Zofia CHILICKA, Zygmunt KOWALIK, a3
Zygmunt WIERZBICKI

Polish Academy of Sciences —

Institute of Hydro-Engineering in Gdansk
Institute of Meteorology and Water Managment —
Marine Department in Gdynia

CONSTRUCTION OF A NUMERICAL MODEL
OF STORM SURGES
WITH A REFINED GRID

The aim of the present paper is to describe a numerical scheme of storm
surges with a refinement of the grid. The scheme has been used for the
model of storm surges in the Baltic Sea, taking into account the exchange
of water with the Nort Sea.

The phenomenon of storm surges in shallow seas can be described
by the following system of partial differential equations (Voltsinger,
Pyaskovskii [7]):
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with boundary conditions:
Uu=v=\—-0 for t=10,
Uu=vVv=>0 for t>0 on a closed shore line,
1) are the variations of sea level om an open shore line,



where: U and V — components of volume transport along the Xand @
axes of a coordinate system; t — time; f — the Coriolis parameter;
pa — atmospheric pressure; A — eddy viscosity coefficient describing
the horizontal exchange of momentum; g — gravity acceleration; D —
depth; | — deviation of free sea surface from the equilibrium; and
t* components of stress at the free surface; t® and t® — components tof
stress at the bottom; R — mean Earth radius.

In order to obtain an approximate solution of the system of equa-
tions (1—3) with the boundary conditions given, we employed the
method of finite differences. The system of equations (1—3) can be trans-
formed to give the following system of difference equations (Chilicka
Hi).
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In the above equations, n, k, i denote the time and space (x, y)
indices, respectively. Bottom stress x® and t® are functions of the
volume transport components and depth:
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where r is the bottom friction coefficient.

We employed in implicit scheme with explicit realization set on the
computational grid given in Fig. 1, with the second order of approxima-
tion in time (except for the forces of horizontal and bottom friction), and
the second order in space. The numerical solution of the system (4—6)
is an approximation of the analytical solution of system (1—3). As is well



known from the general theory of numerical methods, a numerical so-
lution converges to an analytical one when the time and spatial steps
approachj zero. Hence, one aims towards emploing numerical grids with
the smallest possible steps. The undue reduction of the step of a grid
results, however, in considerable technical difficulties due to the employ-
ment of digital computers. The solution is to use a method of refining

Fig. 1. Fragment of the grid of numerical calculations e — points U and
V, X — points »

Rys. 1. Fragment siatki obliczen numerycznych e« — punkty U i V, x —
punkty |

a grid in areas which are either particularly interesting, or in cases
requiring the proper reproduction of the phenomenon, as, e.g. in narrow
straits. In order to investigate the possibilities of employing a grid with
fine resolutions, in certain areas of the basin under consideration, we
refined the HI grid locally in a hypothetical rectangular closed basin
covering an area of 30 MmXIOO Mm. This area was convered with an
H2 numerical grid with mesh sizes of AX2=A<p2—10'.



Fig. 1 shows a fragment of the area considered with the interface
zone between the coarse (HI) and fine (H2) meshes marked.

The boundary conditions on the open boundary of the area limited by
grid H2 vary with the change of the values of the volume transport tin
the nodes of grid HI. In view of the smaller time step used in the com-
putations carried out in grid H2 (the magnitudes of the time steps are
limited by the stability conditions), the boundary conditions in this grid
are linearly interpolated in time from the values of the volume transport
set in the nodes common for grid HI and the boundary line of grid H2.
Simultaneous with the interation in grid HI with a time step of T= 200 s,
two iterations with a time step of T= 100 s are carried out in grid H2.

t [godz]

Fig. 2. Variations of sea level at point P2 due to different methods chosen
to interpolate the boundary conditions

Rys. 2. Zmiany poziomu morza w punkcie P2 przy réznym wyborze metody
interpolacji warunkéw brzegowych

In the present paper we have employed three different variants of
the interpolation of boundary conditions in space (Samarskii i[3]; Stech-
kin, Subbotin )[6]): 1. linear interpolation, 2. interpolation with the em-
ployment of cubic spline functions, 3. calculation of volume transport
from the system of differential equations written in an irregular grid.

We carried out calculations for the components of stress at the
free sea surface = 32 CGS and t* = 0. The values of and
x‘ were constant in space and time. The gradient of atmospheric pres-
sure was not taken into account in our computations. We assumed a va-
riable depth distribution, and values of the coefficients of bottom friction
and horizontal exchange of monumentum equal to r = 0.003 and A =
= 108 CGS, respectively. Fig. 2 shows the variations of the sea level at
pointi P2 (Fig. 1) located within the fine grid. These variations were
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Fig. 3. Irregular grid of numerical calculations e — points U and V, x —
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Rys. 3. Nier6wnomierna siatka obliczen numerycznych < — punkty U i V,
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obtained by setting the boundary conditions using the three interpolation
methods mentioned above. The Only case where instability did not occur
was that of the irregular grid. All three methods are identical if the time
does not exceed 24 hours. For longer times, only the employment of
the irregular grid results in the stability of the scheme. The employment
of the last method considered therefore appears most jproper.

Let us outline the theoretical aspect of this method of the approxi-
mation of boundary conditions. Partial derivatives on the irregular grid
given in Fig. 3 are as follows (Samarskii, [3]):
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Next, the boundary values V and V are found from system (4—B6).

Following the method described, we will not obtain all the values
U, V and £ required. For example, in order to calculate U(x4 (Fig. 3)
one must know the values of U and V at points x9, x6 and x7, which
can be obtained by linear interpolation.

To sum up, we worked out a certain method for the dynamic relat-
ing of two areas with different grid steps. We employed this method
in the model of storm surges in the Baltic Sea, also talking into account
the water exchange with the North Sea.

Fig. 4 shows a selection of grids in the area considered.

Table gives the steps of the grids in the areas marked.

The choice of fine resolutions was stimulated by the particular in-
terest in this area (areas 4 and 6), keeping in mind the water exchange



Fig. 4. Division of the basin into areas. The unbroken Iline shows the
trajectory along which the variations of the free surface are depicted

Rys. 4, Podziatl akwenu na obszary. Linia ciagta przedstawia trajektorie,
wzdtuz ktérej wykreslono zmiany powierzchni swobodnej

between the North Sea and the Baltic (areas 9— 13 and 2), and taking
into account the more important islands (areas 5, 7 and 8).

To find the appropriate value of coefficient A, we carried out several
experiments for each of the areas considered, assuming the values of
A, to range from 104 to 109 CGS, also considering stability and certain
physical factors. Among other things, if the value of A s set toQ high,
it results in a significant smoothing out of the characteristics calculat-
ed. Coefficient A was chosen basing on the general formula (Ramming,
Kowalik, i[2]):
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where h denotes AX or Acp, 0<«<1 is the coefficient of smoothing out,
usually «=0.98. Given such a expression (10) can be simplified to:
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Steps of the grids in the areas shown in Fig. 4

Wielkosci krokéw siatek w obszarach na rys. 4

Grid step
Number of the area Krok siatki
Numer obszaru
Ap I Ak
1 20" 40'
2 10’ 20"
3 5' 10
4 5' 10*
5 2'30" 5'
6 2'30" 5'
7 2'30" 5'
8 2'30" 5'
9 2'30" 5'
10 2'30" 5'
11 ris” 2'30"
12 1'15" 2'30"
13 1'15" 2'30"
14 ris" 2'30"

In spite of the choice of coefficient A, short waves occur in certain
areas, causing perturbations in the distribution of the isolines of the
free surface.

The calculations for the Baltic Sea were carried out for constant
wind with a stress of =3.2 CGS, t* =0. The unbroken line in Fig. 5
shows the variations of the free surface from the western coasts of the

Fig. 5. Plot of the changes in the free surface along the trajectory shown
in Fig. 4

Rys. 5. Wykres zmian powierzchni swobodnej wzdtuz trajektorii naniesionej
na rys. 4



North Sea to the eastern shores of the Baltic, along the trajectory mark-
ed in Fig. 4. at time i=200 min. Calculations were also carried out for
identical parameters, but with the additional filtering of the free surface
of the whole area and that of the volume transport for areas 2 and 12.
A five-point Shuman scheme (Shuman i[4]; Staskiewicz, Kowalik, i[5])
was used with half-amplitude damping of the shortest waves. The bro-
ken line 'in Figure 5 shows the variations of free surface, occurring from
the western coasts of the North Sea to the eastern shores of the Baltic
along the trajectory marked in Fig. 4, with the employment of filtering.
The employment of filtering does not really change the level, but the
structure related to the shortest waves in the area considered disappears.
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KONSTRUKCJA NUMERYCZNEGO MODELU ZJAWISKA
WEZBRAN SZTORMOWYCH
Z LOKALNYM ZAGESZCZANIEM SIATKI

Streszczenie

Praca dotyczy badania schematu .numerycznego modelu wezbran sztormowych
z lokalnym zageszczeniem siatki. Stosowano trzy metody aproksymacji warunkow
brzegowych na granicy obszaréw o réznych krokach siaitek: interpolacje liniowa,
interpolacje przy pomocy funkcji gietych oraz metode nieré6wnomiernej siatki.
Obliczenia przeprowadzono w hipotetycznym akwenie w celu wyboru najlepszej
z tych metod. W rezultacie wybrano ostatnia metode, stosujac ja do interpolacji
warunkéw brzegowych w modelu wezibran sztormowych w Morzu Battyckim,
uwzgledniajagcym wymiane wéd z Morzem Pétnocnym.

Przeprowadzono badania w aspekcie zmian poziomu i wydatkéw w dwoéch
wariantach: z ‘filtracja i bez filtracji Okazato isie, ze poziom praktycznie sie nie
zmienia, a w sytuacji, gdy nie zastosowano filtracji — wystapit rozwdéj twordéw wi-
rowych, zwigzanych z najkrétszymi falami, powodujacy wolno narastajgca niesta-
bilnos¢.
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