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Abstract

Using the Gent and Taylor model, the calculations of modifications of an interaction between
atmosphere and ocean near coastal shore region by low frequency ocean surface waves were
made. Model equations consist of the wave kinematics equations and the wave energy equation.
In the latter equation sources of energy (wind, surface water current) and energy dissipation by
sea bottom were parameterized. The model equations were used to find changes of the long
waves in the near shore region. The method of numerical calculations is based on the method of
characteristics.

Results show that significant changes of the drag coefficient for momentum are caused by the
waves propagating opposite to the local wind. When waves are generated by local wind
(direction of the long wave is along the wind) the drag coefficient is mainly connected with high
frequency surface waves. A type of the sea bottom material and surface current modify
propagation of the long wave. These induce appriopriate changes of the drag coefficient in the
near shore region.

1. Introduction

The sea-atmosphere interface consists of moving irregularities of various
frequency. Within the high-frequency range of the wind generated waves
phase velocity is considerable lower than wind velocity at a standard level of
10 m. When the wind begins to blow, these components of the wavy surface
are generated immediately and can be found in higher stages of wind wave
development. Capillary waves and short gravity waves belong to this wave
category. When the wind duration is long enough, fast long gravity waves
appear. Phase velocities of these waves are comparable to the wind velocity



so surface irregularities cannot effectively slow down wind velocity near
surface, as high frequency, nearly stationary, elements do. One can intuitively
say that among various wave components, observed in developing surface
water waves, mainly waves from a high-frequency band are responsible for
the effective roughness of the free surface of the sea. An air flow over
roughness elements is modified by long surface gravity waves so these
frequency bands can play a specific role in the air-sea momentum transfer.
This role is enhanced in processes which lead to flow separation, and during
swell propagation against wind.

Munk (1955) first recognized an importance of the high-frequency band
for sea-air momentum exchange processes. He used water waves energy
density spectrum S(a>) to characterize random wave field. The standard
deviation er0 of the ocean surface displacement is related to S(a>) as follow:

®
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Munk suggested that waves steepness is an important parameter characteri-
zing the interaction between atmosphere and ocean. For the wave of an
amplitude a and wave number k steepness is equal to a-k. Mean steepness of
the wavy surface Vo is calculated as a square root from integral of wave
elementary steepnesses a-k raised to the second power. If we replace a2 by
wave energy spectrum we have finally:

(Ver)2 = JS(co) 2dco = g~2 jS(a>)ci)4dco, 2
0 0

where:

co—wave frequency,

g —acceleration due to gravity,

k —wave number.

In second integral on r.h.s. dispersion relation for deep water zone is used.

High-frequency spectrum S(a>) can be parameterized as a power function
0)-p, Where p < 4, so that the main contribution to the integral comes from
higher frequencies. Field observations gave for instance p = 3.7 at an early
stage of wave developing (Druet, Siwecki, 1984) and p = 3.0 in the area, of
small relative depth (Massel, Druet, 1980).

In different regions of the sea (deep water area or shallow water zone)
and stages of the wave development energy density spectrum S(a>) is expres-
sed by specific formulas so the short gravity waves may act differently in
these situations.

Numerous field and theoretical investigations have been carried out to
find how wavy surface modifies a structure of the atmosphere adjacent to the
water.



Kitaigorodskii (1970) obtained an important result. He found that the
logarithmic profile of the wind, ie:

U(z) L in (z'33’ ©)]

where:

«,,.—friction velocity,

x—Karman’s constant,

z0—roughness parameter,

is a good approximation for the wind blowing over undulating sea.

The roughness parameter z0 in this formula depends on conditions upon
wavy surface. According to Kitaigorodskii (1970) z0 is determined mainly by
the high-frequency band. Special formulas for different stages of wave devel-
opment and aerodynamic structure of the surface (rough or smooth) are
presented. These formulas require field observation to find a dimensionless
function depending on parameters connected with low and high-frequency
component of the surface irregularities.

Conclusions from field observations carried out by different authors were not
the same. Kuznetsov (1978) found a relationship between the friction velocity
and the root mean square deviation of the high-frequency irregularities, but
Hasse et al (1978) pointed out the dependence u* on global energy, mainly
determined by long surface wave.

A theoretical model proposed by Gent and Taylor (1978) clarified the role
of low- and high-frequency band of the surface wave spectrum in momentum
transfer. In this model the authors calculated a characteristic of the flow over
rough, long, surface gravity waves. Roughness of the surface was caused by
small irregularities (high-frequency waves) allocated along basic low-frequen-
cy wave. A parameter z0 was proportional to the mean height of the small
irregularities. Interaction between atmosphere and ocean the authors descri-
bed using a drag coefficient CI10=(uJU\O).

Some of the results derived by Gent and Taylor are presented in Figures 1
and 2. From these pictures one can draw the following conclusions:

—exchange processes between sea and air are intensified when direction
of the wave propagation is opposite to the near surface wind,

—steepness of the long wave (a-k) and ratio of its phase velocity to the
friction velocity (cr/fu*) are important parameters governing air-sea momen-
tum transfer,

—deformation of the air flow by long surface wave plays a little role in
exchange process —curve Cs(z0,a-k) in Figure 2

—when long wave is a wind driven wave, model using only parameter z0
to determine C10 gives a good accuracy.

According to these conclusions the drag coefficient in a region of variable



parameters of long low-frequency waves can also vary. A specific variability
of the air-sea exchange processes in a near surface zone is expected, where
parameters of the long waves change rapidly. Variability of the wave
parameters and drag coefficient in this zone will be a subject of the present

paper.

ak

Fig. 1 Variations of the drag coefficient with wave slope for z0= 0.005 cm (after Gent,
Taylor, 1978)

Fig. 2. Variation in C10, Cs(z0, 0) (part of the drag coefficient C,0 caused by small scale
irregularities when gravity waves are absent), and Cs(z0, ak) (part of the drag coefficient caused
by small scale irregularities superimposed on long gravity waves) with Cj-/ut (after Gent, Taylor,
1978)



2. Basic assumptions and equations of the model

According to Gent and Taylor, the drag coefficient depends on friction
velocity and parameters of the long wave, ie wave-length (/ or wave number
k), its amplitude (a) and group velocity (cg). A constant roughness parameter
z0 is proportional to the square root of the energy of high-frequency
components of wavy surface.

In the model presented the results derived by Gent and Taylor are
adopted to the shallow water zone. Other parameters to express precisely
variability of a near shore region are also included. The changes in long
wave parameters are due to variations of surface current, water depth, and
energy dissipation by bottom interaction effects (dissipation by friction,
percolation, and bottom motion). Propagation of long surface waves is
determined by wave kinematics equation in the form:

-k +V(a)+k-Vp =0, 4)
ot

where k is wave number vector (/c| = k), \p is velocity of the surface water
current.

Equation (4) describes refraction of the long surface waves. Using dispersion
relation a2 = gk tanh (kd)—where d is water depth —and wave group
definition cg = Vka> after some rearrangements we have:
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Wave energy (E) is defined as a sum of potential and kinetic energy of all
water wavy fluctuations (orbital motion of elementary particles in the water)
below and on the surface. For infinitesimal waves, potential theory of the
surface waves gives E = 0.5 gwg <a2> either for deep water region or shallow
water zone, where gw is a water density, <a2> is a mean square height of
surface irregularities. Wave energy equation in the form first given by
Longuet-Higgins and Stewart (1961) is:

"E +-"(cx+UnNE+-"(c,,+VrNE =2-D, ©)

where Z and D denote sources and sinks of energy of water wavy fluctua-
tions.

Energy transferred to the waves as a result of wind action in a unit of time is
characterized by a dimensionless coefficient a,
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where T is wave period of a dominant wave in a wave energy spectrum.
According to Gent (1977) a can be parameterized as:

« = —*_Gen (R, odo), (8)
QQ

where:

gx—air density,

Gen —tabulated function,

R - _ingyczo).

Using equations (7) and (8) final expression of energy input from the wind is
given by formula:

cfJ

Zwind= O.SENg— a>Vdnh(kd)Gen(R, oik)E. 9)

In order to find values of Gen in intermediate points we used a linear
interpolation between the values given by Gent (1977). An angle between
direction of long waves propagation and wind is not constant. This effect is
caused either by wind variability or wave refraction, so in equation (9) u*
represents projection of surface Reynolds stress (in the air) on direction of
wave propagation.

Values of Z wn) need not be positive. In the case Zwind<0 wave energy
diminishes as a result of wind-wave interaction. This situation is met when
swell propagates opposite to the local wind or during abrupt changes of
meteorological fields (waves cannot adapt immediately to the local wind).

Dissipation mechanisms of the wave energy in a near shore region are
connected with bottom friction, percolation within the sand layer, and wave
motion in the mud layer induced by hydrodynamic forces acting at the mud
line. A decay rate induced by these mechanisms depends strongly on the type
of bottom sediments and grain diameter. Percolation is most effective in
coarse sand (mean diameter > 0.5 mm). In fine sand (mean diameter < 0.4
mm) bottom friction becomes more important than percolation. Bottom
friction depends strongly on the presence of stable sand ripples on the
bottom. When the bottom is composed of silt, clay or soft organic matter,
bottom motion becomes a dominant dissipation mechanism (Shemdin et al,
1978). In the model presented one can parameterize the percolation effect as
follows:

ykE

D= —
cosh2(kd)'

where y is a coefficient of permeability.



For the coarse sands and fine sands y is equal to 1.15 cm/s and 0.124 cm/s,
respectively (Shemdin et al, 1978).

When ocean waves encounter a current in which the surface velocity
varies, an interchange energy between wave and current appears. A rate oi
working by surface wave motion against the mean rate of the current shear
we parameterize by a formula given by Longuet-Higgins and Stewart (1961):

' = ¢ y

‘current — Jali

pP* (12)

where WP is the /? component of the ocean current velocity (a = x, y;
=X, Y), Sp is a radiation stress equal to:

SI.TA . £+0& - i M (12)
c k k y o
where: 5xp—Kronecker’s delta.
Formula (11) neglected a part of the global energy included in high-frequency
band of wavy fluctuations in the water. According to Phillips (1961) this
assumption is acceptable except for ocean regions with intensive wave
breaking.

Propagations of surface waves are examined in the region depicted in
Figure 3. We start our calculation in the region where water depth is equal

to half of the wavelength. Values with index zero refer to the boundary of
shallow water zone. Wave parameters at this point, ie group velocity and
wavelength (or wave number), define a scale of velocity and length, respecti-
vely. We assume that all parameters describing a near shore region (bottom
topography, surface current) and surface wave parameters do not vary along
an axis parallel to the shore (axis y in our model) and depend only on the
distance from the shore (variable x in our model).



We assume that in a near shore region water depth diminishes according
to a formula: d(x) = dOexp(—Bx), where B characterizes a steepness of the
bottom topography and the velocity of water current has a parabolic profile
with a maximum value at the boundary x = 0.

We stop our calculations at the point where water depth is small, ie:

9.01

In shallow water new effects due to nonlinear interaction between wave and
bottom should be included in model equations. A method of numerical
calculation does not depend on our assumptions for profiles of bottom and
current. Different profiles can also be examined. It seems that in a real near
shore region wave parameters should be more variable than in model
presented. Especially effects of bottom and current non-homogeneity along a
line parallel to the shore should be important. The present model gives only
an answer to the question: to what extent do long gravity waves modify
exchange processes between atmosphere and ocean in a near shore region?
Our results suggest that more realistic configuration of bottom irregularities
and water current should be analysed.

3. Method of calculation

We solve our problem using a method of the characteristics. Let’s start
from the short description of the method because it is not widely used in
surface wave modelling. Equations (5) contain two unknowns kx, ky, and we
present this method for two equations for two unknown variables. More
general systems can also be studied (for details see Berezin, Zidkov, 1962). In
a method of characteristics instead solving a hyperbolic system of quasi-
-linear partial equations, ie:

aijj ~ +bu~ 1=9q; (i=1 2;j =1, 2), (13)
1 ox cy

where ai}, bij are given function of x, y, Kx, K2, we solve so-called equations
of the direction of the characteristic in the form:

N i

=A; (i=1,2) (14)

dx

with the differential condition on the characteristic:
(A -A+ B)dKj + Cd*2 + Mdx + Ndj>—0; (i = 1, 2), (15)
where are the roots of the following determinant:

bii  /Cii bly ~

, o L2 =0. (16)
b2\ —~2\ b22—"22



Functions A, B, C, M, N are defined as the following determinants:

an

Taking into account wave kinematics equations and using our assumptions
for the profile of the bottom and water current, equation (15) can be
rewritten as:

dk dk dp dio dd

xd x X+{Cgy+Vp)dxy ~ S x dd'dx’ (18)
on the first characteristic curve y = const and
%x -0 (18a)
on second characteristic j'(x) = fA2dx.
For one variable problem a— +£— = ¢, equations (14), (15), reduce
to equations:
dy b
dx a

19

dE _c (19
dx a

A method of solving wave energy equation is based on formulae (19). In our
problem equation (19) can be written as:

dE

CTX-Z~D- (20)

For a system of equations (5) roots of the determinant (10) are equal to
= 0 and /2= (i'9,+ \p)/(cgx+ Up). The existence of two different roots is
a precondition for using a method of characteristics.
From one boundary point of the calculated region, two curves (characteri-
stics) given by equation (14) emerge. In a method of characteristics we find a
solution of the system (5), (6) at the grid points which we find by intersection
of these curves. The calculation errors depend on the grid length chosen on
the boundary x = xO0.
This method has an advantage over other numerical methods in that we
have to put initial values kx, ky, E at only one boundary.



Calculations are based on the Masso method. The differentials in (14) and
(15) are changed into finite differences and next four linear equations for one
grid points are solved. Suppose that we know wave parameters at the two
neighbouring grid points (xI5jj) and (x2,y2) we can find wave parameters at
the point of intersection (x3, y3) of the characteristics with these end points.
The first two formulae, according to the Masso method, we derive from
equation (14):

y3~y2="i(*3-*2),
ys-yi =a, (x3-xi). (21)

Equations (21) describe intersection of characteristics at the point (x3, y3).
The last two formulae are given by equation (15). We rewrite (15) for
neighbouring points (xI5 yt) and (x2, \2) and different families of the charac-
teristics:

("Aj+Bj)k -k )+C,(c -k )+ M, (x3- xx+NtE8-yj =0,
(A, A2+ B2)(kX3- kX2)+ C2(ky3- ky2)+ M2(x3- x2+ N2(y3- y2) = 0, @)
where: AI5 A2, ... are values of the determinants (17) for points (xI5yx and
(x2, 72), respectively.

A system of equations (21), (22) allows us to find values kX3, ky3 at the point
(x3,*8) and co-ordinates of these points. In fact Ab An depend on
kX3, ky3, x3, y3 so the system (21) and (22) are not linear and the iterative
method is used to avoid this complication (for details see Berezin, Zidkov,
1962). In area where X2 changes sign (/12 ~ 0) a system of the equations (5) is
not hyperbolic, and in our calculation procedure we change a system of
equations when X2 ¢ ( —0.1, 0.1). If X2~ 0, terms of the equations (5) multip-
lied by cgy+Vp are smaller than the terms multiplied by cgx+Up, so after
adding first of two equations (5) to the second one we have:

(23)
. . . . . . Skx
This equation with irrotational condition for wave vector number, ie q
y
dkv . . .
= —" constitute a new system of the equations which we solve by a method
0X

of characteristics. Precondition which enables to use this method is fulfilled
because roots of the determinant (16) are equal to 0 and 1 Families of the
characteristic curves are given by equations: y = const, y = x4-constj.

If X2 g> 1 we use the same procedure as written above, only terms multiplied
by cgx+Up ar eliminated. Equations of the characteristics are as follows: y
= X+ const2, x = const3. In a case of asymptotic behaviour (A2~ 0 or
A2 1) calculation is also based on the system (21), (22).



One of the characteristic curves given by the system (5) (y(x) = JX2d x)
coincides with a characteristic curve for equation (6). Using equation (20),
which is satisfied for points on this curve, after solving equation (5), one can
easily find energy of the long gravity waves using the method described
below. If differential in equation (20) is replaced by a finite difference, we
have:

N .
X n+ 1,n,i

Q% 1. ERAL~ Eni —Z —D, (24)
A

where:

i—characteristic curve with the end point at x = 0, y0i = (i—1) Ay,

Ay —arbitrarily chosen grid length along y axis at the boundary,
£n-i-wave energy at the point (xBi, yni),

£n+i.i—wave energy at the point (x,+ I, yntl>),

AX,, = Axn+lii —xni.

Sign'marks a mean value of the coefficients in equation (20) calculated as an
arithmetic mean of the values at the points (xni, yni) and (xn+u , yn+Iti). Points
(xn,h yni) were found earlier by solving wave kinematics equations using a
method of characteristics. These points are given as intersection points of the
characteristics. Starting from boundary points (x = 0, y0i) for which wave
energy is equal to EO, wave energy for the following grid points (on the same
characteristic curve labeled by index /) is found from a linear equation (24).

4. Results

Gent and Taylor (1978) propose an interpolation formula to approximate
their model predictions of the drag coefficient C10 ={uJU 10)2 in the form:

Cio = Cs(z0, 0)+(ak)2F(R, Cfl/uJ, (25)

where:

Cs(z0, 0)—drag coefficient over a plane surface with the roughness parame-
ter zQ

ak = steepness of long gravity surface waves,

R = —In (z0-k),

F(R, Cf/lur) —the combined effects of direct interaction between long waves
and atmosphere, and small scale exchange process due to flow modification
by long wave.

In the active wave generation region (in which 8 <cf/u® <12) and for
limited range of wind speed (3 m-s~* < Ul0 < 12 m-s_1)F can be taken as
R —2.5- 10~3. For higher values of Cf/u® F is much lower and for negative
values of cf/ u when the wind is against the waves, much higher value F is
appropriate (F = 10“2—10“3). We use formula (25) to find variability of C10
in a near shore region. In presented model input values are given at the

3 — Oceanologia 26.



boundary of region where wave parameters depend on water depth. These
values are as follows: \p0/Cg0 = {0, 0.1, 0.2, 0.5], (ak)0 = 0.1, COw* = +30
and L/.Q = 100. The last parameter expresses dimensionless width of the
near shore region.

For a wave 100 m long the value of \W0/Cg0 —0.2 gives a maximum
velocity of the water current equal to 1.25 m-s-1. This is a resonable value.
For instance, on shelf near Port Edward (South Africa) water reaches a
depth of 50 m at 5—6 km from the shore and water current velocity is about
15 m-s-1 there, and decreases rapidly towards the shore (Pearce, 1977). In
this case value L/AO is also set correctly.

Values W0/Cgo0 close to 0.5 are representative for a shorter wave, and 0.5 is
an exact value of \W0/Cg0 for wave 23 m long on the shelf near Port Edward.
The value (ak)0 = 0.1 can be observed in a near shore region. For waves 100
m and 20 m long this steepness implies a wave amplitude of 1.6 m and 0.32
m, respectively.

Dimensionless phase velocity equal to +30 characterizes wave (swell)
which propagates freely at the boundary of calculated region. Energy input
from wind to this wave and the other sources and sinks of the wave energy
are practically negligible in this area. Waves with a value of cf/u* = —30 can
appear in a near shore region as a residual of distant storm. These waves
come to the shore where wind blows opposite to a direction of long waves
propagation (off-shore) and waves generated by the wind do not interact
with swell.

Figure 4 shows variations of wave -number in a near shore region. In the
case without water current wave number grows as result of reduction of
water depth. As one can see from Figure 4, the role of the water current in
changing wave number is secondary. A relative growth (when angle between
wave direction and current is acute) and reduction of wave number (when

Fig. 4. Computed variations of the wave number (curves 1, 2, 2', 3, 3) and angle between k and
line perpendicular to the beach (curves a, b, ¢) with dimensionless velocity of the water current
Ko/Cgo

1-without water current, 2 - \p0/Cg0 = 0.2, 2'-Vp0/Cg0 = -0.2, 3- \pU/Cg0 = 0.3, 3'- WU/Ct0
= -0.3, a—without water current, b —\0/Cg0 = 0.5, c—\p0/Cg0= —0.5



the angle is obtuse) reaches a maximum of 10°/0 for current with \p0/Cg0
= 0.1. Correction to formula (25) depends on k2, so interaction between
surface wave and water current can be important for the analysis of an
exchange procesess ocean-atmosphere, especially for strong current.

In Figure 4 is also present a change of angle between wave number
vector and direction perpendicular to the shore. The angle decreases with the
reduction of water depth, wave becoming more nearly perpendicular to the
beach. Water current plays a little role to change this angle. For strong
current the angle decreases to about 2°.

In Figure (5) we show variability of wave energy and drag coefficient as a
function of dimensionless water depth (kOd). Water energy decreases in the

k Qd

Fig. 5. Computed variations of the wave energy (curves a, b, c) and drag coefficient (curves 1, 2,
2', 3, 3, 4) with W0/Cg0 and wave-to-wind angle

When direction of the wave propagation is opposite to the wind, notation is the same as in
Figure 4. Curve 4 refers to the case when wind blows along waves and \p0/Cg0 —0.2

calculated region. In the case without sources and sinks of the wave energy
this is caused by changes in wave group velocity. The group velocity at first
increases slightly then rapidly decreases as the water becomes more shallow,
so the energy first decreases slightly before its rapid increase. When we
include dissipation mechanism - percolation described by eq. (10)-in the
wave energy transport equation, wave energy decreases also in a region
where the group velocity increases. As the ratio of wave amplitude to the
local water depth increases, the waves are deformed and appear to behave as
series of solitary waves or cnoidal waves. Soon they become unstable and
break. Swell tends to break when the crest-to-trough height is comparable to
the local water depth. In our calculations this zone is not taken into account.

Energy dissipation due to percolation effectively changes wave energy
(Fig. 6). When bottom material consists of coarse sand, characterized by
coefficient of permeability y =2 cm-s-1, wave energy decays abruptly in
shallow water, so near the beach the correction factor in formula (25) is
about 2°/0 of the value of Cs(z0, 0). In this case the other model parameters
are as follow: W0/Cg0 = 0.1 and L//.0 = 100. When bottom material consists



Fig. 6. The role of bottom material in variations of the wave energy (curves a, b, ¢) and drag
coefficient (curves 1, 2, 3); for WU/Cg0 = 0.1 a and 1—y = 0.1 cm s~* (coefficient of permeabili-
ty), b and 2—y =05 cm-s', ¢c and 3—y —2 cm s'1

of fine sand and y = 0.1 cm-s-1 energy dissipation is quite small. Wave
energy decreases slowly and the correction factor is much greater. As we can
see from Figures (5) and (6), angle between wave and wind plays a crucial
role in momentum exchange processes. In the case without percolation and
water current, when the wind blows against long surface wave, the drag
coefficient increased about 60°/o, but when the wind blows along direction of
the wave propagation the correction factor fall down to 10%-

When the angle between waves and water current is acute, growth of the
wave number is greater than in the case when the angle is obtuse. In the first

\
case —kv— >0 (in the second case < 0) and the rate of growth kx is larger
X

than in the second case — see equation (18).

According to formula (25), the drag coefficient in the first case is greater than
in the second case. For W0/Cg0 = -0.2 and y = 0 maximum corrections are
40°/o °f the value of Cs(z0, 0). It is about 50°/0 of the correction for the case
when W0/Cg0 = 0.2. For greater values of (ak)0 and \WpJC gO\ this difference is
more distinctive.

An energy flux to the wave due to water current-wave interaction
practically do not change wave energy (Fig. 5). Mean shear of water current
in our model is quite small. A coefficient characterizing the efficiency of
sources (sinks) ie fT 1dE/dt is of the order of 10-4. In shallow water zone it
is comparable to a dumping coefficient due to percolation in fine sand. As we
can see, only a change in the wave kinematics caused by water current is
important for momentum exchange process.

In our model energy input from the wind is not decisive for wave energy.
A width of the calculated part of the near shore region is small ie L/a0
= 100, whereas a length scale for change of wind driven wave is about
thousands of wavelengths. For a wider near shore region and for a smaller
value of \cd/uj the wind-wave interaction should become more important.



5. Conclusions

The following conclusions can be drawn from our study:

(i) Changes of long surface wave parameters in a near shore region
influence momentum transfer between the atmosphere and ocean.

(i) In a near shore region, which is homogeneous along an axis parallel
to the beach, the sea-atmosphere interaction increases as the water becomes
more shallow.

(iii) When the wind blows opposite to the direction of wave propagation,
the sea-atmosphere interaction intensifies. For steep gravity waves the role of
low-frequency band of wave spectrum in momentum transfer between the
atmosphere and ocean (A-O) is comparable to the role of high-frequency
surface irregularities (these components define roughness of the sea surface)

(iv) Water current and type of the bottom material influence exchange
process A-O. The first factor changes mainly kinematics of the wave train,
the second dynamics.

(v) A numerical method of characteristics applied to kinematics and wave
energy equations is fast and accurate.
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