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Abstract

This paper presents a statistical analysis o f the turbulent motion o f a viscous incompressible 
fluid subject to the thermohaline convection. The analysis is in the spirit o f the works o f Yoshi- 
zawa who introduced a new perturbation method for solving hydrodynamical equations. The 
results obtained in this paper generalize the formulas of the above-mentioned author and enable 
us to obtain general expressions for the velocity, velocity-temperature, and velocity-salinity co­
variances. In particular, the Reynolds stress, temperature flux, and salinity flux are evaluated in 
the inertial-range turbulence.

1. Introduction

Let D denote a confined region of space which is occupied by an incompressible 
fluid of density p  and kinematic viscosity v. The m otion of this fluid will be describ­
ed by the velocity vector field w(x,  i) =  [w1(x, i), w2(x, /), w3(x, /)]> x  =  (x1, x 2, 
x 3) e D.

It is well known that if a physical system consisting of a viscous fluid and rigid 
bodies is not subjected to any external action, it will tend to a state of rest.

We now submit the fluid to  a steady action measured by parameter t  (Reynolds 
number, Rayleigh number, G rashof number, etc). W hen r = 0 ,  the fluid is at rest. 
For t  >  0 we first obtain a steady state, ie the physical parameters describing the 
fluid at any point (velocity, temperature, salinity, etc) are constant in time, but the 
fluid is no longer in equilibrium. This situation prevails for small values of r. For 
sufficiently large t ,  the fluid m otion becomes very complicated, irregular, and chaotic, 
and  we have turbulence [7].

In  nature the turbulent m otion (turbulent convection, turbulent therm ohaline 
convection) is im portant in many areas of geophysics, astrophysics, and oceanology. 
Typical examples include atmospheric convection, stellar convection, and picnocline 
erosion in the ocean [1, 6].

In  this paper we consider the turbulent motion of a viscous incompressible fluid 
subject to the thermohaline convection. A strict, mathematical approach to the tu r­
bulent thermohaline convection was given by Icha [2], but the treatm ent remains 
purely formal at this stage. In  our analysis, we extend the Yoshizawa’s recent work



based on DI formalism for thermal convection [11] and find general expressions for 
the velocity covariance and the velocity-temperature and velocity-salinity covarian­
ces. The results obtained are applied to evaluate the Reynolds stress, tem perature 
flux, and the salinity flux in the inertial range. Althoùgh made in the spirit of the 
works of Yoshizawa [10, 11], the present analysis is a little more complicated. The 
reader who is interested in the details of the manipulation should consult Yoshizawa 
a works [10, 11] and Leslie’s book [5].

2. Basic equations

In the Oberbeck-Boussinesq approximation the continuity equation, the Navier- 
-Stokes equations, and the diffusion equations for temperature and salinity have 
the following general form, as in [3]:

where n is the pressure divided by the density, A*y + B*S is a destabilizing force 
per unit mass, k$ and ks are the coefficients of thermal and solutal diffusion, respec­
tively. We employ the summation convention over repeated indices.

In the case of the thermohaline convection, the destabilizing force is due to the 
acceleration of gravity g = (0 , 0, —g) acting through thermal and solutal expansion, 
so that:
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3. Statistical formulation

We begin by introducing two space and time scales. Assuming tha t the space 
and time variation of mean fields is slow, as compared with that of the fluctuating 
fields, we write [10, 11]:

x “, X ° ( = l x a) , t ,  T ( = h ) . (3.1)



Here A is an ordering parameter and will be assumed to equal a unity at the end o f 
the calculation. Then v, n, y/ and S  are written as:

v = U ( X , T ) + u ( x ,  X , t ,  T ) ,  <u> =  0, (3.2)

n = P ( X ,  T)  + p ( x ,  X ,  t ,  T ) ,  <p> =  0 , (3.3)

y / = 0 ( X , T)  + S ( x , X , t ,  T ) ,  <-9> =  0 , (3.4)

s = r ( X , T ) + y ( x , X , t , T ) ,  <y> =  0 , (3.5)

where < )  denotes the mean over an ensemble. By virtue of (3.2) —(3.5), (2.1)—2.4) 
may be rewritten, up to 0 (/l), as:
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We introduce a Galilean transform ation such that

F = x a- U  ‘t (3.10)

to remove the convection effect due to the mean flow U (X,  T ) from (3.7) —(3.9), 
and the Fourier transform ation defined by

f ( k , X ,  t,  T ) = - L -  i / ( | , l ,  t ,  T ) (3.11) 
(2?r) J
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where a special symbol J = j j j  d ^ d ^ 2d^3 is introduced.
.« _c°



Application of (3.10) and (3.11) to (3.6)—(3.9), after the elimination of the pres­
sure with the aid of the continuity equation, gives:
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where <5(-) is the Dirac delta function D x\ k )  is the transverse projector DxP(k) =  
=SxP — kxk p/ k 2), the inertial-transfer operator M xfiy(k) is defined by

1 -  2ky 
M xl>y( k ) = — [_kpDx\ k )  + kyDx\ k ) 2  and N yPy\ k )  = —  M Pxd(k ) -  Dx\ k )  3Py.

2 k

We should note that S and y are of 0(A) owing to its linearity in (3.13) and (3.14).
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We next expand ux, & and y in the power series of A [10, 11]:

«"(fc, t) = uô(k, t)+Aua1 (k , !) +  ••• > (3.15)

S ( k , t ) = X 9 1( k , t )  + . . . ,  (3.16)

y(.k,t)=Xyt(k,t) +  ... . (3.17)

After the manner of Yoshizawa’s paper [10, 11] u\ ,  and yL can be integrated, by 
using «Ô, as:

t

du^ r
u-“( k , t ) = - D py( k ) — s dt1Gc“' ( k , t , t 1)u i0( k , t 1)+

— co

t  t i  

- D fiX k ) A v~  |  d t 1 Gx\ k ,  i ,  i i )  J d t M k ,  t 1, t 2) u s0( k ,  t 2) +

—  00  —  (30

t  t l  

dr * r
- D p\ k ) B ? — ô dt1Gc‘p( k , t , i 1) dt2GY( k , t 1, t 2)uô0( k , t 2),  (3.18)

—  00  —  00

t

n -  so r ~ -
$ i ( k , t ) = ~  —  d ^ G ^ k ,  t ,  t J u K k ,  t j ) ,  (3.19)

«
— oo

3 r  r
y1( k , t ) = ~ —  d^Gyÿc, t, h ) u l ( k ,  tt ) ,  (3.20)

—  00

where Gal>, Gs anc Gy are the Green’s functions satisfying

— (*•* ,*  ) + vfc2G*(fc, t ,  |  ô(k — p — q) Uq(p , t)Gip(q , t, i') =
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p q (3.23)
respectively.

Let us now introduce the velocity covariance Q*11, the velocity-temperature co­
variance A ,  the velocity-salinity covariance Q,  and the averaged Green’s functions



t2) +

G*p, Gs and Gy defined by [10, 11]:

<«■(£, t ) u \ k ,  t')~y = Qa\ k ,  t, t ' )ô(k + k') = Da\ k ) Q ( k ,  t , t ' )ó(k + k') +

+ ÂR^^Çk, t , i ) ô {k +  k ) + . . . ,  (3.24)

<ua(fc, t )3 (k ' ,  t ' ) y=A*(k , t ,  t ' ) ô ( k + k ' )= A R \k ,  t , t ' ) ó ( k + k ' ) + . . . ,  (3.25)

<u\ k ,  t )y (k ’, t ')}=Q*(k, t, t’)ô (k  + k ' ) = m a(k ,  t , t ' ) ó ( k + k ' ) + . . . ,  (3.26)

<G*\k, t, i')> = G*\k,  t, t ')=óaPG(k ,  t , t ' ) ,  (3.27)

<fiz(k , t , t ' )>=G9( k , t , t ' ) ,  (3.28)

<Gy(/ć, i , i')> =  Gr( k (3.29)

We can evaluate these quantities by means of the Direct-Interaction Approximation 
(DIA) (propagator renormalization in the terminology of quantum-field theory) 
[4, 5, 10], The result is that:
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The Fourier transform (3.24), (3.25), and (3.26) with (3.30), (3.31), and (3.32) 
gives the Reynold’s stress ( j f i / y ,  temperature flux <w°ri9>, and salinity flux <wav), 
respectively, as:

(3.34)



and

=  (3.35)

where we have assumed 1 = 1 . Here / ,  v f  yS, /.xPyS, fiaPyi, and Ks are given by:
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In  (3.36) — (3.44), KM is the wave number magnitude corresponding to largest 
eddies or waves in the region considered [10, 11].
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4. Reynolds stress, temperature flux, and salinity flux 
in the inertial-range turbulence

Let us consider turbulent flow at a very high Reynolds number. In  such flow 
molecular viscosity plays no im portant role, except through the dissipation process 
of turbulent energy, and the coefficients of thermal and solutal diffusion are negli­
gible. Therefore, the Reynolds stress and the scalar flux may be evaluated by using 
the inertial-range theory of Yoshizawa [8, 9], He has shown that the inertial-range 
turbulence is described by [8 —11]:

<2(fc, t ,  i') =  < T ( fc ) e x p [ - c o ( fc ) ( / - t ' ) ] ,  (4.1)

G ( k ,  t,  t ') = e x p [ —<y(fc)(i—i ' ) ] # ( * - 0 ,  (4.2)

G9(k ,  t ,  i ') = e x p [ - w 9( f e ) ( < - i ') ] H ( i - i ') ,  (4.3)

where H ( t ) is the step function, and <r(k), co(k) and 0):>(k) are given by:

a(fc) =  0.118s2/3fc“ 11/3, (4.4)

co(k) =  0.42e1/3/c2/3, (4.5)

eoa(fc) =  0.67E1/3fc2/3. (4.6)

Here s is the rate of energy dissipation.
I t  is easy to prove that (cf [9]):

Gy(k ,  t ,  i ')= e x p [_—(oy( k ) ( t —t ' ) ] H ( t —t') (4.7)

and

a>y(k)=0.67£1/3k 2/3. (4.8)

We substitute (4.1) —(4.8) in (3.36) —(3.44) and find, after integration, that:

X =  0.44b2/3L2' 3 , (4.9)

__ [0.046e1 /3L4Vf3(5ay(5/,<s for a # /?  
jo .o ô le1' 3̂ 3̂ ’# “0 '5 for a =  £ , (4.10)

^ _ ÎG .0 0 8 5 L 2M<5“^  for a* /?
(0.011L2M<5(a) yôM 0 for « =  /?, '  }

Pyi_jO.OOZ5L2Mô*’ôpi for 
^  |0.011L^<5(a)y<5(a)i for a = 0 ,  1 }

X^ =  0.058e1/3̂ /3 , (4.13)

K s =  0.058£1,3L m 3 . (4.14)

N ote that formulas (4.11), (4.12), and expressions (4.13) and (4.14) are identical 
in the case of high-Reynolds-number thermohaline turbulence. Thus, formulas 
(3.33), (3.34),-and (3.35) with (4.9) —(4.14) constitute general expressions for the 
Reynolds stress, temperature flux, and salinity flux in the inertial-range turbulence.



5. Concluding remarks

So far, the theoretical framework o f Yoshizawa’s theory is neither well substan­
tiated nor understood. Many questions remain unanswered: about convergence, 
uniqueness of solutions, and the importance of terms, which have been neglected. 
The present analysis is more complicated, which is not surprising; theories based 
on DI formalism lead to a set of coupled integral equations which are of complex 
structure. The aim of this paper has only been to generalize the considerations o f 
the above-mentioned author and apply his formalism to the description of thermo- 
haline turbulence in the case of Oberbeck-Boussinesq approximation. An interesting 
problem is the derivation of formulas (3.33) —(3.35) based on the functional-analytic 
approach to thermohaline turbulence initiated by the author [2], Such work is o f 
considerable interest from a theoretical point of view but in the light of the present 
knowledge, it is an extremely difficult problem.

Acknowledgements

The author is grateful to Dr. Yoshizawa (University of Tokyo, Japan) for reprints o f his work.

References

1. G r a y D . F., L in sk y  J. L. (ed), 1980, Stellar Turbulence—Lecture Notes in Physics, 114.
2. Ich a  A., 1985, Functional formalism fo r equations o f  Oberbeck-Boussinesq type o f  the deve­

loped thermohaline turbulence, Oceanologia, 20.
3. K a m e n k o v ic h  V. M., 1976, Fundamentals o f  Ocean Dynamics Elsevier Sci. Publ. Company, 

Amsterdam.
4. K r a i c h n a n R .  H., 1959, The structure o f  isotropic turbulence at very high Reynolds numbers, 

J. Fluid Mech., 5.
5. L es l i e  D . C., 1973, Developments in the theory o f  turbulence, Clarendon Press, Oxford.
6. P h i l ip s  O. M., 1977, The Dynamics o f  the Upper Ocean, Cambridge Press, Cambridge.
7. R u e l l e  D.,  T a k e n s  F., 1971, On the nature o f  turbulence, Communs. Math, phys., 20.
8. Y o s h i z a w a  A., 1978, A governing equation fo r the small-scale turbulence. II. Modified DIA  

approach and Kolmogorov's 5/3 power law, J. Phys. Soc. Jpn., 45.
9. Y o s h i z a w a  A., 1979, Statistical approach to inhomogeneous turbulent diffusion'. Generalformu­

lation and diffusion o f  a passive scalar in wall turbulence, J. Phys. Soc. Jpn., 47.
10. Y o s h i z a w a  A., 1979, A statistical investigation upon the eddy viscosity in incompressible 

turbulence, J. Phys. Soc. Jpn., 47.
11. Y o s h i z a w a  A., 1980, Statistical theory fo r Boussinesq turbulence, J. Phys. Soc. Jpn., 48.


