Oceanologia No. 67 (3) / 25


Original Research Articles


Original Research Articles



Resilience of beach morphometric characteristics on decadal time scale: a case study from the Lithuanian Baltic Sea
Oceanologia, 67 (3)/2025, 67301, 10 pp.
https://doi.org/10.5697/KSMY5385

Darius Jarmalavičius*, Gintautas Žilinskas, Donatas Pupienis, Rasa Janušaitė
Laboratory of Geoenvironmental Research, State Scientific Research Institute, Nature Research Centre, Vilnius, Lithuania;
e-mail: darius.jarmalavicius@gamtc.lt (D. Jarmalavičius)

*corresponding author

Keywords: Coastal morphology; Coastal processes; Beach; Decadal beach measurements; Beach resilience; Baltic Sea

Received: 14 August 2024; revised: 2 May 2025; accepted: 5 May 2025

Highlights

Abstract

The sandy seashore is a highly dynamic environment where the beach experiences constant change. If the granulometric composition of beach sediment does not change substantially and the sediment circulation is undisturbed, as well as the prevailing hydrometeorological situation does not substantially change, the beach can maintain its morphology quasi-stably on a decadal time scale, even when coastal erosion or accretion processes prevail. In this study, beach width and volume characteristics of coastal segments with prevailing erosion or accretion were assessed based on interannual beach leveling surveys from the Lithuanian Baltic Sea coast in 2002–2023 (72 cross-shore profiles in total). Study results revealed that the beach on both coastal stretches with prevailing erosion processes and coastal stretches with prevailing accretion processes maintains its morphometric characteristics. On coastal stretches with prevailing erosion, the beach maintains its profile by supplementing its sediment budget with the sediment reserves in the foredune, while on coastal stretches with prevailing accretion and seaward shoreline migration, the indefinite increase in beach width is limited by the formation of the incipient dunes at the foredune toe.

  References   ref

Barnard, P.L., Dugan, J.E., Page, H.M., Wood, N.J., Hart, J.A.F., Daniel R. Cayan, D.R., Erikson, L.H., Hubbard, D.M., Myers, M.R., Melack, J.M., Iacobellis, S.F., 2021. Multiple climate change-driven tipping points for coastal systems. Sci. Rep. 11 (1), 15560. https://doi.org/10.1038/s41598-021-94942-7

Bascom, W.N., 1951. The relationship between sand size and beach face slope. Trans. Am. Geophys. Union 32, 866–874. https://doi.org/10.1029/TR032i006p00866

Bujan, N., Cox, R., Masselink, G., 2019. From fine sand to boulders: Examining the relationship between beachface slope and sediment size. Mar. Geol. 417, 106012. https://doi.org/10.1016/j.margeo.2019.106012

Blott, S.J., Pye, K., 2001. Gradistat: a grain size distribution and statistics package for the analysis of uncollected sediments. Earth Surf. Proc. Land. 26, 1237–1248. https://doi.org/10.1002/esp.261

Bristow, C.S., Chroston, P.N., Bailey, S.D., 2000. The structure and development of foredunes on a locally prograding coast: insights from ground-penetrating radar surveys, Norfolk, UK. Sedimentology 47, 923–944. https://doi.org/10.1046/j.1365-3091.2000.00330.x

Brooks, S.M., Spencer, T., Christie, E.K., 2017. Storm impacts and shoreline recovery: Mechanisms and controls in the southern North Sea. Geomorphology 283, 48–60. https://doi.org/10.1016/j.geomorph.2017.01.007

Butt, T., Russell, P., Turner, I., 2001. The influence of swash infiltration-exfiltration on beach face sediment transport: onshore or offshore?. Coastal Eng. 42, 35–52. https://doi.org/10.1016/S0378-3839(00)00046-6

Castelle, B., Stéphane Bujan, S., Ferreira, S., Dodet, G., 2017. Foredune morphological changes and beach recovery from the extreme 2013/2014 winter at a high-energy sandy coast. Mar. Geol. 387, 41–55. https://doi.org/10.1016/j.margeo.2016.12.006

Choowong, M., Phantuwongraj, S., Charoentitirat, T., Chutakositkanon, V., Yumuang, S., Charusiri, P., 2009. Beach recovery after the 2004 Indian Ocean tsunami from Phangnga, Thailand. Geomorphology 104, 134–142. https://doi.org/10.1016/j.geomorph.2008.08.007

Dong, Z., Elko, N., Robertson, Q., Rosati, J., 2018. Quantifying beach and dune resilience using the coastal resilience index. Coast. Eng. Proc. 36, 30–30.

Elfrink, B., Baldock, T., 2002. Hydrodynamics and sediment transport in the swash zone: a review and perspectives. Coastal Eng. 45, 149–167. https://doi.org/10.1016/S0378-3839(02)00032-7

Firoozfar, A., Neshaei, M.A.L., Dykes, A.P., 2014. Beach profiles and sediments, a case of the Caspian Sea. Int. J. Mar. Sci. 4 (43), 1–9. https://doi.org/10.5376/ijms.2014.04.0043

Flood, S., Schechtman, J. 2014. The rise of resilience: Evolution of a new concept in coastal planning in Ireland and the US. Ocean Coast. Manage. 102, 19–31. https://doi.org/10.1016/j.ocecoaman.2014.08.015

Gallagher, E., Wadman, H., McNinch, J., Reniers, A., Koktas, M., 2016. A conceptual model for spatial grain size variability on the surface of and within beaches. J. Mar. Sci. Eng. 4, 38. https://doi.org/10.3390/jmse4020038

Houser, C., Ellis, J., 2013. Beach and Dune Interaction. [In:] Shroder, J.F. (Ed.), Treatise on Geomorphology, Vol. 10, Acad. Press, San Diego, 267–288. https://doi.org/10.1016/B978-0-12-374739-6.002 83-9

Jarmalavičius, D., Satkūnas, J., Žilinskas, G., Pupienis, D., 2012a. Dynamics of beaches of the Lithuanian coast (the Baltic Sea) for the period 1993–2008 based on morphometric indicators. Environ. Earth Sci. 65 (6), 1727–1736. https://doi.org/10.1007/s12665-011-1152-3

Jarmalavičius, D., Žilinskas, G., Pupienis, D., 2012b. Impact of KlaipÄ—da port jetties reconstruction on adjacent sea coast dynamics. J. Environ. Eng. Landsc. 20 (3), 240–247. https://doi.org/10.3846/16486897.2012.660884

Karambas, T.V., 2003. Modelling of infiltration-exfiltration effects of cross-shore sediment transport in the swash zone. Coast. Eng. J. 45 (1), 63–82. https://doi.org/10.1142/S057856340300066X

Kocurek, G., Lancaster, N., 1999. Aeolian system sediment state: theory and Mojave Desert Kelso dune field example. Sedimentology 46, 505–515. https://doi.org/10.1046/j.1365-3091.1999.00227.x

Kombiadou, K., Costas, S., Carrasco A.R., Plomaritis, T.A., Ferreira, Ó, Matias, A., 2019. Bridging the gap between resilience and geomorphology of complex coastal systems. Earth-Sci. Rev. 198, 102934. https://doi.org/10.1016/j.earscirev.2019.102934

Kriaučiūnienė, J., Gailiušis, B., Kovalenkovienė, M., 2006. Peculiarities of sea wave propagation in the KlaipÄ—da Strait, Lithuanica. Baltica, 19 (1), 20–29.

Kriaučiūnienė, J., Žilinskas, G., Pupienis, D., Jarmalavičius, D., Gailiušis, B., 2013. Impact of Šventoji port jetties on coastal dynamics of the Baltic Sea. J. Environ. Eng. Landsc. 21 (2), 114–122. https://doi.org/10.3846/16486897.2012.695736

Malvarez, G., Ferreira, O., Navas, F., Cooper, J.A.G., Gracia- Prieto, F.J., Talavera, L., 2021. Storm impacts on a coupled human-natural coastal system: Resilience of developed coasts. Sci. Total Environ. 768, 144987. https://doi.org/10.1016/j.scitotenv.2021.144987

Masselink, G., Lazarus, E., 2019. Defining coastal resilience. Water 11, 2587. https://doi.org/10.3390/w11122587

Masselink, G., Russell, P., Rennie, A., Brooks, S., Spencer, T., 2020. Impacts of climate change on coastal geomorphology and coastal erosion relevant to the coastal and marine environment around the UK. MCCIP Sci. Rev. 2020, 158–189. https://doi.org/10.14465/2020.arc08.cgm

McFall, B.C., 2019. The relationship between beach grain size and intertidal beach face slope. J. Coastal Res. 35 (5), 1080–1086. https://doi.org/10.2112/JCOASTRES-D-19-00004.1

Medvedev, I.P., Rabinovich, A.B., Kulikov, E.A., 2013. Tidal oscillations in the Baltic Sea. Oceanology 53 (5), 596–609. https://doi.org/10.1134/S0001437013050123

Morton, R.A., Paine, J.G., Gibeaut, J.C., 1994. Stages and Durations of Post-Storm Beach Recovery, Southeastern Texas Coast, U.S.A. J. Coastal Res. 10 (4), 884–908.



Psuty, N.P., 2004. The coastal foredune: a morphological basis for regional coastal dune development. [In:] Martı́nez, M.L., Psuty, N.P. (eds.), Coastal dunes: ecology and conservation, Springer, Berlin, Heidelberg, 11–27. https://doi.org/10.1007/978-3-540-74002-5_2

Psuty, N.P., Silveira, T.M., 2010. Global climate change: an opportunity for coastal dunes? J. Coast. Conserv. 14, 153–160.

Pupienis, D., Jonuškaitė, S., Jarmalavičius, D., Žilinskas, G., 2013. Klaipėda port jetties’ impact on the Baltic Sea shoreline dynamics, Lithuania. J. Coast. Res. 65, 2167–2172. https://doi.org/10.2112/SI65-366.1

Pupienis, D., Jarmalavičius, D., Žilinskas, G., FedorovicÌŒ, J., 2014. Beach nourishment experiment in Palanga, Lithuania. J. Coast. Res. 70, 490–495. https://doi.org/10.2112/SI70-083

Reis, A.H., Gama, C., 2010. Sand size versus beachface slope – An explanation based on the Constructal Law. Geomorphology 114, 276–283. https://doi.org/10.1016/j.geomorph.2009.07.008

Ruessink, B.G., Jeuken, M.C.J.L., 2002. Dunefoot dynamics along the Dutch coast. Earth Surf. Process. Landforms 27, 1043–1056. https://doi.org/10.1002/esp.391

Saye, S.E., van der Wal, D., Pye, K., Blott, S.J., 2005. Beachdune morphological relationships and erosion/accretion: An investigation at five sites in England and Wales using LIDAR data. Geomorphology 72, 128–155. https://doi.org/10.1016/j.geomorph.2005.05.007

Thom, B.G., Hall, W., 1991. Behavior of beach profiles during accretion and erosion-dominated periods. Earth Surf. Processes 16, 113–127.

Žilinskas, G., Pupienis, D., Jarmalavičius, D., 2010. Possibilities of regeneration of the Palanga coastal zone. J. Environ. Eng. Landsc. 18 (2), 95–101. https://doi.org/10.3846/jeelm.2010.11

Žilinskas, G., Janušaitė,, R., Jarmalavičius, D., Pupienis, D., 2020. The impact of KlaipÄ—da Port entrance channel dredging on the dynamics of the coastal zone, Lithuania. Oceanologia 62 (4), 489–500. https://doi.org/10.1016/j.oceano.2020.08.002

full, complete article - PDF


The effect of temperature on round goby (Neogobius melanostomus) embryo development
Oceanologia, 67 (3)/2025, 67302, 7 pp.
https://doi.org/10.5697/FEAP3698

Mariusz Sapota, Anna Dziubińska*
Faculty of Oceanography and Geography, University of Gdańsk, Al. M. Piłsudskiego 46, 81–378 Gdynia, Poland;
e-mail: anna.dziubinska@ug.edu.pl (A. Dziubińska)
*corresponding author

Keywords: Climate change; Fish early life stages; Ontogenesis; Temperature

Received: 18 November 2024; revised: 5 March 2025; accepted: 30 June 2025

Highlights

Abstract

The round goby (Neogobius melanostomus) has expanded its range from the Ponto-Caspian region to new habitats in Europe and North America. It is an invasive species in many areas that has a significant impact on new environments. The round goby inhabits various ecosystems with different environmental conditions. Here, we investigated the optimal temperatures for round goby reproduction. Our experimental study on the development of round goby embryos demonstrated a high tolerance to different temperatures at this stage of ontogenesis. The development of round goby embryos was highly successful (over 90% of larvae hatching) at temperatures ranging from 12°C to 20°C. In contrast, embryo development was less successful at 25°C, while no effective embryo development was observed in temperatures below 12°C. We found that larvae hatching at temperatures between 12°C and 20°C have yolk remnants, which provide an additional supply of energy in the first days after hatching. A wide range of temperature tolerance, along with tolerance to other changing factors, are the features that contribute to successful population growth. Thus, temperature should not be a factor limiting the expansion of round goby in the temperate climate zone.

  References   ref

Backström, T., Winkelmann, C., 2022. Invasive round goby shows higher sensitivity to salinization than native European perch. NeoBiota 75, 23–38. https://doi.org/10.3897/neobiota.75.86528

Behrens, J.W., Ryberg, M.P., Einberg, H., Eschbaum, R., Florin, A.-B., Grygiel, W., Herrmann, J.P., Huwer, B., Hüssy, K., Knospina, E., Nõomaa, K., Oesterwind, D., Polte, P., Smoliński, Sz., Ustups, D., van Deurs, M., Ojaveer, H., 2022. Seasonal depth distribution and thermal expe- rience of the non-indigenous round goby Neogobius melanostomus in the Baltic Sea: implications to key trophic relations. Biol. Inv. 24, 527–541. https://doi.org/10.1007/s10530-021-02662-w

Belda, M., Holtanová, E., Halenka, T., Kalvová, J., 2014. Climate classification revisited: from Köppen to Trewartha. Clim. Res. 59, 1–13. https://doi.org/10.3354/cr01204

Bilgili, M., Durhasan, T., Pinar, E., 2024. Time series analysis of sea surface temperature change in the coastal seas of Türkiye. J. Atmos. Sol.-Terr. Phy. 263 (2024), 106339. https://doi.org/10.1016/j.jastp.2024.106339

BlažŒek, R., Polačik, M., Reichard, M., 2013. Rapid growth, early maturation and short generation time in African annual fishes. EvoDevo 4, 24. https://doi.org/10.1186/2041-9139-4-24

Bogutskaya, N., Naseka, A.M., Boldyrev, V., 2004. Neogobiin gobies (Teleostei: Gobiidae) in ecosystems of Eurasia and North American Great Lakes. [In:] Biological Invasions in Aquatic and Terrestrial Ecosystems, Alimov, A.F., Bogutskaya, N.G. (Eds.), M.-SPb: KMK Scientific Publishing Association, 320–340. https://doi.org/10.13140/2.1.5102.8489

Charlebois, P.M., Marsden, J.E., Goettel, R.G., Wolfe, R.K., Jude, D.J., Rudnika, S., 1997. The round goby, Neogob- ius melanostomus (Pallas), a review of European and North American Literature. INHS Special Publication 20, Champaign, IL: Illinois Natural History Survey.

Chen, Q., Di, Z., Roger, E.M., Li, H., Richmond, P., Roehner, B.M., 2020. Magnitude and significance of the peak of early embryonic mortality. J. Biol. Phys. 46 (3), 233–251. https://doi.org/10.1007/s10867-020-09555-4

Christensen, E.A.F., Norin, T., Tabak, I., van Deurs, M., Beh- rens, J.W., 2021. Effects of temperature on physiological performance and behavioral thermoregulation in an invasive fish, the round goby. J. Exp. Biol. 224 (1), jeb237669.

Corkum, L.D., Sapota, M.R., Skóra, K.E., 2004. The round goby Neogobius melanostomus, a fish invader on both sides of the Atlantic Ocean. Biol. Invasions 6, 173–181. https://doi.org/10.1023/B:BINV.0000022136.43502.db

Cosson, J., Groison, A.-L., Suquet, M., Fauvel, C. Dreanno, C., Billard, R., 2008. Studying sperm motility in marine fish: an overview on the state of the art. J. Appl. Ichthyol. 24, 460–486. https://doi.org/10.1111/j.1439-0426.2008.01151.x

Dahlke, F.T., Wohlrab, S., Butzin, M., Pörtner, H.-O., 2020. Thermal bottlenecks in the life cycledefine climate vulnerability of fish. Science 369, 6499, 65–70. https://doi.org/10.1126/science.aaz3658

DAISIE, 2025. European Invasive Alien Species Gateway: 100 of the worst. Retrieved 10 January, 2025, from http://www.europe-aliens.org/speciesTheWorst.do

Erő‹s, T., Sevcsik, A., Tőth, B., 2005. Abundance and night-time habitat use patterns of Ponto-Caspian gobiid species (Pisces, Gobiidae) in the littoral zone of the River Danube, Hungary. J. Appl. Ichthyol. 21, 350–357.

Godoy, R.S., Weber, V., Lanés, L.E.K., Pires, M.M., Stenert, C., Maltchik, L., 2023. Effects of temperature and heat waves on embryonic development of annual fishes from Neotropical wetlands: Implications for climate change scenarios. Ecol. Freshw. Fish. 32, 4, 864–873. https://doi.org/10.1111/eff.12728

Haesemeyer, M., 2020. Thermoregulation in fish. Mol. Cell. Endocrinol. 518, 110986. https://doi.org/10.1016/j.mce.2020.110986

Hart, P.R., Purser, G.J., 1995. Effects of salinity and temperature on eggs and yolk sac larvae of the greenback flounder (Rhombosolea tapirina Giinther, 1862). Aquaculture 136, 221–230.

Hirsch, P.E., N’Guyen, A., Adrian-Kalchhauser, I., Burkhardt- Holm, P., 2015. What do we really know about the impacts of one of the 100 worst invaders in Europe? A reality check. Ambio 45,3, 267–279. https://doi.org/10.1007/s13280-015-0718-9

Janáč, M., Jurajdová, Z., Roche, K., Šlapanský, L., Jurajda, P., 2019. An isolated round goby population in the up- per Elbe: population characteristics and short-term impacts on the native fish assemblage. Aquat. Invasions 14, 738–757.

Kalinina, E.M., 1976. Reproduction and early development of gobies from the Azov and Black sea. Kiev, Nauk. Dumka. USSR

Kaplan, E.L., Meier, P. 1958. Nonparametric Estimation from Incomplete Observations. J. Am. Statist. Assoc. 53, 282, 457–481. https://doi.org/10.1080/01621459.1958.10501452

Kiehl, J., Trenberth, K., 1997. Earth’s annual global mean energy budget. Bull. Am. Meteorol. Soc. 78, 197–208. https://doi.org/10.1175/1520-0477(1997)078{\TU\textless}0197:EAGMEB{\TU\textgreater}2.0.CO;2

Kornis, M., Mercado-Silva, N., Vander Zanden, J. 2012. Twenty years of invasion: a review of Round Goby Neogobius melanostomus biology, spread and ecological implications. J. Fish Biol. 80, 235–285. https://doi.org/10.1111/j.1095-8649.2011.03157.x

Kovtun, I.F., 1979. Significance of the sex ratio in the spawning population of the round goby in relation to year- class strength in the Sea of Azov. J. Ichthyol. 19, 161–163.

Kowalski, R.K., Sarosiek, B., Judycka, S., Dryl, K., Grudniewska, J., Dobosz, S., Cejko, B.I., 2018. Effectiveness of the air stripping in two Salmonid fish, rainbow trout (Oncorhynchus mykiss) and Brown Trout (Salmo trutta morpha fario). JOVE – J. Vis. Exp. 139, e56894. https://doi.org/10.3791/56894

Lean, J.L., Rind, D.H., 2009. How will Earth’s surface temperature change in future decades?. Geophys. Res. Lett. 36, L15708. https://doi.org/10.1029/2009GL038932

Lindzen, R., Chou, M., Hou, A., 2001. Does the Earth have an adaptive iris?. Bull. Am. Meteorol. Soc. 82, 417–432. https://doi.org/10.1175/1520-0477(2001)082<0417:DTEHAA>2.3.CO;2

Makeyeva A.P., Pavlov, D.S., Pavlov, D.A., 2011. Atlas of larvae and juveniles of freshwater fishes of Russia. KMK Scientific Press, Moscow, 383 pp.

Marentette, J.R., Fitzpatrick, J.L., Berger, R.G. Balshine, S., 2009. Multiple male reproductive morphs in the invasive round goby (Apollonia melanostoma). J. Great Lakes Res. 35 (2), 302–308. https://doi.org/10.1016/j.jglr.2009.01.009

Marshall, J., Scott, J.R., Armour, K.C., Campin, J.-M., Kelley, M., Romanou, A., 2015. The oceaN’s role in the transient response of climate to abrupt greenhouse gas forcing. Clim. Dynam. 44, 2287–2299. https://doi.org/10.1007/s00382-014-2308-0

Matern, S., Herrmann, J-P., Temming, A., 2021. Differences in diet compositions and feeding strategies ofinvasive round goby Neogobius melanostomus and native black goby Gobius niger in the Western Baltic Sea. Aquat. Invasions 16, 2, 314–328. https://doi.org/10.3391/ai.2021.16.2.07

Melendez, C.L., Mueller, C.A., 2021. Effect of increased embryonic temperature during developmental windows on survival, morphology and oxygen consumption of rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Phys. A 252, 110834. https://doi.org/10.1016/j.cbpa.2020.110834.

Moiseyeva, E.B., 1983. Development of gonads of the round goby, Neogobius melanostomus (Gobiidae) in embryogenesis. Vopr. Ikhtiol. 23 (5), 786–796.

Moskal’kova, K.I., 1978. Development of the round goby Neogobius melanostomus (Pallas) in the Sea of Azov related to habitat peculiarities in ontogenesis and evolution. [In:] Ekologo morfologicheskie i ekologo-fiziologi- cheskie issledovaniya razvitiya ryb (Ecological Morpho- logical and Physiological Studies of Fish Development). Nauka, Moscow, 72–88.

Moskal’kova, K.I., 1996. Ecological and morphophysiologi cal prerequisites to range extention in the round goby Neogobius melanostomus under conditions of’ anthropogenic pollution, J Ichthyol 36, 584–590.

Moskal’kova, K.I., 2007. Convergence of early ontogenesis of the teleostean fish Neogobius melanostomus (Perciformes, Gobiidae) and higher vertebrates. Biol. Bull. 34 (2), 202–204.

Nikolski G.V., 1963. The Ecology of Fishes. Acad. Press, New York, 624 pp.

Oesterwind, D., Bock, C., Főˆrster, A., Gabel, M., Henseler, C., Kotterba, P., Menge, M., Myts, D., Winkler, H.M., 2017. Predator and prey: the role of the round goby Neogobius melanostomus in the western Baltic. Mar. Biol. Res. 13(2), 188–197. https://doi.org/10.1080/17451000.2016.1241412

Ojanguren, A.F., Braña, F., 2003. Thermal dependence of embryonic growth and development in brown trout. J. Fish. Biol. 62, 580–590. https://doi.org/10.1046/j.1095-8649.2003.00049.x

Pankhurst, N.W., Munday, P.L., 2011. Effects of climate change on fish reproduction and early life history stages. Mar. Freshwater Res. 62, 1015–1026. https://doi.org/10.1071/MF10269

Quattrocchi, G., Christensen, E., Sinerchia, M., Marras, S., Cucco, A., Domenici, P., Behrens, J.W., 2023. Aerobic metabolic scope mapping of an invasive fish species with global warming. Conserv. Physiol. 11 (1), coad094. https://doi.org/10.1093/conphys/coad094

Sapota, M.R., 2004. The round goby (Neogobius melanosto- mus) in the Gulf of Gdansk – a species introduction into the Baltic Sea. Hydrobiologia 514 (1), 219–224. https://doi.org/10.1023/B:hydr.0000018221.28439.ae

Skóra, K.E., Stolarski, J., 1993. New fish species in the Gulf of Gdańsk. Neogobius sp. [cf. Neogobius melanostomus (Pallas 1811)]. Bull. of the Sea Fisheries Institute, Gdynia, 1, 83–84.

Skóra, K., Olenin, S., Gollasch, S., 1999. Neogobius melanos- tomus (Pallas, 1811). [In:] Gollasch, S., Michin, D., Rosenthal, H., Voight, M. (Eds). Case histories on intro- duced species: their general biology, distribution, range expansion and impact. Logos Verlag, Berlin, 69–73.

Smith, S., Skalski, J., Schelechte, J., Hoffmann, A., Cassen, V., 1994. Statistical survival analysis of fish and wildlife tagging studies. Project No. 1989-10700 (BPA Report DOE/BP-02341-3).

Tomczak, M.T., Sapota, M.R., 2006. The fecundity and gonad development cycle of the round goby (Neogobius melanostomus Pallas 1811) from the Gulf of Gdańsk. Oceanol. Hydrobiol. St. 35 (4), 353–367.

van Deurs, M., Moran, N.P., Plet-Hansen, K.S., Dinesen, G.E., Azour, F., Carl, H., Møller, P.R., Behrens, J.W., 2021. Impacts of the invasive round goby (Neogobius melanosto- mus) on benthic invertebrate fauna: a case study from the Baltic Sea. NeoBiota 68, 19–30. https://doi.org/10.3897/neobiota.68.67340

Vagner, M., Zambonino-Infante, J.-L., Mazurais, D., 2019. Fish facing global change: are early stages the lifeline?, Mar. Environ. Res. 147, 159–178. https://doi.org/10.1016/j.marenvres.2019.04.005

Volkoff, H., Rønnestad, I., 2020. Effects of temperature on feeding and digestive processes in fish. Temperature 7 (4), 307–320. https://doi.org/10.1080/23328940.2020.1765950

Williams, K., Papanikos, N., Phelps, R.P., Shardo, J.D., 2004. Development, growth, and yolk utilization of hatcheryreared red snapper Lutjanus campechanus larvae. Mar. Ecol. Prog. Ser. 275, 231–239. https://doi.org/10.3354/meps275231

Woynárovich, A., van Anrooy, R., 2019. Field guide to the culture of tambaqui (Colossoma macropomum, Cuvier, 1816). FAO Fisher. Aquacult. Tech. Paper No. 624, Rome, FAO, 132 pp.

Yang, F., Wu, Z., 2024. The phase change in the annual cycle of sea surface temperature. npj Climate Atmos. Sci. 7, 48. https://doi.org/10.1038/s41612-024-00591-8

full, complete article - PDF


On the upwelling-driven zonation of nitrogen, phytoplankton, and zooplankton in the eastern Great Australian Bight, Australia: A coupled physical-biological modelling study
Oceanologia, 67 (3)/2025, 67303, 18 pp.
https://doi.org/10.5697/IMXA7927

Jochen Kämpf*
College of Science and Engineering, Flinders University, Adelaide, Australia;
e-mail: jochen.kaempf@flinders.edu.au (Jochen Kämpf)
*corresponding author

Keywords: Coastal upwelling; Plankton dynamics; Numerical modelling; NPZD model; Coupled physical-biological interactions; Coastal oceanography

Received: 23 May 2024; revised: 28 November 2024; accepted: 1 July 2025.

Highlights

Abstract

This study uses a fully coupled physical-biological model to study nutrient enrichment and plankton dynamics in a seasonal coastal upwelling system. This upwelling system, located in the eastern Great Australian Bight, Australia, provides the feeding ground for a range of predatory species including tuna, sea lions, sharks, and whales. The biological model describes the interactions between dissolved nitrogen, phytoplankton, zooplankton, and detritus in response to changes in the physical environment predicted by a standard three-dimensional hydrodynamic model. This study tests a “zonation hypothesis” claiming that, in coastal upwelling systems, zones of maximum nitrogen, phytoplankton and zooplankton develop spatially separated along the coast due to the advective effect of coastal upwelling currents and biological delays in the formation of phytoplankton and zooplankton. While the physical process of wind-driven coastal upwelling is well understood and predictable, several aspects of the biological response simulated in this study are surprising. (i) During the upwelling phase, maximum phytoplankton and zooplankton production occurs in shallower waters alongside the upwelling zone of maximum surface nitrogen. In this upwelling shadow, recycled nitrogen contributes the same amount as physical processes to the local nutrient flux. (ii) Conversely, physical effects offset most of the local phytoplankton growth in the upwelling zone. After wind relaxation, the shutdown of the upwelling process eventually also triggers phytoplankton blooms in this zone. (iii) Wind relaxation creates a narrow coastal countercurrent that operates to maintain the plankton biomass near the upwelling center. For these reasons, the zonation hypothesis does not hold for the coastal upwelling system studied in this work.

  References   ref

Blumberg, A.F., Mellor, G.L., 2013. A description of a threedimensional coastal ocean circulation model. Three-Dimensional Coastal Ocean Models Coastal and Estuarine Sciences Ser. Vol. 4, AGU.

Gill, P., 2002. A blue whale (Balaenoptera musculus) feeding ground in a southern Australian coastal upwelling zone. J. Cetacean Res. Manage. 4 (2), 179–184. https://doi.org/10.47536/jcrm.v4i2.854

Gill, P.C., Morrice, M.G., Page, B., Pirzl, R., Levings, A.H., Coyne, M., 2011. Blue whale habitat selection and within-season distribution in a regional upwelling system off southern Australia. Mar. Ecol. Progr. Ser. 421, 243–263. https://doi.org/10.3354/meps08914

Gill, P.C., Pirzl, R., Morrice, M.G., Lawton, K., 2015. Cetacean diversity of the continental shelf and slope off southern Australia. J. Wildl. Manage. 79, 672–681. https://doi.org/10.1002/jwmg.867

Herzfeld, M., 1997. The annual cycle of SST in the Great Australian Bight. Prog. Oceanogr. 39, 1–27. https://doi.org/10.1016/S0079-6611(97)00010-4

Jakobsen, H.H., Markager, S., 2016. Carbon-439 to-chlorophyll ratio for phytoplankton in temperate coastal waters: seasonal patterns and relationship to nutrients. Limnol. Oceanogr. 61, 1853–1868. https://doi.org/10.1002/lno.10338

Ji, R., Davis, C., Chen, C., Beardsley, R., 2008. Influence of local and external processes on the annual nitrogen cycle and primary productivity on Georges Bank: a 3-D biological–physical modeling study. J. Marine Syst. 73(1–2), 31–47. https://doi.org/10.1016/j.jmarsys.2007.08.002

Kämpf, J., 2010. On the preconditioning of coastal upwelling in the eastern Great Australian Bight. J. Geophys. Res.-Oceans 115, C12071. https://doi.org/10.1029/2010JC006294

Kämpf, J., 2019. Extreme bed shear stress during coastal downwelling. Ocean Dynam. 69 (5), 581–597. https://doi.org/10.1007/s10236-019-01256-4

Kämpf, J., 2024a. On the retroflection of upwelling jets near coastal bends. Cont. Shelf Res. 279, 105276. https://doi.org/10.1016/j.csr.2024.105276

Kämpf, J., 2024b. On the wind-driven formation of plankton patches in island wakes. J. Mar. Sci. Eng. 12 (1), 193. https://doi.org/10.3390/jmse12010193

Kämpf, J., 2025. Phytoplankton and zooplankton production in the Bonney Coast upwelling, Australia: A coupled physical-biological model investigation. Cont. Shelf Res. 285, 105373. https://doi.org/10.1016/j.csr.2024.105373

Kämpf, J., Chapman, P., 2016. Upwelling System of the World. Springer Nature, New York. https://doi.org/10.1007/978-3-319-42524-5

Kämpf, J., Doubell, M., Griffin, D., Matthews, R.L., Ward, T.M., 2004. Evidence of a large seasonal coastal upwelling system along the southern shelf of Australia. Geophys. Res. Lett. 31, L09310. https://doi.org/10.1029/2003GL019221

Kämpf, J., Ellis, H., 2015. Hydrodynamics and flushing of Coffin Bay, South Australia: A small tidal inverse estuary of interconnected bays. J. Coast. Res. 31 (2), 447–456. https://doi.org/10.2112/JCOASTRES-D-14-00046.1

Kämpf, J., Möller, L., Baring, R., Shute, A., Cheesman, C., 2023b. The island mass effect: a study of wind-driven nutrient upwelling around reef islands. J. Oceanogr. 79, 161–174. https://doi.org/10.1007/s10872-022-00673-2

Kämpf, J., Newman, M., Doubell, M., Möller, L., Baring, R., Shute, A., Rodriguez, A.R., 2023a. A study of the seasonal and interannual variability of phytoplankton and zooplankton assemblages in a significant marine ecosystem. Oceanologia 65 (2), 434–451. https://doi.org/10.1016/j.oceano.2022.12.003

Largier, J.L., 2020. Upwelling bays: How coastal upwelling controls circulation, habitat, and productivity in bays. Annu. Rev. Mar. Sci. 12, 415–447. https://doi.org/10.1146/annurev-marine-010419-011020

Lentz, S.J., 2001. The influence of stratification on the winddriven cross-shelf circulation over the North Carolina shelf. J. Phys. Oceanogr. 31, 2749–2760. https://doi.org/10.1175/1520-0485(2001)031<2749:TIOSOT>2.0.CO;2

Luyten, P.J., Jones, J.E., Proctor, R., Tabor, A., Tett, P., Wild-Allen, K., 1999. COHERENS – A Coupled Hydrodynamical-Ecological Model for Regional and Shelf Seas: User Documentation. MUMM Report, Management Unit of the North Sea, Brussels, 914 pp.

Maier-Reimer, E., 1980. On the formation of saltwater wedges in estuaries. Lect. Notes Coast. Estuar. Stud. 1, 91–101.

Mann, K.H., Lazier, J.R.N., 1996. Dynamics of Marine Ecosystems: Biological–Physical Interactions in the Oceans. 2nd Edn., Blackwell Science, Oxford, xii, 394 pp.

McClatchie, S., Middleton, J.F., Ward, T.M., 2006. Water mass analysis and alongshore variation in upwelling intensity in the eastern Great Australian Bight. J. Geophys. Res. 111, C08007. https://doi.org/10.1029/2004JC002699

Middleton, J.F., Cirano, M., 2002. A northern boundary current along Australia’s southern shelves: The Flinders Current. J. Geophys. Res.-Oceans 107 (C9), 3129. https://doi.org/10.1029/2000JC000701

Mӧller, L.M., Attard, C.R.M., Bilgmann, K., Andrews-Goff, V., Jonsen, I., Paton, D., Double, M.C., 2020. Movements and behaviour of blue whales satellite tagged in an Australian upwelling system. Sci. Rep. 10, 21165. https://doi.org/10.1038/s41598-02078143-2

Nieblas, A.E., Sloyan, B.M., Hobday, A.J., Coleman, R., Richardson, A.J., 2009. Variability of biological production in low wind-forced regional upwelling systems: a case study off southeastern Australia. Limnol. Oceanogr. 54, 1548–1558. https://doi.org/10.4319/lo.2009.54.5.1548

Richardson, L.E., Middleton, J.F., James, N.P., Kyser, T.K., Opdyke, B.N., 2018. Water masses and their seasonal variation on the Lincoln Shelf, South Australia. Limnol. Oceanogr. 63, 1944–1963. https://doi.org/10.1002/lno.10817

Richardson, L.E., Middleton, J.F., James, N.P., Kyser, T.K., Opdyke, B.N., 2020. Upwelling characteristics and nutrient enrichment of the Kangaroo Island upwelling region, South Australia. Cont. Shelf Res. 200, 104111. https://doi.org/10.1016/j.csr.2020.104111

Ridgway, K.R., Condie, S.A., 2004. The 5500-km-long boundary flow off western and southern Australia. J. Geophys. Res.-Oceans 109, C04017. https://doi.org/10.1029/2003JC001921

Rochford, D.J., 1986. Seasonal changes in the distribution of the Leeuwin Current waters off southern Australia. Aust. J. Mar. Freshwater Res. 37, 1–10. https://doi.org/10.1071/MF9860001

Shchepetkin, A.F., McWilliams, J.C., 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 9 (4), 347–404. https://doi.org/10.1016/j.ocemod.2004.08.002

Shute, A., Kämpf, J., Doubell, M., Rodriguez, A.R., Möller, L., Baring, R., Newman, M., 202. Variability of surface and subsurface phytoplankton blooms in a seasonal coastal upwelling system. Cont. Shelf Res. 246, 104832. https://doi.org/10.1016/j.csr.2022.104832

Smagorinsky, J., 1963. General circulation experiments with the primitive equations. I: the basic experiment. Mon. Weather Rev. 91, 99–164. https://doi.org/10.1175/1520-0493(1963)091%3c0099:GCEWTP%3e2.3.CO;2

Staehr, S.U., Van der Zande, D., Staehr, P.A.U., Markager, S., 2022. Suitability of multisensory satellites for longterm chlorophyll assessment in coastal waters: A case study in optically complex waters of the temperate region. Ecol. Indic. 134, 108479. https://doi.org/10.1016/j.ecolind.2021.108479

van Ruth, P.D., Patten, N.L., Doubell, M.J., Chapman, P., Rodriguez, A.R., Middleton, J.F., 2018. Seasonal- and event- scale variations in upwelling, enrichment and primary productivity in the eastern Great Australian Bight. Deep Sea Res Pt. II, 157–158, 36–45. https://doi.org/10.1016/j.dsr2.2018.09.008

Ward, T.M., Mcleay, L.J., Dimmlich, W.F., Rogers, P.J., McClatchie, S., Matthews, R., Kämpf, J., Van Ruth, P.D., 2006. Pelagic ecology of a northern boundary current system: effects of upwelling on the production and distribution of sardine (Sardinops sagax), anchovy (Engraulis australis) and southern bluefin tuna (Thunnus maccoyii) in the Great Australian Bight. Fish. Oceanogr. 15, 191–207. https://doi.org/10.1111/j.1365-2419.2006.00353.x

full, complete article - PDF


Fluorescence characteristics of dissolved organic matter and its association with the nepheloid layer in the northern South China Sea
Oceanologia, 67 (3)/2025, 67304, 17 pp.
https://doi.org/10.5697/ATWF9251

Xiaochao Sui1, Li Zou1,*, Tian Chen2, Yinuo Wang1, Chaoqi Zhu2, Yonggang Jia2
1Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China
2Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China;
e-mail: zouli@ouc.edu.cn (L. Zou)
*corresponding author

Keywords: Northern South China Sea; Nepheloid layer; Dissolved organic carbon; FDOM

Received: 25 December 2024; revised: 27 July 2025; accepted: 11 August 2025

Highlights

Abstract

The northern South China Sea (SCS) is characterized by multiple oceanographic phenomena and has developed diverse patterns of distribution, migration and transformation of dissolved organic carbon (DOC). To better understand the DOC behavior and its relationship with the nepheloid layer, UV-visible absorption spectra and three- dimensional fluorescence spectra of dissolved organic matter (DOM) were obtained in the northern SCS, as well as beam attenuation (BA), major physicochemical parameters and chlorophyll a (Chl-a) data. DOC and chromophoric dissolved organic matter (CDOM) gradually decrease from the surface to deeper layers, with high-low alternations occurring in the euphotic zone. The fluorescence intensity of DOM is primarily attributed to protein-like components, followed by humic-like components (24.6%). CDOM exhibits a typical marine origin and is produced mainly through bacterial production in situ. The spatial and temporal distributions of DOC and humic-like components are influenced by major physicochemical factors (such as temperature, salinity, and nutrients) and Chl-a. In contrast the protein-like components might be closely associated with bacterial activity. The distributions of DOC and humic-like components are significantly correlated with the presence of the nepheloid layer. In the euphotic zone, phytoplankton particulates are the primary source of humic-like components, while suspended particles affect the distribution of humic-like components below the euphotic zone. The results presented direct evidence for the function of the marine nepheloid layer in the organic carbon cycle.

  References   ref

Anderson, R.F., Rowe, G.T., Kemp, P.F., Trumbores, S., Biscaye, P.E., 1994. Carbon budget for the mid-slope depocenter of the Middle Atlantic Bight. Deep Sea Res. Pt. II 41(2–3), 669–703. https://doi.org/10.1594/PANGAEA.730406

Burdige, D.J., 2007. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets. Chem. Rev. 107(2), 467–485. https://doi.org/10.1021/cr050347q

Boetius, A., Springer, B., Petry, C., 2000. Microbial activity and particulate matter in the benthic nepheloid layer (BNL) of the deep Arabian Sea. Deep Sea Res. Pt. II 47(14), 2687–2706. https://doi.org/10.1016/S0967-0645(00)00045-X

Cai, P., Zhao, D., Wang, L., Huang, B., Dai, M., 2015. Role of particle stock and phytoplankton community structu- re in regulating particulate organic carbon export in a large marginal sea. J. Geophys. Res-Oceans 120(3), 2063-2095. https://doi.org/10.1002/2014JC010432

Cammack, W.L., Kalff, J., Prairie, Y.T., Smith, E.M., 2004. Fluorescent dissolved organic matter in lakes: relationships with heterotrophic metabolism. Limnol. Oceanogr. 49(6), 2034–2045. https://doi.org/10.4319/lo.2004.49.6.2034

Chen, W., Wagnersky, P.J., 1993. High-temperature combustion analysis of dissolved organic carbon produced in phytoplankton cultures. Mar. Chem. 41(1–3), 167–171. https://doi.org/10.1016/0304-4203(93)90115-5

Christensen, J.H., Hansen, A.B., Mortensen, J., Andersen, O., 2005. Characterization and matching of oil samples using fluorescence spectroscopy and parallel factor analysis. Anal. Chem. 77(7), 2210–2217. https://doi.org/10.1021/ac048213k

Coble, P.G., 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 51(4), 325–346. https://doi.org/10.1016/0304-4203(95)00062-3

Del Castillo, C.E., Coble, P.G., Morell, J.M., Lopez, J.M., Corredor, J.E., 1999. Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy. Mar. Chem. 66(1–2), 35–51. https://doi.org/10.1016/s0304-4203(99)00023-7

Eittreim, S., Ewing, M., Thorndike, E.M., 1969. Suspended matter along the continental margin of the North American Basin. Deep-Sea Res. Oceanogr. Abstr. 6(6), 613–624. https://doi.org/10.1016/0011-7471(69)90062-x

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Zheng, B., 2022. Global Carbon Budget 2022. Earth System Sci. Data 14(11), 4811–4900. https://doi.org/10.5194/essd-14-4811-2022

Geng, M., Song, H., Guan, Y., Chen, J., 2018. Research on the distribution and characteristics of the nepheloid layers in the northern South China Sea by use of seismic oceanography method. Chin. J. Geophys. 61(02), 636–648. https://doi.org/10.6038/cjg2018L0662

Guo, L., Santschi, P.H., 2000. Sedimentary sources of old high molecular weight dissolved organic carbon from the ocean margin benthic nepheloid layer. Geochim. Cosmochim. Acta, 64(4), 651–660. https://doi.org/10.1016/s0016-7037(99)00335-x

Guo, L., Santschi, P.H., Cifuentes, L.A., Trumbore, S.E., Southon, J., 1996. Cycling of high-molecular-weight dissolved organic matter in the Middle Atlantic Bight as revealed by carbon isotopic (13C and 14C) signatures. Limnol. Oceanogr. 41(6), 1242–1252. https://doi.org/10.4319/lo.1996.41.6.1242

Hansell, D.A., Carlson, C.A., 1998. Deep ocean gradients in dissolved organic carbon concentrations. Nature 395(6699), 263–266. https://doi.org/10.1038/26200

Hansell, D. A., Carlson, C. A., Repeta, D. J., Schlitzer, R., 2012. Dissolved organic matter in the ocean: A controversy stimulates new insights. Nature Geosci. 5(12), 848–854. https://doi.org/10.5670/oceanog.2009.109

Hartnett, H.E., Keil, R.G., Hedges, J.I., Devol, A.H., 1998. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391(6667), 572–575. https://doi.org/10.1038/35351

Helms, J.R., Stubbins, A., Ritchie, J.D., Minor, E.C., Kieber, D.J., Mopper, K., 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 53(3), 955–969. https://doi.org/10.4319/lo.2008.53.3.0955

Hong, Q., Peng, S., Zhao, D., Cai, P., 2021. Cross-shelf export of particulate organic carbon in the northern South China Sea: Insights from a 234Th mass balance. Prog. Oceanogr. 193, 102532. https://doi.org/10.1016/j.pocean.2021.102532

Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J.M., Parlanti, E., 2009. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem. 40(6), 706–719. https://doi.org/10.1016/j.orggeochem.2009.03.002

Jiao, N., Cai, R., Zheng, Q., Tang, K., Liu, J., Jiao, F., Wallace, D., Chen, F., Li, C., Amann, R., Benner, R., Azam, F., 2018. Unveiling the enigma of refractory carbon in the ocean. Natl. Sci. Rev. 5(4), 459–463. https://doi.org/10.1093/nsr/nwy020

Jørgensen, L., Stedmon, C.A., Kragh, T., Markager, S., Middelboe, M., Søndergaard, M., 2011. Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter. Mar. Chem. 126(1–4), 139–148. https://doi.org/10.1016/j.marchem.2011.05.002

Kieber, D., McDaniel, J., Mopper, K., 1989. Photochemical source of biological substrates in seawater: implications for carbon cycling. Nature 341(6243), 60–62. https://doi.org/10.1038/341637a0

Kowalczuk, P., Durako, M.J., Young, H., Kahn, A.E., Cooper, W.J., Gonsior, M., 2009. Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with the use of PARAFAC model: Interannual variability. Mar. Chem. 113(3–4), 182–196. https://doi.org/10.1016/j.marchem.2009.01.015

Lakowicz, J.R., 2006. Principles of Fluorescence Spectroscopy, 3 edn., Springer-Verlag US, 954 pp. https://doi.org/10.1007/978-0-387-46312-4

Lawaetz, A.J., Stedmon, C.A., 2009. Fluorescence intensity calibration using the Raman scatter peak of water. Appl. Spectrosc. 63(8), 936–940. https://doi.org/10.1366/000370209788964548

Li, Y., Song, G., Massicotte, P., Yang, F., Li, R., Xie, H., 2019. Distribution, seasonality, and fluxes of dissolved organic matter in the Pearl River (Zhujiang) estuary, China. Biogeosciences 16(13), 2751–2770. https://doi.org/10.5194/bg-16-2751-2019

Li, Y., Zhang, Y., Li, Z., Wan, J., Dang, C., Fu, J., 2022. Characterization of colored dissolved organic matter in the northeastern South China Sea using EEMs-PARAFAC and absorption spectroscopy. J. Sea Res. 180, 102159.

Madron, X.D.D., Ramondenc, S., Berline, L., Houpert, L., Bosse, A., Martini, S., Guidi, L., Conan, P., Curtil, C., Delsaut, N., Kunesch, S., Ghiglione, J.F., Marsaleix, P., Pujo-Pay, M., Séverin, T., Testor, P., Tamburini, C., the ANTARES collaboration, 2017. Deep sediment resuspension and thick nepheloid layer generation by open-ocean convection. J. Geophys. Res. Ocean. 122(3), 2291–2318. https://doi.org/10.1002/2016JC012062

McKnight, D.M., Boyer, E.W., Westerhoff, P.K., Doran, P.T., Kulbe, T., Andersen, D.T., 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 46(1), 38–48. https://doi.org/10.4319/lo.2001.46.1.0038

Miller, W.L., Zepp, R.G., 1995. Photochemical production of dissolved inorganic carbon from terrestrial organic matter: significance to the oceanic organic carbon cycle. Geophys. Res. Lett. 22, 417–420. https://doi.org/10.1029/94GL03344

Murphy, K.R., Stedmon, C.A., Wenig, P., Bro, R., 2014. OpenFluor–an online spectral library of auto-fluorescence by organic compounds in the environment. Anal. Methods 6(3), 658–661. https://doi.org/10.1039/C3AY41935E

Olivieri, A.C., 2005. Computing sensitivity and selectivity in parallel factor analysis and related multiway techniques: the need for further developments in net analyte signal theory. Anal. Chem. 77(15), 4936–4946. https://doi.org/10.1021/ac050146m

Peltzer, E.T., Hayward, N.A., 1996. Spatial and temporal variability of total organic carbon along 140 W in the equatorial Pacific Ocean in 1992. Deep Sea Res. Pt. II 43(4– 6), 1155–1180. https://doi.org/10.1016/0967-0645(95)00014-3

Qu, T., Mitsudera, H., Yamagata, T., 2000. Intrusion of the north Pacific waters into the South China Sea. J. Geophys. Res.-Oceans 105(C3), 6415–6424. https://doi.org/10.1029/1999JC900323

Sabbaghzadeh, B., Uher, G., Upstill-Goddard, R., 2024. Dynamics of chromophoric dissolved organic matter in the Atlantic Ocean: unravelling province dependent relationships, optical complexity, and environmental influences. Front. Mar. Sci. 11, 1432133. https://doi.org/10.3389/fmars.2024.1432133

Sempéré, R., Cauwet, G., Randon, J., 1994. Ultrafiltration of seawater with a zirconium and aluminum oxide tubular membrane: application to the study of colloidal organic carbon distribution in an estuarine bottom nepheloid layer. Mar. Chem. 46(1–2), 49–60. https://doi.org/10.1016/0304-4203(94)90044-2

Seo, J., Kim, G., Seo, H., Na, T., Noh, S., Hwang, J., 2023. Sources and behaviors of particulate organic carbon, iron, and manganese in the bottom nepheloid layer of the southwestern East Sea (Japan Sea). Mar. Chem. 257, 104323. https://doi.org/10.1016/j.marchem.2023.104323

Shen, J., Jiao, N., Dai, M., Wang, H., Qiu, G., Chen, J., Li, H., Kao, S.-J., Yang, J.-Y.T., Cai, P., Zhou, K., Yang, W., Zhu, Y., Liu, Z., Chen, M., Zuo, Z., Gaye, B., Wiesner, M.G., Zhang, Y., 2020. Laterally transported particles from margins serve as a major carbon and energy source for dark ocean ecosystems. Geophys. Res. Lett. 47(18), e2020GL088971. https://doi.org/10.1029/2020GL088971

Sierra, M.D.S., Donard, O.F.X., Lamotte, M., Belin, C., Ewald, M., 1994. Fluorescence spectroscopy of coastal and marine waters. Mar. Chem. 47(2), 127–144. https://doi.org/10.1016/0304-4203(94)90104-x

Stedmon, C. A., Bro, R., 2008. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol. Oceanogr.-Methods 6(11), 572–579. https://doi.org/10.4319/lom.2008.6.572

Stedmon, C.A., Markager, S., 2005. Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis. Limnol. Oceanogr. 50(5), 1415–1426. https://doi.org/10.4319/lo.2005.50.5.1415

Stedmon, C.A., Nelson, N.B., 2015. The optical properties of DOM in the ocean. [in:] Biogeochemistry of marine dissolved organic matter. Acad. Press, 481–508. https://doi.org/10.1016/b978-0-12-405940-5.000

Steinberg, D.K., Landry, M.R., 2017. Zooplankton and the ocean carbon cycle. Annu. Rev. Mar. Sci. 9(1), 413–444. https://doi.org/10.1146/annurev-marine-010814-015924

Tang, S., Chen, C., Zhan, H., Xu, D., Liu, D., 2007. Remote sensing inversion of true optical depth in South China Sea. J. Trop. Oceanogr. 26(1), 7. https://doi.org/10.3969/j.issn.1009-5470.2007.01.002

Thiele, S., Basse, A., Becker, J. W., Lipski, A., Iversen, M. H., Mollenhauer, G., 2019. Microbial communities in the nepheloid layers and hypoxic zones of the Canary Current upwelling system. MicrobiologyOpen 8(5), e00705. https://doi.org/10.1002/mbo3.705

Wang, C., Guo, W., Li, Y., Stubbins, A., Li, Y., Song, G., Wang, L., Cheng, Y., 2017. Hydrological and biogeochemical controls on absorption and fluorescence of dissolved organic matter in the Northern South China Sea. J. Geophys. Res.-Biogeosci. 122(12), 3405–3418. https://doi.org/10.1002/2017JG004100

Williams, P.J.L.B., 2000. Heterotrophic bacteria and the dynamics of dissolved organic material. Microb. Ecol. Oceans. https://api.semanticscholar.org/CorpusID:221557347

Wu, K., Dai, M., Chen, J., Meng, F., Li, X., Liu, Z., Du, C., Gan, J., 2015. Dissolved organic carbon in the South China Sea and its exchange with the Western Pacific Ocean. Deep Sea Res. Pt. II 122, 41–51. https://doi.org/10.1016/j.dsr2.2015.06.013

Xie, L., Guan, W., Zou, L., Xia, B., Ji, G., 2023. Composition, variation and contribution of chromophoric dissolved organic matter in Laizhou Bay estuaries, North China. Mar Environ Res. 190, 106102. https://doi.org/10.1016/j.marenvres.2023.106102

Yamashita, Y., Cory, R.M., Nishioka, J., Kuma, K., Tanoue, E., Jaffé, R., 2010. Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep Sea Res. Pt. II 57(16), 1478–1485. https://doi.org/10.1016/j.dsr2.2010.02.016

Yamashita, Y., Tanoue, E., 2004. In situ production of chromophoric dissolved organic matter in coastal environments. Geophys. Res. Lett. 31, L14302. https://doi.org/10.1029/2004GL019734

Yamashita, Y., Tanoue, E., 2008. Production of bio-refractory fluorescent dissolved organic matter in the ocean interior. Nat. Geosci. 1, 579–582. https://doi.org/10.1038/ngeo279

Yang, F., Song, G., Massicotte, P., Wei, H., Xie, H., 2020. Depthresolved photochemical lability of dissolved organic matter in the western tropical Pacific Ocean. J. Geophys. Res.: Biogeosci. 125(3), e2019JG005425. https://doi.org/10.1029/2019JG005425

Zepp, R.G., Sheldon, W.M., Moran, M. A., 2004. Dissolved organic fluorophores in southeastern US coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation-emission matrices. Mar. Chem. 89(1–4), 15–36. https://doi.org/10.1016/j.marchem.2004.02.006

Zhang, M., Wu, Y., Wang, F., Xu, D., Liu, S., Zhou, M., 2020. Hotspot of organic carbon export driven by mesoscale eddies in the slope region of the northern South China Sea. Front. Mar. Sci. 7, 444. https://doi.org/10.3389/fmars.2020.00444

Zhang, X., Chen, J., Xiang, L., Fang, J., Li, D., 2014. A preliminary study on the characteristics of marine nepheloid layers in the northern South China Sea and their influential factors. Acta Oceanol. Sin. 36(02), 51–65. https://doi.org/10.3969/j.issn.0253-4193.2014.02.006

full, complete article - PDF


Quantile mapping enhances the sea surface temperature prediction accuracy in the northern coastal region of Penang using ROMS
Oceanologia, 67 (3)/2025, 67305, 12 pp.
https://doi.org/10.5697/WXXI2926

Ninu Krishnan Modon Valappil, Chin Alice, Abigail Birago Adomako, Ehsan Jolous Jamshidi, Yusri Yusup*
Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia;
*corresponding author
e-mail: yusriy@usm.my (Y. Yusup)

Keywords: ROMS Model; SST; Statistics; RMSE; Error matrix

Received: 25 June 2025; revised: 2 August 2025; accepted: 11 August 2025

Highlights

Abstract

Sea surface temperature (SST) is a crucial climate indicator for tracking atmospheric and oceanic interactions, particularly in coastal areas. The study focused on the simulation of SST in the region around the north coast of Penang Island, Malaysia, where the prediction of SST is challenging due to its complex atmospheric and oceanic interactions. The Regional Ocean Modeling System (ROMS), a sophisticated numerical model, is employed to predict the variation of SST in the study region. In the present study, HYCOM Global Ocean Forecasting System (GOFS) was incorporated to generate the boundary condition, initialisation, and climatology, while MERRA-2 datasets were considered as atmospheric forcing datasets. The generated SST from ROMS was compared with Aqua-MODIS observations of SST across six selected locations. Different methods, such as time series plots, linear modelling plots, and Taylor diagrams, and error estimation methods were employed to understand the accuracy of the model. The result indicates an underestimation of the SST using the ROMS model. Also, the root mean square error (RMSE) and mean absolute error (MAE) show an average of 2.58°C and 2.50°C in the study area, highlighting the requirement for bias correction. Three bias correction methods, such as Delta Change (DC), Linear Scaling (LS), and Quantile Mapping (QM), were considered to improve SST predictions. The comparative analysis of these three methods through time-series plots and statistical evaluations demonstrates that all three methods significantly reduce errors by bringing RMSE and MAE below 0.7°C. It is also noted that the best result was obtained by the QM method, as it not only reduces mean errors but also enhances correlation between the predicted and observed SST, the other two methods show no variation in the correlation value. The study confirms that the ROMS model can effectively capture the characteristics fluctuation of the SST in the dynamic regions like the north coast of Penang Island but bias correction is crucial for improving the prediction. In this case, the QM bias correction method provides the most balanced and effective adjustment compared to the other two methods.

  References   ref


Acharya, N., Chattopadhyay, S., Mohanty, U.C., Dash, S.K., Sahoo, L.N., 2013. On the bias correction of general circulation model output for Indian summer monsoon. Meteorol. Appl. 20, 349–356. https://doi.org/10.1002/met.1294

Alizadeh, O., 2022. Advances and challenges in climate modeling. Climatic Change 170, 18. https://doi.org/10.1007/s10584-021-03298-4

Baduru, B., Paul, B., Athul, C.R., Paul, A., Francis, P.A., 2025. Improving Indian Ocean analysis using ROMS with sea level anomaly assimilation. J. Earth Sys. Sci.134 (2), 1–19. https://doi.org/10.1007/s12040-025-02587-1

Barton, I.J., 1995. Satellite-derived sea surface temperatures: Current status. J. Geophys. Res.-Oceans 100 (C5), 8777–8790.

Beyer, R., Krapp, M., Manica, A., 2020. An empirical evaluation of bias correction methods for palaeoclimate simulations. Clim. Past 16 (4), 1493–1508. https://doi.org/10.5194/cp-16-1493-2020

Casey, K.S., Cornillon, P., 1999. A comparison of satellite and in situ–based sea surface temperature climatologies. J. Climate 12 (6), 1848–1863.

Chai, T., Draxler, R.R., 2014. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014

Costa, P., Gómez, B., Venâncio, A., Pérez, E., Pérez-Muñuzuri, V., 2012. Using the Regional Ocean Modelling System (ROMS) to improve the sea surface temperature predictions of the MERCATOR Ocean System. Sci. Mar. 76 (S1), 165–175. https://doi.org/10.3989/scimar.03614.19E

Cunnane, C., 1989. Statistical distribution for flood frequency analysis. WMO Operational Hydrology, Rep. No. 33, WMO-No. 718, Geneva, Switzerland.

Dhawan, P., Dalla Torre, D., Niazkar, M., Kaffas, K., Larcher, M., Righetti, M., Menapace, A., 2024. A comprehensive comparison of bias correction methods in climate model simulations: Application on ERA5-Land across different temporal resolutions. Heliyon 10 (23). https://doi.org/10.1016/j.heliyon.2024.e40352

Dubovik, O., Schuster, G.L., Xu, F., Hu, Y., Bösch, H., Landgraf, J., Li, Z., 2021. Grand Challenges in Satellite Remote Sensing. Front. Remote Sens. 2. https://doi.org/10.3389/frsen.2021.619818

Embury, O., Merchant, C.J., Good, S.A., Rayner, N.A., Høyer, J.L., Atkinson, C., Block, T., Alerskans, E., Pearson K.J., Worsfold, M., McCarroll, N., Donlon, C., 2024. Satellite-based time-series of sea-surface temperature since 1980 for climate applications. Sci. Data 11 (1), 326. https://doi.org/10.1038/s41597-024-03147-w

Guan, X., Huang, H., Ke, X., Cheng, X., Zhang, H., Chen, A., Qiu, G., Wu, H., Wei, C., 2025. Monitoring, modeling, and forecasting long-term changes in coastal seawater quality due to climate change. Nat. Commun. 16 (1), 2616. https://doi.org/10.1038/s41467-025-57913-4

Guild, R., Wang, X., Quijón, P. A. 2025. Climate change impacts on coastal ecosystems. Environ. Res.: Climate, 3(4), 042006.

Haghbin, M., Sharafati, A., Motta, D., Al-Ansari, N., Noghani, M.H.M., 2021. Applications of soft computing models for predicting sea surface temperature: a comprehensive review and assessment. Prog. Earth Planet. Sci. 8, 1–19. https://doi.org/10.1186/s40645-020-00400-9

Han, S., Wang, Z., 2022. Simulation of seasonal variation characteristics of offshore water temperature based on ROMS model. Proc. 2022 Global Reliability and Prognostics and Health Management (PHM-Yantai). IEEE, Yantai, China, 1–6.

Hewitt, J.E., Ellis, J.I., Thrush, S.F. 2016. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems. Glob. Change Bio. 22 (8), 2665–2675. https://doi.org/10.1111/gcb.13176

Hobday, A.J., Alexander, L.V., Perkins, S.E., Smale, D.A., Straub, S.C., Oliver, E.C., Benthuysen, J.A., Burrows, M.T., Donat, M.G., Feng, M., Holbrook, N.J., Moore, P.J., Scannell, H.A., Gupta, A.S., Wernberg, T., 2016. A hierarchical approach to defining marine heatwaves. Prog. Oceanog. 141, 227–238. https://doi.org/10.1016/j.pocean.2015.12.014

Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T., Zhang, H.M., 2021. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Climate 34 (8), 2923–2939. https://doi.org/10.2307/27076773

Jose, D.M., Dwarakish, G.S., 2022. Bias Correction and Trend Analysis of Temperature Data by a High-Resolution CMIP6 Model over a Tropical River Basin. Asia-Pac. J. Atmos. Sci. 58 (1), 97–115. https://doi.org/10.1007/s13143-021-00240-7

Kaewmesri, P., 2019. Simulation sea surface temperature over Gulf of Thailand by using ROMS model. Int. J. GEOMATE 17 (60), 56–61. https://doi.org/10.21660/2019.60.4709

Kartal, S., 2023. Assessment of the spatiotemporal prediction capabilities of machine learning algorithms on Sea Surface Temperature data: A comprehensive study. Eng. Appl. Artif. Intel. 118. https://doi.org/10.1016/j.engappai.2022.105675

Kilpatrick, K.A., Podestá, G.P., Evans, R., 2001. Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res.-Oceans 106 (C5), 9179–9197.

Kushwaha, P., Pandey, V.K., Das, B.K., Singh, Y., Srivastav, S., 2024. Exploring temporal and spatial SST patterns and their impact in the Arabian Sea: Insights from the regional ocean modeling system. Cont. Shelf. Res. 275. https://doi.org/10.1016/j.csr.2024.105224

Lemos, G., Menendez, M., Semedo, A., Camus, P., Hemer, M., Dobrynin, M., Miranda, P.M., 2020. On the need of bias correction methods for wave climate projections. Global Planet. Change 186. https://doi.org/10.1016/j.gloplacha.2019.103109

Li, Z.L., Wu, H., Duan, S.B., Zhao, W., Ren, H., Liu, X., Leng, P., Tang, R., Ye, X., Zhu, J., Sun, Y., Si, M., Liu, M., Li, J., Zhang, X., Shang, G., Tang, B., Yan, G., Zhou, C., 2023. Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications. Rev. Geophys. 61.

Mann, K.H., Lazier, J.R., 2005. Dynamics of marine ecosystems: biological-physical interactions in the oceans. John Wiley & Sons.

McPhaden, M.J., Zebiak, S.E., Glantz, M.H., 2006. ENSO as an Integrating Concept in Earth Science. Science 314 (5806), 1740–1745.

Mendez, M., Maathuis, B., Hein-Griggs, D., Alvarado-Gamboa, L.F., 2020. Performance evaluation of bias correction methods for climate change monthly precipitation projections over Costa Rica. Water 12 (2), 482. https://doi.org/10.3390/w12020482

Merchant, C.J., Embury, O., Bulgin, C.E., Block, T., Corlett, G.K., Fiedler, E., Good, S.A., Mittaz, J., Rayner, N.A., Berry, D., Eastwood, S., Taylor, M., Tsushima, Y., Waterfall, A., Wilson, R., Donlon, C., 2019. Satellite-based timeseries of sea-surface temperature since 1981 for climate applications. Sci. Data 6 (1), 223. https://doi.org/10.1038/s41597-019-0236-x

O’Carroll, A.G., Armstrong, E.M., Beggs, H.M., Bouali, M., Casey, K.S., Corlett, G.K., Dash, P.,Donlon, C.J., Gentemann, C.L., Høyer, J.L., Ignatov, A., Kabobah, K., Kachi, M., Kurihara, Y., Karagali, I., Maturi, E., Merchant C.J., Marullo, S., Minnett, P.J., Pennybacker, M., Ramakrishnan, B., Ramakrishnan, R., Santoleri, R., Sunder, S., Picart, S.S., Vázquez-Cuervo, J., Wimmer, W., 2019. Observational needs of sea surface temperature. Front. Mar. Sci. 6, 420.

Ottersen, G., Stenseth, N.C., Hurrell, J.W., 2004. Climatic fluctuations and marine systems: A general introduction to the ecological effects. [In:] Marine Ecosystem and Climate Variation, Stenseth, N.Chr., Geir, O. (Eds.), 3–14.

Piccolo, M.C., 2021. Effects of rainfall extreme events on coastal marine ecosystems. [In:] Precipitation, Rodrigo-Comino, J. (Ed.), Elsevier, 261–285.

Ringard, J., Seyler, F., Linguet, L., 2017. A quantile mapping bias correction method based on hydroclimatic classification of the Guiana shield. Sensors. 17 (6), 1413. https://doi.org/10.3390/s17061413

Satar, M.N., Marshal, W., Akhir, M.F., 2024. The Effects of Climate Change on Ocean Upwelling and Productivity in Regional Seas. [In:] Coastal Sustainability, Maccarrone, V., Fadzil Akhir, M. (Eds.), Coastal Research Library. 21–49.

Sengupta, D., Jammalamadaka, S.R., 2003. Linear models: an integrated approach. World Sci., 644 pp.

Shevchenko, G.V., Tshay, Z.R., Lozhkin, D.M., 2024. Spatiotemporal Variability of Bering Sea Surface Temperature from Satellite-Based ERA5 Reanalysis Data. Izv., Atmos. Ocean. Phys. 60 (9), 1075–1085. https://doi.org/10.1134/S0001433824701032

Soriano, E., Mediero, L., Garijo, C., 2019. Selection of bias correction methods to assess the impact of climate change on flood frequency curves. Water 11 (11). https://doi.org/10.3390/w11112266

Taylor, K.E., 2001. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res.-Atmos. 106 (D7),7183–7192.

Tiwari, P., Dimri, A.P., Shenoi, S.C., Francis, P.A., Jithin, A.K., 2021. Impact of Surface forcing on simulating Sea Surface Temperature in the Indian Ocean – A study using Regional Ocean Modeling System (ROMS). Dynam. Atmos. Oceans 95. https://doi.org/10.1016/j.dynatmoce.2021.101243

Vanem, E., Zhu, T., Babanin, A., 2022. Statistical modelling of the ocean environment – A review of recent developments in theory and applications. Mar. Struct. 86. https://doi.org/10.1016/j.marstruc.2022.103297

Wang, B., Hua, L., Mei, H., Wu, X., Kang, Y., Zhao, N., 2024. Impact of Climate Change on the Dynamic Processes of Marine Environment and Feedback Mechanisms: An Overview. Arch. Comput. Method E. 31 (6), 3377–3408.

Whitney, F.A., Crawford, W.R., Harrison, P.J., 2005. Physical processes that enhance nutrient transport and primary productivity in the coastal and open ocean of the subarctic NE Pacific. Deep Sea Research Pt. II, 52 (5–6), 681–706.

Williams, R.G., Follows, M.J., 2003. Physical Transport of Nutrients and the Maintenance of Biological Production. [In:] Ocean Biogeochemistry. Springer, Berlin, Heidelberg, 19–51.

Zrira, N., Kamal-Idrissi, A., Farssi, R., Khan, H.A., 2024. Time series prediction of sea surface temperature based on BiLSTM model with attention mechanism. J. Sea. Res. 198. https://doi.org/10.1016/j.seares.2024.102472

full, complete article - PDF


Distribution of suspended and dissolved matter and its absorption properties in the Gulf of Gdańsk (Baltic Sea) in the summer season
Oceanologia, 67 (3)/2025, 67306, 25 pp.
https://doi.org/10.5697/FVED2617

Justyna Meler*, Joanna Stoń-Egiert, Monika Zabłocka
Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81–712 Sopot, Poland;
e-mail: jmeler@iopan.pl (J. Meler)
*corresponding author

Keywords: Gulf of Gdańsk (Baltic Sea); Vistula River water distribution; Suspended and dissolved matter; Absorption by particles and CDOM; Taxonomic markers of phytoplankton; Summer season

Received: 15 November 2024; revised: 30 June 2025; accepted: 18 August 2025.

Highlights

Abstract

Analyses of the spatial and interannual variability of suspended particulate matter (SPM) and chromophoric dissolved organic matter (CDOM) concentrations were carried out in the waters of the Gulf of Gdańsk in the summer season in 2016–2020. Additionally, the absorption properties of those substances were analyzed. The inflowing waters of the Vistula River are characterized by high concentrations of SPM, chlorophylla (Tchla) and CDOM, significantly affecting the absorption properties in the mixture of river and sea waters. The high contribution of particulate organic matter, POM, in the total SPM in the Gulf of Gdańsk (80% on average) indicates high phytoplankton productivity in the summer. High concentrations of pigments characteristic of different size classes of algae and cyanobacteria (fucoxanthin and zeaxanthin, chlorophyll b, peridinin and alloxanthin) were recorded, being markers of diatoms, cyanobacteria, green algae, dinophytes and cryptophytes, respectively. Analysis of interannual variability showed changes of SPM, Tchla and CDOM concentrations, depending on volume and direction of the river inflow and weather conditions. The composition of individual pigments changed year to year in a mosaic (heterogeneous) manner. The average contribution of CDOM, phytoplankton and detritus in the total light absorption was determined (at 443 nm – 50%, 34% and 16%, and at 675 nm – 41%, 54% and 5%). Spatial and temporal variability of the light absorption coefficients by suspended particles and CDOM in sea water was examined, and the relationships between the individual light absorption coefficients by sea water components were determined as a function of the dependence on SPM and Tchla.

  References   ref

Babin, M., Stramski, D., Ferrari, G.M., Claustre, H., Bricaud, A., Obolensky, G., Hoepffner, N., 2003. Variations in the light absorption coefficient of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J. Geophys. Res. 108 (C8), 3211. https://doi.org/10.1029/2001JC000882

Bąk, B., Kubiak-Wójcicka, K., 2017. Impact of meteorological drought on hydrological drought in Toruń (central Poland) in the period of 1971–2015. J. Water Land Dev. 32, 3–12. https://doi.org/10.1515/jwld-2017-0001.

Bąk, B., Kubiak-Wójcicka, K., 2018. Monitoring of meteorological and hydrological droughts in the Vistula basin (Poland). Environ. Monit. Assess. 190, 691. https://doi.org/10.1007/s10661-018-7058-8

Bradtke, K., Krężel, A., 1994. The inhomogeneity of vertical distributions of suspended matter in the sea – consequences for remote sensing. Oceanologia 36 (1), 47–79.

Bricaud, A., Morel, A., Babin, M., Allali, K., Claustre, H., 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for biooptical models. J. Geophys. Res. 103, 31,033–31,044.

Bukanova, T., Kopelevich, O., Vazyulya, S., Bubnova, E., Sahling, I., 2018. Suspended matter distribution in the southeastern Baltic Sea from satellite and in situ data. Int. J. Remote Sens. 39 (24), 9313–9316. https://doi.org/10.1080/01431161.2018.1519290

Castagna, A., Amadei Martı́nez, L., Bogorad, M., Daveloose, I., Dasseville, R., Dierssen, H. M., Beck, M., Mortelmans, J., Lavigne, H., Dogliotti, A., Doxaran, D., Ruddick, K., Vyverman, W., Sabbe, K., 2022. Optical and biogeochemical properties of diverse Belgian inland and coastal waters. Earth Syst. Sci. Data, 14, 2697–2719. https://doi.org/10.5194/essd-14-2697-2022

Cyberska, B., Krzymiński, W., 1988. Extension of the Vistula River water in the Gulf of Gdańsk. 16th Conference of Baltic Oceanographers, September 1988, Kiel, Institute of Marine Research, Kiel University, 290–304.

Cyberski J., Krężel, A.,1993. Influence of the Vistula river on suspended matter content in the Gulf of Gdańsk waters. Oceanol. Stud. 64 (3), 27–39.

Damrat, M., Zaborska, A., Zajączkowski, M., , 2013. Sedimentation from suspension and sediment accumulation rate in the River Vistula prodelta, Gulf of Gdańsk (Baltic Sea). Oceanologia, 55 (4), 937–950. https://doi.org/10.5697/oc.55-4.937

D’Sa, E.J., Ko, D.S., 2008. Short-term influences on suspended particulate matter distribution in the Northern Gulf of Mexico: Satellite and model observations. Sensors, 8, 4249–4264. https://doi.org/10.3390/s8074249

Eleveld, M.A., van der Wal, D., van Kessel, T., 2014. Estuarine suspended particulate matter concentrations from sunsynchronous satellite remote sensing: Tidal and meteorological effects and biases. Remote Sens. Environ. 143, 2014–215. https://doi.org/10.1016/j.rse.2013.12.019

Favareto, L.R., Rudorff, N., Kampel, M., Frouin, R., Roettgers, R., Doxaran, D., Murakami, H., Dupouy, Cecile., 2018. Bio-Optical Characterization and Ocean Colour Inversion in the Eastern Lagoon of New Caledonia, South Tropical Pacific. Remote Sensing. 10 (7), 1043, 30 pp. https://doi.org/10.3390/rs10071043

Ferrari, G.M., Tassan, S., 1992. Evaluation of the influence of yellow substance absorption on the remote sensing of water quality in the Gulf of Naples: a case study. Int. J. Remote Sens., 13, 2177–2189.

Harvey, E.T., Walve, J., Andersson ,A., Karlson, B. Kratzer, S., 2019. The Effect of Optical Properties on Secchi Depth and Implications for Eutrophication Management. Front. Mar. Sci. 5, 496. https://doi.org/10.3389/fmars.2018.00496

Jaanus, A., Toming, K., Hallfors, S., Kaljurand, K., Lips, I., 2009. Potential phytoplankton indicator species for monitoring Baltic coastal waters in the summer period. Hydrobiologia, 629, 157–168. https://doi.org/10.1007/s10750-009-9768-y

Kahru, M., Elmgren, R., 2014. Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosci. 11, 3619–3633. https://doi.org/10.5194/bg-11-3619-2014

Kahru, M., Elmgren, R., Kaiser, J., Wasmund, N., Savchuk, O., 2020. Cyanobacterial blooms in the Baltic Sea: Correlations with environmental factors. Harmful Algae 92. https://doi.org/10.1016/j.hal.2019.101739

Kalbarczyk, R. , Kalbarczyk., E., 2022. Research into Meteorological Drought in Poland during the Growing Season from 1951 to 2020 Using the Standardized Precipitation Index. Agronomy 12 (9), 2035. https://doi.org/10.3390/agronomy12092035

Konik, M., Bradtke, K., Stoń-Egiert, J., Soja-Woźniak, M., Śliwińska-Wilczewska, S., Darecki, M., 2023. Cyanobacteria Index as a Tool for the Satellite Detection of Cyanobacteria Blooms in the Baltic Sea. Remote Sens. 15, 1601. https://doi.org/10.3390/rs15061601

Kowalczuk, P., 1999. Seasonal variability of yellow substance absorption in the surface layer of the Baltic Sea. J. Geophys. Res. 104 (C12), 30,047–30,058.

Kowalczuk, P., 2001. Light absorption by yellow substances in Baltic Sea. Ph. D. Thesis, Institute of Oceanology Polish Academy of Sciences, (in Polish).

Kowalczuk, P., Kaczmarek, S., 1996. Analysis of temporal and spatial variability of “yellow substance” absorption in the Southern Baltic. Oceanologia 38 (1), 3–32.

Kowalczuk, P., Stedmon, C.A., Markager, S., 2006. Modeling absorption by CDOM in the Baltic Sea from season, salinity and chlorophyll. Mar. Chem. 101 (1–2), 1–11. https://doi.org/10.1016/j.marchem.2005.12.005

Kowalczuk, P., Olszewski, J., Darecki, M., Kaczmarek, S., 2005a. Empirical relationships between coloured dissolved organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters. Int. J. Remote Sens. 26 (2), 345–370.

Kowalczuk, P., Stoń-Egiert, J., Cooper, W.J., Whitehead, R.F., Durako, M.J., 2005b. Characterization of chromophoric dissolved organic matter (CDOM) in the Baltic Sea by excitation emission matrix fluorescence spectroscopy. Mar. Chem. 96, 273–292.

Kowalczuk, P., Sagan, S., Zabłocka, M., Borzycka, K., 2015. Mixing anomaly in deoxygenated Baltic Sea deeps indicates benthic flux and microbial transformation of chromophoric and fluorescent dissolved organic matter. Estuar. Coast. Shelf S. 163, 206–217. https://doi.org/10.1016/j.ecss.2015.06.027

Kowalczuk, P., Sagan, S., Olszewski, J., Darecki, M., Hapter, R., 1999. Seasonal changes in selected optical parameters in the Pomeranian Bay in 1996–1997. Oceanologia 41(3), 309–334.

Kratzer, S., Moore, G., 2018. Inherent Optical Properties of the Baltic Sea in Comparison to Other Seas and Oceans. Remote Sens. 10 (3), 418. https://doi.org/10.3390/rs10030418

Kyryliuk, D., Kratzer, S., 2019. Summer Distribution of Total Suspended Matter Across the Baltic Sea. Front. Mar. Sci. 5, 504. https://doi.org/10.3389/fmars.2018.00504

Lee, Z., Carder, K.L., Arnone, R.A., 2002. Deriving inherent optical properties from water color: a multiband quasianalytical algorithm for optically deep waters. Appl. Optics 41 (27), 5755–5772. http://doi.org/10.1364/AO.41.005755

Łotocka, M., Falkowski L., 1994. The composition of pigments in relation to seasonal blooms of phytoplankton in the Gulf of Gdańsk. Stud. Mater. Oceanol. 67 (10), 65–72.

Magnuszewski, A., Soczyńska, U., 2001. International dictionary of hydrology. Wyd. Nauk. PWN, Warsaw (in Polish).

Matciak, M., Nowacki, J., 1995. The Vistula river discharge front – surface observations. Oceanologia 37 (1), 75–88.

Meler, J., Litwicka, D., Zabłocka, M., 2023. Variability of light absorption coefficients by different size fractions of suspensions in the southern Baltic Sea, Biogeosciences, 20, 2525–2551. https://doi.org/10.5194/bg-20-2525-2023

Meler, J., Kowalczuk, P., Ostrowska, M., Ficek, D., Zabłocka, M., Zdun, A., 2016a. Parameterization of the light absorption properties of chromophoric dissolved organic matter in the Baltic Sea and Pomeranian Lakes. Ocean Sci. 12, 1013–1032. https://doi.org/10.5194/os-12-1013-2016

Meler, J., Ostrowska, M., Stoń-Egiert, J., 2016b. Seasonal and spatial variability of phytoplankton and non-algal absorption in the surface layer of the Baltic. Estuar. Coast. Shelf S. 180, 123–135. https://doi.org/10.1016/j.ecss.2016.06.012

Meler, J., Ostrowska, M., Stoń-Egiert, J., Zabłocka, M., 2017. Seasonal and spatial variability of light absorption by suspended particles in the southern Baltic: a mathematical description. J. Mar. Sys. 170, 68–87. https://doi.org/10.1016/j.jmarsys.2016.10.011

Meler, J., Stoń-Egiert, J., Woźniak, S.B., 2018. Parameterization of phytoplankton spectral absorption coefficients in the Baltic Sea: general, monthly and two-component variants of approximation formulas. Ocean Sci. 14, 1523–1545. https://doi.org/10.5194/os-14-1523-2018

Meler, J., Woźniak, S.B., Stoń-Egiert, J., 2020. Comparison of methods for indirectly estimating the phytoplankton population size structure and their preliminary modifications adapted to the specific conditions of the Baltic Sea. J. Mar. Syst. 212, 103446. https://doi.org/10.1016/j.jmarsys.2020.103446

Olenina, I., Hajdu, S., Andersson, A., Edler, L., Wasmund, N., Busch, S., Göbel, J., Gromisz, S., Huseby, S., Huttunen, M., Jaanus, A., Kokkonen, P., Ledaine, I., Niemkiewicz, E., 2006. Biovolumes and size-classes of phytoplankton in the Baltic Sea. Baltic Sea Environment Proc, (Helsinki Commission, Helsinki) 106, 1–144.

Olszewski, J., Sagan, S., Darecki, M., 1992. Spatial and temporal changes in some optical parameters in the southern Baltic. Oceanologia 33, 87–103.

Pearlman, S.R., Costa, H.S., Jung, R.A., McKeown, J.J., Pearson, H.E., 1995. Solids (section 2540). [In:] Eaton, A.D., Clesceri, L.S., Greenberg, A.E. (Eds.), Standard Methods for the Examination of Water and Wastewater. Am. Public Health Assoc., Washington, D.C., 2-53–2-64.

Pliński, M., 1995. Phytoplankton of the Gulf of Gdańsk in 1992 and 1993. Oceanologia 37 (1), 123–135. Rowan K.S., 1989. Photosynthetic pigments of algae. Cambridge Univ. Press, New York, 334 pp.

Sagan, S., 1991. Light Transmission in the Waters of the Southern Baltic Sea. Diss. Monogr., 2/1991, Institute of Oceanology Polish Academy of Sciences, Sopot, 149 pp. (in Polish).

Sagan, S., 2008. The inherit water optical properties of Baltic waters. Diss. Monogr. 21/2008. Institute of Oceanology Polish Academy of Sciences, 242 pp. (in Polish).

Saniewska D., Bełdowska M., Bełdowski J., Jędruch A., Saniewski M., Falkowska L., 2014. Mercury loads into the sea associated with extreme flood. Environ. Pollut. 191, 93–100.

Siegel, D.A., Maritorena, S., Nelson, N.B., Behrenfeld, M.J., McClain, C.R., 2005. Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere. Geophys. Res. Lett., 32, L20605. https://doi.org/10.1029/2005GL024310

Simis, S., Ylöstalo, P., Kallio, K., Spilling, K., Kutser, T., 2017. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea. PLoS ONE 12 (4), e0173357. http://doi.org/10.1371/journal.pone.0173357

Soja-Woźniak, M., Craig, S., Kratzer, S., Wojtasiewicz, B., Darecki, M., Jones, T., 2017. Am Novel Statistical Approach for Ocean Colour Estimation of Inherent Optical Properties and Cyanobacteria Abundance in Optically Complex Waters. Remote Sens. 9, 343. http://doi.org/10.3390/rs9040343

Stedmon, C.A. Markager, S., 2001. The optics of chromophoric dissolved organic matter (CDOM) in the Greenland Sea: An algorithm for differentiation between marine and terrestrially derived organic matter. Limnol. Oceanogr. 46, 2087–2093.

Stedmon, C.A., Markager, S., Kaas, H., 2000. Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters. Estuar. Coast. Shelf Sci. 51, 267–278.

Stoń, J., Kosakowska, A., 2002. Phytoplankton pigments designation – an application of RP-HPLC in qualitative and quantitative analysis. J. Appl. Phycol., 14, 205–210.

Stoń-Egiert, J., Kosakowska, A., 2005. RP-HPLC determination of phytoplankton pigments – comparison of calibration results for two columns. Mar. Biol., 147 (1), 251–260.

Stoń-Egiert, J., 2008. Main environmental conditions of the composition and resources of phytoplankton pigments in the Baltic Sea waters. Ph.D. Thesis, Institute of Oceanology Polish Academy of Sciences, Sopot, (in Polish).

Stoń-Egiert, J., Łotocka, M., Ostrowska, M., Kosakowska, A., 2010. The influence of biotic factors on phytoplankton pigment composition and resources in Baltic ecosystems: new analytical results. Oceanologia 52 (1), 101–125. https://doi.org/10.5697/oc.52-1.101

Stoń-Egiert, J., Ostrowska, M., 2022. Long-term changes in phytoplankton pigment contents in the Baltic Sea: Trends and spatial variability during 20 years of investigations. Cont. Shelf Res. 236, 104666. https://doi.org/10.1016/j.csr.2022.104666

Stramski, D., Reynolds R.I., Kaczmarek, S., Uitz, J., Zheng, G., 2015. Correction of pathlength amplification in the filter-pad technique for measurements of particulate absorption coefficient in the visible spectral region. Applied Optics 54 (22), 6763–6782. https://doi.org/10.1364/AO.54.006763

Szydłowski, M., Gulshad, K., Mustafa, A.M., Szpakowski, W., 2023. The impact of hydrological research, municipal authorities, and residents on rainwater management in Gdańsk (Poland) in the process of adapting the city to climate change. Acta Sci. Pol., Formatio Circumiectus, 22 (3), 59–71. http://doi.org/10.15576/ASP.FC/2023.22.3.11

Szymczak, E., Burska, D., 2019. Distribution of Suspended Sediment in the Gulf of Gdańsk off the Vistula River mouth (Baltic Sea, Poland). IOP Conf. Ser.: Earth Environ. Sci. 221, 012053.

Tassan, S., Ferrari, G.M., 1995. An alternative approach to absorption measurements of aquatic particles retained on filters. Limnol. Oceanogr. 40 (8), 1358–1368.

Tassan, S., Ferrari, G.M., 2002. A sensitivity analysis of the ‘transmittance-reflectance’ method for measuring light absorption by aquatic particles. J. Plankton Res. 24 (8), 757–774. https://doi.org/10.1093/plankt/24.8.757

Thamm, R., Schernewski, G., Wasmund, N., Neumann, T., 2004. Spatial phytoplankton pattern in the Baltic Sea. [In:] Schernewski, G.,Wielgat.Warnemünde, M. (Eds.), Baltic Sea Typology, Coastline Rep. 4, EUCC – The Coastal Union, Die Küsten Union Deutschlands e.V., 85–109.

Vodacek, A., Blough, N.V., DeGrandpre, M.D., Peltzer, E.T., Nelson, R.K., 1997. Seasonal variation of CDOM and DOC in the middle Atlantic Bight: terrestrial inputs and photooxidation. Limnol. Oceanogr. 42 (2), 674–686.

Wasmund, N., Uhlig, S., 2003. Phytoplankton in large river plumes in the Baltic Sea. ICES J. Mar. Sci. 56, 23–32.

Wasmund, N., Breuel, G., Edler, L., Kuosa, H., Olsonen, R., Schultz, H., Pys-Wolska, M., Wrzołek, L., 1996. Pelagic biology. Third Periodic Assessment of the State of Marine Environment of the Baltic Sea. 1989–1993, Background document, Baltic Sea Environ. Proc. No. 64B, Helsinki Commission, 89–93.

Wasmund, N., Andrushaitis, A., Łysiak-Pastuszak, E., Müller-Karulis, B., Nausch, G., Neumann, T., Ojaveer, H., Olenina, I., Postel, L., Witek, Z., 2001. Trophic status of the south-eastern Baltic Sea: a comparison of coastal and open areas. Estuar. Coast. Shelf Sci. 53 (6), 849–864.

Witek, B., Pliński, M., 1998. Occurrence of blue-green algae in the phytoplankton of the Gulf of Gdańsk in the years 1994–1997. Oceanological Stud. 3, 77–82.

Woźniak, S.B., Meler, J., 2020. Modelling Water Colour Characteristics in an Optically Complex Nearshore Environment in the Baltic Sea; Quantitative Interpretation of the Forel-Ule Scale and Algorithms for the Remote Estimation of Seawater Composition. Remote Sens., 12, 2852. https://doi.org/10.3390/rs12172852

Woźniak, S.B., Meler, J., Lednicka, B., Zdun, A., Stoń-Egiert, J., 2011. Inherent optical properties of suspended particulate matter in the southern Baltic Sea. Oceanologia. 53 (3), 691–729. https://doi.org/10.5697/oc.53-3.691

Woźniak, S.B., Sagan, S., Zabłocka, M., Stoń-Egiert, J., Borzycka, K., 2018. Light scattering and backscattering by particles suspended in the Baltic Sea in relation to the mass concentration of particles and the proportions of their organic and inorganic fractions. J. Marine Syst. 182, 79–96. https://doi.org/10.1016/j.jmarsys.2017.12.005

Woźniak, S.B., Meler, J., Stoń-Egiert, J., 2022. Inherent optical properties of suspended particulate matter in the southern Baltic Sea in relation to the concentration, composition and characteristics of the particle size distribution; new forms of multicomponent parameterizations of optical properties. J. Marine Syst. 229, 10372. https://doi.org/10.1016/j.jmarsys.2022.103720

Wright, L.D., 1978. River Deltas, [In:] R.A. Davis (Ed.), Coastal Sedimentary Environments, Springer, New York, 5–68.

Wright, S.W., Jeffrey, S.W., Mantoura, R.F.C., Llewellyn, C.A., Bjørnland, T., Repeta, D., Welschmeyer, N., 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar. Ecol.- Prog. Ser., 77, 183–196.

Zlinszky, A., Padányi-Gulyás, G., 2020. Ulyssys Water Quality Viewer: a satellite-based global near real time water quality visualization, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18256. https://doi.org/10.5194/egusphere-egu2020-18256

full, complete article - PDF


Oceanic Response to Super Typhoon Based on Simulation by FVCOM and SWAN
Oceanologia, 67 (3)/2025, 67307, 20 pp.
https://doi.org/10.5697/MUOD6431

Lu Liu1, Yuyi Hu1 Weizeng Shao1,*, Ru Yao1, Guanyin Lin2, Weili Wang3
1College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
e-mail: wzshao@shou.edu.cn (W. Shao )
2South China Sea Survey Center, Ministry of Natural Resources, Guangzhou, China
3Hainan Observation and Research Station of Ecological Environment and Fishery Resource in Yazhou Bay, Hainan Institute of Zhejiang University, Sanya, China
*corresponding author

Keywords: Wave; FVCOM; SWAN; Super typhoon

Received: Received: 2 December 2024; revised: 19 May 2025; accepted: 18 August 2025.

Highlights

Abstract

The South China Sea is a region frequently impacted by intense tropical cyclones (TCs). Recent super typhoons such as Yagi (2024), Haikui (2023), Saola (2023), Doksuri (2023), and Koinu (2023) have caused catastrophic damage. This study primarily investigates the oceanic response to westward-moving super typhoons. The cyclonic wind field is reconstructed based on reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF), and the TC wind speed derived from measurements of five moored buoys shows a 4.01 m/s root mean squared error (RMSE), a 0.90 Pearson’s correlation (Cor), and a 0.48 scatter index (SI). A triangular-grid-based numerical circulation mode, namely the Finite-Volume Community Ocean Model (FVCOM), is employed to simulate sea surface currents and sea levels. The reconstructed TC winds act as the forcing field, and the FVCOM-simulated sea surface currents and sea levels are then incorporated into wave simulations conducted with the Simulating WAves Nearshore (SWAN) model. It is found that the hindcasting significant wave heights (SWHs) are most consistent with measurements from moored buoys when current and sea level are included, and this phenomenon is particularly significant around the Taiwan Strait. Two parameterizations of the drag coefficient Cd, i.e., the Cd by Wu (1982) and the Cd by Hu et al. (2024), are used in SWAN. The improved Cd shows a clear advantage when SWH > 3 m, resulting in a reduction of over-estimation and an increase in SWH accuracy by 0.6 m. Wind and SWH exhibit opposing asymmetry trends due to swell influence. Along super typhoon tracks, sea surface temperature (SST) cooling reaches a maximum of 4°C; however, the Kuroshio Current and Zhejiang-Fujian Coastal Current mitigate this cooling, reducing it by approximately 1°C. These findings offer significant implications for understanding super typhoon responses to ocean dynamics and provide critical insights for enhancing disaster resilience strategies during extreme weather events.

  References   ref

Boutin, J., Etcheto, J., 1990. Seasat scatterometer versus scanning multichannel microwave radiometer wind speeds: A comparison on a global scale. J. Geophys. Res. 95 (12), 22275–22288. https://doi.org/10.1029/JC095iC12p22275

Balmaseda, M.A., Vidard, A., Anderson, D.L.T., 2008. The ECMWF ocean analysis system: ORA-S3. Mon. Weather Rev. 136 (8), 3018–3033. https://doi.org/10.1175/2008MWR2433.1

Bi, F., Song, J.B., Wu, K.J., Xu, Y., 2015. Evaluation of the simulation capability of the Wavewatch III model for the Pacific Ocean wave. Acta Oceanol. Sin. 34 (9), 43–57. https://doi.org/10.1007/s13131-015-0737-1

Booij, N., Ris, R.C., Holthuijsen, L.H., 1999. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res.-Oceans 104 (C4), 7649–7666. https://doi.org/10.1029/98JC02622

Chen, C.S., Liu, H., Beardsley, R.C., 2003. An unstructured, finite-volume, three-dimensional, primitive equation ocean model: Application to coastal ocean and estuaries. J. Atmos. Ocean. Technol. 20 (1), 159–186. https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2

Chen, Y., Chen, L., Zhang, H., Gong, W.P., 2019. Effects of wave-current interaction on the Pearl River Estuary during Typhoon Hato. Estuar. Coast. Shelf S. 228 (11), 106364. https://doi.org/10.1016/j.ecss.2019.106364

Chen, J.L., Hao, M.Y., Shao, W.Z., Marino, A., Hu, Y.Y., Song, X.G., 2024. Validation of wind speed retrieval from HY-2B calibration microwave radiometer data during tropical cyclones. Remote Sens. Lett. 15 (7), 700–708. https://doi.org/10.1080/2150704X.2024.2368926

Elfouhaily, T., Chapron, B., Katsaros, K., 1997. A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res.-Atmospheres, 102 (C7), 15781–15769. https://doi.org/10.1029/97JC00467

Foli, B.A.K., Appeaning Addo, K., Ansong, J.K., Wiafe, G., 2022. Evaluation of ECMWF and NCEP reanalysis wind fields for long-term historical analysis and ocean wave modelling in West Africa. Remote Sens. Earth Syst. Sci. 5 (6), 26–45. https://doi.org/10.1007/s41976-021-00052-3

Guan, S.D., and Coauthors, 2024. Ocean internal tides suppress tropical cyclones in the South China Sea. Nat. Commun. 15 (5), 3903. https://doi.org/10.1038/s41467-024-48003-y

Hao, M.Y., Shao, W.Z., Shi, S., Liu, X., Hu, Y.Y., Zuo, J.C., 2023. Validation of Surface Waves Investigation and Monitoring data against simulation by Simulating Waves Nearshore and wave retrieval from Gaofen-3 synthetic aperture radar image. Remote Sens. 15 (18), 4402. https://doi.org/10.3390/rs15184402

Hauser, D., Tison, C., Amiot, T., Delaye, L., Corcoral, N., Castillan, P., 2017. SWIM: The first spaceborne wave scat- terometer. IEEE Trans. Geosci. Remote Sens. 55 (5), 3000–3014. https://doi.org/10.1109/TGRS.2017.2658672

Hersbach, H., 2010. Comparison of C-Band scatterometer CMOD5 equivalent neutral winds with ECMWF. J. Atmos. Ocean. Technol. 27 (4), 721–736. https://doi.org/10.1175/2009JTECHO698.1

Holthuijsen, L., 2001. The continued development of the third-generation shallow water wave model ‘SWAN’. Tu Delft Dep. Hydraul. Eng. 32, 185–186.

Hu, Y.Y., Shao, W.Z., Wei, Y.L., Zuo, J.C. 2021. Analysis of typhoon-induced waves along typhoon tracks in the western north Pacific Ocean, 1998–2017. J. Mar. Sci. Eng. 8 (7), 521. https://doi.org/10.3390/jmse8070521

Hu, Y.Y., Shao, W.Z., Xu, Y., Zou, Q.P., Jiang, X.W., 2024. Improvement of drag coefficient parameterization of WAVE-WATCH-III using remotely sensed products during tropical cyclones. Ocean Dynam. 74 (9), 843–858. https://doi.org/10.1007/s10236-024-01638-3

Huang, J.C., Ma, Z.H., Zhao, H.K., Fei, J.F., Chen, L.H. 2024. Increase in Western North Pacific tropical cyclone intensification rates and their northwestward shifts. Atmos. Res. 301 (5), 107292. https://doi.org/10.1016/j.atmosres.2024.107292

Kalourazi, M.Y., Siadatmousavi, S.M., Yeganeh-Bakhtiary, A., Jose, F., 2020. Simulating tropical storms in the Gulf of Mexico using analytical models. Oceanologia 62 (2), 173–189. https://doi.org/10.1016/j.oceano.2019.11.001

Lai, Z.Z., Hao, M.Y., Shao, W.Z., Shen, W., Hu, Y.Y., Jiang, X.W., 2023. Wind field reconstruction based on dualpolarized synthetic aperture radar during a tropical cyclone. Eur. J. Remote Sens. 56, 2273867. https://doi.org/10.1080/22797254.2023.2273867

Li, X.H., Yang, J.S., Han, G.Q., Ren, L., Zheng, G., Chen, P., Zhang, H., 2022. Tropical cyclone wind field reconstruction and validation using measurements from SFMR and SMAP radiometer. Remote Sens. 14 (16), 3929. https://doi.org/10.3390/rs14163929

Lin, I.I., Pun, I.F., Wu, C.C., 2009. Upper-Ocean thermal structure and the Western North Pacific category 5 typhoons. Part II: dependence on translation speed. Mon. Weather Rev. 137 (11), 3744–3757. https://doi.org/10.1175/2009MWR2713.1

Liu, Y.H., Guan, H.D., Lin, I.I., Zhao, W., Jin, F.F., Liu, P., J. Tian, J.W., 2025. Storm size modulates tropical cyclone intensification through an oceanic pathway in global oceans. J. Climate 38 (4), 891–908. https://doi.org/10.1175/JCLI-D-24-0398.1

Mei, W., Pasquero, C., 2013. Spatial and temporal characterization of sea surface temperature response to tropical cyclones. J. Climate 26 (11), 3745-3765. https://doi.org/10.1175/JCLI-D-12-00125.1

Meissner, T., Ricciardulli, L., Wentz, F., 2017. The capability of the SMAP mission to measure ocean surface winds in storms. B. Am. Meteorol. Soc. 98 (8), 1660–1677. https://doi.org/10.1175/BAMS-D-16-0052.1

Mellor, G.L., Yamada, T., 1982. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 20 (4), 851–875. https://doi.org/10.1029/RG020i004p00851

Morozov, E.G., Velarde, M.G., 2008. Inertial oscillations as a deep ocean response to hurricanes. J. Oceangr. 64 (8), 495–509. https://doi.org/10.1007/s10872-008-0042-0

Mouche, A.A., Chapron, B., Zhang, B., Husson, R., 2017. Combined co and cross-polarized SAR measurements under extreme wind conditions. IEEE Trans. Geosci. Remote Sens. 55 (12), 6476–6755. https://doi.org/10.1109/TGRS.2017.2732508

Nittis, K., Perivoliotis, L., Korres, G., Tziavos, C., Thanos, I., 2006. Operational monitoring and forecasting for marine environmental applications in the Aegean Sea. Environ. Modell. Softw. 21 (2), 243–257. https://doi.org/10.1016/j.envsoft.2004.04.023

Rogers, W.E., Hwang, P., Wang, W.D., 2003. Investigation of wave growth and decay in the SWAN model: Three regional-scale applications. J. Phys. Oceanogr. 33 (2), 366–389. https://doi.org/10.1175/1520-0485(2003)033<0366:IOWGAD>2.0.CO;2

Shao, W.Z., Chen, J.L, Hu, S., Yang, Y.Q., Jiang, X.W., Shen, W., Li, H., 2024b. Influence of sea surface waves on numerical modeling of an oil spill: Revisit of Symphony Wheel accident. J Sea Res. 201 (10), 102529. https://doi.org/10.1016/j.seares.2024.102529

Shao, W.Z., Hu, Y.Y., Lai, Z.Z., Zhang, Y.G., Jiang, W.W., 2023. Rain rate retrieval algorithm for dual-polarized Sentinel- 1 SAR in tropical cyclones. IEEE Remote Sens. Lett. 20, 4011405. https://doi.org/10.1109/LGRS.2023.3320351

Shao, W.Z., Hu, Y.Y., Migliaccio, M., Marino, A., Jiang, X.W., 2024a. Machine learning-based algorithm for SAR wave parameters retrieval during a tropical cyclone. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 17, 15166–15177. https://doi.org/10.1109/JSTARS.2024.3445129

Shao, W.Z., Jiang, T., Jiang, X.W., Zhang, Y.G., Zhou, W., 2021. Evaluation of sea surface winds and waves retrieved from the Chinese HY-2B data. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 14, 9624–9635. https://doi.org/10.1109/JSTARS.2021.3112760

Shao, W.Z., Jiang, X.W., Sun, Z.F., Hu, Y.Y., Marino, A., Zhang, Y.G., 2022. Evaluation of wave retrieval for Chinese Gaofen-3 synthetic aperture radar. Geo-spat. Inf. Sci. 25 (2), 229–243. https://doi.org/10.1080/10095020.2021.2012531

Shen, H., Perrie, W., He, Y.J., Liu, G., 2014. Wind speed retrieval from VH dual-polarization RADARSAT-2 SAR images. IEEE Trans. Geosci. Remote Sens. 52 (9), 5820–5826. https://doi.org/10.1109/TGRS.2013.2293143

Shi, J., Shao, W.Z., Shi, S.H., Hu, Y.Y., Jiang, T., Zhang, Y.G., 2023. Can sea surface waves be simulated by numerical wave models using the fusion data from remote-sensed winds? Remote Sens. 15 (15), 3825. https://doi.org/10.3390/rs15153825

Steele, K., Lau, J., Hsu, Y.H., 1985. Theory and application of calibration techniques for an NDBC directional wave measurement buoy. IEEE J. Oceanic Eng. 10 (4), 382–396. https://doi.org/10.1109/JOE.1985.1145116

Stepanov, V.N., Haines, K., 2014. Mechanisms of Atlantic meridional overturning circulation variability simulated by the NEMO model. Ocean Sci. 10 (4), 645–656. https://doi.org/10.5194/os-10-645-2014

Stopa, J.E., Cheung, K.F., 2014. Intercomparison of wind and wave data from the ECMWF reanalysis interim and the NCEP climate forecast system reanalysis. Ocean Model. 75 (3), 65–83. https://doi.org/10.1016/j.ocemod.2013.12.006

Tolman, L., 1991. A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. J. Phys. Oceanogr. 21 (6), 782–797. https://doi.org/10.1175/1520-0485(1991)021<0782:ATGMFW>2.0.CO;2

Vickers, D., Mahrt, L., Andreas, E.L., 2013. Estimates of the 10-m neutral sea surface drag coefficient from aircraft eddy covariance measurements. J. Phys. Oceanogr. 43(2), 301–310. https://doi.org/10.1175/JPO-D-12-0101.1

Vogelzang, J., Stoffelen, A., 2017. ASCAT ultrahigh-resolution wind products on optimized grids. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 10 (5), 2332–2339. https://doi.org/10.1109/JSTARS.2016.2623861

Wang, Q.H., Shi, J., Xia, J.M., Han, K.F., Xiao, W.B., Zhang, W.J., Wang, H.D., Lv, J.L., 2023. Influence of wave-induced radiation stress on upper-layer ocean temperature during typhoons. Remote Sens. 15 (9), 2442. https://doi.org/10.3390/rs15092442

Wei, H., Hainbucher, D., Pohlmann, T., Feng, S., Suendermann, J., 2004. Tidal-induced Lagrangian and Eulerian mean circulation in the Bohai Sea. J. Marine Syst. 44(3–4), 141–151. https://doi.org/10.1016/j.jmarsys.2003.09.007

Wei, M., Shao, W.Z., Shen, W., Hu, Y.Y., Zhang, Y., Zuo, J.C., 2024. Contribution of surface waves to sea surface temperatures in the Arctic Ocean. J. Ocean Univ. China 23(10), 1151–1162. https://doi.org/10.1007/s11802-024-5797-4

Weisberg, R.H., Zheng, L., 2008. Hurricane storm surge simulations comparing three-dimensional with two-dimensional formulations based on an Ivan-like storm over the Tampa Bay, Florida Region. J. Geophys. Res.-Oceans 113 (12), C12001. https://doi.org/10.1029/2008JC005115

Wentz, F.J., 1992. Measurement of oceanic wind vector using satellite microwave radiometers. IEEE Trans. Geosci. Remote Sens. 30 (5), 960–972. https://doi.org/10.1109/36.175331

Wu, J., 1982. Wind-stress coefficients over the sea surface from breeze to hurricane. J. Geophys. Res-Oceans 87 (C12), 9704–9706. https://doi.org/10.1029/JC087iC12p09704

Wu, R.H., Zhang, H., Chen, D.K., 2020. Effect of Typhoon Kalmaegi (2014) on the northern South China Sea explored using multi-platform satellite and buoy observations data. Prog. Oceanogr. 180 (1), 102218. https://doi.org/10.1016/j.pocean.2019.102218

Yang, B., Hou, Y.J., Li, M., 2019. Response of the western North Pacific subtropical ocean to the slow-moving Super Typhoon Nanmadol. J. Oceanol. Limnol. 37 (5), 938–956. https://doi.org/10.1007/s00343-019-8114-0

Yao, F.C., Johns, W.E., 2010. A HYCOM modeling study of the Persian Gulf: 1. Model configurations and surface circulation. J. Geophys. Res.-Oceans. 115 (C11), C11017. https://doi.org/10.1029/2009JC005781

Yao, R., Shao, W.Z., Hao, M.Y., Zuo, J.C. Hu, S., 2023. The response of waves to the sea surface temperature in the context of global change. Remote Sens. 15 (7), 1948.

Zhang, Z.X., Qi, Y.Q., Shi, P., Li, C.W., Li, Y., 2003. Preliminary study on assimilation of significant wave heights from T/P altimeter. Acta Oceanol. Sin. 25 (5), 21–28. http://hdl.handle.net/10397/68190

Zheng, P., Li, M., van der A, D.A., van der Zanden, J., Wolf, J., Chen, X., Wang, C.X., 2017. A 3d unstructured grid nearshore hydrodynamic model based on the vortex force formalism. Ocean Model. 116 (8), 48–49. https://doi.org/10.1016/j.ocemod.2017.06.003

Zhou, Y.S., Li, J., Zhang, H., Chen, Z., Zhang, L., Wang, P., 2022. Internal calibration for airborne X-band DBF-SAR imaging. IEEE Remote Sens. Lett. 19, 4008105. https://doi.org/10.1109/LGRS.2020.3047874

Zhou, Y.H., Shao, W.Z., Nunziata, F., Wang, W.L., Li, C., 2024. An algorithm to retrieve the range ocean current speed under tropical cyclone conditions from Sentinel-1 synthetic aperture radar measurements based on XGBoost. Remote Sens. 16 (17), 3271. https://doi.org/10.3390/rs16173271

full, complete article - PDF


Carbon, nitrogen, and chlorophyll a content of green Noctiluca scintillans in the Upper Gulf of Thailand
Oceanologia, 67 (3)/2025, 7308, 7 pp.
https://doi.org/10.5697/VANQ8296

Masatoshi Nakakuni1,*, Kazuhiko Ichimi1,2, Thaithaworn Lirdwitayaprasit3, Shettapong Meksumpun4, Kuninao Tada1,2
1Seto Inland Sea Regional Research Center, Kagawa University, Kagawa 761–0130, Japan
e-mail: masatoshi.nakakuni@gmail.com (M. Nakakuni)
2Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761–0795, Japan
3Department of Marine Science, Chulalongkorn University, Phyathai Rd., Bangkok 10330, Thailand
4Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
*corresponding author

Keywords: Noctiluca scintillans; Chlorophyll a; Carbon biomass; Southeast Asia

Received: 28 April 2025; revised: 4 August 2025; accepted: 1 September 2025.

Highlights

Abstract

Noctiluca scintillans, which is common in coastal waters, significantly affects coastal biomass through bloom formation. This study has measured the cellular carbon, nitrogen, and chlorophyll a (Chl-a) content of natural green Noctiluca from the western Upper Gulf of Thailand. The carbon content ranged from 195–556 ng-C cell−1 (mean: 241 ± 132 ng-C cell−1), while nitrogen content varied between 17–55 ng-N cell−1 (mean: 36 ± 6 ng-N cell−1). Chl-a content averaged 9.80 ± 0.78 ng cell−1. Notably, green Noctiluca exhibited higher carbon content than red Noctiluca of identical cell size, potentially because of their endosymbionts.

  References   ref

Ara, K., Nakamura, S., Takahashi, R., Shiomoto, A., Hiromi, J., 2013. Seasonal variability of the red tide-forming het- erotrophic dinoflagellate Noctiluca scintillans in the neritic area of Sagami Bay, Japan: its role in the nutrient-environment and aquatic ecosystem. Plankton and Benthos Res. 8, 9–30. https://doi.org/10.3800/pbr.8.9

Arashkevich, E.G., Stefanova, K., Bandelj, V., Siokou, I., Terbiyik Kurt, T., Ak Orek, Y., Timofte, F., Timonin, A., Soli doro, C., 2014. Mesozooplankton in the open Black Sea: Regional and seasonal characteristics. J. Marine Syst. 135, 81–96. https://doi.org/10.1016/j.jmarsys.2013.07.011

Bisinicu, E., Boicenco, L., Pantea, E., Timofte, F., Lazăr, L., Vlas, O., 2024. Qualitative model of the causal interactions between phytoplankton, zooplankton, and environmental factors in the romanian Black Sea. Phycology 4, 168–189. https://doi.org/10.3390/phycology4010010

Bisinicu, E., Harcota, G.-E., Lazar, L., 2023a. Interactions between environmental factors and the mesozooplankton community from the Romanian Black Sea waters. Turk. J. Zool. 47, 202–215. https://doi.org/10.55730/1300-0179.3133

Bisinicu, E., Lazăr, L., Timofte, F., 2023b. Dynamics of zooplankton along the romanian Black Sea coastline: temporal variation, community structure, and environmental drivers. Diversity 15, 1024. https://doi.org/10.3390/d15091024

Buranapratheprat, A., Morimoto, A., Phromkot, P., Mino, Y., Gunbua, V., Jintasaeranee, P., 2021. Eutrophication and hypoxia in the upper Gulf of Thailand. J. Oceanogr. 77, 831–841. https://doi.org/10.1007/s10872-021-00609-2

do Rosário Gomes, H., Goes, J.I., Matondkar, S.G.P., Buskey, E.J., Basu, S., Parab, S., Thoppil, P., 2014. Massive outbreaks of Noctiluca scintillans blooms in the Arabian Sea due to spread of hypoxia. Nature Comm. 5, 4862. https://doi.org/10.1038/ncomms5862

Furuya, K., Kozono, K., Yasuda, M., Omura, T., Borja, V. M., Lirdwitayaprasit, T., 2023. Temperature as a factor controlling geographical distribution of green Noctiluca scintillans in Southeast Asia. J. Plankton Res. 45, 478–484. https://doi.org/10.1093/plankt/fbad015

Furuya, K., Saito, H., Sriwoon, R., Omura, T., Furio, E.E., Borja, V.M., Lirdwitayaprasit, T., 2006. Vegetative growth of Noctiluca scintillans containing the endosymbiont Pedinomonas noctilucae. African J. Mar. Sci. 28, 305–308. https://doi.org/10.2989/18142320609504167

Gomes, H.d.R., McKee, K., Mile, A., Thandapu, S., Al-Hashmi, K., Jiang, X., Goes, J.I., 2018. Influence of light availability and prey type on the growth and photo-physiological rates of the mixotroph Noctiluca scintillans. Front. Mar. Sci. 5, 374. https://doi.org/10.3389/fmars.2018.00374

Hallegraeff, G.M., Albinsson, M.E., Dowdney, J., Holmes, A.K., Mansour, M.P., Seger, A., 2019. Prey preference, environmental tolerances and ichthyotoxicity by the red-tide dinoflagellate Noctiluca scintillans cultured from Tasmanian waters. J. Plankton Res. 41, 407–418. https://doi.org/10.1093/plankt/fbz037

Hansen, P.J., Miranda, L., Azanza, R., 2004. Green Noctiluca scintillans: a dinoflagellate with its own greenhouse. Mar. Ecol. Prog. Ser. 275, 79–87. https://doi.org/10.3354/meps275079

Harrison, P.J., Furuya, K., Glibert, P.M., Xu, J., Liu, H.B., Yin, K., Lee, J.H.W., Anderson, D.M., Gowen, R., Al-Azri, A.R., Ho, A.Y.T., 2011. Geographical distribution of red and green Noctiluca scintillans. Chinese J. Oceanol. Limnol. 29, 807–831. https://doi.org/10.1007/s00343-011-0510-z

Holm-Hansen, O., Lorenzen, C.J., Holmes, R.W., Strickland, J.D.H., 1965. Fluorometric determination of chlorophyll. ICES J. Mar. Sci. 30, 3–15. https://doi.org/10.1093/icesjms/30.1.3

Karnan, C., Jyothibabu, R., Arunpandi, N., Jagadeesan, L., Muraleedharan, K. R., Pratihari, A.K., Balachandran, K.K., Naqvi, S.W.A., 2017. Discriminating the biophysical impacts of coastal upwelling and mud banks along the southwest coast of India. J. Marine Syst. 172, 24–42. https://doi.org/10.1016/j.jmarsys.2017.02.012

Kitatsuji, S., Yamaguchi, H., Asahi, T., Ichimi, K., Onitsuka, G., Tada, K., 2019. Does Noctiluca scintillans end the diatom bloom in coastal water?, J. Exp. Mar. Biol. Ecol. 510, 10–14. https://doi.org/10.1016/j.jembe.2018.09.006

Luang-on, J., Ishizaka, J., Buranapratheprat, A., Phaksopa, J., Goes, J.I., Mauáre, E.d.R., Siswanto, E., Zhu, Y., Xu, Q., Nakornsantiphap, P., Kobayashi, H. and Matsumura, S., 2023. MODIS-derived green Noctiluca blooms in the upper Gulf of Thailand: Algorithm development and seasonal variation mapping. Front. Mar. Sci. 10. https://doi.org/10.3389/fmars.2023.1031901

Luo, H., Wang, J., Goes, J.I., Gomes, H.d.R., Al-Hashmi, K., Tobias, C., Koerting, C., Lin, S., 2022. A grazing-driven positive nutrient feedback loop and active sexual reproduction underpin widespread Noctiluca green tides. ISME Comm. 2, 103. https://doi.org/10.1038/s43705-022-00187-4

Miyaguchi, H., Fujiki, T., Kikuchi, T., Kuwahara, V.S., Toda, T., 2006. Relationship between the bloom of Noctiluca scin- tillans and environmental factors in the coastal waters of Sagami Bay, Japan. J. Plankton Res. 28, 313–324. https://doi.org/10.1093/plankt/fbi127

Morimoto, A., Mino, Y., Buranapratheprat, A., Kaneda, A., Tong-U-Dom, S., Sunthawanic, K., Yu, X., Guo, X., 2021. Hypoxia in the Upper Gulf of Thailand: Hydrographic observations and modeling. J. Oceanogr. 77, 859–877. https://doi.org/10.1007/s10872-021-00616-3

Nakamura, Y., 1998. Growth and grazing of a large heterotrophic dinoflagellate, Noctiluca scintillans, in laboratory cultures. J. Plankton Res. 20, 1711–1720. https://doi.org/10.1093/plankt/20.9.1711

Saito, H., Furuya, K., Lirdwitayaprasit, T., 2006. Photoautotrophic growth of Noctiluca scintillans with the endosymbiont Pedinomonas noctilucae. Plankton Benthos Res. 1, 97–101. https://doi.org/10.3800/pbr.1.97

Sriwoon, R., Pholpunthin, P., Lirdwitayaprasit, T., Kishino, M., Furuya, K., 2008. Population dynamics of green Noctiluca scintillans (Dinophyceae) associated with the monsoon cycle in the upper Gulf of Thailand. J. Phycol. 44, 605–615. https://doi.org/10.1111/j.1529-8817.2008.00516.x

Sweeney, B.M., 1971. Laboratory studies of a green Noctiluca from new guinea. J. Phycol. 7, 53–58. https://doi.org/10.1111/j.1529-8817.1971.tb01478.x

Sweeney, B.M., 1976. Pedinomonas noctilucae (Prasinophyceae), the flagellate symbiotic in Noctiluca (Dinophyceae) in Southeast Asia. J. Phycol. 12, 460–464. https://doi.org/10.1111/j.1529-8817.1976.tb02874.x

Tada, K., Pithakpol, S., Montani, S., 2004. Seasonal variation in the abundance of Noctiluca scintillans in the Seto Inland Sea, Japan. Plankton Biol. Ecol. 51, 7–14. https://www.plankton.jp/PBE/issue/vol51_1/vol51_1_007.pdf

Tada, K., Pithakpol, S., Yano, R., Montani, S., 2000. Carbon and nitrogen content of Noctiluca scintillans in the Seto Inland Sea, Japan. J. Plankton Res. 22, 1203–1211. https://doi.org/10.1093/plankt/22.6.1203

Wang, L., Lin, X., Goes, J.I., Lin, S., 2016. Phylogenetic analyses of three genes of Pedinomonas noctilucae, the green endosymbiont of the marine finoflagellate Noctiluca scintillans, reveal its affiliation to the order Marsupiomonadales (Chlorophyta, Pedinophyceae) under the reinstated name Protoeuglena noctilucae. Protist 167, 205–216. https://doi.org/10.1016/j.protis.2016.02.005

Watanabe, S., Nakakuni, M., Yamaguchi, H., Ichimi, K., TongU-Dom, S., Morimoto, A., Ishizuka, M., Tada, K., 2024. Dynamics and horizontal distribution of Noctiluca scintillans red tides in coastal waters of Harima-Nada, the Seto Inland Sea. Bull. Coastal Oceanogr. 63 (1), 2024.12.001 (in Japanese with English abstract). https://doi.org/10.32142/engankaiyo.2024.12.001

full, complete article - PDF