · · ·

. . . 0 ·

0 · · · ε/ξ · · · β/ξ 0































.

A superrelaxation method utilising the Gauss-Seidel (Potter, 1982)
formulation, this being based on the optimum selection of the relaxation
parameter α, is used in solving eq. (18). This yields the equation

U t+1 = (I + αL′)−1{(1− α)I − α0′}U t + (I + αL′)−1αS′. (20)

The fastest convergence of the solution to eq. (20) is ensured by the opti-
mised relaxation factor α expressed in the form

α =
2

1 +
√

1 + µ2
, (21)

where µ is the eigenvalue with the largest Jacobi matrix module B,
expressed asB = —

(L′ +O′
)

.

After expanding eq. (20) we obtain the equation

U t+1(r) = U t(r) − α





r−1∑

j=1

arjU
t+1
j +

n×m∑

j=r

arjU
t
j − S

t
(r)



 , (22)

where arj are the elements of matrix A′.
The procedure is the same in the case of the second equation of system

(1), which can be written as

ajP
t+1
i,j+1 + ei,jP

t+1
i,j + bjP

t+1
i,j−1 + ciP

t+1
i+1,j + diP

t+1
i−1,j = Xti,j, (23)
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with appropriate initial and boundary conditions, where P denotes the nu-
trient concentration at the grid node (i, j) at instant t, while a, b, c, d, e,X
are the coefficients arising from the form of the second equation of system
(1) for node (i, j) and instant t, given by the relationships

aj = −te

[
Kj+1 −Kj−1

8δ2
+
Kj
2δ2

]

, (24)

bj = −te

[

−
Kj+1 −Kj−1

8δ2
+
Kj
2δ2

]

, (25)

ci = −te

[
Ki+1 −Ki−1

8∆2
+
Ki

2∆2

]

, (26)

di = −te

[

−
Ki+1 −Ki−1

8∆2
+
Ki

2∆2

]

, (27)

ei,j = 1 + te

(
Kj
δ2

+
Ki
∆2

)

, (28)

Xti,j = ei,jP
t
j − ajP

t
i,j+1 − bjP

t
i,j−1 − ciP

t
i+1,j − diP

t
i−1,j +

− V ti,jte[RP −RV ] , (29)

where the grid properties were utilised (Fig. 1).
Assuming that Pi,j = R(i−1)m+j = Rk and substituting it in eq. (23) we

obtain the equation

ajR
t+1
k+1 + ekR

t+1
k + bjR

t+1
k−1 + ciR

t+1
k+m + diR

t+1
k−m = X tk, (30)

which can be rewritten as the matrix equationYR =X. (31)

Matrix Y in eq. (31) is resolved into three matrices: the diagonal D, the
upper triangular G and the bottom lower triangular matrix T.

Based on the same principle as in the first case, eq. (31) can be written
in the formY′R =X′

, (32)

where Y′ = D−1Y, Y′ = I+G′ +T′.
A superrelaxation method based on the optimum selection of the relax-

ation parameter β is also used in solving eq. (30). As a result the following
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equation is obtained

Rt+1 = (I + βT ′)−1{(1− β)I − βG′}Rt + (I + βT ′)−1βX ′. (33)

The fastest convergence of the solution to eq. (33) is ensured by the opti-
mised relaxation factor β expressed in the form

β =
2

1 +
√

1 + η2
, (34)

where η is the eigenvalue with the largest Jacobi matrix moduleB, expressed
as B = −(T′ +G′).

Following expansion of eq. (33) the equation

Rt+1(r) = Rt(r) − β





r−1∑

j=1

hrjR
t+1
j +

n×m∑

j=r

hrjR
t
j −X

t
(r)



 , (35)

is obtained, where hrj are the elements of matrix Y′.
Eqs. (22) and (35) are the sought – for solution to equation system (1).

The proof is carried out by induction (the detailed algorithm of the solution
to the two-dimensional model can be found in Dzierzbicka-G lowacka, 1994).

The instantaneous state of the phytoplankton biomass concentration
depends mainly on the intensity of natural production sources and on the
loss of biomass, the latter being caused by phytoplankton mortality and its
grazing by zooplankton.

2.2. Primary production

On the basis of the available bibliographical information, the rate of
primary production is defined in the model by the equation given by Radach
(1983):

{primary production} = Pr(x, z, t)V (x, z, t), (36)

Pr(x, z, t) = Samin{di, dp}, (37)

where Sa denotes the maximum rate of production increase, while di and
dp are factors limiting production increase (the light available at a given
concentration of nutrients). The coefficients are given by the formulae

di =
S(z, t)

Sa
, dp =

P (x, z, t)

P (x, z, t) + ks
, (38)

where ks is the nutrient half–saturation constant (µmolP m−3)
and Sa = max S(z, t).

For a given concentration of the nutrient limiting photosynthesis,
the coefficient S, which defines the total primary production, depends on
the assimilation number.

S(z, t) = aA(z, t) sin γ, (39)
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where a is an empirical coefficient characterising the basin in question, ex-
pressing the mg of organic carbon in terms of mg of chlorophyll, and γ is
the solar elevation at a given instant of time (GMT) calculated from the
relationship

sin γ = sinϕ sin δ + cosϕ cos δ cos

(

tGMT
π

12
− π + λ

)

, (40)

where ϕ is the geographical latitude, λ the angle of longitude and δ the solar
declination.

The assimilation number A, the ratio of production (expressed as the
quantity of assimilated carbon) to the quantity of chlorophyll, is determined
from the Platt model (Platt et al., 1980; Harrison et al., 1985), and depends
on the amount of solar energy η reaching the free surface of the study area

A(z, t) = φ(1− exp[−αη(z, t)/φ]) exp (−βη(z, t)/φ), (41)

where α, β, φ are empirical coefficients adapting the assimilation number to
the natural conditions of the basin in question. The amount of solar energy
reaching the requisite depth z is given by Dera (1992)

η(z, t) = ηoTz,vis(z, t), (42)

where ηo is the amount of solar energy reaching the free sea surface.
The total downward irradiance transmission coefficient Tz,vis in the

400–700 nm range is described by the following formula (Woźniak, 1993):

Tz,vis(z, t) =

700 nm∫

400 nm

fE(λ, z = 0) exp



−

z∫

0

kd(λ, z, V )dz



dλ. (43)

where fE is the practically constant relative function of the solar incident
irradiance (Dera, 1992, 1995; Woźniak, 1993), and kd is the sum of the com-
ponents responsible for the attenuation of irradiance by pure water, phyto-
plankton and other optically active admixtures calculated from Woźniak’s
bio-optical classification of natural waters (Woźniak and Pelevin, 1991;
Dera, 1995).

2.3. Respiration of phytoplankton

Metabolic processes in plants are in reality accompanied by catabolic
processes such as respiration. Therefore, the actual net increase in primary
production, i.e. in phytoplankton biomass, per unit of time is lower by
a value equivalent to the loss due to respiration (Parsons et al., 1977)

{respiration} = R(x, z, t)V (x, z, t), (44)

R(x, z, t) = mV Sa, (45)

where mV is the respiration constant.
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2.4. Grazing of phytoplankton

Phytoplankton grazing by zooplankton is an other factor causing con-
siderable losses in the former’s biomass. On the assumption that

• this process does not depend on the chemical state of the water,

• one species, responsible for grazing, is dominant in the zooplankton
population (80–90%),

• changes in zooplankton abundance can be disregarded in the given
time period,

• and grazing is considered as a day-night cycle, the rate of decrease in
phytoplankton mass being described by the following formulae (Daro,
1980; Ciszewski et al., 1983),

{grazing} = gw(x, z, t)V (x, z, t), (46)

gw(x, z, t) = {1 + aw cosω(t− to)}f(x, z, t), (47)

where aw denotes the relative amplitude of zooplankton biomass changes,
to the time when the maximum zooplankton concentration occurs and
ω = π/12. The function f(x, z, t) in this equation has been formulated by
the author and defines an additional two-dimensional model of zooplankton
distribution in the sea. Function f(x, z, t) is presented as the product of two
exponential functions of variables x and z

f(x, z, t) = h(x, t)k(z, t), (48)

where

h(x, t) =Wp(t)α exp
(

−Wr(x− xi)
2
)

, (49)

k(z, t) = exp (q(x, t)), (50)

q(z, t) = ao(t) + a1(t)z + a2(t)z
2 + . . . (51)

Assuming that grazing is horizontally uniform, the function describing graz-
ing can be given by

h(x, t) = 1, k(z, t) = q(z, t), (52)

f(x, z, t) = f(z, t) = ao(t) + a1(t)z + a2(t)z
2 + . . . , (53)

where α is the coefficient of proportionality responsible for the zooplankton
count, Wp is the coefficient defining the percentage of the phytoplankton
mass consumed and Wr is the coefficient characterising zooplankton dis-
tribution in the horizontal plane. The coefficients of the polynomial can
be determined either arbitrarily or by the experimental assumption of the
grazing coefficient at the following depths:
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• at the free surface corresponding to the conditions of zooplankton
survival in the water of the basin examined,

• at a depth equal to the thickness of the euphotic layer; (the depth
corresponding to the conditions during the phytoplankton bloom).

2.5. Phytoplankton mortality

Natural phytoplankton mortality is a further process leading to losses
in its biomass. It is assumed that mortality is directly proportional to the
phytoplankton concentration (Raymont, 1980; Sjöberg, 1980)

{mortality} = mV (x, z, t). (54)

Ecological disasters have also been taken into account in the model in that
mortality is regarded as being dependent not only on the mortality factor
but also on the function describing the spatial distribution Sm of the trans-
locating masses of polluted water

{mortality} = m(1 + Sm(x, z, t))V (x, z, t), (55)

where

Sm(x, z, t) = Sx(x, t)Sz(z), (56)

Sx =Ws(t)β exp
(

− [ps(x− xi)]
2
)

, (57)

Sz = exp (y(z)), y(z) = bo + b1z + b2z
2 + . . . , (58)

where Ws is the coefficient defining the percentage loss of phytoplankton
biomass, β is the coefficient of proportionality specifying the degree of con-
tamination, ps is the coefficient defining the spatial distribution of pollutants
in the horizontal plane, and bo, b1, b2 are the coefficients defining the spatial
distribution of pollutants in the vertical plane. The values of the factors in
the above equations can be determined either arbitrarily or on the basis of
measurements of pollutant concentrations at various depths.

2.6. Nutrient uptake

The factor π2 in equation system (1) depends on the difference between
the quantity of nutrients taken up by phytoplankton cells from the surround-
ings and that excreted by zooplankton, either in soluble form or as faeces
sinking to the sea bed. These sediments undergo rapid bacterial conversion
and mineralisation. Thus a certain quantity of nutrients, replenishing their
concentration field, is released back into the environment. The quantity of
nutrients, taken up by phytoplankton cells can be expressed as (Radach,
1983)

{nutrient uptake} = Rv(x, z, t)V (x, z, t), (59)
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Rv(x, z, t) = γ(Pr(x, z, t)−R(x, z, t)), (60)

where γ is a constant denoting the ratio of organic carbon to phosphorus.

2.7. Nutrient regeneration

The quantity of regenerated nutrients depends on the biomass consumed
and is given by Stigebrandt and Wulff (1987)

{nutrient regeneration} = Rp(x, z, t)V (x, z, t), (61)

Rp(x, z, t) = γe1e2gw(x, z, t), (62)

where e1 denotes the percentage of the material regenerated as phosphate,
and e2 denotes the percentage of the grazed material that is excreted.

2.8. Turbulent diffiusion

The coefficient of horizontal turbulent diffiusion Kx is assumed constant
and dependent, according to the Okubo model (1976), on the spatial scale
l of such diffusion

Kx = 0.0103× l1.15 (m2 s−1). (63)

In this two-dimensional model the scale l is identified with the horizontal
step of the numerical grid ∆.

Dependent on the stratification and the vertical gradient in flow velocity
(through the value of the Richardson number Ri), the coefficient of verti-
cal turbulent diffusion Kz is determined from the Peters, Gregg and Toole
formula (1988) for a non-uniform sea (the latter with respect to density)

Kρ ∼= 5× 10−4(1 +Ri)−2.5 + 10−6 (m2 s−1). (64)

Coefficient Kz is assumed constant in the 10−6–10−3m2 s−1 range for cal-
culations made for a basin with constant density.

3. Data for calculations

This two-dimensional mathematical model of turbulent phytoplankton
diffusion in a stratified sea was used, firstly, in calculations aiming at validat-
ing the assumptions, and secondly, to simulate the influence of the selected
hydrodynamic and biological factors on the shape and dependent variable
of the chlorophyll a and nutrient distributions in the water.

The calculations were made in a rectangular region XZ in a vertical
section of dimensions 2000 m and 20 m, with a time step of 15 min a vertical
space step of 10 cm, and a horizontal space step of 100 m. In order to
simulate the impact of fine-scale disturbances, the calculations in some cases
were made for smaller steps, i.e. time – 2 min; vertical step – 1 cm.
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The computer program was prepared in such a way that in every variant
it was possible to

• alter the value of the time and space step;

• perform calculations at any instant of time, beginning at any instant;

• introduce appropriate factors determining primary production on
a specified day;

• impose non-stationary conditions;

• alter the duration of non-stationary conditions;

• alter the value of the grazing coefficient;

• alter the value of the mortality coefficient;

• alter the values of all the coefficients assumed constant in the model;

• introduce any experimentally determined temperature and salinity
profile and then calculate the corresponding density distribution;

• analyse the density profile along the calculating grid and specify the
intervals in which hydrodynamic instabilities occur (turbulent mixing
processes);

• alter the duration and the space step in those areas where hydrody-
namic instabilities occur;

• assume and alter the parameters specifying the thickness and length
of a patch of turbulent interlayers;

• determine the turbulent diffusion coefficient corresponding to a given
state of inertial turbulence.

This program therefore enables rapid simulation of the dynamics and
the physical-biological conditions in the region studied. Comprehensive ex-
perimental data, collected during the PEX ′86 international scientific experi-
ment of the Baltic states, and prepared and coordinated by the International
Council for the Exploration of the Sea, were used as the input data.

A detailed description of the experiment as well as the list of parameters
measured, the geographical coordinates of the PEX ′86 polygon and the dis-
tribution of stations are given in the final report prepared by Dybern and
Hansen (1989). The chlorophyll a and phosphate concentrations, measured
at a standard depth at station AN1 at t = 6.00 hours on 26 April 1986,
(Fig. 2), were taken to be the initial concentrations. They are as follows:

z = 1 m V ( 1, to) = 1.4 [mgchl m−3] P ( 1, to) = 0.26 [mmolP m−3]

z = 5 m V ( 5, to) = 1.45 [mgchl m−3] P ( 5, to) = 0.22 [mmolP m−3]

z = 10 m V (10, to) = 1.41 [mgchl m−3] P (10, to) = 0.235 [mmolP m−3]

z = 20 m V (20, to) = 1.4 [mgchl m−3] P (20, to) = 0.36 [mmolP m−3].
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Fig. 2. Chlorophyll a (a) and phosphate (b) distributions determined from the data
gathered in the PEX ′86 experiment (26 April 1986) at station AN1 for t = 6.00
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The equation coefficients (41) defining the assimilation number at an
arbitrary depth were determined from measurements of the irradiation field
at different depths in the 400–700 nm range. The values of these coefficients
determined for the region studied (AN1) and for 26 April 1986 were:

ηo = 7.709 × 106 [J(m2day)−1]

α = 1.479 × 10−4 [mgC m2(mgchl × J−1]

a = 0.046 [mgchl(g C)−1]

Φ = 42.78 [mgC(mgchl × day)−1]

β = 8.45 × 10−6 [mgC m2(mgchl × J)−1].

The half-saturation value for phosphorus, described by the dependence
(eq. (38)), was adopted after Lehman et al. (1975) and Raymont (1980);
it was equal to ks = 0.12 mmolP m−3 (see Dzierzbicka-G lowacka, 1994).
The regeneration processes as well as the nutrient uptake by phytoplankton
were described by means of coefficients, the values of which were deter-
mined according to the procedure presented in subsection 2.6 and 2.7. It
was assumed that the percentage of regenerated phosphate from zooplank-
ton excretion was equal to e1 = 0.1, while the percentage of grazed material
subsequently excreted by zooplankton was e2 = 0.33 (Radach, 1983).

Lack of experimental data (PEX ′86) meant that phytoplankton mor-
tality and respiration were described with the aid of constant coefficients
taken from the data published by Radach (1983); they were equal to
m = 10−6 s−1 and R = 1.56× 10−6 s−1 respectively.

The coefficient of the relative amplitude phytoplankton biomass varia-
bility aw, and the coefficient of the time during which the maximum zoo-
plankton concentration occurred in the upper sea layer to, both of which
appear in the relationship describing grazing (47), were taken from Renk
et al. (1983). These coefficients are equal to aw = 0.6 and to = −3.25 h.
In all cases the numerical analysis was performed within a range of den-
sity variability (0.99× 10−3 ≤ ρ ≤ 1.04× 10−3 kg × m−3) acceptable with
respect to the natural environment, and within an acceptable range of
changes of module of the average vertical rate of suspension sedimentation
(2.2× 10−7 ≤ wz ≤ 5.1× 10−7 m s−1).

4. Results of simulation studies

This paper presents the results of numerical studies which the author
considered to be the most interesting. The two-dimensional model presented
introduces a novelty: for the first time, the influence of fine-scale stratifica-
tion of the density field and the flow velocity (through the thickness of the
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disturbance, its duration and disappearance) on the time-space variability
in the chlorophyll a concentration field has been taken into account.

It should be mentioned here that the first differential one-dimensional
model to include the above-mentioned processes was the one presented by
Druet et al. (1988).

The vertical distribution of the turbulent diffiusion coefficient was de-
termined (Fig. 3) on the basis of the density field obtained from the verti-
cal temperature and salinity profiles (PEX ′86 experiment), with a vertical
flow-velocity gradient.

Fig. 3. Vertical distribution of temperature To and salinity So (a) based on exper-
imental data (PEX ′86; 26 April 1986; t = 16.30), and the vertical distribution of
the turbulent diffiusion coefficient Kz (b) when a vertical gradient ∂u/∂z = 0.003
m s−1 m−1 occurred

Based on the density field, the simulations demonstrated that the
fine-structure stratification in the chlorophyll a concentration field depends
mainly on the state of turbulent mixing processes, whose source in turn
lies in the Kelvin-Helmholtz hydrodynamic instability (lasting for 2, 4, 6, 8
min), provided that the density distribution in the region is absolutely sta-
ble. The Kelvin-Helmholtz instability leads to an increase in chlorophyll a
concentration in the disturbing layer (Fig. 4); the concentration declines
with time, together with the disappearance of turbulent interlayering, but
the time-lag between these processes is a few hours (2, 4, 6, 8 hours from



Mathematical modelling of the chlorophyll a concentration . . . 175

the instant the disturbance is stopped) (Fig. 5). In time, the thickness of

the turbulent patch gradually decreases, whereas the front of the patch elon-

gates. In the final stage of the turbulence disappearance a laminar interlayer

forms, which also disappears after some hours.

In the next step, the influence of phytoplankton grazing in both the

uniformly dense and the stratified medium was estimated. The simulation

studies showed that grazing should be considered in a day-night cycle, on

the assumption that one dominant zooplankton species occurs in the basin

studied. The analysis of this process demonstrates that variations in the

phytoplankton grazing intensity depend on the spatial function adopted,

describing the spatial distribution of the zooplankton.

The vertical distributions of chlorophyll a when the function describing

zooplankton distribution is linear (Figs. 6a and 6b), and a second-degree

polynomial (Figs. 6c and 6d), are presented to facilitate better understand-

ing of temporal changes, but on the assumption that grazing is horizontally

uniform. Fig. 6 shows that, particularly at night, grazing affects to a high

degree the shape as well as the dependent variable of phytoplankton distri-

bution in the sea.

In order to show the spatial variability in the chlorophyll a concentration

field the grazing process was restricted by the distribution function of zoo-

plankton concentration, this being the product of two exponential functions,

depending on time and space variables x and z (Fig. 7).

During the evening hours the zooplankton migrate towards the upper

sea layers in search of food, i.e. phytoplankton. Almost the whole phyto-

plankton production is grazed during the night hours; this is reflected by the

declining chlorophyll a concentration. Quite the opposite situation obtains

during the early morning hours, when zooplankton migration towards the

deeper sea layers results in a decrease in the grazing coefficient and conse-

quently in an increased phytoplankton concentration (a detailed description

of the influence of grazing on phytoplankton distribution can be found in

Dzierzbicka-G lowacka, 1994).

Assuming that in the stratified sea grazing occurs as mentioned above,

then according to the theory of interlayer mixing, the hydrodynamic insta-

bility appears at 10 m depth and it lasts for 8 minutes. Such a situation

is presented in Fig. 8. This illustrates the influence of the time when the

disturbance appears (19.00, 21.00, 23.00 and 01.00 hours) on chlorophyll a

distribution.

The calculations also demonstrated that, particularly during the night

hours, grazing counteracts to a considerable degree the influence of fine-scale

processes (Fig. 8).
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Fig. 4. Functions describing the chlorophyll a concentration during hydrodynamic
instability lasting for t1 = 2 min (a), t1 = 4 min (b), t1 = 6 min (c), and
t1 = 8 min (d)
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Fig. 5. Disappearance of structural non-uniformity in chlorophyll a concentra-
tion following the instant when the disturbance was stopped; at t = 18.00 (a),
t = 20.00 (b), t = 22.00 (c), and t = 24.00 (d)
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Fig. 6. Instantaneous distribution of chlorophyll a concentration in a uniform
medium, when grazing is described by a linear function (a) and (b), or a second-
degree polynomial (c) and (d) (Kz = 10−6 m2 s−1, wz = 5× 10−7 m s−1)



182 L. Dzierzbicka-G lowacka



Mathematical modelling of the chlorophyll a concentration . . . 183

Fig. 7. Time-dependent chlorophyll a distribution determined for t = 18.00 (a),
t = 21.00 (b), t = 24.00 (c) and t = 3.00 (d), on the assumption that the local
grazing coefficient is variable in time and space and that it is described as the
product of two exponential functions f(x, z, t) = h(x, t) k(z, t)
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Fig. 8. Influence of time of appearance of hydrodynamic instability on the chloro-
phyll a distribution function (t = 19.00 (a), t = 21.00 (b), t = 23.00 (c) and
t = 1.00 (d))
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In analyses of the influence of phytoplankton grazing by zooplankton on

the distribution function of chlorophyll a concentration, the region where
the chlorophyll concentrations decrease (as compared with stationary con-

ditions) has a ‘patchy’ character. This patchiness enlarges and then disap-

pears.

The next step in the calculations involved investigating the influence of

primary production and nutrient uptake by phytoplankton on the distribu-

tion function of chlorophyll a.

As the region where the calculations were made was only 2 km long, it

can be assumed that the optical and chemical parameters were horizontally

uniform. In such a case, the changes in the chlorophyll a concentration

field mostly occur in the vertical. In order to make these changes clear, the

phytoplankton distribution was presented in a selected vertical profile.

The calculations showed that Platt’s model of primary production, util-

ising Woźniak’s bio-optical classification, yields results that are close to the

real ones. This situation is presented in Fig. 9; the vertical chlorophyll a

concentration profiles illustrate the influence of source intensity over the

week (for the first day of the experiment, after three days and at the end of
the experiment). These distributions show a considerable increase in chloro-

phyll a concentration during the morning hours.

Fig. 9. Instantaneous vertical distributions of chlorophyll a concentrations;
26 April 1986 (a), 29 April 1986 (b) and 2 May 1986 (c) in a region with uniform
density, for which the following parameters were adopted: Kz = 10−6 m2 s−1,
wz = 5× 10−7 m s−1
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The influx of solar energy to the surface and into the water depends
on the state of the atmosphere and the sea surface, as well as the optical
properties of the water. Simulations prove that these factors do have an
influence on the depth at which the chlorophyll a maximum occurs.

Phytoplankton cell growth is controlled by the nutrient concentration
in the water, not to mention the light, which is also a decisive factor. At
a high nutrient saturation (the nutrient concentration is greater than the
saturation constant Po > ks), their uptake by phytoplankton does not re-
sult in a decrease in their concentration. In this case only production gen-
erated by photosynthesis takes place (Fig. 10a, b). In the opposite situation
(Po < ks), nutrients are the limiting factor in primary production (Fig. 10c).

Fig. 10. Vertical distribution of chlorophyll a concentration in a density-
uniform region (Kz = 10−6 m2 s−1, wz = 5× 10−7 m s−1) at a half-saturation
constant ks = 0.32 mmolP m−3 and for different values of the initial nutrient con-
centration Po

The results of simulating the influence of phytoplankton mortality on
its distribution in a uniform water mass are the final step in the numeri-
cal simulations. The mortality rate describing natural conditions affects the
variability of the chlorophyll a distribution function only slightly.

In unpredictable conditions, i.e. a spill of crude oil or other chemicals, or
the unexpected appearance of blooms of dominant species (e.g. thallophytic
algae), the mortality rate is much higher than under natural conditions.
In such cases an increase in the phytoplankton mortality rate caused by
the temporal and spatial translocation of the front of the polluted water
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Fig. 11. The time distribution of chlorophyll a concentrations determined for t
= 8.00 (a), t = 9.00 (b), t = 10.00 (c), t = 11.00 (d), t = 12.00 (e) and t = 13.00 (f)
under the assumption that the local mortality rate is variable in time and space
and that it is described by the function S(x, z, t) =Ws × 104e−(0.004(x−xi)

2)e0.005x

for 5 < Ws < 60
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masses, intensifies the decrease in chlorophyll a concentration (Fig. 11).
Such a situation can on occasion lead to phytoplankton extinction, and
hence to irreversible changes in that region.

5. Discussion

The results of numerical studies of the influence of different physical,
chemical and biological factors on the shape and value of the chlorophyll a
distribution function in water enable one to draw conclusions which, on
the one hand, expand our knowledge of these processes, and on the other,
suggest new lines of research which need to be pursued if a more precise
model of the investigated phenomena is to be achieved.

The assumptions formulated in the model simulate the natural marine
environment to a fairly good approximation. The simplifications introduced
are due to our ignorance of the mechanisms of and relations between the var-
ious physical and chemical processes in the marine environment responsible
for biomass production.

The assumptions adopted have enabled the formulation of one of the first
two-dimensional phytoplankton-phosphate models consisting of two partial
differential equations, one for the phytoplankton biomass and the other for
the nutrient concentration.

The earlier models of the chlorophyll a concentration in a stratified
medium, presented in the bibliography, are integral models solved by the
Lagrange method. These models cannot take into account the influence of
short-lived fine-scale interlayers in uniformly mixed regions; in addition,
they cannot analyse the influence of bio-physical processes on the chloro-
phyll a concentration field in periods shorter than one day.

The model presented in this paper is a mathematical-physical two-dimen-
sional time-space model which was solved with the Euler method. It is a dif-
ferential model enabling the influence of the above processes on the function
in question to be taken into consideration.

Obtaining a stable solution to this problem is a separate and difficult task
in the numerical modelling of a phytoplankton concentration field, requiring
the application of a numerical solution ensuring convergence in every space
and time step. These conditions have been fulfilled in the present work, and
the algorithm of the numerical solution to the two-dimensional model as
well as the scheme illustrating the time-space grid are given.

The results of these numerical studies of the influence of the solar
energy influx into the region investigated, the dynamic processes and phy-
toplankton grazing by zooplankton on the shape and absolute value of the
chlorophyll a distribution function in the water, have demonstrated that
these processes, particularly their intensity, are responsible in equal measure
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for the shape and value of the vertical phytoplankton fluorescence profiles
recorded in situ.

However, it is difficult to state which of these processes is dominant
and to what extent it limits the shape of the chlorophyll a distribution
function in seawater. The links existing between these processes require
further experimental studies to enable a more precise determination of those
coefficients in the model which describe these processes. This applies in
particular to further studies of both the day-night cycle of phytoplankton
grazing and the day-night variability in nutrients. The lack of such data
makes it impossible to perform a full numerical analysis of these phenomena
in this cycle, or to do so over longer time intervals.

These numerical studies have proved that, despite all the simplifica-
tions adopted, the two-dimensional model presented does permit forecasting
studies of functions describing the distribution of chlorophyll a and nutri-
ents to be carried out. It is an open model, which can be used to study the
influence of different hydrodynamic, biological and chemical processes on
the distribution of these functions on larger scales.
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Druet C., Dzierzbicka L., Zieliński A., 1988, Numerical analysis of the influence
of dynamic properties of a vertically stratified basin upon the phytoplankton

concentration in the sea, Kiel Meeresforsch., 6, 272–280.
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