Oceanologia No. 67 (3) / 25
Original Research Articles
-
Resilience of beach morphometric characteristics on decadal time scale: a case study from the Lithuanian Baltic Sea: Darius Jarmalavičius, Gintautas Žilinskas, Donatas Pupienis, Rasa Janušaitė
-
The effect of temperature on round goby (Neogobius melanostomus) embryo development: Mariusz Sapota, Anna Dziubińska
-
On the upwelling-driven zonation of nitrogen, phytoplankton, and zooplankton in the eastern Great Australian Bight, Australia: A coupled physical-biological modelling study: Jochen Kämpf
-
Fluorescence characteristics of dissolved organic matter and its association with the nepheloid layer in the northern South China Sea: Xiaochao Sui, Li Zou, Tian Chen, Yinuo Wang, Chaoqi Zhu, Yonggang Jia
-
Quantile mapping enhances the sea surface temperature prediction accuracy in the northern coastal region of Penang using ROMS: Ninu Krishnan Modon Valappil, Chin Alice, Abigail Birago Adomako, Ehsan Jolous Jamshidi, Yusri Yusup
-
Distribution of suspended and dissolved matter and its absorption properties in the Gulf of Gdańsk (Baltic Sea) in the summer season: Justyna Meler, Joanna Stoń-Egiert, Monika Zabłocka
-
Oceanic Response to Super Typhoon Based on Simulation by FVCOM and SWAN: Lu Liu, Yuyi Hu, Weizeng Shao, Ru Yao, Guanyin Lin, Weili Wang
-
Carbon, nitrogen, and chlorophyll a content of green Noctiluca scintillans in the Upper Gulf of Thailand: Masatoshi Nakakuni, Kazuhiko Ichimi, Thaithaworn Lirdwitayaprasit, Shettapong Meksumpun, Kuninao Tada
Original Research Articles
Resilience of beach morphometric characteristics on decadal time scale: a case study from the Lithuanian Baltic Sea
Oceanologia, 67 (3)/2025, 67301, 10 pp.
https://doi.org/10.5697/KSMY5385
Darius Jarmalavičius*, Gintautas Žilinskas, Donatas Pupienis, Rasa Janušaitė
Laboratory of Geoenvironmental Research, State Scientific Research Institute, Nature Research Centre, Vilnius, Lithuania;
e-mail: darius.jarmalavicius@gamtc.lt (D. Jarmalavičius)
*corresponding author
Keywords:
Coastal morphology; Coastal processes; Beach; Decadal beach measurements; Beach resilience; Baltic Sea
Received: 14 August 2024; revised: 2 May 2025; accepted: 5 May 2025
Highlights
- The study aims to determine how the beach maintains its stability
- Study results are based on the cross-shore beach leveling surveys performed annually in 2002–2023
- The beach maintains its profile independently from the dominant coastal process
- Sand supply and its uninterrupted transport are required to maintain the beach stable
Abstract
The sandy seashore is a highly dynamic environment where the beach experiences constant change. If the granulometric composition of beach sediment does not change substantially and the sediment circulation is undisturbed, as well as the prevailing hydrometeorological situation does not substantially change, the beach can maintain its morphology quasi-stably on a decadal time scale, even when coastal erosion or accretion processes prevail. In this study, beach width and volume characteristics of coastal segments with prevailing erosion or accretion were assessed based on interannual beach leveling surveys from the Lithuanian Baltic Sea coast in 2002–2023 (72 cross-shore profiles in total). Study results revealed that the beach on both coastal stretches with prevailing erosion processes and coastal stretches with prevailing accretion processes maintains its morphometric characteristics. On coastal stretches with
prevailing erosion, the beach maintains its profile by supplementing its sediment budget with the sediment reserves in the foredune, while on coastal stretches with prevailing accretion and seaward shoreline migration, the indefinite increase in beach width is limited by the formation of the incipient dunes at the foredune toe.
References
Barnard, P.L., Dugan, J.E., Page, H.M., Wood, N.J., Hart, J.A.F., Daniel R.
Cayan, D.R., Erikson, L.H., Hubbard, D.M., Myers, M.R., Melack, J.M.,
Iacobellis, S.F., 2021.
Multiple climate change-driven tipping points for
coastal systems. Sci. Rep. 11 (1), 15560.
https://doi.org/10.1038/s41598-021-94942-7
Bascom, W.N., 1951.
The relationship between sand size and beach face
slope. Trans. Am. Geophys. Union 32, 866–874.
https://doi.org/10.1029/TR032i006p00866
Bujan, N., Cox, R., Masselink, G., 2019.
From fine sand to boulders: Examining the relationship between beachface slope and sediment size. Mar. Geol. 417, 106012.
https://doi.org/10.1016/j.margeo.2019.106012
Blott, S.J., Pye, K., 2001.
Gradistat: a grain size distribution and
statistics package for the analysis of uncollected sediments. Earth Surf.
Proc. Land. 26, 1237–1248.
https://doi.org/10.1002/esp.261
Bristow, C.S., Chroston, P.N., Bailey, S.D., 2000.
The structure and
development of foredunes on a locally prograding coast: insights from
ground-penetrating radar surveys, Norfolk, UK. Sedimentology 47,
923–944.
https://doi.org/10.1046/j.1365-3091.2000.00330.x
Brooks, S.M., Spencer, T., Christie, E.K., 2017.
Storm impacts and
shoreline recovery: Mechanisms and controls in the southern North Sea.
Geomorphology 283, 48–60.
https://doi.org/10.1016/j.geomorph.2017.01.007
Butt, T., Russell, P., Turner, I., 2001.
The influence of swash
infiltration-exfiltration on beach face sediment transport: onshore or
offshore?. Coastal Eng. 42, 35–52.
https://doi.org/10.1016/S0378-3839(00)00046-6
Castelle, B., SteÌphane Bujan, S., Ferreira, S., Dodet, G., 2017.
Foredune morphological changes and beach recovery from the extreme
2013/2014 winter at a high-energy sandy coast. Mar. Geol. 387,
41–55.
https://doi.org/10.1016/j.margeo.2016.12.006
Choowong, M., Phantuwongraj, S., Charoentitirat, T., Chutakositkanon, V.,
Yumuang, S., Charusiri, P., 2009.
Beach recovery after the 2004 Indian
Ocean tsunami from Phangnga, Thailand. Geomorphology 104,
134–142.
https://doi.org/10.1016/j.geomorph.2008.08.007
Dong, Z., Elko, N., Robertson, Q., Rosati, J., 2018.
Quantifying beach and
dune resilience using the coastal resilience index. Coast. Eng. Proc. 36,
30–30.
Elfrink, B., Baldock, T., 2002.
Hydrodynamics and sediment transport in the
swash zone: a review and perspectives. Coastal Eng. 45,
149–167.
https://doi.org/10.1016/S0378-3839(02)00032-7
Firoozfar, A., Neshaei, M.A.L., Dykes, A.P., 2014.
Beach profiles and
sediments, a case of the Caspian Sea. Int. J. Mar. Sci. 4 (43),
1–9.
https://doi.org/10.5376/ijms.2014.04.0043
Flood, S., Schechtman, J. 2014.
The rise of resilience: Evolution of a new
concept in coastal planning in Ireland and the US. Ocean Coast. Manage.
102, 19–31.
https://doi.org/10.1016/j.ocecoaman.2014.08.015
Gallagher, E., Wadman, H., McNinch, J., Reniers, A., Koktas, M., 2016.
A
conceptual model for spatial grain size variability on the surface of and
within beaches. J. Mar. Sci. Eng. 4, 38.
https://doi.org/10.3390/jmse4020038
Houser, C., Ellis, J., 2013.
Beach and Dune Interaction. [In:]
Shroder, J.F. (Ed.), Treatise on Geomorphology, Vol. 10, Acad. Press, San
Diego, 267–288.
https://doi.org/10.1016/B978-0-12-374739-6.002
83-9
Jarmalavičius, D., Satkūnas, J.,
Žilinskas, G., Pupienis, D., 2012a.
Dynamics of beaches of the
Lithuanian coast (the Baltic Sea) for the period 1993–2008
based on morphometric indicators. Environ. Earth Sci. 65 (6),
1727–1736.
https://doi.org/10.1007/s12665-011-1152-3
Jarmalavičius, D., Žilinskas, G., Pupienis, D., 2012b.
Impact of KlaipÄda port jetties reconstruction on adjacent sea
coast dynamics. J. Environ. Eng. Landsc. 20 (3), 240–247.
https://doi.org/10.3846/16486897.2012.660884
Karambas, T.V., 2003.
Modelling of infiltration-exfiltration effects of
cross-shore sediment transport in the swash zone. Coast. Eng. J. 45 (1),
63–82. https://doi.org/10.1142/S057856340300066X
Kocurek, G., Lancaster, N., 1999.
Aeolian system sediment state: theory and
Mojave Desert Kelso dune field example. Sedimentology 46,
505–515.
https://doi.org/10.1046/j.1365-3091.1999.00227.x
Kombiadou, K., Costas, S., Carrasco A.R., Plomaritis, T.A., Ferreira,
OÌ, Matias, A., 2019.
Bridging the gap between resilience and
geomorphology of complex coastal systems. Earth-Sci. Rev. 198, 102934.
https://doi.org/10.1016/j.earscirev.2019.102934
Kriaučiūnienė, J., Gailiušis, B., KovalenkovieneÌ, M., 2006.
Peculiarities of sea wave
propagation in the KlaipÄda Strait, Lithuanica. Baltica, 19
(1), 20–29.
Kriaučiūnienė, J., Žilinskas, G., Pupienis, D., Jarmalavičius, D., Gailiušis, B.,
2013.
Impact of Šventoji port jetties on coastal dynamics of the
Baltic Sea. J. Environ. Eng. Landsc. 21 (2), 114–122.
https://doi.org/10.3846/16486897.2012.695736
Malvarez, G., Ferreira, O., Navas, F., Cooper, J.A.G., Gracia- Prieto, F.J.,
Talavera, L., 2021.
Storm impacts on a coupled human-natural coastal
system: Resilience of developed coasts. Sci. Total Environ. 768, 144987.
https://doi.org/10.1016/j.scitotenv.2021.144987
Masselink, G., Lazarus, E., 2019.
Defining coastal resilience. Water
11, 2587.
https://doi.org/10.3390/w11122587
Masselink, G., Russell, P., Rennie, A., Brooks, S., Spencer, T., 2020.
Impacts of climate change on coastal geomorphology and coastal erosion
relevant to the coastal and marine environment around the UK. MCCIP Sci.
Rev. 2020, 158–189.
https://doi.org/10.14465/2020.arc08.cgm
McFall, B.C., 2019.
The relationship between beach grain size and
intertidal beach face slope. J. Coastal Res. 35 (5),
1080–1086.
https://doi.org/10.2112/JCOASTRES-D-19-00004.1
Medvedev, I.P., Rabinovich, A.B., Kulikov, E.A., 2013.
Tidal oscillations
in the Baltic Sea. Oceanology 53 (5), 596–609.
https://doi.org/10.1134/S0001437013050123
Morton, R.A., Paine, J.G., Gibeaut, J.C., 1994.
Stages and Durations of
Post-Storm Beach Recovery, Southeastern Texas Coast, U.S.A. J. Coastal
Res. 10 (4), 884–908.
Psuty, N.P., 2004.
The coastal foredune: a morphological basis for regional coastal dune development. [In:] Martı́nez, M.L., Psuty, N.P. (eds.), Coastal dunes: ecology and conservation, Springer,
Berlin, Heidelberg, 11–27.
https://doi.org/10.1007/978-3-540-74002-5_2
Psuty, N.P., Silveira, T.M., 2010.
Global climate change: an opportunity
for coastal dunes? J. Coast. Conserv. 14, 153–160.
Pupienis, D., Jonuškaitė, S., Jarmalavičius, D., Žilinskas, G., 2013.
Klaipėda port jetties’ impact on the Baltic Sea
shoreline dynamics, Lithuania. J. Coast. Res. 65,
2167–2172.
https://doi.org/10.2112/SI65-366.1
Pupienis, D., Jarmalavičius, D., Žilinskas, G., FedorovicÌ, J., 2014.
Beach nourishment experiment in Palanga,
Lithuania. J. Coast. Res. 70, 490–495.
https://doi.org/10.2112/SI70-083
Reis, A.H., Gama, C., 2010.
Sand size versus beachface slope
– An explanation based on the Constructal Law.
Geomorphology 114, 276–283.
https://doi.org/10.1016/j.geomorph.2009.07.008
Ruessink, B.G., Jeuken, M.C.J.L., 2002. Dunefoot dynamics along the Dutch coast. Earth Surf. Process. Landforms 27, 1043–1056.
https://doi.org/10.1002/esp.391
Saye, S.E., van der Wal, D., Pye, K., Blott, S.J., 2005.
Beachdune
morphological relationships and erosion/accretion: An investigation at five
sites in England and Wales using LIDAR data. Geomorphology 72,
128–155.
https://doi.org/10.1016/j.geomorph.2005.05.007
Thom, B.G., Hall, W., 1991.
Behavior of beach profiles during accretion and
erosion-dominated periods. Earth Surf. Processes 16,
113–127.
Žilinskas, G., Pupienis, D., Jarmalavičius, D., 2010.
Possibilities of regeneration of the Palanga coastal zone. J. Environ.
Eng. Landsc. 18 (2), 95–101.
https://doi.org/10.3846/jeelm.2010.11
Žilinskas, G., Janušaitė,, R., Jarmalavičius, D., Pupienis, D., 2020.
The impact of
KlaipÄda Port entrance channel dredging on the dynamics of the
coastal zone, Lithuania. Oceanologia 62 (4), 489–500.
https://doi.org/10.1016/j.oceano.2020.08.002
The effect of temperature on round goby (Neogobius melanostomus) embryo development
Oceanologia, 67 (3)/2025, 67302, 7 pp.
https://doi.org/10.5697/FEAP3698
Mariusz Sapota, Anna Dziubińska*
Faculty of Oceanography and Geography, University of Gdańsk, Al. M. Piłsudskiego 46, 81–378 Gdynia, Poland;
e-mail: anna.dziubinska@ug.edu.pl (A. Dziubińska)
*corresponding author
Keywords:
Climate change; Fish early life stages; Ontogenesis; Temperature
Received: 18 November 2024; revised: 5 March 2025; accepted: 30 June 2025
Highlights
- The development of round goby embryos was optimal (with no less than 90% of larvae hatched) at temperatures ranging from 12°C to 20°C.
- In temperate zones, temperature is unlikely to restrict the distribution of round goby, even with projected increases in sea surface temperatures.
- We assume that only in regions where the SST already exceeds 20°C or is below 12°C, will there be changes in the round goby's range of occurrence. Temperature changes may limit the colonisation potential of the round goby.
Abstract
The round goby (Neogobius melanostomus) has expanded its range from the Ponto-Caspian region to new habitats in Europe and North America. It is an invasive species in many areas that has a significant impact on new environments. The round goby inhabits various ecosystems with different environmental conditions. Here, we investigated the optimal temperatures for round goby reproduction. Our experimental study on the development of round goby embryos demonstrated a high tolerance to different temperatures at this stage of ontogenesis. The development of round goby embryos was highly successful (over 90% of larvae hatching) at temperatures ranging from 12°C to 20°C. In contrast, embryo development was less successful at 25°C, while no effective embryo development was observed in temperatures below 12°C. We found that larvae hatching at temperatures between 12°C and 20°C have yolk remnants, which provide an additional supply of energy in the first days after hatching. A wide range of temperature tolerance, along with tolerance to other changing factors, are the features that contribute to successful population growth. Thus, temperature should not be a factor limiting the expansion of round goby in the temperate climate zone.
References
BackstroÌm, T., Winkelmann, C., 2022.
Invasive round goby shows higher
sensitivity to salinization than native European perch. NeoBiota 75,
23–38.
https://doi.org/10.3897/neobiota.75.86528
Behrens, J.W., Ryberg, M.P., Einberg, H., Eschbaum, R., Florin, A.-B., Grygiel,
W., Herrmann, J.P., Huwer, B., HuÌssy, K., Knospina, E., NoÌomaa, K.,
Oesterwind, D., Polte, P., SmolinÌski, Sz., Ustups, D., van Deurs, M.,
Ojaveer, H., 2022.
Seasonal depth distribution and thermal expe- rience of
the non-indigenous round goby Neogobius melanostomus in the Baltic Sea:
implications to key trophic relations. Biol. Inv. 24, 527–541.
https://doi.org/10.1007/s10530-021-02662-w
Belda, M., Holtanová, E., Halenka, T., Kalvová, J., 2014.
Climate
classification revisited: from Köppen to Trewartha. Clim. Res. 59,
1–13.
https://doi.org/10.3354/cr01204
Bilgili, M., Durhasan, T., Pinar, E., 2024.
Time series analysis of sea
surface temperature change in the coastal seas of Türkiye. J. Atmos.
Sol.-Terr. Phy. 263 (2024), 106339.
https://doi.org/10.1016/j.jastp.2024.106339
Blažek, R., Polačik, M., Reichard, M., 2013.
Rapid growth, early
maturation and short generation time in African annual fishes. EvoDevo 4,
24.
https://doi.org/10.1186/2041-9139-4-24
Bogutskaya, N., Naseka, A.M., Boldyrev, V., 2004.
Neogobiin gobies
(Teleostei: Gobiidae) in ecosystems of Eurasia and North American Great
Lakes. [In:] Biological Invasions in Aquatic and Terrestrial Ecosystems,
Alimov, A.F., Bogutskaya, N.G. (Eds.), M.-SPb: KMK Scientific Publishing
Association, 320–340.
https://doi.org/10.13140/2.1.5102.8489
Charlebois, P.M., Marsden, J.E., Goettel, R.G., Wolfe, R.K., Jude, D.J.,
Rudnika, S., 1997.
The round goby, Neogob- ius melanostomus (Pallas), a
review of European and North American Literature. INHS Special Publication
20, Champaign, IL: Illinois Natural History Survey.
Chen, Q., Di, Z., Roger, E.M., Li, H., Richmond, P., Roehner, B.M., 2020.
Magnitude and significance of the peak of early embryonic mortality.
J. Biol. Phys. 46 (3), 233–251.
https://doi.org/10.1007/s10867-020-09555-4
Christensen, E.A.F., Norin, T., Tabak, I., van Deurs, M., Beh- rens, J.W.,
2021.
Effects of temperature on physiological performance and behavioral
thermoregulation in an invasive fish, the round goby. J. Exp. Biol. 224
(1), jeb237669.
Corkum, L.D., Sapota, M.R., SkoÌra, K.E., 2004.
The round goby Neogobius
melanostomus, a fish invader on both sides of the Atlantic Ocean. Biol.
Invasions 6, 173–181.
https://doi.org/10.1023/B:BINV.0000022136.43502.db
Cosson, J., Groison, A.-L., Suquet, M., Fauvel, C. Dreanno, C., Billard, R.,
2008.
Studying sperm motility in marine fish: an overview on the state of
the art. J. Appl. Ichthyol. 24, 460–486.
https://doi.org/10.1111/j.1439-0426.2008.01151.x
Dahlke, F.T., Wohlrab, S., Butzin, M., PoÌrtner, H.-O., 2020.
Thermal
bottlenecks in the life cycledefine climate vulnerability of fish. Science
369, 6499, 65–70.
https://doi.org/10.1126/science.aaz3658
DAISIE, 2025.
European Invasive Alien Species Gateway: 100 of the
worst. Retrieved 10 January, 2025, from
http://www.europe-aliens.org/speciesTheWorst.do
Erős, T., Sevcsik, A., Tőth, B., 2005.
Abundance and night-time
habitat use patterns of Ponto-Caspian gobiid species (Pisces, Gobiidae) in the
littoral zone of the River Danube, Hungary. J. Appl. Ichthyol. 21,
350–357.
Godoy, R.S., Weber, V., Lanés, L.E.K., Pires, M.M., Stenert, C., Maltchik,
L., 2023.
Effects of temperature and heat waves on embryonic development of
annual fishes from Neotropical wetlands: Implications for climate change
scenarios. Ecol. Freshw. Fish. 32, 4, 864–873.
https://doi.org/10.1111/eff.12728
Haesemeyer, M., 2020.
Thermoregulation in fish. Mol. Cell. Endocrinol.
518, 110986.
https://doi.org/10.1016/j.mce.2020.110986
Hart, P.R., Purser, G.J., 1995.
Effects of salinity and temperature on eggs
and yolk sac larvae of the greenback flounder (Rhombosolea tapirina Giinther,
1862). Aquaculture 136, 221–230.
Hirsch, P.E., N’Guyen, A., Adrian-Kalchhauser, I., Burkhardt- Holm, P.,
2015.
What do we really know about the impacts of one of the 100 worst
invaders in Europe? A reality check. Ambio 45,3, 267–279.
https://doi.org/10.1007/s13280-015-0718-9
Janáč, M., Jurajdová, Z., Roche, K., Šlapanský, L.,
Jurajda, P., 2019.
An isolated round goby population in the up- per Elbe:
population characteristics and short-term impacts on the native fish
assemblage. Aquat. Invasions 14, 738–757.
Kalinina, E.M., 1976.
Reproduction and early development of gobies from the
Azov and Black sea. Kiev, Nauk. Dumka. USSR
Kaplan, E.L., Meier, P. 1958.
Nonparametric Estimation from Incomplete
Observations. J. Am. Statist. Assoc. 53, 282, 457–481.
https://doi.org/10.1080/01621459.1958.10501452
Kiehl, J., Trenberth, K., 1997.
Earthâs annual global mean energy
budget. Bull. Am. Meteorol. Soc. 78, 197–208.
https://doi.org/10.1175/1520-0477(1997)078{\TU\textless}0197:EAGMEB{\TU\textgreater}2.0.CO;2
Kornis, M., Mercado-Silva, N., Vander Zanden, J. 2012.
Twenty years of
invasion: a review of Round Goby Neogobius melanostomus biology, spread and
ecological implications. J. Fish Biol. 80, 235–285.
https://doi.org/10.1111/j.1095-8649.2011.03157.x
Kovtun, I.F., 1979.
Significance of the sex ratio in the spawning
population of the round goby in relation to year- class strength in the Sea of
Azov. J. Ichthyol. 19, 161–163.
Kowalski, R.K., Sarosiek, B., Judycka, S., Dryl, K., Grudniewska, J., Dobosz,
S., Cejko, B.I., 2018.
Effectiveness of the air stripping in two Salmonid
fish, rainbow trout (Oncorhynchus mykiss) and Brown Trout (Salmo trutta morpha
fario). JOVE – J. Vis. Exp. 139, e56894.
https://doi.org/10.3791/56894
Lean, J.L., Rind, D.H., 2009.
How will Earthâs surface temperature
change in future decades?. Geophys. Res. Lett. 36, L15708.
https://doi.org/10.1029/2009GL038932
Lindzen, R., Chou, M., Hou, A., 2001.
Does the Earth have an adaptive
iris?. Bull. Am. Meteorol. Soc. 82, 417–432.
https://doi.org/10.1175/1520-0477(2001)082<0417:DTEHAA>2.3.CO;2
Makeyeva A.P., Pavlov, D.S., Pavlov, D.A., 2011.
Atlas of larvae and
juveniles of freshwater fishes of Russia. KMK Scientific Press, Moscow,
383 pp.
Marentette, J.R., Fitzpatrick, J.L., Berger, R.G. Balshine, S., 2009.
Multiple male reproductive morphs in the invasive round goby (Apollonia
melanostoma). J. Great Lakes Res. 35 (2), 302–308.
https://doi.org/10.1016/j.jglr.2009.01.009
Marshall, J., Scott, J.R., Armour, K.C., Campin, J.-M., Kelley, M., Romanou,
A., 2015.
The oceaN’s role in the transient response of climate to
abrupt greenhouse gas forcing. Clim. Dynam. 44, 2287–2299.
https://doi.org/10.1007/s00382-014-2308-0
Matern, S., Herrmann, J-P., Temming, A., 2021.
Differences in diet
compositions and feeding strategies ofinvasive round goby Neogobius
melanostomus and native black goby Gobius niger in the Western Baltic Sea.
Aquat. Invasions 16, 2, 314–328.
https://doi.org/10.3391/ai.2021.16.2.07
Melendez, C.L., Mueller, C.A., 2021.
Effect of increased embryonic
temperature during developmental windows on survival, morphology and oxygen
consumption of rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Phys. A
252, 110834.
https://doi.org/10.1016/j.cbpa.2020.110834.
Moiseyeva, E.B., 1983.
Development of gonads of the round goby, Neogobius
melanostomus (Gobiidae) in embryogenesis. Vopr. Ikhtiol. 23 (5),
786–796.
Moskalâkova, K.I., 1978.
Development of the round goby Neogobius
melanostomus (Pallas) in the Sea of Azov related to habitat peculiarities in
ontogenesis and evolution. [In:] Ekologo morfologicheskie i
ekologo-fiziologi- cheskie issledovaniya razvitiya ryb (Ecological Morpho-
logical and Physiological Studies of Fish Development). Nauka, Moscow, 72–88.
Moskalâkova, K.I., 1996.
Ecological and morphophysiologi cal
prerequisites to range extention in the round goby Neogobius melanostomus under
conditions ofâ anthropogenic pollution, J Ichthyol 36, 584–590.
Moskalâkova, K.I., 2007.
Convergence of early ontogenesis of the
teleostean fish Neogobius melanostomus (Perciformes, Gobiidae) and higher
vertebrates. Biol. Bull. 34 (2), 202–204.
Nikolski G.V., 1963.
The Ecology of Fishes. Acad. Press, New York, 624
pp.
Oesterwind, D., Bock, C., Főrster, A., Gabel, M., Henseler, C., Kotterba,
P., Menge, M., Myts, D., Winkler, H.M., 2017.
Predator and prey: the role
of the round goby Neogobius melanostomus in the western Baltic. Mar. Biol.
Res. 13(2), 188–197.
https://doi.org/10.1080/17451000.2016.1241412
Ojanguren, A.F., BranÌa, F., 2003.
Thermal dependence of embryonic
growth and development in brown trout. J. Fish. Biol. 62, 580–590.
https://doi.org/10.1046/j.1095-8649.2003.00049.x
Pankhurst, N.W., Munday, P.L., 2011.
Effects of climate change on fish
reproduction and early life history stages. Mar. Freshwater Res. 62,
1015–1026.
https://doi.org/10.1071/MF10269
Quattrocchi, G., Christensen, E., Sinerchia, M., Marras, S., Cucco, A.,
Domenici, P., Behrens, J.W., 2023.
Aerobic metabolic scope mapping of an
invasive fish species with global warming. Conserv. Physiol. 11 (1),
coad094.
https://doi.org/10.1093/conphys/coad094
Sapota, M.R., 2004.
The round goby (Neogobius melanosto- mus) in the Gulf
of Gdansk – a species introduction into the Baltic Sea. Hydrobiologia
514 (1), 219–224.
https://doi.org/10.1023/B:hydr.0000018221.28439.ae
Skóra, K.E., Stolarski, J., 1993.
New fish species in the Gulf of
GdaÅsk. Neogobius sp. [cf. Neogobius melanostomus (Pallas 1811)]. Bull.
of the Sea Fisheries Institute, Gdynia, 1, 83–84.
Skóra, K., Olenin, S., Gollasch, S., 1999.
Neogobius melanos- tomus
(Pallas, 1811). [In:] Gollasch, S., Michin, D., Rosenthal, H., Voight, M.
(Eds). Case histories on intro- duced species: their general biology,
distribution, range expansion and impact. Logos Verlag, Berlin, 69–73.
Smith, S., Skalski, J., Schelechte, J., Hoffmann, A., Cassen, V., 1994.
Statistical survival analysis of fish and wildlife tagging studies.
Project No. 1989-10700 (BPA Report DOE/BP-02341-3).
Tomczak, M.T., Sapota, M.R., 2006.
The fecundity and gonad development
cycle of the round goby (Neogobius melanostomus Pallas 1811) from the Gulf of
GdaÅsk. Oceanol. Hydrobiol. St. 35 (4), 353–367.
van Deurs, M., Moran, N.P., Plet-Hansen, K.S., Dinesen, G.E., Azour, F., Carl,
H., Møller, P.R., Behrens, J.W., 2021.
Impacts of the invasive round
goby (Neogobius melanosto- mus) on benthic invertebrate fauna: a case study
from the Baltic Sea. NeoBiota 68, 19–30.
https://doi.org/10.3897/neobiota.68.67340
Vagner, M., Zambonino-Infante, J.-L., Mazurais, D., 2019.
Fish facing
global change: are early stages the lifeline?, Mar. Environ. Res. 147,
159–178.
https://doi.org/10.1016/j.marenvres.2019.04.005
Volkoff, H., Rønnestad, I., 2020.
Effects of temperature on feeding and
digestive processes in fish. Temperature 7 (4), 307–320.
https://doi.org/10.1080/23328940.2020.1765950
Williams, K., Papanikos, N., Phelps, R.P., Shardo, J.D., 2004.
Development,
growth, and yolk utilization of hatcheryreared red snapper Lutjanus campechanus
larvae. Mar. Ecol. Prog. Ser. 275, 231–239.
https://doi.org/10.3354/meps275231
Woynárovich, A., van Anrooy, R., 2019.
Field guide to the culture of
tambaqui (Colossoma macropomum, Cuvier, 1816). FAO Fisher. Aquacult. Tech.
Paper No. 624, Rome, FAO, 132 pp.
Yang, F., Wu, Z., 2024.
The phase change in the annual cycle of sea surface
temperature. npj Climate Atmos. Sci. 7, 48.
https://doi.org/10.1038/s41612-024-00591-8
On the upwelling-driven zonation of nitrogen, phytoplankton, and zooplankton in the eastern Great Australian Bight, Australia: A coupled physical-biological modelling study
Oceanologia, 67 (3)/2025, 67303, 18 pp.
https://doi.org/10.5697/IMXA7927
Jochen Kämpf*
College of Science and Engineering, Flinders University, Adelaide, Australia;
e-mail: jochen.kaempf@flinders.edu.au (Jochen Kämpf)
*corresponding author
Keywords: Coastal upwelling; Plankton dynamics; Numerical modelling; NPZD model; Coupled physical-biological interactions; Coastal oceanography
Received: 23 May 2024; revised: 28 November 2024; accepted: 1 July 2025.
Highlights
- Studies plankton dynamics in seasonal coastal upwelling system with a coupled physical-biological model
- Explores zonation of trophic levels in coastal upwelling system
- Finds high plankton levels alongside rather than downstream of the upwelling zone
- Finds significant plankton growth in upwelling zone weeks after wind relaxation
Abstract
This study uses a fully coupled physical-biological model to study nutrient enrichment and plankton dynamics in a seasonal coastal upwelling system. This upwelling system, located in the eastern Great Australian Bight, Australia, provides the feeding ground for a range of predatory species including tuna, sea lions, sharks, and whales. The biological model describes the interactions between dissolved nitrogen, phytoplankton, zooplankton, and detritus in response to changes in the physical environment predicted by a standard three-dimensional hydrodynamic model. This study tests a “zonation hypothesis” claiming that, in coastal upwelling systems, zones of maximum nitrogen, phytoplankton and zooplankton develop spatially separated along the coast due to the advective effect of coastal upwelling currents and biological delays in the formation of phytoplankton and zooplankton. While the physical process of wind-driven
coastal upwelling is well understood and predictable, several aspects of the biological response simulated in this study are surprising. (i) During the upwelling phase, maximum phytoplankton and zooplankton production occurs in shallower waters alongside the upwelling zone of maximum surface nitrogen. In this upwelling shadow, recycled nitrogen contributes the same amount as physical processes to the local nutrient flux. (ii) Conversely, physical effects offset most of the local phytoplankton growth in the upwelling zone. After wind relaxation, the shutdown of the upwelling process eventually also triggers phytoplankton blooms in this zone. (iii) Wind relaxation creates a narrow coastal countercurrent that operates to maintain the plankton biomass near the upwelling center. For these reasons, the zonation hypothesis does not hold for the coastal upwelling system studied in this work.
References
Blumberg, A.F., Mellor, G.L., 2013.
A description of a threedimensional
coastal ocean circulation model. Three-Dimensional Coastal Ocean Models
Coastal and Estuarine Sciences Ser. Vol. 4, AGU.
Gill, P., 2002.
A blue whale (Balaenoptera musculus) feeding ground in a
southern Australian coastal upwelling zone. J. Cetacean Res. Manage. 4
(2), 179–184.
https://doi.org/10.47536/jcrm.v4i2.854
Gill, P.C., Morrice, M.G., Page, B., Pirzl, R., Levings, A.H., Coyne, M., 2011.
Blue whale habitat selection and within-season distribution in a regional
upwelling system off southern Australia. Mar. Ecol. Progr. Ser. 421,
243–263.
https://doi.org/10.3354/meps08914
Gill, P.C., Pirzl, R., Morrice, M.G., Lawton, K., 2015.
Cetacean diversity
of the continental shelf and slope off southern Australia. J. Wildl.
Manage. 79, 672–681.
https://doi.org/10.1002/jwmg.867
Herzfeld, M., 1997.
The annual cycle of SST in the Great Australian
Bight. Prog. Oceanogr. 39, 1–27.
https://doi.org/10.1016/S0079-6611(97)00010-4
Jakobsen, H.H., Markager, S., 2016.
Carbon-439 to-chlorophyll ratio for
phytoplankton in temperate coastal waters: seasonal patterns and relationship
to nutrients. Limnol. Oceanogr. 61, 1853–1868.
https://doi.org/10.1002/lno.10338
Ji, R., Davis, C., Chen, C., Beardsley, R., 2008.
Influence of local and
external processes on the annual nitrogen cycle and primary productivity on
Georges Bank: a 3-D biological–physical modeling study. J. Marine Syst.
73(1–2), 31–47. h
ttps://doi.org/10.1016/j.jmarsys.2007.08.002
Kämpf, J., 2010.
On the preconditioning of coastal upwelling in the
eastern Great Australian Bight. J. Geophys. Res.-Oceans 115, C12071.
https://doi.org/10.1029/2010JC006294
Kämpf, J., 2019.
Extreme bed shear stress during coastal
downwelling. Ocean Dynam. 69 (5), 581–597.
https://doi.org/10.1007/s10236-019-01256-4
Kämpf, J., 2024a.
On the retroflection of upwelling jets near coastal
bends. Cont. Shelf Res. 279, 105276.
https://doi.org/10.1016/j.csr.2024.105276
Kämpf, J., 2024b.
On the wind-driven formation of plankton patches in
island wakes. J. Mar. Sci. Eng. 12 (1), 193.
https://doi.org/10.3390/jmse12010193
Kämpf, J., 2025.
Phytoplankton and zooplankton production in the Bonney
Coast upwelling, Australia: A coupled physical-biological model
investigation. Cont. Shelf Res. 285, 105373.
https://doi.org/10.1016/j.csr.2024.105373
Kämpf, J., Chapman, P., 2016.
Upwelling System of the World. Springer
Nature, New York.
https://doi.org/10.1007/978-3-319-42524-5
Kämpf, J., Doubell, M., Griffin, D., Matthews, R.L., Ward, T.M., 2004.
Evidence of a large seasonal coastal upwelling system along the southern
shelf of Australia. Geophys. Res. Lett. 31, L09310.
https://doi.org/10.1029/2003GL019221
Kämpf, J., Ellis, H., 2015.
Hydrodynamics and flushing of Coffin Bay,
South Australia: A small tidal inverse estuary of interconnected bays. J.
Coast. Res. 31 (2), 447–456.
https://doi.org/10.2112/JCOASTRES-D-14-00046.1
Kämpf, J., Möller, L., Baring, R., Shute, A., Cheesman, C., 2023b
. The
island mass effect: a study of wind-driven nutrient upwelling around reef
islands. J. Oceanogr. 79, 161–174.
https://doi.org/10.1007/s10872-022-00673-2
Kämpf, J., Newman, M., Doubell, M., Möller, L., Baring, R., Shute, A.,
Rodriguez, A.R., 2023a
. A study of the seasonal and interannual variability
of phytoplankton and zooplankton assemblages in a significant marine
ecosystem. Oceanologia 65 (2), 434–451.
https://doi.org/10.1016/j.oceano.2022.12.003
Largier, J.L., 2020.
Upwelling bays: How coastal upwelling controls
circulation, habitat, and productivity in bays. Annu. Rev. Mar. Sci. 12,
415–447.
https://doi.org/10.1146/annurev-marine-010419-011020
Lentz, S.J., 2001.
The influence of stratification on the winddriven
cross-shelf circulation over the North Carolina shelf. J. Phys. Oceanogr.
31, 2749–2760.
https://doi.org/10.1175/1520-0485(2001)031<2749:TIOSOT>2.0.CO;2
Luyten, P.J., Jones, J.E., Proctor, R., Tabor, A., Tett, P., Wild-Allen, K.,
1999.
COHERENS – A Coupled Hydrodynamical-Ecological Model for Regional
and Shelf Seas: User Documentation. MUMM Report, Management Unit of the
North Sea, Brussels, 914 pp.
Maier-Reimer, E., 1980.
On the formation of saltwater wedges in
estuaries. Lect. Notes Coast. Estuar. Stud. 1, 91–101.
Mann, K.H., Lazier, J.R.N., 1996.
Dynamics of Marine Ecosystems:
Biological–Physical Interactions in the Oceans. 2nd Edn., Blackwell
Science, Oxford, xii, 394 pp.
McClatchie, S., Middleton, J.F., Ward, T.M., 2006.
Water mass analysis and
alongshore variation in upwelling intensity in the eastern Great Australian
Bight. J. Geophys. Res. 111, C08007.
https://doi.org/10.1029/2004JC002699
Middleton, J.F., Cirano, M., 2002.
A northern boundary current along
Australia’s southern shelves: The Flinders Current. J. Geophys.
Res.-Oceans 107 (C9), 3129.
https://doi.org/10.1029/2000JC000701
Mӧller, L.M., Attard, C.R.M., Bilgmann, K., Andrews-Goff, V., Jonsen, I.,
Paton, D., Double, M.C., 2020.
Movements and behaviour of blue whales
satellite tagged in an Australian upwelling system. Sci. Rep. 10, 21165.
https://doi.org/10.1038/s41598-02078143-2
Nieblas, A.E., Sloyan, B.M., Hobday, A.J., Coleman, R., Richardson, A.J., 2009.
Variability of biological production in low wind-forced regional upwelling
systems: a case study off southeastern Australia. Limnol. Oceanogr. 54,
1548–1558.
https://doi.org/10.4319/lo.2009.54.5.1548
Richardson, L.E., Middleton, J.F., James, N.P., Kyser, T.K., Opdyke, B.N.,
2018.
Water masses and their seasonal variation on the Lincoln Shelf, South
Australia. Limnol. Oceanogr. 63, 1944–1963.
https://doi.org/10.1002/lno.10817
Richardson, L.E., Middleton, J.F., James, N.P., Kyser, T.K., Opdyke, B.N.,
2020.
Upwelling characteristics and nutrient enrichment of the Kangaroo
Island upwelling region, South Australia. Cont. Shelf Res. 200, 104111.
https://doi.org/10.1016/j.csr.2020.104111
Ridgway, K.R., Condie, S.A., 2004.
The 5500-km-long boundary flow off
western and southern Australia. J. Geophys. Res.-Oceans 109, C04017.
https://doi.org/10.1029/2003JC001921
Rochford, D.J., 1986.
Seasonal changes in the distribution of the Leeuwin
Current waters off southern Australia. Aust. J. Mar. Freshwater Res. 37,
1–10.
https://doi.org/10.1071/MF9860001
Shchepetkin, A.F., McWilliams, J.C., 2005.
The regional oceanic modeling
system (ROMS): a split-explicit, free-surface, topography-following-coordinate
oceanic model. Ocean Model. 9 (4), 347–404.
https://doi.org/10.1016/j.ocemod.2004.08.002
Shute, A., Kämpf, J., Doubell, M., Rodriguez, A.R., Möller, L., Baring, R.,
Newman, M., 202
. Variability of surface and subsurface phytoplankton blooms
in a seasonal coastal upwelling system. Cont. Shelf Res. 246, 104832.
https://doi.org/10.1016/j.csr.2022.104832
Smagorinsky, J., 1963.
General circulation experiments with the primitive
equations. I: the basic experiment. Mon. Weather Rev. 91, 99–164.
https://doi.org/10.1175/1520-0493(1963)091%3c0099:GCEWTP%3e2.3.CO;2
Staehr, S.U., Van der Zande, D., Staehr, P.A.U., Markager, S., 2022.
Suitability of multisensory satellites for longterm chlorophyll assessment
in coastal waters: A case study in optically complex waters of the temperate
region. Ecol. Indic. 134, 108479.
https://doi.org/10.1016/j.ecolind.2021.108479
van Ruth, P.D., Patten, N.L., Doubell, M.J., Chapman, P., Rodriguez, A.R.,
Middleton, J.F., 2018.
Seasonal- and event- scale variations in upwelling,
enrichment and primary productivity in the eastern Great Australian Bight.
Deep Sea Res Pt. II, 157–158, 36–45.
https://doi.org/10.1016/j.dsr2.2018.09.008
Ward, T.M., Mcleay, L.J., Dimmlich, W.F., Rogers, P.J., McClatchie, S.,
Matthews, R., Kämpf, J., Van Ruth, P.D., 2006.
Pelagic ecology of a
northern boundary current system: effects of upwelling on the production and
distribution of sardine (Sardinops sagax), anchovy (Engraulis australis) and
southern bluefin tuna (Thunnus maccoyii) in the Great Australian Bight.
Fish. Oceanogr. 15, 191–207.
https://doi.org/10.1111/j.1365-2419.2006.00353.x
Fluorescence characteristics of dissolved organic matter and its association with the nepheloid layer in the northern South China Sea
Oceanologia, 67 (3)/2025, 67304, 17 pp.
https://doi.org/10.5697/ATWF9251
Xiaochao Sui1, Li Zou1,*, Tian Chen2, Yinuo Wang1, Chaoqi Zhu2, Yonggang Jia2
1Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China
2Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China;
e-mail: zouli@ouc.edu.cn (L. Zou)
*corresponding author
Keywords: Northern South China Sea; Nepheloid layer; Dissolved organic carbon; FDOM
Received: 25 December 2024; revised: 27 July 2025; accepted: 11 August 2025
Highlights
- DOM and CDOM gradually decrease from the surface to deeper layers, with high-low alternations occurring in the euphotic zone.
- DOM and humic-like components are significantly positively correlated with the nepheloid layer, but protein-like components are not.
- Phytoplankton dominantly contribute to the DOM and nepheloid layer, while suspended particles contribute beyond the euphotic zone.
Abstract
The northern South China Sea (SCS) is characterized by multiple oceanographic phenomena and has developed diverse patterns of distribution, migration and transformation of dissolved organic carbon (DOC). To better understand the DOC behavior and its relationship with the nepheloid layer, UV-visible absorption spectra and three- dimensional fluorescence spectra of dissolved organic matter (DOM) were obtained in the northern SCS, as well as beam attenuation (BA), major physicochemical parameters and chlorophyll a (Chl-a) data. DOC and chromophoric dissolved organic matter (CDOM) gradually decrease from the surface to deeper layers, with high-low alternations occurring in the euphotic zone. The fluorescence intensity of DOM is primarily attributed to protein-like components, followed by humic-like components (24.6%). CDOM exhibits a typical marine origin and is produced mainly through bacterial production in situ. The spatial and temporal distributions of DOC and humic-like components are influenced by major physicochemical factors (such as temperature, salinity, and nutrients) and Chl-a. In contrast the protein-like components might be closely associated with bacterial activity. The distributions of DOC and humic-like components are significantly correlated with the presence of the nepheloid layer. In the euphotic zone, phytoplankton particulates are the primary source of humic-like components, while suspended particles affect the distribution of humic-like components below the euphotic zone. The results presented direct evidence for the function of the marine nepheloid layer in the organic carbon cycle.
References
Anderson, R.F., Rowe, G.T., Kemp, P.F., Trumbores, S., Biscaye, P.E., 1994.
Carbon budget for the mid-slope depocenter of the Middle Atlantic
Bight. Deep Sea Res. Pt. II 41(2–3), 669–703.
https://doi.org/10.1594/PANGAEA.730406
Burdige, D.J., 2007.
Preservation of organic matter in marine sediments:
controls, mechanisms, and an imbalance in sediment organic carbon budgets.
Chem. Rev. 107(2), 467–485.
https://doi.org/10.1021/cr050347q
Boetius, A., Springer, B., Petry, C., 2000.
Microbial activity and
particulate matter in the benthic nepheloid layer (BNL) of the deep Arabian
Sea. Deep Sea Res. Pt. II 47(14), 2687–2706.
https://doi.org/10.1016/S0967-0645(00)00045-X
Cai, P., Zhao, D., Wang, L., Huang, B., Dai, M., 2015.
Role of particle
stock and phytoplankton community structu- re in regulating particulate organic
carbon export in a large marginal sea. J. Geophys. Res-Oceans 120(3),
2063-2095.
https://doi.org/10.1002/2014JC010432
Cammack, W.L., Kalff, J., Prairie, Y.T., Smith, E.M., 2004.
Fluorescent
dissolved organic matter in lakes: relationships with heterotrophic
metabolism. Limnol. Oceanogr. 49(6), 2034–2045.
https://doi.org/10.4319/lo.2004.49.6.2034
Chen, W., Wagnersky, P.J., 1993.
High-temperature combustion analysis of
dissolved organic carbon produced in phytoplankton cultures. Mar. Chem.
41(1–3), 167–171.
https://doi.org/10.1016/0304-4203(93)90115-5
Christensen, J.H., Hansen, A.B., Mortensen, J., Andersen, O., 2005.
Characterization and matching of oil samples using fluorescence spectroscopy
and parallel factor analysis. Anal. Chem. 77(7), 2210–2217.
https://doi.org/10.1021/ac048213k
Coble, P.G., 1996.
Characterization of marine and terrestrial DOM in
seawater using excitation-emission matrix spectroscopy. Mar. Chem. 51(4),
325–346.
https://doi.org/10.1016/0304-4203(95)00062-3
Del Castillo, C.E., Coble, P.G., Morell, J.M., Lopez, J.M., Corredor, J.E.,
1999.
Analysis of the optical properties of the Orinoco River plume by
absorption and fluorescence spectroscopy. Mar. Chem. 66(1–2), 35–51.
https://doi.org/10.1016/s0304-4203(99)00023-7
Eittreim, S., Ewing, M., Thorndike, E.M., 1969.
Suspended matter along the
continental margin of the North American Basin. Deep-Sea Res. Oceanogr.
Abstr. 6(6), 613–624.
https://doi.org/10.1016/0011-7471(69)90062-x
Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L.,
Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters,
W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P.,
Jackson, R. B., Alin, S. R., Zheng, B., 2022.
Global Carbon Budget
2022. Earth System Sci. Data 14(11), 4811–4900.
https://doi.org/10.5194/essd-14-4811-2022
Geng, M., Song, H., Guan, Y., Chen, J., 2018.
Research on the distribution
and characteristics of the nepheloid layers in the northern South China Sea by
use of seismic oceanography method. Chin. J. Geophys. 61(02), 636–648.
https://doi.org/10.6038/cjg2018L0662
Guo, L., Santschi, P.H., 2000.
Sedimentary sources of old high molecular
weight dissolved organic carbon from the ocean margin benthic nepheloid
layer. Geochim. Cosmochim. Acta, 64(4), 651–660.
https://doi.org/10.1016/s0016-7037(99)00335-x
Guo, L., Santschi, P.H., Cifuentes, L.A., Trumbore, S.E., Southon, J., 1996.
Cycling of high-molecular-weight dissolved organic matter in the Middle
Atlantic Bight as revealed by carbon isotopic (13C and 14C) signatures.
Limnol. Oceanogr. 41(6), 1242–1252.
https://doi.org/10.4319/lo.1996.41.6.1242
Hansell, D.A., Carlson, C.A., 1998.
Deep ocean gradients in dissolved
organic carbon concentrations. Nature 395(6699), 263–266.
https://doi.org/10.1038/26200
Hansell, D. A., Carlson, C. A., Repeta, D. J., Schlitzer, R., 2012.
Dissolved organic matter in the ocean: A controversy stimulates new
insights. Nature Geosci. 5(12), 848–854.
https://doi.org/10.5670/oceanog.2009.109
Hartnett, H.E., Keil, R.G., Hedges, J.I., Devol, A.H., 1998.
Influence of
oxygen exposure time on organic carbon preservation in continental margin
sediments. Nature 391(6667), 572–575.
https://doi.org/10.1038/35351
Helms, J.R., Stubbins, A., Ritchie, J.D., Minor, E.C., Kieber, D.J., Mopper,
K., 2008.
Absorption spectral slopes and slope ratios as indicators of
molecular weight, source, and photobleaching of chromophoric dissolved organic
matter. Limnol. Oceanogr. 53(3), 955–969.
https://doi.org/10.4319/lo.2008.53.3.0955
Hong, Q., Peng, S., Zhao, D., Cai, P., 2021.
Cross-shelf export of
particulate organic carbon in the northern South China Sea: Insights from a
234Th mass balance. Prog. Oceanogr. 193, 102532.
https://doi.org/10.1016/j.pocean.2021.102532
Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J.M., Parlanti,
E., 2009.
Properties of fluorescent dissolved organic matter in the Gironde
Estuary. Org. Geochem. 40(6), 706–719.
https://doi.org/10.1016/j.orggeochem.2009.03.002
Jiao, N., Cai, R., Zheng, Q., Tang, K., Liu, J., Jiao, F., Wallace, D., Chen,
F., Li, C., Amann, R., Benner, R., Azam, F., 2018.
Unveiling the enigma of
refractory carbon in the ocean. Natl. Sci. Rev. 5(4), 459–463.
https://doi.org/10.1093/nsr/nwy020
Jørgensen, L., Stedmon, C.A., Kragh, T., Markager, S., Middelboe, M.,
Søndergaard, M., 2011.
Global trends in the fluorescence characteristics
and distribution of marine dissolved organic matter. Mar. Chem.
126(1–4), 139–148.
https://doi.org/10.1016/j.marchem.2011.05.002
Kieber, D., McDaniel, J., Mopper, K., 1989.
Photochemical source of
biological substrates in seawater: implications for carbon cycling. Nature
341(6243), 60–62.
https://doi.org/10.1038/341637a0
Kowalczuk, P., Durako, M.J., Young, H., Kahn, A.E., Cooper, W.J., Gonsior, M.,
2009.
Characterization of dissolved organic matter fluorescence in the
South Atlantic Bight with the use of PARAFAC model: Interannual
variability. Mar. Chem. 113(3–4), 182–196.
https://doi.org/10.1016/j.marchem.2009.01.015
Lakowicz, J.R., 2006. Principles of Fluorescence Spectroscopy, 3 edn.,
Springer-Verlag US, 954 pp.
https://doi.org/10.1007/978-0-387-46312-4
Lawaetz, A.J., Stedmon, C.A., 2009.
Fluorescence intensity calibration
using the Raman scatter peak of water. Appl. Spectrosc. 63(8), 936–940.
https://doi.org/10.1366/000370209788964548
Li, Y., Song, G., Massicotte, P., Yang, F., Li, R., Xie, H., 2019.
Distribution, seasonality, and fluxes of dissolved organic matter in the
Pearl River (Zhujiang) estuary, China. Biogeosciences 16(13), 2751–2770.
https://doi.org/10.5194/bg-16-2751-2019
Li, Y., Zhang, Y., Li, Z., Wan, J., Dang, C., Fu, J., 2022.
Characterization of colored dissolved organic matter in the northeastern
South China Sea using EEMs-PARAFAC and absorption spectroscopy. J. Sea
Res. 180, 102159.
Madron, X.D.D., Ramondenc, S., Berline, L., Houpert, L., Bosse, A., Martini,
S., Guidi, L., Conan, P., Curtil, C., Delsaut, N., Kunesch, S., Ghiglione,
J.F., Marsaleix, P., Pujo-Pay, M., Séverin, T., Testor, P., Tamburini, C.,
the ANTARES collaboration, 2017.
Deep sediment resuspension and thick
nepheloid layer generation by open-ocean convection. J. Geophys. Res.
Ocean. 122(3), 2291–2318.
https://doi.org/10.1002/2016JC012062
McKnight, D.M., Boyer, E.W., Westerhoff, P.K., Doran, P.T., Kulbe, T.,
Andersen, D.T., 2001.
Spectrofluorometric characterization of dissolved
organic matter for indication of precursor organic material and
aromaticity. Limnol. Oceanogr. 46(1), 38–48.
https://doi.org/10.4319/lo.2001.46.1.0038
Miller, W.L., Zepp, R.G., 1995.
Photochemical production of dissolved
inorganic carbon from terrestrial organic matter: significance to the oceanic
organic carbon cycle. Geophys. Res. Lett. 22, 417–420.
https://doi.org/10.1029/94GL03344
Murphy, K.R., Stedmon, C.A., Wenig, P., Bro, R., 2014.
OpenFluor–an
online spectral library of auto-fluorescence by organic compounds in the
environment. Anal. Methods 6(3), 658–661.
https://doi.org/10.1039/C3AY41935E
Olivieri, A.C., 2005.
Computing sensitivity and selectivity in parallel
factor analysis and related multiway techniques: the need for further
developments in net analyte signal theory. Anal. Chem. 77(15),
4936–4946.
https://doi.org/10.1021/ac050146m
Peltzer, E.T., Hayward, N.A., 1996.
Spatial and temporal variability of
total organic carbon along 140 W in the equatorial Pacific Ocean in 1992.
Deep Sea Res. Pt. II 43(4– 6), 1155–1180.
https://doi.org/10.1016/0967-0645(95)00014-3
Qu, T., Mitsudera, H., Yamagata, T., 2000.
Intrusion of the north Pacific
waters into the South China Sea. J. Geophys. Res.-Oceans 105(C3),
6415–6424.
https://doi.org/10.1029/1999JC900323
Sabbaghzadeh, B., Uher, G., Upstill-Goddard, R., 2024.
Dynamics of
chromophoric dissolved organic matter in the Atlantic Ocean: unravelling
province dependent relationships, optical complexity, and environmental
influences. Front. Mar. Sci. 11, 1432133.
https://doi.org/10.3389/fmars.2024.1432133
Sempéré, R., Cauwet, G., Randon, J., 1994
. Ultrafiltration of seawater
with a zirconium and aluminum oxide tubular membrane: application to the study
of colloidal organic carbon distribution in an estuarine bottom nepheloid
layer. Mar. Chem. 46(1–2), 49–60.
https://doi.org/10.1016/0304-4203(94)90044-2
Seo, J., Kim, G., Seo, H., Na, T., Noh, S., Hwang, J., 2023.
Sources and
behaviors of particulate organic carbon, iron, and manganese in the bottom
nepheloid layer of the southwestern East Sea (Japan Sea). Mar. Chem. 257,
104323.
https://doi.org/10.1016/j.marchem.2023.104323
Shen, J., Jiao, N., Dai, M., Wang, H., Qiu, G., Chen, J., Li, H., Kao, S.-J.,
Yang, J.-Y.T., Cai, P., Zhou, K., Yang, W., Zhu, Y., Liu, Z., Chen, M., Zuo,
Z., Gaye, B., Wiesner, M.G., Zhang, Y., 2020.
Laterally transported
particles from margins serve as a major carbon and energy source for dark ocean
ecosystems. Geophys. Res. Lett. 47(18), e2020GL088971.
https://doi.org/10.1029/2020GL088971
Sierra, M.D.S., Donard, O.F.X., Lamotte, M., Belin, C., Ewald, M., 1994.
Fluorescence spectroscopy of coastal and marine waters. Mar. Chem.
47(2), 127–144.
https://doi.org/10.1016/0304-4203(94)90104-x
Stedmon, C. A., Bro, R., 2008.
Characterizing dissolved organic matter
fluorescence with parallel factor analysis: a tutorial. Limnol.
Oceanogr.-Methods 6(11), 572–579.
https://doi.org/10.4319/lom.2008.6.572
Stedmon, C.A., Markager, S., 2005.
Tracing the production and degradation
of autochthonous fractions of dissolved organic matter by fluorescence
analysis. Limnol. Oceanogr. 50(5), 1415–1426.
https://doi.org/10.4319/lo.2005.50.5.1415
Stedmon, C.A., Nelson, N.B., 2015.
The optical properties of DOM in the
ocean. [in:] Biogeochemistry of marine dissolved organic matter. Acad.
Press, 481–508.
https://doi.org/10.1016/b978-0-12-405940-5.000
Steinberg, D.K., Landry, M.R., 2017.
Zooplankton and the ocean carbon
cycle. Annu. Rev. Mar. Sci. 9(1), 413–444.
https://doi.org/10.1146/annurev-marine-010814-015924
Tang, S., Chen, C., Zhan, H., Xu, D., Liu, D., 2007.
Remote sensing
inversion of true optical depth in South China Sea. J. Trop. Oceanogr.
26(1), 7.
https://doi.org/10.3969/j.issn.1009-5470.2007.01.002
Thiele, S., Basse, A., Becker, J. W., Lipski, A., Iversen, M. H., Mollenhauer,
G., 2019.
Microbial communities in the nepheloid layers and hypoxic zones
of the Canary Current upwelling system. MicrobiologyOpen 8(5), e00705.
https://doi.org/10.1002/mbo3.705
Wang, C., Guo, W., Li, Y., Stubbins, A., Li, Y., Song, G., Wang, L., Cheng, Y.,
2017.
Hydrological and biogeochemical controls on absorption and
fluorescence of dissolved organic matter in the Northern South China Sea.
J. Geophys. Res.-Biogeosci. 122(12), 3405–3418.
https://doi.org/10.1002/2017JG004100
Williams, P.J.L.B., 2000.
Heterotrophic bacteria and the dynamics of
dissolved organic material. Microb. Ecol. Oceans.
https://api.semanticscholar.org/CorpusID:221557347
Wu, K., Dai, M., Chen, J., Meng, F., Li, X., Liu, Z., Du, C., Gan, J., 2015.
Dissolved organic carbon in the South China Sea and its exchange with the
Western Pacific Ocean. Deep Sea Res. Pt. II 122, 41–51.
https://doi.org/10.1016/j.dsr2.2015.06.013
Xie, L., Guan, W., Zou, L., Xia, B., Ji, G., 2023.
Composition, variation
and contribution of chromophoric dissolved organic matter in Laizhou Bay
estuaries, North China. Mar Environ Res. 190, 106102.
https://doi.org/10.1016/j.marenvres.2023.106102
Yamashita, Y., Cory, R.M., Nishioka, J., Kuma, K., Tanoue, E., Jaffé, R.,
2010.
Fluorescence characteristics of dissolved organic matter in the deep
waters of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep
Sea Res. Pt. II 57(16), 1478–1485.
https://doi.org/10.1016/j.dsr2.2010.02.016
Yamashita, Y., Tanoue, E., 2004.
In situ production of chromophoric
dissolved organic matter in coastal environments. Geophys. Res. Lett. 31,
L14302.
https://doi.org/10.1029/2004GL019734
Yamashita, Y., Tanoue, E., 2008.
Production of bio-refractory fluorescent
dissolved organic matter in the ocean interior. Nat. Geosci. 1, 579–582.
https://doi.org/10.1038/ngeo279
Yang, F., Song, G., Massicotte, P., Wei, H., Xie, H., 2020.
Depthresolved
photochemical lability of dissolved organic matter in the western tropical
Pacific Ocean. J. Geophys. Res.: Biogeosci. 125(3), e2019JG005425.
https://doi.org/10.1029/2019JG005425
Zepp, R.G., Sheldon, W.M., Moran, M. A., 2004.
Dissolved organic
fluorophores in southeastern US coastal waters: correction method for
eliminating Rayleigh and Raman scattering peaks in excitation-emission
matrices. Mar. Chem. 89(1–4), 15–36.
https://doi.org/10.1016/j.marchem.2004.02.006
Zhang, M., Wu, Y., Wang, F., Xu, D., Liu, S., Zhou, M., 2020.
Hotspot of
organic carbon export driven by mesoscale eddies in the slope region of the
northern South China Sea. Front. Mar. Sci. 7, 444.
https://doi.org/10.3389/fmars.2020.00444
Zhang, X., Chen, J., Xiang, L., Fang, J., Li, D., 2014.
A preliminary study
on the characteristics of marine nepheloid layers in the northern South China
Sea and their influential factors. Acta Oceanol. Sin. 36(02), 51–65.
https://doi.org/10.3969/j.issn.0253-4193.2014.02.006
Quantile mapping enhances the sea surface temperature prediction accuracy in the northern coastal region of Penang using ROMS
Oceanologia, 67 (3)/2025, 67305, 12 pp.
https://doi.org/10.5697/WXXI2926
Ninu Krishnan Modon Valappil, Chin Alice, Abigail Birago Adomako, Ehsan Jolous Jamshidi, Yusri Yusup*
Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia;
*corresponding author
e-mail: yusriy@usm.my (Y. Yusup)
Keywords: ROMS Model; SST; Statistics; RMSE; Error matrix
Received: 25 June 2025; revised: 2 August 2025; accepted: 11 August 2025
Highlights
- Utilized the Regional Ocean Modeling System (ROMS) to forecast the Sea Surface Temperature (SST) along the northern coast of Penang Island, Malaysia.
- Various error estimation techniques were applied to assess the precision of the ROMS SST data.
- Bias corrections were integrated to enhance the accuracy of SST predictions.
-
In comparison to Delta Change (DC) and Linear Scaling (LS), the Quantile Mapping (QM) bias correction method offers the most equitable and efficient adjustment for SST.
Abstract
Sea surface temperature (SST) is a crucial climate indicator for tracking atmospheric and oceanic interactions, particularly in coastal areas. The study focused on the simulation of SST in the region around the north coast of Penang Island, Malaysia, where the prediction of SST is challenging due to its complex atmospheric and oceanic interactions. The Regional Ocean Modeling System (ROMS), a sophisticated numerical model, is employed to predict the variation of SST in the study region. In the present study, HYCOM Global Ocean Forecasting System (GOFS) was incorporated to generate the boundary condition, initialisation, and climatology, while MERRA-2 datasets were considered as atmospheric forcing datasets. The generated SST from ROMS was compared with Aqua-MODIS observations of SST across six selected locations. Different methods, such as time series plots, linear modelling plots, and Taylor diagrams, and error estimation methods were employed to understand the accuracy of the model. The result indicates an underestimation of the SST using the ROMS model. Also, the root mean square error (RMSE) and mean absolute error (MAE) show an average of 2.58°C and 2.50°C in the study area, highlighting the requirement for bias correction. Three bias correction methods, such as Delta Change (DC), Linear Scaling (LS), and Quantile Mapping (QM), were considered to improve SST predictions. The comparative analysis of these three methods through time-series plots and statistical evaluations demonstrates that all three methods significantly reduce errors by bringing RMSE and MAE below 0.7°C. It is also noted that the best result was obtained by the QM method, as it not only reduces mean errors but also enhances correlation between the predicted and observed SST, the other two methods show no variation in the correlation value. The study confirms that the ROMS model can effectively capture the characteristics fluctuation of the SST in the dynamic regions like the north coast of Penang Island but bias correction is crucial for improving the prediction. In this case, the QM bias correction method provides the most balanced and effective adjustment compared to the other two methods.
References
Acharya, N., Chattopadhyay, S., Mohanty, U.C., Dash, S.K., Sahoo, L.N., 2013.
On the bias correction of general circulation model output for Indian
summer monsoon. Meteorol. Appl. 20, 349–356.
https://doi.org/10.1002/met.1294
Alizadeh, O., 2022.
Advances and challenges in climate modeling.
Climatic Change 170, 18.
https://doi.org/10.1007/s10584-021-03298-4
Baduru, B., Paul, B., Athul, C.R., Paul, A., Francis, P.A., 2025.
Improving
Indian Ocean analysis using ROMS with sea level anomaly assimilation. J.
Earth Sys. Sci.134 (2), 1–19.
https://doi.org/10.1007/s12040-025-02587-1
Barton, I.J., 1995.
Satellite-derived sea surface temperatures: Current
status. J. Geophys. Res.-Oceans 100 (C5), 8777–8790.
Beyer, R., Krapp, M., Manica, A., 2020.
An empirical evaluation of bias
correction methods for palaeoclimate simulations. Clim. Past 16 (4),
1493–1508.
https://doi.org/10.5194/cp-16-1493-2020
Casey, K.S., Cornillon, P., 1999.
A comparison of satellite and in
situ–based sea surface temperature climatologies. J. Climate 12 (6),
1848–1863.
Chai, T., Draxler, R.R., 2014.
Root mean square error (RMSE) or mean
absolute error (MAE)? – Arguments against avoiding RMSE in the
literature. Geosci. Model Dev. 7(3), 1247–1250.
https://doi.org/10.5194/gmd-7-1247-2014
Costa, P., Gómez, B., Venâncio, A., Pérez, E., Pérez-Muñuzuri, V.,
20
12. Using the Regional Ocean Modelling System (ROMS) to improve the sea
surface temperature predictions of the MERCATOR Ocean System. Sci. Mar. 76
(S1), 165–175.
https://doi.org/10.3989/scimar.03614.19E
Cunnane, C., 1989.
Statistical distribution for flood frequency
analysis. WMO Operational Hydrology, Rep. No. 33, WMO-No. 718, Geneva,
Switzerland.
Dhawan, P., Dalla Torre, D., Niazkar, M., Kaffas, K., Larcher, M., Righetti,
M., Menapace, A., 2024.
A comprehensive comparison of bias correction
methods in climate model simulations: Application on ERA5-Land across different
temporal resolutions. Heliyon 10 (23).
https://doi.org/10.1016/j.heliyon.2024.e40352
Dubovik, O., Schuster, G.L., Xu, F., Hu, Y., Bösch, H., Landgraf, J., Li, Z., 2021.
Grand Challenges in Satellite Remote Sensing. Front. Remote
Sens. 2.
https://doi.org/10.3389/frsen.2021.619818
Embury, O., Merchant, C.J., Good, S.A., Rayner, N.A., Høyer, J.L., Atkinson, C., Block, T., Alerskans, E., Pearson K.J., Worsfold, M., McCarroll, N.,
Donlon, C., 2024.
Satellite-based time-series of sea-surface temperature
since 1980 for climate applications. Sci. Data 11 (1), 326.
https://doi.org/10.1038/s41597-024-03147-w
Guan, X., Huang, H., Ke, X., Cheng, X., Zhang, H., Chen, A., Qiu, G., Wu, H.,
Wei, C., 2025.
Monitoring, modeling, and forecasting long-term changes in
coastal seawater quality due to climate change. Nat. Commun. 16 (1), 2616.
https://doi.org/10.1038/s41467-025-57913-4
Guild, R., Wang, X., Quijón, P. A. 2025.
Climate change impacts on
coastal ecosystems. Environ. Res.: Climate, 3(4), 042006.
Haghbin, M., Sharafati, A., Motta, D., Al-Ansari, N., Noghani, M.H.M., 2021.
Applications of soft computing models for predicting sea surface
temperature: a comprehensive review and assessment. Prog. Earth Planet.
Sci. 8, 1–19.
https://doi.org/10.1186/s40645-020-00400-9
Han, S., Wang, Z., 2022.
Simulation of seasonal variation characteristics
of offshore water temperature based on ROMS model. Proc. 2022 Global
Reliability and Prognostics and Health Management (PHM-Yantai). IEEE, Yantai,
China, 1–6.
Hewitt, J.E., Ellis, J.I., Thrush, S.F. 2016.
Multiple stressors, nonlinear
effects and the implications of climate change impacts on marine coastal
ecosystems. Glob. Change Bio. 22 (8), 2665–2675.
https://doi.org/10.1111/gcb.13176
Hobday, A.J., Alexander, L.V., Perkins, S.E., Smale, D.A., Straub, S.C.,
Oliver, E.C., Benthuysen, J.A., Burrows, M.T., Donat, M.G., Feng, M., Holbrook,
N.J., Moore, P.J., Scannell, H.A., Gupta, A.S., Wernberg, T., 2016.
A
hierarchical approach to defining marine heatwaves. Prog. Oceanog. 141,
227–238.
https://doi.org/10.1016/j.pocean.2015.12.014
Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith,
T., Zhang, H.M., 2021.
Improvements of the Daily Optimum Interpolation Sea
Surface Temperature (DOISST) Version 2.1. J. Climate 34 (8), 2923–2939.
https://doi.org/10.2307/27076773
Jose, D.M., Dwarakish, G.S., 2022.
Bias Correction and Trend Analysis of
Temperature Data by a High-Resolution CMIP6 Model over a Tropical River
Basin. Asia-Pac. J. Atmos. Sci. 58 (1), 97–115.
https://doi.org/10.1007/s13143-021-00240-7
Kaewmesri, P., 2019.
Simulation sea surface temperature over Gulf of
Thailand by using ROMS model. Int. J. GEOMATE 17 (60), 56–61.
https://doi.org/10.21660/2019.60.4709
Kartal, S., 2023.
Assessment of the spatiotemporal prediction capabilities
of machine learning algorithms on Sea Surface Temperature data: A comprehensive
study. Eng. Appl. Artif. Intel. 118.
https://doi.org/10.1016/j.engappai.2022.105675
Kilpatrick, K.A., Podestá, G.P., Evans, R., 2001.
Overview of the
NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea
surface temperature and associated matchup database. J. Geophys.
Res.-Oceans 106 (C5), 9179–9197.
Kushwaha, P., Pandey, V.K., Das, B.K., Singh, Y., Srivastav, S., 2024.
Exploring temporal and spatial SST patterns and their impact in the Arabian
Sea: Insights from the regional ocean modeling system. Cont. Shelf. Res.
275.
https://doi.org/10.1016/j.csr.2024.105224
Lemos, G., Menendez, M., Semedo, A., Camus, P., Hemer, M., Dobrynin, M.,
Miranda, P.M., 2020.
On the need of bias correction methods for wave
climate projections. Global Planet. Change 186.
https://doi.org/10.1016/j.gloplacha.2019.103109
Li, Z.L., Wu, H., Duan, S.B., Zhao, W., Ren, H., Liu, X., Leng, P., Tang, R.,
Ye, X., Zhu, J., Sun, Y., Si, M., Liu, M., Li, J., Zhang, X., Shang, G., Tang,
B., Yan, G., Zhou, C., 2023.
Satellite Remote Sensing of Global Land
Surface Temperature: Definition, Methods, Products, and Applications. Rev.
Geophys. 61.
Mann, K.H., Lazier, J.R., 2005.
Dynamics of marine ecosystems:
biological-physical interactions in the oceans. John Wiley & Sons.
McPhaden, M.J., Zebiak, S.E., Glantz, M.H., 2006.
ENSO as an Integrating
Concept in Earth Science. Science 314 (5806), 1740–1745.
Mendez, M., Maathuis, B., Hein-Griggs, D., Alvarado-Gamboa, L.F., 2020.
Performance evaluation of bias correction methods for climate change
monthly precipitation projections over Costa Rica. Water 12 (2), 482.
https://doi.org/10.3390/w12020482
Merchant, C.J., Embury, O., Bulgin, C.E., Block, T., Corlett, G.K., Fiedler,
E., Good, S.A., Mittaz, J., Rayner, N.A., Berry, D., Eastwood, S., Taylor, M.,
Tsushima, Y., Waterfall, A., Wilson, R., Donlon, C., 2019.
Satellite-based
timeseries of sea-surface temperature since 1981 for climate applications.
Sci. Data 6 (1), 223.
https://doi.org/10.1038/s41597-019-0236-x
O’Carroll, A.G., Armstrong, E.M., Beggs, H.M., Bouali, M., Casey, K.S.,
Corlett, G.K., Dash, P.,Donlon, C.J., Gentemann, C.L., Høyer, J.L., Ignatov,
A., Kabobah, K., Kachi, M., Kurihara, Y., Karagali, I., Maturi, E., Merchant
C.J., Marullo, S., Minnett, P.J., Pennybacker, M., Ramakrishnan, B.,
Ramakrishnan, R., Santoleri, R., Sunder, S., Picart, S.S., Vázquez-Cuervo,
J., Wimmer, W., 2019.
Observational needs of sea surface temperature.
Front. Mar. Sci. 6, 420.
Ottersen, G., Stenseth, N.C., Hurrell, J.W., 2004.
Climatic fluctuations
and marine systems: A general introduction to the ecological effects.
[In:] Marine Ecosystem and Climate Variation, Stenseth, N.Chr., Geir, O.
(Eds.), 3–14.
Piccolo, M.C., 2021.
Effects of rainfall extreme events on coastal marine
ecosystems. [In:] Precipitation, Rodrigo-Comino, J. (Ed.), Elsevier,
261–285.
Ringard, J., Seyler, F., Linguet, L., 2017.
A quantile mapping bias
correction method based on hydroclimatic classification of the Guiana
shield. Sensors. 17 (6), 1413.
https://doi.org/10.3390/s17061413
Satar, M.N., Marshal, W., Akhir, M.F., 2024.
The Effects of Climate Change
on Ocean Upwelling and Productivity in Regional Seas. [In:] Coastal
Sustainability, Maccarrone, V., Fadzil Akhir, M. (Eds.), Coastal Research
Library. 21–49.
Sengupta, D., Jammalamadaka, S.R., 2003.
Linear models: an integrated
approach. World Sci., 644 pp.
Shevchenko, G.V., Tshay, Z.R., Lozhkin, D.M., 2024.
Spatiotemporal
Variability of Bering Sea Surface Temperature from Satellite-Based ERA5
Reanalysis Data. Izv., Atmos. Ocean. Phys. 60 (9), 1075–1085.
https://doi.org/10.1134/S0001433824701032
Soriano, E., Mediero, L., Garijo, C., 2019.
Selection of bias correction
methods to assess the impact of climate change on flood frequency curves.
Water 11 (11).
https://doi.org/10.3390/w11112266
Taylor, K.E., 2001.
Summarizing multiple aspects of model performance in a
single diagram. J. Geophys. Res.-Atmos. 106 (D7),7183–7192.
Tiwari, P., Dimri, A.P., Shenoi, S.C., Francis, P.A., Jithin, A.K., 2021.
Impact of Surface forcing on simulating Sea Surface Temperature in the
Indian Ocean – A study using Regional Ocean Modeling System (ROMS).
Dynam. Atmos. Oceans 95.
https://doi.org/10.1016/j.dynatmoce.2021.101243
Vanem, E., Zhu, T., Babanin, A., 2022.
Statistical modelling of the ocean
environment – A review of recent developments in theory and
applications. Mar. Struct. 86.
https://doi.org/10.1016/j.marstruc.2022.103297
Wang, B., Hua, L., Mei, H., Wu, X., Kang, Y., Zhao, N., 2024.
Impact of
Climate Change on the Dynamic Processes of Marine Environment and Feedback
Mechanisms: An Overview. Arch. Comput. Method E. 31 (6), 3377–3408.
Whitney, F.A., Crawford, W.R., Harrison, P.J., 2005.
Physical processes
that enhance nutrient transport and primary productivity in the coastal and
open ocean of the subarctic NE Pacific. Deep Sea Research Pt. II, 52
(5–6), 681–706.
Williams, R.G., Follows, M.J., 2003.
Physical Transport of Nutrients and
the Maintenance of Biological Production. [In:] Ocean Biogeochemistry.
Springer, Berlin, Heidelberg, 19–51.
Zrira, N., Kamal-Idrissi, A., Farssi, R., Khan, H.A., 2024.
Time series
prediction of sea surface temperature based on BiLSTM model with attention
mechanism. J. Sea. Res. 198.
https://doi.org/10.1016/j.seares.2024.102472
Distribution of suspended and dissolved matter and its absorption properties in the Gulf of Gdańsk (Baltic Sea) in the summer season
Oceanologia, 67 (3)/2025, 67306, 25 pp.
https://doi.org/10.5697/FVED2617
Justyna Meler*, Joanna Stoń-Egiert, Monika Zabłocka
Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81–712 Sopot, Poland;
e-mail: jmeler@iopan.pl (J. Meler)
*corresponding author
Keywords: Gulf of Gdańsk (Baltic Sea); Vistula River water distribution; Suspended and dissolved matter; Absorption by particles and CDOM; Taxonomic markers of phytoplankton; Summer season
Received: 15 November 2024; revised: 30 June 2025; accepted: 18 August 2025.
Highlights
- Spatial and interannual distribution of suspended matter in the Gulf of Gdansk in summer was examined
- SPM concentrations decreased with an increase in distance from the Vistula River
- Variations of absorption properties in the Gulf of Gdańsk in the summer season were shown
- High concentrations of marker pigments indicate the presence of diatoms, cyanobacteria, green algae, dinophytes, and cryptophytes
Abstract
Analyses of the spatial and interannual variability of suspended particulate matter (SPM) and chromophoric dissolved organic matter (CDOM) concentrations were carried out in the waters of the Gulf of Gdańsk in the summer season in 2016–2020. Additionally, the absorption properties of those substances were analyzed. The inflowing waters of the Vistula River are characterized by high concentrations of SPM, chlorophylla (Tchla) and CDOM, significantly affecting the absorption properties in the mixture of river and sea waters. The high contribution of particulate organic matter, POM, in the total SPM in the Gulf of Gdańsk (80% on average) indicates high phytoplankton productivity in the summer. High concentrations of pigments characteristic of different size classes of algae and cyanobacteria (fucoxanthin and zeaxanthin, chlorophyll b, peridinin and alloxanthin) were recorded, being markers of diatoms, cyanobacteria, green algae, dinophytes and cryptophytes, respectively. Analysis of interannual variability showed changes of SPM, Tchla and CDOM concentrations, depending on volume and direction of the river inflow and weather conditions. The composition of individual pigments changed year to year in a mosaic (heterogeneous) manner. The average contribution of CDOM, phytoplankton and detritus in the total light absorption was determined (at 443 nm – 50%, 34% and 16%, and at 675 nm – 41%, 54% and 5%). Spatial and temporal variability of the light absorption coefficients by suspended particles and CDOM in sea water was examined, and the relationships between the individual light absorption coefficients by sea water components were determined as a function of the dependence on SPM and Tchla.
References
Babin, M., Stramski, D., Ferrari, G.M., Claustre, H., Bricaud, A., Obolensky,
G., Hoepffner, N., 2003.
Variations in the light absorption coefficient of
phytoplankton, nonalgal particles, and dissolved organic matter in coastal
waters around Europe. J. Geophys. Res. 108 (C8), 3211.
https://doi.org/10.1029/2001JC000882
Bąk, B., Kubiak-Wójcicka, K., 2017.
Impact of meteorological drought on
hydrological drought in Toruń (central Poland) in the period of
1971–2015. J. Water Land Dev. 32, 3–12.
https://doi.org/10.1515/jwld-2017-0001.
Bąk, B., Kubiak-Wójcicka, K., 2018.
Monitoring of meteorological and
hydrological droughts in the Vistula basin (Poland). Environ. Monit.
Assess. 190, 691.
https://doi.org/10.1007/s10661-018-7058-8
Bradtke, K., Krężel, A., 1994.
The inhomogeneity of vertical
distributions of suspended matter in the sea – consequences for remote
sensing. Oceanologia 36 (1), 47–79.
Bricaud, A., Morel, A., Babin, M., Allali, K., Claustre, H., 1998.
Variations of light absorption by suspended particles with chlorophyll a
concentration in oceanic (case 1) waters: analysis and implications for
biooptical models. J. Geophys. Res. 103, 31,033–31,044.
Bukanova, T., Kopelevich, O., Vazyulya, S., Bubnova, E., Sahling, I., 2018.
Suspended matter distribution in the southeastern Baltic Sea from satellite
and in situ data. Int. J. Remote Sens. 39 (24), 9313–9316.
https://doi.org/10.1080/01431161.2018.1519290
Castagna, A., Amadei Martı́nez, L., Bogorad, M., Daveloose, I., Dasseville,
R., Dierssen, H. M., Beck, M., Mortelmans, J., Lavigne, H., Dogliotti, A.,
Doxaran, D., Ruddick, K., Vyverman, W., Sabbe, K., 2022.
Optical and
biogeochemical properties of diverse Belgian inland and coastal waters.
Earth Syst. Sci. Data, 14, 2697–2719.
https://doi.org/10.5194/essd-14-2697-2022
Cyberska, B., Krzymiński, W., 1988.
Extension of the Vistula River water
in the Gulf of Gdańsk. 16th Conference of Baltic Oceanographers,
September 1988, Kiel, Institute of Marine Research, Kiel University, 290–304.
Cyberski J., Krężel, A.,1993.
Influence of the Vistula river on
suspended matter content in the Gulf of Gdańsk waters. Oceanol. Stud. 64
(3), 27–39.
Damrat, M., Zaborska, A., Zajączkowski, M., , 2013.
Sedimentation from
suspension and sediment accumulation rate in the River Vistula prodelta, Gulf
of Gdańsk (Baltic Sea). Oceanologia, 55 (4), 937–950.
https://doi.org/10.5697/oc.55-4.937
D’Sa, E.J., Ko, D.S., 2008.
Short-term influences on suspended
particulate matter distribution in the Northern Gulf of Mexico: Satellite and
model observations. Sensors, 8, 4249–4264.
https://doi.org/10.3390/s8074249
Eleveld, M.A., van der Wal, D., van Kessel, T., 2014.
Estuarine suspended
particulate matter concentrations from sunsynchronous satellite remote sensing:
Tidal and meteorological effects and biases. Remote Sens. Environ. 143,
2014–215.
https://doi.org/10.1016/j.rse.2013.12.019
Favareto, L.R., Rudorff, N., Kampel, M., Frouin, R., Roettgers, R., Doxaran,
D., Murakami, H., Dupouy, Cecile., 2018.
Bio-Optical Characterization and
Ocean Colour Inversion in the Eastern Lagoon of New Caledonia, South Tropical
Pacific. Remote Sensing. 10 (7), 1043, 30 pp.
https://doi.org/10.3390/rs10071043
Ferrari, G.M., Tassan, S., 1992.
Evaluation of the influence of yellow
substance absorption on the remote sensing of water quality in the Gulf of
Naples: a case study. Int. J. Remote Sens., 13, 2177–2189.
Harvey, E.T., Walve, J., Andersson ,A., Karlson, B. Kratzer, S., 2019.
The
Effect of Optical Properties on Secchi Depth and Implications for
Eutrophication Management. Front. Mar. Sci. 5, 496.
https://doi.org/10.3389/fmars.2018.00496
Jaanus, A., Toming, K., Hallfors, S., Kaljurand, K., Lips, I., 2009.
Potential phytoplankton indicator species for monitoring Baltic coastal
waters in the summer period. Hydrobiologia, 629, 157–168.
https://doi.org/10.1007/s10750-009-9768-y
Kahru, M., Elmgren, R., 2014.
Multidecadal time series of
satellite-detected accumulations of cyanobacteria in the Baltic Sea.
Biogeosci. 11, 3619–3633.
https://doi.org/10.5194/bg-11-3619-2014
Kahru, M., Elmgren, R., Kaiser, J., Wasmund, N., Savchuk, O., 2020.
Cyanobacterial blooms in the Baltic Sea: Correlations with environmental
factors. Harmful Algae 92.
https://doi.org/10.1016/j.hal.2019.101739
Kalbarczyk, R. , Kalbarczyk., E., 2022.
Research into Meteorological
Drought in Poland during the Growing Season from 1951 to 2020 Using the
Standardized Precipitation Index. Agronomy 12 (9), 2035.
https://doi.org/10.3390/agronomy12092035
Konik, M., Bradtke, K., Stoń-Egiert, J., Soja-Woźniak, M.,
Śliwińska-Wilczewska, S., Darecki, M., 2023.
Cyanobacteria Index as a
Tool for the Satellite Detection of Cyanobacteria Blooms in the Baltic
Sea. Remote Sens. 15, 1601.
https://doi.org/10.3390/rs15061601
Kowalczuk, P., 1999.
Seasonal variability of yellow substance absorption in
the surface layer of the Baltic Sea. J. Geophys. Res. 104 (C12),
30,047–30,058.
Kowalczuk, P., 2001.
Light absorption by yellow substances in Baltic
Sea. Ph. D. Thesis, Institute of Oceanology Polish Academy of Sciences,
(in Polish).
Kowalczuk, P., Kaczmarek, S., 1996.
Analysis of temporal and spatial
variability of “yellow substance” absorption in the Southern Baltic.
Oceanologia 38 (1), 3–32.
Kowalczuk, P., Stedmon, C.A., Markager, S., 2006.
Modeling absorption by
CDOM in the Baltic Sea from season, salinity and chlorophyll. Mar. Chem.
101 (1–2), 1–11.
https://doi.org/10.1016/j.marchem.2005.12.005
Kowalczuk, P., Olszewski, J., Darecki, M., Kaczmarek, S., 2005a.
Empirical
relationships between coloured dissolved organic matter (CDOM) absorption and
apparent optical properties in Baltic Sea waters. Int. J. Remote Sens. 26
(2), 345–370.
Kowalczuk, P., Stoń-Egiert, J., Cooper, W.J., Whitehead, R.F., Durako, M.J.,
2005b.
Characterization of chromophoric dissolved organic matter (CDOM) in
the Baltic Sea by excitation emission matrix fluorescence spectroscopy.
Mar. Chem. 96, 273–292.
Kowalczuk, P., Sagan, S., Zabłocka, M., Borzycka, K., 2015.
Mixing anomaly
in deoxygenated Baltic Sea deeps indicates benthic flux and microbial
transformation of chromophoric and fluorescent dissolved organic matter.
Estuar. Coast. Shelf S. 163, 206–217.
https://doi.org/10.1016/j.ecss.2015.06.027
Kowalczuk, P., Sagan, S., Olszewski, J., Darecki, M., Hapter, R., 1999.
Seasonal changes in selected optical parameters in the Pomeranian Bay in
1996–1997. Oceanologia 41(3), 309–334.
Kratzer, S., Moore, G., 2018.
Inherent Optical Properties of the Baltic Sea
in Comparison to Other Seas and Oceans. Remote Sens. 10 (3), 418.
https://doi.org/10.3390/rs10030418
Kyryliuk, D., Kratzer, S., 2019.
Summer Distribution of Total Suspended
Matter Across the Baltic Sea. Front. Mar. Sci. 5, 504.
https://doi.org/10.3389/fmars.2018.00504
Lee, Z., Carder, K.L., Arnone, R.A., 2002.
Deriving inherent optical
properties from water color: a multiband quasianalytical algorithm for
optically deep waters. Appl. Optics 41 (27), 5755–5772.
http://doi.org/10.1364/AO.41.005755
Łotocka, M., Falkowski L., 1994.
The composition of pigments in relation
to seasonal blooms of phytoplankton in the Gulf of Gdańsk. Stud. Mater.
Oceanol. 67 (10), 65–72.
Magnuszewski, A., Soczyńska, U., 2001.
International dictionary of
hydrology. Wyd. Nauk. PWN, Warsaw (in Polish).
Matciak, M., Nowacki, J., 1995.
The Vistula river discharge front –
surface observations. Oceanologia 37 (1), 75–88.
Meler, J., Litwicka, D., Zabłocka, M., 2023.
Variability of light
absorption coefficients by different size fractions of suspensions in the
southern Baltic Sea, Biogeosciences, 20, 2525–2551.
https://doi.org/10.5194/bg-20-2525-2023
Meler, J., Kowalczuk, P., Ostrowska, M., Ficek, D., Zabłocka, M., Zdun, A.,
2016a.
Parameterization of the light absorption properties of chromophoric
dissolved organic matter in the Baltic Sea and Pomeranian Lakes. Ocean
Sci. 12, 1013–1032.
https://doi.org/10.5194/os-12-1013-2016
Meler, J., Ostrowska, M., Stoń-Egiert, J., 2016b.
Seasonal and spatial
variability of phytoplankton and non-algal absorption in the surface layer of
the Baltic. Estuar. Coast. Shelf S. 180, 123–135.
https://doi.org/10.1016/j.ecss.2016.06.012
Meler, J., Ostrowska, M., Stoń-Egiert, J., Zabłocka, M., 2017.
Seasonal
and spatial variability of light absorption by suspended particles in the
southern Baltic: a mathematical description. J. Mar. Sys. 170, 68–87.
https://doi.org/10.1016/j.jmarsys.2016.10.011
Meler, J., Stoń-Egiert, J., Woźniak, S.B., 2018
. Parameterization of
phytoplankton spectral absorption coefficients in the Baltic Sea: general,
monthly and two-component variants of approximation formulas. Ocean Sci.
14, 1523–1545. https://doi.org/10.5194/os-14-1523-2018
Meler, J., Woźniak, S.B., Stoń-Egiert, J., 2020
. Comparison of methods
for indirectly estimating the phytoplankton population size structure and their
preliminary modifications adapted to the specific conditions of the Baltic
Sea. J. Mar. Syst. 212, 103446.
https://doi.org/10.1016/j.jmarsys.2020.103446
Olenina, I., Hajdu, S., Andersson, A., Edler, L., Wasmund, N., Busch, S.,
Göbel, J., Gromisz, S., Huseby, S., Huttunen, M., Jaanus, A., Kokkonen, P.,
Ledaine, I., Niemkiewicz, E., 2006.
Biovolumes and size-classes of
phytoplankton in the Baltic Sea. Baltic Sea Environment Proc, (Helsinki
Commission, Helsinki) 106, 1–144.
Olszewski, J., Sagan, S., Darecki, M., 1992.
Spatial and temporal changes
in some optical parameters in the southern Baltic. Oceanologia 33,
87–103.
Pearlman, S.R., Costa, H.S., Jung, R.A., McKeown, J.J., Pearson, H.E., 1995.
Solids (section 2540). [In:] Eaton, A.D., Clesceri, L.S., Greenberg, A.E.
(Eds.),
Standard Methods for the Examination of Water and Wastewater.
Am. Public Health Assoc., Washington, D.C., 2-53–2-64.
Pliński, M., 1995.
Phytoplankton of the Gulf of Gdańsk in 1992 and
1993. Oceanologia 37 (1), 123–135. Rowan K.S., 1989. Photosynthetic
pigments of algae. Cambridge Univ. Press, New York, 334 pp.
Sagan, S., 1991.
Light Transmission in the Waters of the Southern Baltic
Sea. Diss. Monogr., 2/1991, Institute of Oceanology Polish Academy of
Sciences, Sopot, 149 pp. (in Polish).
Sagan, S., 2008.
The inherit water optical properties of Baltic
waters. Diss. Monogr. 21/2008. Institute of Oceanology Polish Academy of
Sciences, 242 pp. (in Polish).
Saniewska D., Bełdowska M., Bełdowski J., Jędruch A., Saniewski M.,
Falkowska L., 2014.
Mercury loads into the sea associated with extreme
flood. Environ. Pollut. 191, 93–100.
Siegel, D.A., Maritorena, S., Nelson, N.B., Behrenfeld, M.J., McClain, C.R.,
2005.
Colored dissolved organic matter and its influence on the
satellite-based characterization of the ocean biosphere. Geophys. Res.
Lett., 32, L20605.
https://doi.org/10.1029/2005GL024310
Simis, S., Ylöstalo, P., Kallio, K., Spilling, K., Kutser, T., 2017.
Contrasting seasonality in optical-biogeochemical properties of the Baltic
Sea. PLoS ONE 12 (4), e0173357.
http://doi.org/10.1371/journal.pone.0173357
Soja-Woźniak, M., Craig, S., Kratzer, S., Wojtasiewicz, B., Darecki, M.,
Jones, T., 2017.
Am Novel Statistical Approach for Ocean Colour Estimation
of Inherent Optical Properties and Cyanobacteria Abundance in Optically Complex
Waters. Remote Sens. 9, 343.
http://doi.org/10.3390/rs9040343
Stedmon, C.A. Markager, S., 2001.
The optics of chromophoric dissolved
organic matter (CDOM) in the Greenland Sea: An algorithm for differentiation
between marine and terrestrially derived organic matter. Limnol. Oceanogr.
46, 2087–2093.
Stedmon, C.A., Markager, S., Kaas, H., 2000.
Optical properties and
signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal
waters. Estuar. Coast. Shelf Sci. 51, 267–278.
Stoń, J., Kosakowska, A., 2002.
Phytoplankton pigments designation – an
application of RP-HPLC in qualitative and quantitative analysis. J. Appl.
Phycol., 14, 205–210.
Stoń-Egiert, J., Kosakowska, A., 2005.
RP-HPLC determination of
phytoplankton pigments – comparison of calibration results for two
columns. Mar. Biol., 147 (1), 251–260.
Stoń-Egiert, J., 2008.
Main environmental conditions of the composition
and resources of phytoplankton pigments in the Baltic Sea waters. Ph.D.
Thesis, Institute of Oceanology Polish Academy of Sciences, Sopot, (in Polish).
Stoń-Egiert, J., Łotocka, M., Ostrowska, M., Kosakowska, A., 2010.
The
influence of biotic factors on phytoplankton pigment composition and resources
in Baltic ecosystems: new analytical results. Oceanologia 52 (1),
101–125.
https://doi.org/10.5697/oc.52-1.101
Stoń-Egiert, J., Ostrowska, M., 2022.
Long-term changes in phytoplankton
pigment contents in the Baltic Sea: Trends and spatial variability during 20
years of investigations. Cont. Shelf Res. 236, 104666.
https://doi.org/10.1016/j.csr.2022.104666
Stramski, D., Reynolds R.I., Kaczmarek, S., Uitz, J., Zheng, G., 2015.
Correction of pathlength amplification in the filter-pad technique for
measurements of particulate absorption coefficient in the visible spectral
region. Applied Optics 54 (22), 6763–6782.
https://doi.org/10.1364/AO.54.006763
Szydłowski, M., Gulshad, K., Mustafa, A.M., Szpakowski, W., 2023.
The
impact of hydrological research, municipal authorities, and residents on
rainwater management in Gdańsk (Poland) in the process of adapting the city to
climate change. Acta Sci. Pol., Formatio Circumiectus, 22 (3), 59–71.
http://doi.org/10.15576/ASP.FC/2023.22.3.11
Szymczak, E., Burska, D., 2019.
Distribution of Suspended Sediment in the
Gulf of Gdańsk off the Vistula River mouth (Baltic Sea, Poland). IOP
Conf. Ser.: Earth Environ. Sci. 221, 012053.
Tassan, S., Ferrari, G.M., 1995.
An alternative approach to absorption
measurements of aquatic particles retained on filters. Limnol. Oceanogr.
40 (8), 1358–1368.
Tassan, S., Ferrari, G.M., 2002.
A sensitivity analysis of the
‘transmittance-reflectance’ method for measuring light absorption by
aquatic particles. J. Plankton Res. 24 (8), 757–774.
https://doi.org/10.1093/plankt/24.8.757
Thamm, R., Schernewski, G., Wasmund, N., Neumann, T., 2004.
Spatial
phytoplankton pattern in the Baltic Sea. [In:] Schernewski,
G.,Wielgat.Warnemünde, M. (Eds.), Baltic Sea Typology, Coastline Rep. 4, EUCC
– The Coastal Union, Die Küsten Union Deutschlands e.V., 85–109.
Vodacek, A., Blough, N.V., DeGrandpre, M.D., Peltzer, E.T., Nelson, R.K., 1997.
Seasonal variation of CDOM and DOC in the middle Atlantic Bight:
terrestrial inputs and photooxidation. Limnol. Oceanogr. 42 (2),
674–686.
Wasmund, N., Uhlig, S., 2003.
Phytoplankton in large river plumes in the
Baltic Sea. ICES J. Mar. Sci. 56, 23–32.
Wasmund, N., Breuel, G., Edler, L., Kuosa, H., Olsonen, R., Schultz, H.,
Pys-Wolska, M., Wrzołek, L., 1996.
Pelagic biology. Third Periodic
Assessment of the State of Marine Environment of the Baltic Sea.
1989–1993, Background document, Baltic Sea Environ. Proc. No. 64B, Helsinki
Commission, 89–93.
Wasmund, N., Andrushaitis, A., Łysiak-Pastuszak, E., Müller-Karulis, B.,
Nausch, G., Neumann, T., Ojaveer, H., Olenina, I., Postel, L., Witek, Z., 2001.
Trophic status of the south-eastern Baltic Sea: a comparison of coastal and
open areas. Estuar. Coast. Shelf Sci. 53 (6), 849–864.
Witek, B., Pliński, M., 1998.
Occurrence of blue-green algae in the
phytoplankton of the Gulf of Gdańsk in the years 1994–1997.
Oceanological Stud. 3, 77–82.
Woźniak, S.B., Meler, J., 2020.
Modelling Water Colour Characteristics in
an Optically Complex Nearshore Environment in the Baltic Sea; Quantitative
Interpretation of the Forel-Ule Scale and Algorithms for the Remote Estimation
of Seawater Composition. Remote Sens., 12, 2852.
https://doi.org/10.3390/rs12172852
Woźniak, S.B., Meler, J., Lednicka, B., Zdun, A., Stoń-Egiert, J.,
2011
. Inherent optical properties of suspended particulate matter in the
southern Baltic Sea. Oceanologia. 53 (3), 691–729.
https://doi.org/10.5697/oc.53-3.691
Woźniak, S.B., Sagan, S., Zabłocka, M., Stoń-Egiert, J., Borzycka, K.,
2018
. Light scattering and backscattering by particles suspended in the
Baltic Sea in relation to the mass concentration of particles and the
proportions of their organic and inorganic fractions. J. Marine Syst. 182,
79–96.
https://doi.org/10.1016/j.jmarsys.2017.12.005
Woźniak, S.B., Meler, J., Stoń-Egiert, J., 2022
. Inherent optical
properties of suspended particulate matter in the southern Baltic Sea in
relation to the concentration, composition and characteristics of the particle
size distribution; new forms of multicomponent parameterizations of optical
properties. J. Marine Syst. 229, 10372.
https://doi.org/10.1016/j.jmarsys.2022.103720
Wright, L.D., 1978.
River Deltas, [In:] R.A. Davis (Ed.), Coastal
Sedimentary Environments, Springer, New York, 5–68.
Wright, S.W., Jeffrey, S.W., Mantoura, R.F.C., Llewellyn, C.A., Bjørnland, T.,
Repeta, D., Welschmeyer, N., 1991.
Improved HPLC method for the analysis of
chlorophylls and carotenoids from marine phytoplankton. Mar. Ecol.- Prog.
Ser., 77, 183–196.
Zlinszky, A., Padányi-Gulyás, G., 2020.
Ulyssys Water Quality Viewer: a
satellite-based global near real time water quality visualization, EGU
General Assembly 2020, Online, 4–8 May 2020, EGU2020-18256.
https://doi.org/10.5194/egusphere-egu2020-18256
Oceanic Response to Super Typhoon Based on Simulation by FVCOM and SWAN
Oceanologia, 67 (3)/2025, 67307, 20 pp.
https://doi.org/10.5697/MUOD6431
Lu Liu1, Yuyi Hu1 Weizeng Shao1,*, Ru Yao1, Guanyin Lin2, Weili Wang3
1College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
e-mail: wzshao@shou.edu.cn (W. Shao )
2South China Sea Survey Center, Ministry of Natural Resources, Guangzhou, China
3Hainan Observation and Research Station of Ecological Environment and Fishery Resource in Yazhou Bay, Hainan Institute of Zhejiang University, Sanya, China
*corresponding author
Keywords: Wave; FVCOM; SWAN; Super typhoon
Received: Received: 2 December 2024; revised: 19 May 2025; accepted: 18 August 2025.
Highlights
- Oceanic dynamics simulation by FVCOM and SWAN
- Influence of sea surface current and sea level on wave simulation
- Asymmetry of wind and waves during super typhoons
- Sea surface temperature cooling during super typhoons
Abstract
The South China Sea is a region frequently impacted by intense tropical cyclones (TCs). Recent super typhoons such as Yagi (2024), Haikui (2023), Saola (2023), Doksuri (2023), and Koinu (2023) have caused catastrophic damage. This study primarily investigates the oceanic response to westward-moving super typhoons. The cyclonic wind field is reconstructed based on reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF), and the TC wind speed derived from measurements of five moored buoys shows a 4.01 m/s root mean squared error (RMSE), a 0.90 Pearson’s correlation (Cor), and a 0.48 scatter index (SI). A triangular-grid-based numerical circulation mode, namely the Finite-Volume Community Ocean Model (FVCOM), is employed to simulate sea surface currents and sea levels. The reconstructed TC winds act as the forcing field, and the FVCOM-simulated sea surface currents and sea levels are then incorporated into wave simulations conducted with the Simulating WAves Nearshore (SWAN) model. It
is found that the hindcasting significant wave heights (SWHs) are most consistent with measurements from moored buoys when current and sea level are included, and this phenomenon is particularly significant around the Taiwan Strait. Two parameterizations of the drag coefficient Cd, i.e., the Cd by Wu (1982) and the Cd by Hu et al. (2024), are used in SWAN. The improved Cd shows a clear advantage when SWH > 3 m, resulting in a reduction of over-estimation and an increase in SWH accuracy by 0.6 m. Wind and SWH exhibit opposing asymmetry trends due to swell influence. Along super typhoon tracks, sea surface temperature (SST) cooling reaches a maximum of 4°C; however, the Kuroshio Current and Zhejiang-Fujian Coastal Current mitigate this cooling, reducing it by approximately 1°C. These findings offer significant implications for understanding super typhoon responses to ocean dynamics and provide critical insights for enhancing disaster resilience strategies during extreme weather events.
References
Boutin, J., Etcheto, J., 1990.
Seasat scatterometer versus scanning
multichannel microwave radiometer wind speeds: A comparison on a global
scale. J. Geophys. Res. 95 (12), 22275–22288.
https://doi.org/10.1029/JC095iC12p22275
Balmaseda, M.A., Vidard, A., Anderson, D.L.T., 2008.
The ECMWF ocean
analysis system: ORA-S3. Mon. Weather Rev. 136 (8), 3018–3033.
https://doi.org/10.1175/2008MWR2433.1
Bi, F., Song, J.B., Wu, K.J., Xu, Y., 2015.
Evaluation of the simulation
capability of the Wavewatch III model for the Pacific Ocean wave. Acta
Oceanol. Sin. 34 (9), 43–57.
https://doi.org/10.1007/s13131-015-0737-1
Booij, N., Ris, R.C., Holthuijsen, L.H., 1999.
A third-generation wave
model for coastal regions: 1. Model description and validation. J.
Geophys. Res.-Oceans 104 (C4), 7649–7666.
https://doi.org/10.1029/98JC02622
Chen, C.S., Liu, H., Beardsley, R.C., 2003.
An unstructured, finite-volume,
three-dimensional, primitive equation ocean model: Application to coastal ocean
and estuaries. J. Atmos. Ocean. Technol. 20 (1), 159–186.
https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
Chen, Y., Chen, L., Zhang, H., Gong, W.P., 2019.
Effects of wave-current
interaction on the Pearl River Estuary during Typhoon Hato. Estuar. Coast.
Shelf S. 228 (11), 106364.
https://doi.org/10.1016/j.ecss.2019.106364
Chen, J.L., Hao, M.Y., Shao, W.Z., Marino, A., Hu, Y.Y., Song, X.G., 2024.
Validation of wind speed retrieval from HY-2B calibration microwave
radiometer data during tropical cyclones. Remote Sens. Lett. 15 (7),
700–708.
https://doi.org/10.1080/2150704X.2024.2368926
Elfouhaily, T., Chapron, B., Katsaros, K., 1997.
A unified directional
spectrum for long and short wind-driven waves. J. Geophys.
Res.-Atmospheres, 102 (C7), 15781–15769.
https://doi.org/10.1029/97JC00467
Foli, B.A.K., Appeaning Addo, K., Ansong, J.K., Wiafe, G., 2022.
Evaluation
of ECMWF and NCEP reanalysis wind fields for long-term historical analysis and
ocean wave modelling in West Africa. Remote Sens. Earth Syst. Sci. 5 (6),
26–45.
https://doi.org/10.1007/s41976-021-00052-3
Guan, S.D., and Coauthors, 2024.
Ocean internal tides suppress tropical
cyclones in the South China Sea. Nat. Commun. 15 (5), 3903.
https://doi.org/10.1038/s41467-024-48003-y
Hao, M.Y., Shao, W.Z., Shi, S., Liu, X., Hu, Y.Y., Zuo, J.C., 2023.
Validation of Surface Waves Investigation and Monitoring data against
simulation by Simulating Waves Nearshore and wave retrieval from Gaofen-3
synthetic aperture radar image. Remote Sens. 15 (18), 4402.
https://doi.org/10.3390/rs15184402
Hauser, D., Tison, C., Amiot, T., Delaye, L., Corcoral, N., Castillan, P.,
2017.
SWIM: The first spaceborne wave scat- terometer. IEEE Trans.
Geosci. Remote Sens. 55 (5), 3000–3014.
https://doi.org/10.1109/TGRS.2017.2658672
Hersbach, H., 2010.
Comparison of C-Band scatterometer CMOD5 equivalent
neutral winds with ECMWF. J. Atmos. Ocean. Technol. 27 (4), 721–736.
https://doi.org/10.1175/2009JTECHO698.1
Holthuijsen, L., 2001.
The continued development of the third-generation
shallow water wave model ‘SWAN’. Tu Delft Dep. Hydraul. Eng. 32, 185–186.
Hu, Y.Y., Shao, W.Z., Wei, Y.L., Zuo, J.C. 2021.
Analysis of
typhoon-induced waves along typhoon tracks in the western north Pacific
Ocean, 1998–2017. J. Mar. Sci. Eng. 8 (7), 521.
https://doi.org/10.3390/jmse8070521
Hu, Y.Y., Shao, W.Z., Xu, Y., Zou, Q.P., Jiang, X.W., 2024.
Improvement of
drag coefficient parameterization of WAVE-WATCH-III using remotely sensed
products during tropical cyclones. Ocean Dynam. 74 (9), 843–858.
https://doi.org/10.1007/s10236-024-01638-3
Huang, J.C., Ma, Z.H., Zhao, H.K., Fei, J.F., Chen, L.H. 2024.
Increase in
Western North Pacific tropical cyclone intensification rates and their
northwestward shifts. Atmos. Res. 301 (5), 107292.
https://doi.org/10.1016/j.atmosres.2024.107292
Kalourazi, M.Y., Siadatmousavi, S.M., Yeganeh-Bakhtiary, A., Jose, F., 2020.
Simulating tropical storms in the Gulf of Mexico using analytical
models. Oceanologia 62 (2), 173–189.
https://doi.org/10.1016/j.oceano.2019.11.001
Lai, Z.Z., Hao, M.Y., Shao, W.Z., Shen, W., Hu, Y.Y., Jiang, X.W., 2023.
Wind field reconstruction based on dualpolarized synthetic aperture radar
during a tropical cyclone. Eur. J. Remote Sens. 56, 2273867.
https://doi.org/10.1080/22797254.2023.2273867
Li, X.H., Yang, J.S., Han, G.Q., Ren, L., Zheng, G., Chen, P., Zhang, H., 2022.
Tropical cyclone wind field reconstruction and validation using
measurements from SFMR and SMAP radiometer. Remote Sens. 14 (16), 3929.
https://doi.org/10.3390/rs14163929
Lin, I.I., Pun, I.F., Wu, C.C., 2009.
Upper-Ocean thermal structure and the
Western North Pacific category 5 typhoons. Part II: dependence on
translation speed. Mon. Weather Rev. 137 (11), 3744–3757.
https://doi.org/10.1175/2009MWR2713.1
Liu, Y.H., Guan, H.D., Lin, I.I., Zhao, W., Jin, F.F., Liu, P., J. Tian, J.W.,
2025.
Storm size modulates tropical cyclone intensification through an
oceanic pathway in global oceans. J. Climate 38 (4), 891–908.
https://doi.org/10.1175/JCLI-D-24-0398.1
Mei, W., Pasquero, C., 2013.
Spatial and temporal characterization of sea
surface temperature response to tropical cyclones. J. Climate 26 (11),
3745-3765.
https://doi.org/10.1175/JCLI-D-12-00125.1
Meissner, T., Ricciardulli, L., Wentz, F., 2017.
The capability of the SMAP
mission to measure ocean surface winds in storms. B. Am. Meteorol. Soc. 98
(8), 1660–1677.
https://doi.org/10.1175/BAMS-D-16-0052.1
Mellor, G.L., Yamada, T., 1982.
Development of a turbulence closure model
for geophysical fluid problems. Rev. Geophys. 20 (4), 851–875.
https://doi.org/10.1029/RG020i004p00851
Morozov, E.G., Velarde, M.G., 2008.
Inertial oscillations as a deep ocean
response to hurricanes. J. Oceangr. 64 (8), 495–509.
https://doi.org/10.1007/s10872-008-0042-0
Mouche, A.A., Chapron, B., Zhang, B., Husson, R., 2017.
Combined co and
cross-polarized SAR measurements under extreme wind conditions. IEEE
Trans. Geosci. Remote Sens. 55 (12), 6476–6755.
https://doi.org/10.1109/TGRS.2017.2732508
Nittis, K., Perivoliotis, L., Korres, G., Tziavos, C., Thanos, I., 2006.
Operational monitoring and forecasting for marine environmental
applications in the Aegean Sea. Environ. Modell. Softw. 21 (2), 243–257.
https://doi.org/10.1016/j.envsoft.2004.04.023
Rogers, W.E., Hwang, P., Wang, W.D., 2003.
Investigation of wave growth and
decay in the SWAN model: Three regional-scale applications. J. Phys.
Oceanogr. 33 (2), 366–389.
https://doi.org/10.1175/1520-0485(2003)033<0366:IOWGAD>2.0.CO;2
Shao, W.Z., Chen, J.L, Hu, S., Yang, Y.Q., Jiang, X.W., Shen, W., Li, H.,
2024b.
Influence of sea surface waves on numerical modeling of an oil
spill: Revisit of Symphony Wheel accident. J Sea Res. 201 (10), 102529.
https://doi.org/10.1016/j.seares.2024.102529
Shao, W.Z., Hu, Y.Y., Lai, Z.Z., Zhang, Y.G., Jiang, W.W., 2023.
Rain rate
retrieval algorithm for dual-polarized Sentinel- 1 SAR in tropical
cyclones. IEEE Remote Sens. Lett. 20, 4011405.
https://doi.org/10.1109/LGRS.2023.3320351
Shao, W.Z., Hu, Y.Y., Migliaccio, M., Marino, A., Jiang, X.W., 2024a.
Machine learning-based algorithm for SAR wave parameters retrieval during a
tropical cyclone. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 17,
15166–15177.
https://doi.org/10.1109/JSTARS.2024.3445129
Shao, W.Z., Jiang, T., Jiang, X.W., Zhang, Y.G., Zhou, W., 2021.
Evaluation
of sea surface winds and waves retrieved from the Chinese HY-2B data. IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens. 14, 9624–9635.
https://doi.org/10.1109/JSTARS.2021.3112760
Shao, W.Z., Jiang, X.W., Sun, Z.F., Hu, Y.Y., Marino, A., Zhang, Y.G., 2022.
Evaluation of wave retrieval for Chinese Gaofen-3 synthetic aperture
radar. Geo-spat. Inf. Sci. 25 (2), 229–243.
https://doi.org/10.1080/10095020.2021.2012531
Shen, H., Perrie, W., He, Y.J., Liu, G., 2014.
Wind speed retrieval from VH
dual-polarization RADARSAT-2 SAR images. IEEE Trans. Geosci. Remote Sens.
52 (9), 5820–5826.
https://doi.org/10.1109/TGRS.2013.2293143
Shi, J., Shao, W.Z., Shi, S.H., Hu, Y.Y., Jiang, T., Zhang, Y.G., 2023.
Can
sea surface waves be simulated by numerical wave models using the fusion data
from remote-sensed winds? Remote Sens. 15 (15), 3825.
https://doi.org/10.3390/rs15153825
Steele, K., Lau, J., Hsu, Y.H., 1985.
Theory and application of calibration
techniques for an NDBC directional wave measurement buoy. IEEE J. Oceanic
Eng. 10 (4), 382–396.
https://doi.org/10.1109/JOE.1985.1145116
Stepanov, V.N., Haines, K., 2014.
Mechanisms of Atlantic meridional
overturning circulation variability simulated by the NEMO model. Ocean
Sci. 10 (4), 645–656. h
ttps://doi.org/10.5194/os-10-645-2014
Stopa, J.E., Cheung, K.F., 2014.
Intercomparison of wind and wave data from
the ECMWF reanalysis interim and the NCEP climate forecast system
reanalysis. Ocean Model. 75 (3), 65–83.
https://doi.org/10.1016/j.ocemod.2013.12.006
Tolman, L., 1991.
A third-generation model for wind waves on slowly
varying, unsteady, and inhomogeneous depths and currents. J. Phys.
Oceanogr. 21 (6), 782–797.
https://doi.org/10.1175/1520-0485(1991)021<0782:ATGMFW>2.0.CO;2
Vickers, D., Mahrt, L., Andreas, E.L., 2013.
Estimates of the 10-m neutral
sea surface drag coefficient from aircraft eddy covariance measurements.
J. Phys. Oceanogr. 43(2), 301–310.
https://doi.org/10.1175/JPO-D-12-0101.1
Vogelzang, J., Stoffelen, A., 2017.
ASCAT ultrahigh-resolution wind products on optimized grids. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 10 (5), 2332–2339.
https://doi.org/10.1109/JSTARS.2016.2623861
Wang, Q.H., Shi, J., Xia, J.M., Han, K.F., Xiao, W.B., Zhang, W.J., Wang, H.D.,
Lv, J.L., 2023.
Influence of wave-induced radiation stress on upper-layer
ocean temperature during typhoons. Remote Sens. 15 (9), 2442.
https://doi.org/10.3390/rs15092442
Wei, H., Hainbucher, D., Pohlmann, T., Feng, S., Suendermann, J., 2004.
Tidal-induced Lagrangian and Eulerian mean circulation in the Bohai
Sea. J. Marine Syst. 44(3–4), 141–151.
https://doi.org/10.1016/j.jmarsys.2003.09.007
Wei, M., Shao, W.Z., Shen, W., Hu, Y.Y., Zhang, Y., Zuo, J.C., 2024.
Contribution of surface waves to sea surface temperatures in the Arctic
Ocean. J. Ocean Univ. China 23(10), 1151–1162.
https://doi.org/10.1007/s11802-024-5797-4
Weisberg, R.H., Zheng, L., 2008.
Hurricane storm surge simulations
comparing three-dimensional with two-dimensional formulations based on an
Ivan-like storm over the Tampa Bay, Florida Region. J. Geophys.
Res.-Oceans 113 (12), C12001.
https://doi.org/10.1029/2008JC005115
Wentz, F.J., 1992.
Measurement of oceanic wind vector using satellite
microwave radiometers. IEEE Trans. Geosci. Remote Sens. 30 (5), 960–972.
https://doi.org/10.1109/36.175331
Wu, J., 1982.
Wind-stress coefficients over the sea surface from breeze to
hurricane. J. Geophys. Res-Oceans 87 (C12), 9704–9706.
https://doi.org/10.1029/JC087iC12p09704
Wu, R.H., Zhang, H., Chen, D.K., 2020.
Effect of Typhoon Kalmaegi (2014) on
the northern South China Sea explored using multi-platform satellite and buoy
observations data. Prog. Oceanogr. 180 (1), 102218.
https://doi.org/10.1016/j.pocean.2019.102218
Yang, B., Hou, Y.J., Li, M., 2019.
Response of the western North Pacific
subtropical ocean to the slow-moving Super Typhoon Nanmadol. J. Oceanol.
Limnol. 37 (5), 938–956.
https://doi.org/10.1007/s00343-019-8114-0
Yao, F.C., Johns, W.E., 2010.
A HYCOM modeling study of the Persian Gulf:
1. Model configurations and surface circulation. J. Geophys. Res.-Oceans.
115 (C11), C11017.
https://doi.org/10.1029/2009JC005781
Yao, R., Shao, W.Z., Hao, M.Y., Zuo, J.C. Hu, S., 2023.
The response of
waves to the sea surface temperature in the context of global change.
Remote Sens. 15 (7), 1948.
Zhang, Z.X., Qi, Y.Q., Shi, P., Li, C.W., Li, Y., 2003.
Preliminary study
on assimilation of significant wave heights from T/P altimeter. Acta
Oceanol. Sin. 25 (5), 21–28.
http://hdl.handle.net/10397/68190
Zheng, P., Li, M., van der A, D.A., van der Zanden, J., Wolf, J., Chen, X.,
Wang, C.X., 2017.
A 3d unstructured grid nearshore hydrodynamic model based
on the vortex force formalism. Ocean Model. 116 (8), 48–49.
https://doi.org/10.1016/j.ocemod.2017.06.003
Zhou, Y.S., Li, J., Zhang, H., Chen, Z., Zhang, L., Wang, P., 2022.
Internal calibration for airborne X-band DBF-SAR imaging. IEEE Remote
Sens. Lett. 19, 4008105.
https://doi.org/10.1109/LGRS.2020.3047874
Zhou, Y.H., Shao, W.Z., Nunziata, F., Wang, W.L., Li, C., 2024.
An
algorithm to retrieve the range ocean current speed under tropical cyclone
conditions from Sentinel-1 synthetic aperture radar measurements based on
XGBoost. Remote Sens. 16 (17), 3271.
https://doi.org/10.3390/rs16173271
Carbon, nitrogen, and chlorophyll a content of green Noctiluca scintillans in the Upper Gulf of Thailand
Oceanologia, 67 (3)/2025, 7308, 7 pp.
https://doi.org/10.5697/VANQ8296
Masatoshi Nakakuni1,*, Kazuhiko Ichimi1,2, Thaithaworn Lirdwitayaprasit3, Shettapong Meksumpun4, Kuninao Tada1,2
1Seto Inland Sea Regional Research Center, Kagawa University, Kagawa 761–0130, Japan
e-mail: masatoshi.nakakuni@gmail.com (M. Nakakuni)
2Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761–0795, Japan
3Department of Marine Science, Chulalongkorn University, Phyathai Rd., Bangkok 10330, Thailand
4Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
*corresponding author
Keywords: Noctiluca scintillans; Chlorophyll a; Carbon biomass; Southeast Asia
Received: 28 April 2025; revised: 4 August 2025; accepted: 1 September 2025.
Highlights
- Green Noctiluca from Thailand contained 150–556 ng-C and 29–47 ng-N per cell
- Cellular chlorophyll a content averaged 9.80 ng per cell in natural populations
- Green Noctiluca contributed 36–82% to total water column chlorophyll a content
Abstract
Noctiluca scintillans, which is common in coastal waters, significantly affects coastal biomass through bloom formation. This study has measured the cellular carbon, nitrogen, and chlorophyll a (Chl-a) content of natural green Noctiluca from the western Upper Gulf of Thailand. The carbon content ranged from 195–556 ng-C cell−1 (mean: 241 ± 132 ng-C cell−1), while nitrogen content varied between 17–55 ng-N cell−1 (mean: 36 ± 6 ng-N cell−1). Chl-a content averaged 9.80 ± 0.78 ng cell−1. Notably, green Noctiluca exhibited higher carbon content than red Noctiluca of identical cell size, potentially because of their endosymbionts.
References
Ara, K., Nakamura, S., Takahashi, R., Shiomoto, A., Hiromi, J., 2013. Seasonal variability of the red tide-forming het- erotrophic dinoflagellate Noctiluca scintillans in the neritic area of Sagami Bay, Japan: its role in the nutrient-environment and aquatic ecosystem. Plankton and Benthos Res. 8, 9–30.
https://doi.org/10.3800/pbr.8.9
Arashkevich, E.G., Stefanova, K., Bandelj, V., Siokou, I., Terbiyik Kurt, T., Ak Orek, Y., Timofte, F., Timonin, A., Soli doro, C., 2014.
Mesozooplankton in the open Black Sea: Regional and seasonal characteristics. J. Marine Syst. 135, 81–96.
https://doi.org/10.1016/j.jmarsys.2013.07.011
Bisinicu, E., Boicenco, L., Pantea, E., Timofte, F., LazaÌr, L., Vlas,
O., 2024.
Qualitative model of the causal interactions between
phytoplankton, zooplankton, and environmental factors in the romanian Black
Sea. Phycology 4, 168–189.
https://doi.org/10.3390/phycology4010010
Bisinicu, E., Harcota, G.-E., Lazar, L., 2023a.
Interactions between
environmental factors and the mesozooplankton community from the Romanian Black
Sea waters. Turk. J. Zool. 47, 202–215.
https://doi.org/10.55730/1300-0179.3133
Bisinicu, E., LazaÌr, L., Timofte, F., 2023b.
Dynamics of
zooplankton along the romanian Black Sea coastline: temporal variation,
community structure, and environmental drivers. Diversity 15, 1024.
https://doi.org/10.3390/d15091024
Buranapratheprat, A., Morimoto, A., Phromkot, P., Mino, Y., Gunbua, V.,
Jintasaeranee, P., 2021.
Eutrophication and hypoxia in the upper Gulf of
Thailand. J. Oceanogr. 77, 831–841.
https://doi.org/10.1007/s10872-021-00609-2
do Rosário Gomes, H., Goes, J.I., Matondkar, S.G.P., Buskey, E.J., Basu,
S., Parab, S., Thoppil, P., 2014.
Massive outbreaks of Noctiluca
scintillans blooms in the Arabian Sea due to spread of hypoxia. Nature
Comm. 5, 4862.
https://doi.org/10.1038/ncomms5862
Furuya, K., Kozono, K., Yasuda, M., Omura, T., Borja, V. M., Lirdwitayaprasit,
T., 2023.
Temperature as a factor controlling geographical distribution of
green Noctiluca scintillans in Southeast Asia. J. Plankton Res. 45,
478–484.
https://doi.org/10.1093/plankt/fbad015
Furuya, K., Saito, H., Sriwoon, R., Omura, T., Furio, E.E., Borja, V.M.,
Lirdwitayaprasit, T., 2006.
Vegetative growth of Noctiluca scintillans
containing the endosymbiont Pedinomonas noctilucae. African J. Mar. Sci.
28, 305–308.
https://doi.org/10.2989/18142320609504167
Gomes, H.d.R., McKee, K., Mile, A., Thandapu, S., Al-Hashmi, K., Jiang, X.,
Goes, J.I., 2018. Influence of light availability and prey type on the
growth and photo-physiological rates of the mixotroph Noctiluca
scintillans. Front. Mar. Sci. 5, 374. https://doi.org/10.3389/fmars.2018.00374
Hallegraeff, G.M., Albinsson, M.E., Dowdney, J., Holmes, A.K., Mansour, M.P.,
Seger, A., 2019. Prey preference, environmental tolerances and
ichthyotoxicity by the red-tide dinoflagellate Noctiluca scintillans cultured
from Tasmanian waters. J. Plankton Res. 41, 407–418. https://doi.org/10.1093/plankt/fbz037
Hansen, P.J., Miranda, L., Azanza, R., 2004. Green Noctiluca scintillans: a
dinoflagellate with its own greenhouse. Mar. Ecol. Prog. Ser. 275,
79–87. https://doi.org/10.3354/meps275079
Harrison, P.J., Furuya, K., Glibert, P.M., Xu, J., Liu, H.B., Yin, K., Lee,
J.H.W., Anderson, D.M., Gowen, R., Al-Azri, A.R., Ho, A.Y.T., 2011.
Geographical distribution of red and green Noctiluca scintillans.
Chinese J. Oceanol. Limnol. 29, 807–831. https://doi.org/10.1007/s00343-011-0510-z
Holm-Hansen, O., Lorenzen, C.J., Holmes, R.W., Strickland, J.D.H., 1965.
Fluorometric determination of chlorophyll. ICES J. Mar. Sci. 30,
3–15. https://doi.org/10.1093/icesjms/30.1.3
Karnan, C., Jyothibabu, R., Arunpandi, N., Jagadeesan, L., Muraleedharan, K.
R., Pratihari, A.K., Balachandran, K.K., Naqvi, S.W.A., 2017.
Discriminating the biophysical impacts of coastal upwelling and mud banks
along the southwest coast of India. J. Marine Syst. 172, 24–42. https://doi.org/10.1016/j.jmarsys.2017.02.012
Kitatsuji, S., Yamaguchi, H., Asahi, T., Ichimi, K., Onitsuka, G., Tada, K.,
2019. Does Noctiluca scintillans end the diatom bloom in coastal
water?, J. Exp. Mar. Biol. Ecol. 510, 10–14. https://doi.org/10.1016/j.jembe.2018.09.006
Luang-on, J., Ishizaka, J., Buranapratheprat, A., Phaksopa, J., Goes, J.I.,
Mauáre, E.d.R., Siswanto, E., Zhu, Y., Xu, Q., Nakornsantiphap, P.,
Kobayashi, H. and Matsumura, S., 2023. MODIS-derived green Noctiluca blooms
in the upper Gulf of Thailand: Algorithm development and seasonal variation
mapping. Front. Mar. Sci. 10. https://doi.org/10.3389/fmars.2023.1031901
Luo, H., Wang, J., Goes, J.I., Gomes, H.d.R., Al-Hashmi, K., Tobias, C.,
Koerting, C., Lin, S., 2022. A grazing-driven positive nutrient feedback
loop and active sexual reproduction underpin widespread Noctiluca green
tides. ISME Comm. 2, 103. https://doi.org/10.1038/s43705-022-00187-4
Miyaguchi, H., Fujiki, T., Kikuchi, T., Kuwahara, V.S., Toda, T., 2006.
Relationship between the bloom of Noctiluca scin- tillans and environmental
factors in the coastal waters of Sagami Bay, Japan. J. Plankton Res. 28,
313–324. https://doi.org/10.1093/plankt/fbi127
Morimoto, A., Mino, Y., Buranapratheprat, A., Kaneda, A., Tong-U-Dom, S.,
Sunthawanic, K., Yu, X., Guo, X., 2021. Hypoxia in the Upper Gulf of
Thailand: Hydrographic observations and modeling. J. Oceanogr. 77,
859–877. https://doi.org/10.1007/s10872-021-00616-3
Nakamura, Y., 1998. Growth and grazing of a large heterotrophic
dinoflagellate, Noctiluca scintillans, in laboratory cultures. J. Plankton
Res. 20, 1711–1720. https://doi.org/10.1093/plankt/20.9.1711
Saito, H., Furuya, K., Lirdwitayaprasit, T., 2006. Photoautotrophic growth
of Noctiluca scintillans with the endosymbiont Pedinomonas noctilucae.
Plankton Benthos Res. 1, 97–101. https://doi.org/10.3800/pbr.1.97
Sriwoon, R., Pholpunthin, P., Lirdwitayaprasit, T., Kishino, M., Furuya, K.,
2008. Population dynamics of green Noctiluca scintillans (Dinophyceae)
associated with the monsoon cycle in the upper Gulf of Thailand. J.
Phycol. 44, 605–615. https://doi.org/10.1111/j.1529-8817.2008.00516.x
Sweeney, B.M., 1971. Laboratory studies of a green Noctiluca from new
guinea. J. Phycol. 7, 53–58. https://doi.org/10.1111/j.1529-8817.1971.tb01478.x
Sweeney, B.M., 1976. Pedinomonas noctilucae (Prasinophyceae), the
flagellate symbiotic in Noctiluca (Dinophyceae) in Southeast Asia. J.
Phycol. 12, 460–464. https://doi.org/10.1111/j.1529-8817.1976.tb02874.x
Tada, K., Pithakpol, S., Montani, S., 2004. Seasonal variation in the
abundance of Noctiluca scintillans in the Seto Inland Sea, Japan. Plankton
Biol. Ecol. 51, 7–14. https://www.plankton.jp/PBE/issue/vol51_1/vol51_1_007.pdf
Tada, K., Pithakpol, S., Yano, R., Montani, S., 2000. Carbon and nitrogen
content of Noctiluca scintillans in the Seto Inland Sea, Japan. J.
Plankton Res. 22, 1203–1211. https://doi.org/10.1093/plankt/22.6.1203
Wang, L., Lin, X., Goes, J.I., Lin, S., 2016. Phylogenetic analyses of
three genes of Pedinomonas noctilucae, the green endosymbiont of the marine
finoflagellate Noctiluca scintillans, reveal its affiliation to the order
Marsupiomonadales (Chlorophyta, Pedinophyceae) under the reinstated name
Protoeuglena noctilucae. Protist 167, 205–216. https://doi.org/10.1016/j.protis.2016.02.005
Watanabe, S., Nakakuni, M., Yamaguchi, H., Ichimi, K., TongU-Dom, S., Morimoto,
A., Ishizuka, M., Tada, K., 2024. Dynamics and horizontal distribution of
Noctiluca scintillans red tides in coastal waters of Harima-Nada, the Seto
Inland Sea. Bull. Coastal Oceanogr. 63 (1), 2024.12.001 (in Japanese with
English abstract). https://doi.org/10.32142/engankaiyo.2024.12.001