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A b stra c t

This paper presents the results o f preliminary measurements o f aerosol concentra­
tions above the Gulf o f Gdansk for various altitudes and for various distances from 
the shore. The measurements were carried out by means o f the FLS-12 lidar system 
from the coast at Sopot in June 1992.

1. Introduction

In order to  determ ine the evolution  o f  such param eters as the concentra ­
tion  and distribution o f  aerosol sizes under various h ydrom eteorologica l con ­
ditions, it is necessary to  perform  tim e-consum ing investigations over vast 
areas. Traditional m ethods o f  studying the m arine aerosol in  situ  provide 
only general inform ation about the m agnitude o f  the particles. Further­
m ore, these m ethods do not enable definite conclusions to  be reached about 
the influence o f  the m icrostructure o f  the near-w ater atm osphere layer and 
the dynam ic conditions o f  the sea surface on m arine aerosol concentrations
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or on the distribution o f  aerosol particle sizes. In order to  deal w ith these 
com plicated  phenom ena, active optical m ethods m ust be em ployed . These 
enable optical param eters o f  aerosol particles to  be m easured rapid ly over 
a distance o f  m any kilom eters.

Lidar m ethods play a special role in m arine aerosol investigations (Zu yev  
and N 0 ast, 1983). If the dynam ic param eters o f  the atm osphere are know n, 
the lidar, w hich w orks on various w avelengths, can be used to  determ ine the 
distribution o f  aerosol sizes at various altitudes (Z u yev  and N 0 ats, 1983; 
K lett, 1981). This m ethod allows for quick, sim ultaneous m easurem ent 
o f  aerosol concentrations and the determ ination o f  their size distribution  
functions under various hydrom eteorological conditions.

On the basis o f  the above-m entioned param eters, inferences can be 
drawn about the subtle structure o f  the turbulent layer near the sea and 
about the m icrostructure o f  the m eteorolog ical field. Thus, the influence o f  
these param eters on the dynam ic processes o f  mass and energy exchange 
between the sea and the atm osphere can be determ ined. This paper pre­
sents the results o f  m easurem ents o f  aerosol concentrations above the G ulf 
o f  Gdansk carried out by  means o f  the FLS-12 lidar system .

2. Apparatus

T h e FLS-12 lidar is a tunable laser system  designed for the rem ote sen­
sing o f  aquatic m edia and the atm osphere in the visible light spectrum .

A  dye laser pum ped by  an excim er laser acts as the source o f  excitation  
radiation. T he secondary em ission o f  the sensed o b je ct  is collected  by  an 
optica l system  that includes a telescope and p o lych rom ator , and is recorded 
by m ultichannel photoreceivers.

T he FLS-12 is equipped w ith tw o receivers, A  and B. R eceiver A  is 
a set-up for investigations into phytoplankton  or crude oil fluorescence, 
while receiver B allows for the m easurem ent o f  light intensity over a narrow  
spectral range defined by  interference filters. R eceiver B is applied only 
to  atm ospheric m easurem ents and is equipped w ith eight filters allowing 
an arbitrary wavelength to  be chosen from  the visible light spectrum . T he 
wavelength chosen depends on the typ e  o f  dye used.

The operation  o f  the FLS-12 and its data  processing are controlled  by 
an IB M -P C /A T  com puter. Special softw are simplifies the use o f  the FLS-12 
in field m easurem ents and in m anual or autom atic m odes. A  b lock  diagram  
o f  the FLS-12 is shown in Figure 1.



Fig. 1. Block diagram o f FLS-12

3. Results and discussion

T h e field m easurem ents were carried out on several nights in June 1992 
in windless and cloudless w eather. T he atm osphere a bove  the G u lf o f  
Gdansk between Sopot and G dynia  O rlow o was investigated. T h e air tem ­
perature T  varied from  296 K  to  298 K . V isible light o f  tw o wavelengths -  
Ai =  450 nm and A2 =  562 nm  -  was used for the m easurem ents. R adiation  
was generated by  a dye laser em ploying Coum arin 1 2 0  (A i)  and R hodam ine 
110 (A2 ) dye solutions. T h e  pow er o f  the radiation produ ced , and hence the 
sensing distance, depended on the pulse generator voltage in the excim er la­
ser. In the experim ent, this voltage varied from  1.5 to  1.7 kV . T h e respective 
sensing distances were zm{n =  150 m and zmax =  420 m , while the greatest 
altitude was H max =  62 m. T he distance zmax =  420 m corresponded  to  the 
atm ospheric conditions as well as the lidar pulse pow er. T h e return signal 
from  the atm ospheric aerosol was recorded by  the IB M -A T  com pu ter. A n  
exam ple o f  the shape o f  the return signal for wavelength Ai =  450 nm is 
shown in Figure 2.

For both  wavelengths A about a dozen return signals were registered. 
T h ose  signals served as the basis for determ ining the distribution  function
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Fig. 2. An example o f the shape o f the return signal for wavelength Ai =  450 nm

o f  particle sizes and their tota l concentrations at particular altitudes H . T he 
com parative m ethod , introduced by  P otter (1987 ), was used to  derive these 
param eters. This m eth od ’s principal hypotheses, listed below , coincide w ith 
the experim ental conditions:

1. N um bers o f  wavelengths o f  laser radiation.

2. E xtinction  coefficient ratios are independent o f  the location  o f  the 
target on the sensing beam  route.

3. T h e extinction  coefficient to  back-scattering coefficient ratio is inde­
pendent o f  the location  o f  the target on the sensing beam  route.

Using these guidelines, the lidar equation {e .g . Zuyev and N 0 ats, 1983) 
is as follow s:

rRi
1 Jij ( R r , ^j') K ] (-^i) ) e x p (  2  I ^dz \̂, ( i )

Jo
where

Lij(Ri, Aj) =  P(Rt, Aj) x Rf,

Kj =  PoiXj) x T(Aj) x A x B C-^ ± To\

i -  describes the num ber o f  analysed points on the sensing beam
route,

j  -  describes the num ber o f  wavelengths applied in the experim ent,
Po(Aj) -  pow er o f  laser pulse for a particular w avelength A j ,



P ( R i , Aj )  -  pow er o f  return signal o f  Aj  wavelength recorded from  a distance

Ri,
ctij -  atm ospheric extinction  coefficient at poin t R i for w avelength A j ,
A  -  effective area o f  telescope cross-section ,
B  -  lidar efficiency,
c -  speed o f  light,
r  -  laser pulse duration,
To -  counter opening duration,
T(Xj) -  transm ission o f  wavelength A j radiation through  the a tm o­

sphere.
This lidar equation allows for the ready for determ ination  o f  extinction  

coefficients in the follow ing form :

a iA R i , A,·) =  ------- a X --------, (2 )
^  3) l  — 2x  ffio Xj)dzi

where

1 -  T '2· x = ______Z__ til______?
2  f_R0"1 Li j (z i ,  Xj)dzi

r Rm
Tij — exp ( /  Xi3(zi, \3 )dzi),

J R0

Ro, R m -  distances from  the lidar to  the first and last poin t analysed. 
T h e  values o f  L{j  (see form ula  (2 ))  were determ ined at particu lar points 

w ith b oth  wavelengths on the basis o f  the graphs generated b y  the return 
signals. E xam ple values o f  atm ospheric extinction  coefficients a ( r ,  A) deter­
m ined experim entally at tw o w avelengths, Aj =  450 nm  and A2 =  562 nm , 
at various altitudes are shown in Fig. 3.

These values were used to  determ ine the size d istribution  function  o f  
m arine aerosol particles and their concentration  at various heights. These 
param eters were determ ined using the procedure described b y  P iskozub 
(1991 ), where the extinction  coefficient and the scattering properties o f  the 
aerosol are em ployed (see form ula  below ):

a>ij(Ri,\j)  =  f x  S ( r )d r ,  (3 )
Jri

where
5 ( r )  - t o t a l ,  geom etric cross-section  o f  aerosol particles per unit 

volum e,
Q (r , A j) -  dim ensionless extinction  coefficient, 
r  -  particle radius.



Fig. 3. Atmospheric extinction coefficient at various heights for two wavelengths

It was assumed that the m arine aerosol is represented b y  non -absorbing 
spherical particles for which the density distribution function  is exponential. 
Thus, functions 5 ( r )  and Q ( r , \ j ) can be w ritten as follow s (H ulst, 1957):

S ( r )  =  a x r 2e ~ br. (4 )
4 4

<3(r, Aj )  =  2 -  - s inp  +  — (1 -  co sp ), (5 )

where
p - 2  x ( m - l ) ,
m  -  relative light refraction coefficient,
Xj -  M ie param eter, Xj =  
a ,b  -  d istribution param eters.

T h e  shapes o f  form ulas 4 and 5 allow form ula  3 to  be solved in analytical 
form . Form ula 3 can also be used to  determ ine the distribution  param eters 
a and b. These param eters are then m atched with experim ental values 
o f  coefficients Li j (R ,  Xj).  C alculated in such a way, coefficients a and b 
determ ine the function  o f  aerosol size d istribution and its concentration  at 
particular altitudes

NC(H)  =  £ Nr(H)  =  NC( H)  x /( r ) ,  (6)

where
f { r )  =  exp (—6r), 
f ( r )d r  — 1.



T h e variations in m ean aerosol concentration  at various altitudes were 
determ ined on the basis o f  the m any return signals recorded during the 
course o f  one hour (see Fig. 4 ).

H [ m]

Fig. 4. The mean concentration o f aerosol particles at various altitudes

Figure 5 shows concentrations obtained  on the basis o f  the m ean concen ­
trations from  Figure 4. C oncentration  variations are show n at tw o  altitudes 
H  =  26 m and H  =  62.5 m for particle sizes in the range (0 .2  -  5 /xm).

Figure 5 shows that at each altitude, as the particle size increases, the 
concentration  o f  aerosols decreases logarithm ically. Th is is in agreem ent 
with the aerosol concentrations for windless w eather obtained  earlier (G ar- 
balewski, 1980). T he characteristic feature o f  this result is the inversion o f  
the layers o f  higher aerosol concentration . It confirm s the existence o f  stable 
stratification in the investigated air.

Figure 4, especially, reveals the existence o f  layers o f  various thicknesses 
and o f  various aerosol particle concentrations. On the basis o f  this figure 
one can distinguish four layers o f  different thickness and aerosol particle 
concentration : d\ (4 0 -2 6  m ) 15 m ; (5 0 -4 0  m ) 10 m ; efa (5 8 -5 0  m ) 8  m 
and cLj (7 0 -5 8  m ) 12 m . T h e results shown in Figure 6  confirm  this division 
o f  the air.
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Fig. 5. Aerosol concentration vs. radius at two altitudes

H [ m ]

Fig. 6. Aerosol concentration o f particles o f selected size at various altitudes



Figure 6  shows the results o f  calculations, carried out for particle sizes 
r\ =  0 . 5  /zm; r 2 =  1 /^m at various aerosol concentration  levels and at various 
heights in a hom ogeneous atm osphere, obtained from  the follow ing form ula:

N t { t ) =  N t ( t ) exp ( - 7  x  H ),  (7 )

where
iV ^(r) -  concentration  o f  aerosol particles o f  radius r  at height H  =  0 ,
7  -  coefficient w hose value depends on r.

T he values o f  the coefficient 7  were taken from  C artney (1976 ). 
C om parison  o f  the curves in Figure 6  reveals the existence o f  a layer-like 
structure o f  the air as well as the inversion o f  these layers. This is p robab ly  
caused by  an anthropogenic aerosol o f  size r  <  1 evenly distributed in 
these layers. Figure 7 shows changes in the tota l mass o f  m arine aerosol per 
volum e at various altitudes.
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Fig. 7. Changes in masses o f selected particles at various altitudes

Figure 8  shows changes in the masses o f  selected particles o f  r  =  0.5 /xm, 
r  =  1 /im , r  =  3/zm  at various altitudes.
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Fig. 8. Changes in total mass o f marine aerosol per volume at various altitudes

4. Conclusions

T he authors have presented an approach  to  the investigation  o f  m arine 
aerosols by  means o f  lidar. Even though the m ethod  contains a few  sim ­
plifications, it provides for the analytical determ ination o f  the distribution  
function  o f  aerosol sizes and aerosol concentration  at various heights and 
under various dynam ic conditions o f  the atm osphere. T h e  quantitative re­
sults obtained by  the authors are erroneous and it is not easy to  estim ate 
this error. Qualitatively, however, these results are correct and they accu ­
rately describe b oth  the m icrostructure o f  the aerosol and the structure o f  
the atm osphere.

T h e  source o f  these errors could be partly elim inated by  em ploying an 
a lgorithm , introduced  by  P iskozub (1991 ), for solving the reverse lidar p ro ­
blem . In this m ethod , which requires the use o f  m ore than five wavelengths, 
one can obtain  the true spectrum  o f  the optical properties o f  the m edium  
being exam ined. Satisfactory results can be obtained  even w ith on ly  four 
wavelengths.
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