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Abstract

The non-linear attenuation of the wave motion induced by wind is considered. From the collected
experimental data is shown that the low frequencies are damping slower than it is given by a
linear thoery. The opposite behaviour is observed in the high frequency range. The developed
non-linear perturbation scheme offers a theoretical base for understanding of this unclassical
attenuation mechanism.

1. Introduction

The dynamic motion of the sea surface, due to continuity of water masses, penetrates
deeply into water. Penetration range depends strongly on the intensity of the surface
motion and the respected frequency. Under the assumption that the observed sur-
face geometry is a linear superposition of simple harmonic waves coming from
various directions, the pressure damping of the particular components is described
by well known classical formula [10]:

p (z) ~ coshk(z+ h),

where:

p — wave pressure;

h — water depth;

z — vertical coordinate of pressure measurement point, positive when upward;

k — wave number related to wave frequency co by the dispersion relation:

co2=g'k-tanh(k-h). (2)

* The investigations were carried out under the research programme MR.1.15, coordinated
by the Institute of Oceanology of the Polish Academy of Sciences.



The simplicity of attenuation factor is of the practical importance for the sea.
surface measuring procedure. Pressure type gauges therefore are extensively used
in many locations throughout the world. The use of a pressure transducer for wave
measurements present notable advantages in comparison with other systems. First
of all, most systems are used on the surface, whereas a pressure transducer can
be placed submerged, out of the way of being easily damaged. Moreover, it offers
the precision which is quite satisfactory for the routine wave measurements. However,,
there is still a problem. It concerns the translation of information on wave pressure
head variations into the concurrent surface wave heights.

Attempts to determine the validity ofthe classical attenuation law have been made
in the past [1], Previous experiments reported by Draper [9], Cypluchin [8], Bergan,.
Torum and Traetteberg [2], Esteva and Harris [11], Cavaleri, Ewing and Smith [6]..
Grace [14] and Cavaleri [5] indicate that the deviations from the linear transmittance
function are sometimes greater than 20%, depending on the frequency.

Moreover, in the monography published by Gluchovsky [13] (see also [10]),
the empirical evidences for faster (than classical) attenuation of the separate, well
noticeable, sea surface oscillations are collected. According to Gluchovski we have:

cos hk(z-\-h) for /[ z\°'8n
w U0 - “pr r " 55(71) Jr
where: y — averaged Gluchovski damping coefficient, L — wave length. Futher-

Fig. 1. Experimental and theoretical attenuation of wave pressure [2] a) according to linear
theory; b) according to 5th order theory



more, the energy of the spectral component attenuates almost in accordance with
the linear theory.

The review of the professional literature indicates [1, 12, 23, 27] that the
discrepancies in the damping rate also for the orbital velocities were observed.

In this paper, some possible reasons for the discovered unclassical pressure damp-
ing are analyzed theoretically. The special efforts are made to demonstrate the impor-
tance of the non-linear mechanisms. Thus, a method correct to the second order
in wave amplitude is applied for calculation of the non-linear damping coefficient
ap in the random wave field.

Using the theoretical results, the interpretation of the experiments is given.
Moreover, the influence of other factors on the pressure attenuation rate is
mentioned.

2. Non-linear attenuation function
for wave pressure

The experiments carried out for the regular and irregular waves have shown
[2] that transmittance function based on the non-linear wave theories predicts the
wave attenuation much better than the linear one (Fig. 1). Particularly the appli-
cation of the fifth order Stockes’ approximation fits the experimental points quite
satisfactorily. Therefore the conclusion that the non-linear mechanisms are respon-
sible for the attenuation is well-founded.

In this chapter the corresponding non-linear theory up to the second order is
developed using the perturbation method. It is assumed that all variables can be
expanded as a convergent power series of a small parameter (proportional to the
water — surface slope).

2.1 Problem formulation

We consider unrestricted water basin with constant water depth h. The waves
are generated by wind stationary in time, as well as in space. If the effects of viscosity
and turbulence can be regarded as small and the wave motion is irrotational, for
the random velocity potential 0 and random sea surface Cwe have:

<P(x, z, t)= &MU\ x,z, i)+ cpA(x, z,t)+ ..., (4)
E(x, )=AD(x, )+ A)(x, t ) + , ®)
where: x, y — horizontal Cartesian co-ordinates with the orgin at the still water
level.

The resulting boundary value problem is summarized as. follows [28]:

V2P=0, u= Vif>; (6)



d$ 1
0C+ — + —u2= 0, where z=0 ; (7)
dt 2

oo e — =0, where z=0; (8)

-— =0, where z= —h. (9)

If we neglect the non-linear terms in (7) and (8), the solution of linear problem
takes the form ([18, 24]):

AD(x, z, i)= iElai' v'fXx’Z, 0. (10a)
and

cw (x,t):__izilr C\\x,t), (10b)
where: "

m_ g coshki(z+h) . (@) ]
<Pi= —"c-———smy,; G -cosill, (11)
a); cos/jktlt

AN 1)=fci-3c-a)i-i+6i; 5c=(x,y), (12)
kl=(ki’cos0t, ki’sindt); fc,-=|fc;]. (13)

The amplitudes and phases £, are chosen randomly, so that a, cos s, and at sin e,
are jointly normal, with e, uniformly distributed and:

lim (Ea? )=Si(co)dco+0 (dco)2, (14)
n~*o0 (O<ioi<co +d>

where: ot — variance of sea surface elevation: S-(co) — spectral density of wave
energy.

Please note that in our model the amplitude at and frequency a>, are associated
with wave direction 0t. Therefore, the directional wave characteristics is only partly
taken into account.

The second order wave system is one that is forced by the linear system, i.e.
all second order amplitudes and phases are related to the characteristics of the first
order spectrum. In order to simplify the future algebra we assume the potential and
sea surface ordinate of the second order in the forms:

H2x,z,t)= fiaf<p\dx,z,t)+ £ £ acaj <p$(x,z,t), (15)
i=1 i=1j=i+l

C()@3c, i)= i>i2-i(2)(3c,0+ z it ar aj-C$(3c, 0- (16)
i=1 i=lj=i+l

First summation expresses the interaction of the spectral components with the same

frequency, whereas the second double summation describes the result of the com-

ponent interaction with different frequences. This case will be treated first.



2.2 Non-linear interaction of spectral components
with different frequencies

The perturbation method yields the following equations set for the functions cp\f) and

4 ?) in the form [17, 18]:

V>i?>=0, i=1,2, ,n—1, j=1i,2, , Ny j>ie

dff d<p™_ d2cp™ d2g(" SdcpPft™
- S O—— 5T“d 1?"+C" dz2 V&T "5r+"aT17]

(1)_d fd2~ d "\

d /S 2010 d
+7N)-d-~+ N-T7r)-2-T7@il;) at z=0;

M .>=o0 at z= —h.
dz

Substitution of (11) in (20) gives:

3FT-+9m~ “9  w77//>sin("- ") +ilt-)sin("-")]»
or 3z coicpeo)

in which:
77-1)= (ct);—o0jj) [cos 0*—tanh kth -tanh kj /i] +
+ —X i _tan/;2kjh)+°~ -i(1- tanhl /i)T;
2 1 ki Kj J

77y-) = (ct);—coj) [cos Qj+ tanh kth mtan/; kj /i] +

+ —['@<PJ(j _ tan/?2kj h) — 1—tan/azk, /i)l -
5 [_ 0 ih ki ( %

17

<18>

(

(20)

(21)

(22)

(23)

(24)

The solution of the differential equation (22) depends strongly on the character
of the interactions involved. It is well known that for the second order solution

only non-resonant interactions can be considered [22],
Therefore we obtain:
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g2kikj ( ... cos/z[lic,+ fc,jiz+ /i)] .

WA= —A\P AT+ eeeee r7~ 7 m,; “n("+"N)+
<l ( COSA[|fct+ fc;|'/1]
, .CosA[|fe,—k,\(z+h)} . J
P b e, ) My ST -7 )Ny (25)
where:
171+>
[ R — Aogn — .

(co(+ coy)2-g \ki+ kj\ - tan/i [|&*+ Q] - /i]

P<7>= . ; 27)
(cOi-WjY-g \ki-kj\ tanh [|fej—/cJ - /i]
and:
£ 2)=M</)cos(y/i+y/j)+ M \j>os(" - ~), (28)
where:
W-CU,- |_ 2 \(Oj f); [/
. . 1 1
etan/i fg;h -tanh kj h——cos 0ff ; (29)
WiOij L 2 \cOi @ J
stanh kth-tanh kj h——cos 0;jl . (30)
The coefficients Aly are symmetric, i.e. M iJ=MJi.
In the special case when h~*oo, r/2) assumes the form [22]:
gk, if g(O_f—O);)- C0S289:1 _ . . o
9m = "—Li. _1_i-—-- N | -elkj kil *-sin (Wj-Vi) +
°>iwj L(0>,-0>i) -g\kj-ki\
(cO:+a>i)'sin2"Qj: . . 1
i + 00 —rltei mi~e jl 'sinfe + N 4 n
(ctii + o) —lfci+fc)-i J ?3 )

what is in agreement with Longuet-Higgins’ result [18].

2.3 Non-linear interaction of spectral components
with the same frequencies

When the frequencies co, and v are identical, the interaction mechanism creates the
well-known Stokes’ component. Thus, the derivation of the formulas for the
potential (p(r> and surface elevation £<) will be omitted here. We summarize only



the final expressions as follows:

() 92kf (+) cosh[2kt(z+ h)2

*1 m 'P“ cosA(2Jc,/)) (j2)

where:

pgs 3 0L, CoRIGT s
4 “gki sin/?3-ktmh-cosh kth’

and:

d2)=i [Mi+>cos27;+ M ir>], (34)

in which:

0Ss)

g 2-sinfikih

®- 2-cos/lz K-h

The term \ mMjt~sdescribes only small departure of the mean water level from the
initial position and it will be neglected below due to its nonperiodic behaviour.

It is clear that the final form of the second order velocity potential <(2) obeys
the summation of (25) and (32) according to equation (15). These results can be
easily compared with other forms developed by Krylov, Strekalov and Cypluchin
[17], Bitner-Gregersen [4], and Sharma and Dean [25].

2.4 Autocorrelation and spectral functions
for sea surface elevation

Since we have C=i(1)+ f(2) by equations (11), (28) and (34), we can find the energy
spectrum of a homogeneous stationary surface by first forming the autocorrelation
function and taking its Fourier Transform in the usual way. We have:

Ké6t)=at)-at+T)=c(l)(om +t)+ M W h)+

+i(Q0 -qL)(i+ 1)+ C2)(0 -2\t +T). (37)

The overbar denotes the averaging in the stochastic sense. Inspection of the equation
(37) indicates that the particular terms are essentially second, third and fourth
moments.

We will assume that the linear approximation to the sea surface (1)(0 and its
linear potential function are Gaussian. However, the second order sea surface
C) can not be Gaussian, or the essential non-linearity is lost.

Since this is a perturbation analysis, the effect of M tJis to make a small correction
on the Gaussian probability, we can use the pseudo-Gaussian hypotesis that the third

s*



and fourth moments will be related substantially as they are for the Gaussian case,
i.e.:

C(1)(0-C @2)(i+T)«C (2)(0-CA)(i+T)«0, (38)

while the first term in (37) gives
£(D(i)*Ca)(i+T)= £ Yjai-aj-cosy/tcos(y/j-coj-T;). (39a)
;==

Using the assumption on the stationary process, (39a) becomes ([16]):

L)(i)-¢)(i+T)= _Els"a);)- cos (VO 'Aw. (39b)
1=

The fourth moment for the variables 2, 3,4) can be related to the second

one by [16]:

ui-u2-u3-uA—ui-u2'U3-ur+ul'U3-u2-ud+ul-uA-u2-u3. (40)

Equation (41) is essentially the Millionshthikov hypotesis, well known in the
turbulence.

Substitution (38), (40) and (41) into (37) gives

K(t)= £ SjlJ-cos (co;t) -Aco+ { M-;+)2m -cos (2a3:r) +
i=1 >z

+ ZiZ( _£_+1[M j1)2-cos ((®,+ (O)) mr) + cos ((co,-w;) -r) - SEL}-(Am)2 (41)

The Fourier transformation of (42) yields the spectral function in the form:

i=T

% («*) - )+ MS+)2mS',1)2 mz| @O+ 2 _](1 i’ *SN_t-Aco+
=
+2 | (42)
i=1
where: T,(+)=Entier*~ \ T(~)=n—K, k”n —I. The term is applied only

for even k (I=k/2). Expression (42) presents the non-linear spectrum for surface
waves when second order terms are taken into account.

2.5 Autocorrelation and spectral functions for wave pressure

The perturbation method yields the following expressions for the wave-induced
pressure (for simplicity = 0) [28]:

p(z, H=p(hz, H+pz, 1), (43)



where:

pr\z,t)=-pr-r1 (44)
at
and
o i rfar (2 fd v SN2y oy
j oo - PROFIlap @z pdr b)) (45)
Substitution of (11), (25) and (32) into (44) and (45) gives:
p(\z, i)= 0, (46)
i=1
. ] coshk:(z+ h)
p\\z,t)=pg-Ci(z)-cosyl/i; Q(z)=-——r———, (47)
coshki-h
and:
p\z,t)=Yaf-p\2z,t)+YJ £ at-aj-p\j\zZ',l), (48)
i= 1 i=1lj=i+i
in which:
p\2\z, t)= $pg m[Nji+) - cosjdi+ JVjf] , (49)
Po2)(z, 0 =99 [Ari/)‘cos  +y/j)+N{ >xos (" - y/,-)], (50)

N (+)_ gkikj (1- cosdjj) -cosft[(fc,-+ fcj) (z + ft)]
J M- 3 4- coslilc,-- ft- coshkjh

[ 1 +cos 0;j) -cos/; [(fcj—c,)(z + f)] ~ [~~~ +).cosli[|fc,+ fo|(z + /1)]] A

4 cosAfcjh-coshkjh ‘ J J coshilki+kj\-K] J
N (-)_ 9kikJ . (2 + cosQjj)-cosh [_(ki—kj)(z + ft)] |
N @ { 4 -coshkili- coshkjh
| (1 + cosoo)mosh [(fc,--/c,)(z + ft)] ~* A -jop (-)cos/*[Ifg ~ g (z+ » (52)
4coshk;h-coshkjh J 1 J cosft[fcj—fc| -ft] J

The corresponding spectral function for the wave pressure takes the form:

( I 'N\:li-SA-S[I\-Ao,+
\ =

+)2SPk=CR-S(" +N\r2-S£2-Aco+ 2-
P9j i

+2

. (53)
i=l
It should be noted that the non-linear pressure spectrum depends on the directional
spreading of the surface wave energy, whereas the linear spectrum is quite independent
on wave direction.

Let us now assume that tpiJ=Q i.e. all spectral components propagate in the
same direction. Therefore equations (51) and (52) become:



(+) _dfr-fc; £ co»*[(fc,-fc,)(* + *)] (#)xos hi(kt+kj)(z+h)I)

8} coicoj (. 2coslilc, /i mos hkjh £ 1 "™ cosh[(kl+kj)h] J°

f cos/i[(/ci+fca)y(2 + /)] (L)cosli[(fc— fc|)(z + ft)J]

lj coicoj | 2cos hkth -coshkjh J o Jd cosh[(kJ—ki)h] J
The coefficients have quite unexpected forms. For example, which corres-

ponds to the sum of frequencies (coi+coj) depends not only on the classical term
~cosh[(ki +kj)(z+h)] but also on term ~cosh[(kJ—ki)(z+h)]. The decaying (with
depth) of the last term is much slower than classical one. In the special case cot=cOj,
the last term will be constant with depth, indeed. In the same way we can argue that
the term ~cosi2[(Jct+ kj)(z+h)] in the coefficient decays faster than it comes
from the linear theory. We use both conclusions in the following section extensively.

2.6 Non-linear attenuation of wave pressure with depth
Let us define the non-dimensional decaying function Z %\cok,z) in the form:
ZiP\cok, (56)

After substituting (42) and (53) into (56) we get the non-linear decaying function
Z'f)(cuk, z) in the form:

r Iw<+>\22 (1> ri=T(+)//v \2o0(i)o(i)
Zif)ot,z)=Q (z)|l.O+~~ ~co +2" £ +
i=T(-> /m(-) \2<2d)cd) ~n r <rCl)
+ £ (if)
[j:T(+) 0(1) o(l) i=T(-) e(l) o “I-)
Z 1 47>

When the non-linear interaction is neglected, equation (5b) yields:
ZP(cok,z)=Ck(z2). (58)

Now, we define the pressure attenuation coefficient ap as a rate of (57) and (58), i.e.:
ap(ek, z) = Z%\cok, z)I1Zf\wk, z). (59)

Therefore, if ap(cok, z)>0 for given frequency mk, the non-linear pressure decaying
is weaker than linear one. On the contrary, if sp(cok, z) <0, the pressure decays faster
than in the linear case. The identity ap= 1.0 reflects the linear attenuation (see also
[3))-

In the chapter 2.5, in the coefficient A7/ /) (higher frequencies) we have detected
terms decaying slowly. Thus, in this frequency range, the coefficient ap should be
somewhat greater than one. In the low frequency range it should be smaller than



one, due to similar arguments. Experiments carried out recently [5, 14] seem to
confirm these conclusions.

It should be pointed out that the non-linear attenuation coefficient <u for the or-
bital velocities can be obtained in the similar way. However, the decaying terms in
the high frequency range (coi+coj) are proportional to the cosh[(k,+kj) (z+li)].
On the contrary, for the low frequency, the velocities are decaying according to
cosh[(ki —kj)(z+It)]. Thus, they reflect the linear-like behaviour in all frequency
range. In general, the damping coefficients <sp(ay or xu(co) depend not only on the
form of hiperbolic functions but also on the values of parameters Nu and Mu as
well as on the shape of S'!0 spectrum. Therefore, the final conclusions may be with-
drawn only after detailed numerical calculations carried out for each particular
case.

3. Experimental data and numerical calculations

We now summarize the data available on deterministic and stochastic correlations
between surface wave heights and pressure head variations through 1982. Some of
the data sources are listed in the References. Although the data were scattered,
the general trend was for the empirical damping coefficient a to increase through
unity with increasing wave frequency.

Draper [9] reported that waves in relatively deep water obey the classical hydro-
dynamical theory, whereas waves in shallow water may produce pressure on the
sea bed almost 20% less than that suggested by the theory. As usually the waves
in shallow water are relatively long ones. Thus, from theory given above we con-
clude that the coefficient ap should be smaller than 1, what was observed precisely.

According to [8], the decaying of the well-defined particular oscillations in
the deep sea is faster than predicted by linear theory for periods 4 - 10 s. This con-
clusion was conformed by Gluchovski [13], In the Figure 2 the comparison of the
empirical decaying coefficient and theoretical one based on the linear theory, is given.
The faster attenuation is observed in the deep (Fig. 2a) as well as in the shallow water
(Fig. 2b). The analytical formula (3), proposed by Gluchovski, corresponds to the
curve which fits the experimental data in the best possible way. With respect to
the spectral component attenuation, Gluchovski argues that the attenuation is
in accordance with linear theory.

It is in some contradiction with Bergan, Torum and Traetteberg experiments
[2]. The experiments were made in a wave channel with a water depth of 1 m and
for periods from 1.25 to 3s. The pressure was measured at the point submerged
0.87 m under water. Figure 1 shows comparisons of pressure measured by the pres-
sure gauge and pressure calculated from wave heights using the linear wave theory
(Fig. la). In the same figure a similar comparison with the fifth order wave theory
is also given (Fig. Ib); there is a fair agreement between measured pressures and
pressures calculated according to the fifth order wave theory, indicating that the
influence of the non-linearities on the pressure decaying is substantial and can not



Fig. 2. Attenuation of particular sea surface oscillations, [13]; a) deep water; b) shallow water

Fig. 3. Experimental damping coefficient a, for laboratory and occan data, [14]



be omitted. Also the spectral energy at a given point and for the higher frequencies
is in general greater than that coming from the linear transmittance function.

The similar comparison was made by Esteva and Harris [11]. Two pressure
gauges were involved in this work. One pressure sensor was immediately above
the bottom, with the other one 1.7 m above it. During experiments the water depth
was 4.7 m.

For the lower gauge, ap(w) increased from about ~0.95 at a frequency of approxi-
mately 0.43 rd/s to —1.05 for w~ 2 rd/s. The upper gauge showed a, values con-
sistently closer to unity.

In the paper [14], both field and laboratory data are employed. The field data
were taken in the ocean off Honolulu, in 11.3 m of water, and involved swell with
periods from 12 to 17s. The laboratory data were taken for water depths of 2.9
and 3.5 m and involved periods from 2 to 6s. According to [14], the linear theory
can be used to predict individual surface wave heights from pressure variations at,
or near, the sea bed as long as an empirical correction factor is included. His empiri-
cal damping coefficient x is smaller than unity for small ratios of water depth to wave
length (or for small frequencies) and greater than unity for larger values of this
parameter (or for high frequencies) — see Figure 3. Thus, it agrees qualitatively
with the prediction by the non-linear theory given above.

Recently Cavaleri, Ewing, Smith [6] published the results of an accurate experi-
ment on an oceanographic tower. They found that generally waves attenuate in the
different way than it is predicted by the linear theory, i.e. apcan be smaller or greater
than 1. The ap coefficient shows approximately a linear dependence on frequency eo
and the slope of this line depends on the depth of the transducer. The ap value for
some of the records has been plotted against frequency in Figure 4 [5].

The similar effect was observed for the pore pressure attenuation in the sandy
sea bed [20]. For example, in Figure 5 the dependence of empirical coefficient ap
on the frequency is shown. The pressure gauge was installed 0.5 m under the sea
bed; water depth was about 7.0 m. Again, the deviations from the linear attenuation
for low and high frequency can be easily detected.

Let us consider the numerical calculation of the attenuation coefficient a,,
using the formulas developed above. But there is still some problem. The coefficient
ap depends strongly on the linear frequency spectrum Sil* In fact, it is unkown
function because the spectra available in literature arc usually the analytical expres-
sions ofthe curves which fit the experimental data in the best possible manner. More-
over, it should be pointed out that the experimental data reflect the total super-
position of the linear and non-linear phenomena in the wave motion. Thus, the
linear spectrum must be calculated from given experimental spectrum using the
special numerical procedures. Two such procedures were developed recently by Chybi-
cki and Naguszewski and for the details we address the readers to [8], Therefore, the
problem of separation of a given spectrum on linear and non-linear parts will be
omitted here. In Figure 6, the result of spectrum separation for the record taken
in the shallow water is shown, where we demonstrate the importance of the non-
linearities in the various frequency bands. If we subtract the non-linear part of
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spectrum from experimental one, we get the S(1) function. Now, the pressure spectrum
Sp(co) and attenuation coefficient ap can be calculated from formulas developed
in chapter 2. Figure 7 illustrates the frequency dependence of the coefficient ap for
the same record as in Figure 6. In the basic energetic part of the spectrum coefficient
a,, is very close to 1 and it is increasing rapidly when a> 3cop. Therefore, the linear
ap describes correctly the pressure attenuation in the frequency range co<2co,, for
the wave record under consideration. In general however, itis not ture. Many numeri-
cal experiments carried out by authors indicate that <p{co) is strongly depending
on the energy level in the low frequency range. The following example (see also
[3]) demonstrates that fact very clearly. Let us consider the wind-induced waves
characterized by JONSWAP spectrum (T,,=4 s; Hs=2.3 m, yi=15). Water depth
is 12 m and pressure is measured on the sea bottom. The ordinates of JONSWAP
spectrum are listed below:

No. oofrd/s] 5c¢[m2-s] No. oo[rd/s] St[m2 s]
1 0.157 0.0000 10 1571 0.2350

2 0.314 0.0000 1 1.728 0.2170

3 0.471 0.0000 12 1.885 0.050

4 0.628 0.0000 13 2.042 0.0286

5 0.785 1.08E-8 14 2.199 0.0221

6 0.942 0.00014 15 2.356 0.0169

7 1.099 0.0054 16 2,513 0.0129

8 1.257 0.0237 17 2.670 0.0099

9 1414 0.0830 18 2.827 0.0077

The resulting coefficient ap is plotted in Figure 8 (solid line with circles). It can be
seen that the a, departure from the linear value 1 is rather large, specially in the
frequency range outside of pik frequency. For the lower frequencies apis much small-
er than 1and in the high frequency range it becomes higher than 1. Now we modify
slightly the three first spectrum ordinates inserting zero instead, identical ordinates
equal to S(c0)=0.02. Physically it means that we consider the energy given by low-,
-frequency oscillations of surfbeats or edge waves type. In Figure 8 the effect of spect-
rum modification is illustrated by the broken line. The resulting ap curve differs now
from the linear constant value not only at the very low or very high frequencies but
also in the basic energetic range. The comparison of x,, with the experimental results
given by Grace (Fig. 3), Cavaleri (Fig. 4) and Massel (Fig. 5) indicates that after
spectrum modification, the theoretical coefficient a,, fits the experimental one much
better than that before spectrum modification. Thus, the interaction between very
low frequency oscillations and ewind-induced oscillations plays an important role in
the pressure attenuation in the frequency range typical of wind waves. This con-
clusion can be confirmed more rigorously on the basis of the theory developed above
[22]. In addition, it can be demonstrated that the accuracy of the spectral energy

estimation in the higher frequencies is of minor importance for the coefficient ap
behaviour.



4. Remarks on the other phenomena influenced
on the coefficient ap

In this chapter we discuss other phenomena which may be important for the
pressure attenuation with depth.

i) First we consider the influence of the dispersion relation. The experiments,
as well as an analytical solution [21], show that in the high frequency range the
dispersion relation is not exactly the classical one-see (2). In general, for the given
frequency co, the resulting wave number k is smaller than that following from (2),
i.e.:

k'<k. (60)
Thus, the decaying function (Z) becomes:

AP ., Cosik' (z+h)
Z/\(cok,z = A o1
cos/jk h

and

Fig. 5. Empirical coefficient a, for pore pressure in sandy sea bed, [20]



cosh k' (z+h)
Z (p) (cok, z) coshk'h
Zj’p)Zcot,z): coslj &(z*L/zj > 10 (62)

cos/z -kh

«r («*. *0=

what is observed exactly in the high frequency range. Moreover, if the dispersion
relation influence is considered, two additional problems should be pointed out:

— the second order approximation used in the above theory is insufficient to
edeveloped unclassical dispersion relation;

Fig. 6. Separation of the linear and non-linear part of spectrum



Fig. 7. Attenuation coefficient a, for spectrum given in Fig. 6

— the dispersion relation reflects also the non-linear interaction in the wave field.
Therefore it is impossible to separate (in the simple way) its influence on the pressure
decaying from other causes.

ii) In the high frequency the wave motion is contaminated by the turbulence
present in the field. The interaction between waves and turbulence, although weak,
can play some role in the transmittance function for wave pressure in the same way
as it was demonstrated for the orbital velocity [19],

iii) From the results presented here, it was concluded that the coefficient <,
is strongly related to the interaction between long and short surface waves. The
investigations [15, 24] indicate clearly that they are rather strong and can not be
evaluated by the typical Fourier transformation methods. Usually the WKBJ tech-
nique is recommended.

5. Conclusions

In this paper we have studied the non-linear pressure attenuation with depth.
According to a linear theory of the wind-induced waves, the attenuation of each
particular frequency is described by the same function, independently of the
surface wave spectrum. However, the collected experimental data show precisely
that it is not true in general. The low frequencies attenuate slower than it is given
by the linear theory. The opposite behaviour is observed in the high frequency range.

The analytic method used in chapter 2 offers a theoretical base for understanding
this unclassical behaviour. The method employs the perturbation scheme for



Fig. 8. Influence of the spectrum modification on the coefficient

random surface wave field and the non-linear boundary value problem is solved to
the second order, i.e. all second order amplitudes and phases are related to the
characteristics of the first order spectrum. From the present study it follows that the
non-linear interactions generate the additional terms which decay slowly (faster)
in the high (low) frequency range and they are responsible for the observed devia-



tions from the linear theory. The theoretical analyis as well as the numerical ex-
periments confirm an important role of the long wave —short wave interaction for
the coefficient a,, behaviour.

Also it was pointed out that the proper dispersion relation and the wave - turbulence
interaction should be taken into account when the non-linear pressure attenuation
is considered.
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