Oceanologia No. 56 (4) / 14


Contents


Papers

Communications


Papers



Formation and species composition of stormcast beach wrack in the Gulf of Riga, Baltic Sea
Oceanologia 2014, 56(4), 673-695
http://dx.doi.org/10.5697/oc.56-4.673

Ülo Suursaar*, Kaire Torn, Georg Martin, Kristjan Herkül, Tiit Kullas
Estonian Marine Institute, University of Tartu,
Mäealuse 14, EE–12618 Tallinn, Estonia;
e-mail: ulo.suursaar@ut.ee
*corresponding author

keywords: Beach wrack, waves, currents, storms, hydrodynamic modelling, biodiversity, macrovegetation

Received 25 November 2013, revised 10 April 2014, accepted 23 April 2014.

The study was supported by the EU Life+ project MARMONI "Innovative approaches for marine biodiversity monitoring and assessment of conservation status of nature values in the Baltic Sea", ESF grant No. 8980, Estonian target financed project SF0180104s08 and Institutional research funding IUT2-20 of the Estonian Research Council.

Abstract

The aim of the study was to investigate hydrodynamic effects on the formation of beach wrack at three locations in the northern Baltic Sea and to quantify the differences between the composition of species found in the beach wrack and in the neighbouring sea. Hydrodynamic measurements and modelling indicated that the beach wrack was mostly of local origin and that it was formed during high sea level and wave events. Comparison of the methods of beach wrack sampling and seabed sampling (diver, underwater video) demonstrated that beach wrack sampling can be considered an alternative tool for describing the species composition of macrovegetation in near-coastal sea areas. Although the hydrodynamic variability is greater in autumn and more biological material is cast ashore, the similarity between the two sampling methods was higher in spring and summer.

  References ref

BiberP. D.,2007, Hydrodynamic transportof driftingmacroalgaethrougha tidal cut,Estuar. Coast.Shelf Sci.,74 (3),565-569, http://dx.doi.org/10.1016/j.ecss.2007.04.019

Boller M. L.,CarringtonE.,2006, Insitumeasurements of hydrodynamic forces imposedon ChondruscrispusStackhouse,J. Exp.Mar.Biol. Ecol.,337 (2), 159-170, http://dx.doi.org/10.1016/j.jembe.2006.06.011

Bučas M., DaunysD., Olenin S., 2009, Recentdistributionand stock assessmentof the red alga Furcellarialumbricalison an exposed BalticSea coast:combined use of field survey and modeling methods, Oceanologia,51 (3), 341-359, http://dx.doi.org/10.5697/oc.51-3.359

Clarke K. R., 1993, Non-parametricmultivariate analysis of changes in community structure, Aust. J. Ecol., 18 (1),117-143, http://dx.doi.org/10.1111/j.1442-9993.1993.tb00438.x

ClarkeK. R.,CorleyR. N.,2006,Primer v6.usermanual/tutorial,Primer-E, Plymouth, 192 pp.

ClarkeK. R., WarwickR. M., 2001, Changeinmarinecommunities: an approach to statistical analysis and interpretation, 2nd edn., Primer-E, Plymouth, 0/1-17/18+ App.

Desrochers R. E., AnandM., 2004, Fromtraditional diversity indicesto taxonomic diversity indices, Int. J. Ecol. Environ.Sci., 30, 85-92.

DuganJ. E., Hubbard D. M., McCrarcyM. D., PiersonM. O., 2003, Theresponse of macrofauna communitiesand shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California,Estuar. Coast. Shelf Sci., 58 (S), 25-40.

FilipkowskaA.,LubeckiL.,Szymczak-ŻyłaM.,KowalewskaG.,2009,Factors affecting the occurrence of algae on the Sopot beach (BalticSea), Oceanologia, 51 (2), 233-262, http://dx.doi.org/10.5697/oc.51-2.233

Gonçalves S. C.,MarquesJ. S., 2011, Theeffectsof seasonand wrack subsidy on the community functioning of exposed sandy beaches, Estuar. Coast. Shelf Sci., 95 (1), 165-177, http://dx.doi.org/10.1016/j.ecss.2011.08.036

HeipC., EngelsP., 1974,Comparing species diversity andevenness indices, J. Mar. Biol. Assoc. UK, 54 (03), 559-563, http://dx.doi.org/10.1017/S0025315400022748

HELCOM,2012, Checklistof BalticSea macro-species,Baltic Sea Environ.Proc. No. 130.

HerkülK.,Kotta J.,Pärno jaM.,2011,Effect ofphysicaldisturbanceonthe soft sediment benthic macrophyte and invertebrate community in the northern BalticSea, Boreal Environ. Res., 16 (Suppl.A), 209-219.

Heugel C. A., 1851/52,Bemerkungen und Beiträgezur Florader Ostseeprovinzen, Corr.-bl. Naturforsch. Ver. zu Riga, 5, 113-152.

HeugelC. A.,MüllerC.,1847,Zur Flora derOstseeprovinzen, VII.Corr.-bl. Naturforsch. Ver. zu Riga, 2, 48-50, 69-71.

Imamura G. J., ThompsonR. S., Boehm A. B., Jay J.,2011, Wrackpromotes the persistenceof fecalindicatorbacteria inmarinesandsand seawater, FEMS Microbiol.Ecol.,77 (1),40-49, http://dx.doi.org/10.1111/j.1574-6941.2011.01082.x

Ince R., Hyndes G. A., Lavery P. S., Vanderklift M. A., 2007, Marinemacrophytes directlyenhance abundances ofsandybeach fauna through provisionoffood and habitat, Estuar. Coast.Shelf Sci., 74 (1-2),77-86, http://dx.doi.org/10.1016/j.ecss.2007.03.029

JaagusJ., Suursaar Ü.,2013, Long-termstorminessandsealevel variationson the Estonian coastoftheBalticSeainrelationtolarge-scaleatmospheric circulation, Est. J. Earth Sci., 62 (2), 73-92, http://dx.doi.org/10.3176/earth.2013.07

Jędrzejczak M. F.,2002a, Stranded Zosteramarina L. vs wrack fauna community interactionson a Balticsandy beach (Hel,Poland):a short-term pilot study. Part I. Driftlineeffects of fragmented detritivory,leaching and decay rates, Oceanologia, 44 (2), 273-286.

Jędrzejczak M. F.,2002b, Spatio-temporaldecay'hot spots'ofstranded wrack in a Baltic sandy coastal system. Part I. Comparativestudy of the pattern: 1 type wrack vs 3 beach sites, Oceanologia, 44 (4), 491-512.

Kautsky H., van der MaarelE., 1990, Multivariateapproaches to the variation in phytobenthic communities and environmental vectors in the Baltic Sea, Mar. Ecol.-Prog.Ser.,60 (1-2),169-184, http://dx.doi.org/10.3354/meps060169

Kautsky H., Martin G., Mäkinen A., BorgielM., Vahteri P., Rissanen J., 1999,Structureofphytobenthicandassociatedanimalcommunitiesinthe GulfofRiga,Hydrobiologia,393 (0),191-200, http://dx.doi.org/10.1023/A:1003510105274

Kersen P.,2012, Firstfindings of the benthic macroalgae Vaucheria cf.dichotoma (Xanthophyceae) and Punctariatenuissima (Phaeophyceae)in Estonian coastal waters, Est.J. Ecol., 61 (2),135-147, http://dx.doi.org/10.3176/eco.2012.2.05

KersenP., Martin G.,2007,Annual biomasslossoftheloose-lyingredalgal communityviaacroalgal beach castsinthe Väinameriarea,NEBalticSea, Proc. Est. Acad. Sci. Biol. Ecol., 56 (4), 278-289.

KirkmanH., Kendrick G. A., 1997, Ecological significance and commercial harvesting ofdriftingand beachcast macroalgae and seagrasses inAustralia: areview,J.Appl. Phycol., 9 (4), 311-326, http://dx.doi.org/10.1023/A:1007965506873

Kotwicki L., WęsławskiJ. M., RaczyńskaA., Kupiec A., 2005, Depositionof large organic particles(macrodetritus)ina sandy beach system(PuckBay,Baltic Sea), Oceanologia, 47 (2), 181-199.

Kotta J.,PaalmeT.,MartinG., Mäkinen A., 2000, Majorchanges in macroalgae community composition affect the food and habitat preference of Idotea baltica, Int. Rev. Hydrobiol.,85 (5-6), 697-705.

KovtunA., TornK., Martin G., Kullas T., Kotta J., Suursaar Ü., 2011, Influence of abiotic environmentalconditionsonspatial distributionofcharophytes in the coastal waters of West EstonianArchipelago,BalticSea, J. Coastal Res., Spec. Iss. 64 (1), 412-416.

LastraM.,deLaHuzR.,Sanchez-MataA. G.,RodilI. F.,AertsK.,Beloso S., Lopez J., 2006, Ecology of exposed sandy beaches in northern Spain: environmental factors controlling macrofauna communities, J. Sea Res., 55 (2), 128-140, http://dx.doi.org/10.1016/j.seares.2005.09.001

Lepik E., 1925, Põisadru (FucusvesiculosusL.)ja selle majanduslik tähtsus, Agronoomia, 5 (4), 135-144.

Lobban C. S.,HarrisonP. J.,1994,Seaweed ecology and physiology,Cam- bridge Univ. Press,Cambridge,366 pp., http://dx.doi.org/10.1017/CBO9780511626210

Magurran A. E., 1988, Ecologicaldiversityand itsmeasurement,Princeton Univ. Press, Princeton, http://dx.doi.org/10.1007/978-94-015-7358-0

Martin G.,1999,Distribution of phytobenthosbiomass in theGulf of Riga (1984-1991),Hydrobiologia, 393, 181-190, http://dx.doi.org/10.1023/A:1003517427506

Martin G., 2000, Phytobenthic communitiesof the Gulf of Riga and the InnerSea of the West-Estonian Archipelago,TartuUniv. Press, Tartu.

Martin G., Torn K., KottaJ., Orav-Kotta H., 2003, Estonianmarine phytobenthos monitoring programme; preliminary results and future perspectives, Proc. Est. Acad. Sci. Biol. Ecol., 52 (2), 112-124.

Möller T., Martin G., 2007, Thedistribution of the eelgrass Zostera marina in the coastal waters ofEstonia, NEBalticSea,Proc.Est.Acad. Sci.Biol.Ecol., 56 (4),270-277.

Müller C.,1852/53, Versucheines Vegetationsgemäldes von Oesel, Corr.-bl. Naturforsch. Ver.zu Riga,6, 1-26.

Ochieng C. A., Erftemeijer P. L. A., 1999, Accumulationof seagrass beach cast along the Kenyan coast:a quantitative assessment,Aquat. Bot., 65 (1-4),221-238, http://dx.doi.org/10.1016/S0304-3770(99)00042-X

OldhamC. E., Lavery P. S., McMahonK., PattiaratchiC., ChiffingsT. W., 2010, Seagrasswrack dynamicsinGeographeBay, WesternAustralia, Rep.WA Dept.Transport/Shire of Busselton, 23 pp.,[http://www.transport.wa.gov.au/mediaFiles/marine/MAC-R-PortGeo-SeagrassWrack-Synopsis.pdf].

Orr M., Zimmer M., Jelinski D. E., Mews M., 2005, Wrack depositionon different beach types: spatial and temporal variation in the pattern of subsidy,Ecology, 86 (6),1496-1507, http://dx.doi.org/10.1890/04-1486

Pennings S. C., CarefootT. H., Zimmer M., Danko J. P., Ziegler A., 2000, Feeding preferencesof supralittoral isopodsand amphipods,Can. J. Zoolog.,78 (11), 1918-1929, http://dx.doi.org/10.1139/z00-143

Pullisaar T., 1961, Märkmeid Pärnu lahe p~ohjataimestiku kohta,ENSV TA Toimetised. Biol., 10, 340-346.

StatSoftInc., 2012, Electronicstatisticstextbook, Tulsa. Suursaar Ü., 2013, Locallycalibrated wave hindcasts in the Estoniancoastal sea in 1966-2011,Est. J. Earth Sci., 62 (2), 42-56, http://dx.doi.org/10.3176/earth.2013.05

Suursaar Ü., KullasT., 2006, Influenceof wind climate changes on the mean sea level and current regime in the coastal waters of west Estonia,Baltic Sea, Oceanologia, 48 (3),361-383.

Suursaar Ü., Kullas T., Otsmann M., Saaremäe I., Kuik J.,Merilain M., 2006, HurricaneGudrunand modelling its hydrodynamic consequencesin the Estoniancoastal waters, Boreal Environ.Res., 11 (2), 143-159.

Suursaar Ü., KullasT.,Aps R.,2012, Currentsandwaves inthe northernGulf of Riga: measurement and long-termhindcast,Oceanologia,54 (3),421-447, http://dx.doi.org/10.5697/oc.54-3.421

TornK., MartinG., 2011, Assessment method for the ecological statusof Estonian coastal waters based on submerged aquatic vegetation,[in:]Sustainable developmentand planning, C. A. Brebbia & E. Beriatos (eds.),V. WITPress, Southampton, 443-452, http://dx.doi.org/10.2495/SDP110371

Torn K., Krause-Jensen D., MartinG., 2006, Presentand past depth distributionof bladderwrack (Fucus vesiculosus)in the Baltic Sea, Aquat.Bot., 84 (1), 53-62, http://dx.doi.org/10.1016/j.aquabot.2005.07.011

ViikmäeB., SoomereT., 2014,Spatialpattern ofcurrent-drivenhitstothe nearshorefroma majormarinefairwayintheGulfofFinland,J. Marine Syst.,129, 106-117, http://dx.doi.org/10.1016/j.jmarsys.2013.06.014

vonLuceJ. W. L.,1823,TopographischeNachrichten vonderInselOesel,in medicinischer und ökonomischerHinsichtRiga, W. F. Häcker, 369-373.

WarwickR.,LightJ., 2002, Deathassemblages of molluscson StMartin'sFlats, Islesof Scilly: asurrogateforregionalbiodiversity?, Biodivers.Conserv., 11 (1), 99-112, http://dx.doi.org/10.1023/A:1014094829984

full, complete article (PDF - compatibile with Acrobat 4.0), 4140 KB


Studies of vertical coarse aerosol fluxes in the boundary layer over the Baltic Sea
Oceanologia 2014, 56(4), 697-710
http://dx.doi.org/10.5697/oc.56-4.697

Tomasz Petelski1, Piotr Markuszewski1,*, Przemysław Makuch1, Andrzej Jankowski1, Anna Rozwadowska2
1Physical Oceanography Department, Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland;
e-mail: pmarkusz@iopan.gda.pl
*corresponding author
e-mail: petelski@iopan.gda.pl
e-mail: makuch@iopan.gda.pl
e-mail: jankowsk@iopan.gda.pl
2Marine Physics Department, Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland
e-mail: ania@iopan.gda.pl

keywords: Sea spray aerosol, coarse aerosol fluxes, air-sea interaction, marine boundary layer, aerosol concentration gradient

Received 5 March 2014, revised 7 May 2014, accepted 14 May 2014.

This work was supported through the National Science Centre grant NN 306315536; support for this study was also provided by the project "Satellite Monitoring of the Baltic Sea Environment – SatBałtyk" funded by European Union through European Regional Development Fund contract No. POIG 01.01.02-22-011/09.

Abstract

The results of studies of the vertical gradient of aerosolconcentration measurements made during cruises of r/v "Oceania" between 2008 and 2012 are presented. Using the results from those experiments, sea spray emission fluxes were calculated for all particles of sizes in the range from 0.5 µmto 8 µm, as well as for particles of sizes from fifteen channels of 0.5 µm width. The information obtained was further used to calculate the Sea Salt Generation Function (SSGF) for the Baltic Sea depending on the wind speed and the aerosol size distribution.

  References ref

AndreasE. L.,1998, Anew sea-spraygenerationfunctionforwindspeedsup to 32 m s-1, J. Phys.Oceanogr.,28 (11), 2175-2184, http://dx.doi.org/10.1175/1520-0485(1998)028<2175:ANSSGF>2.0.CO;2

Andreas E. L., 2007, Comment on 'Verticalcoarse aerosol fluxes in the atmospheric surface layer over the North Polar Watersof the Atlantic'by Tomasz Petelski and JacekPiskozub,J. Geophys. Res. Oceans,112 (C11), http://dx.doi.org/10.1029/2007JC004184

Andreas E. L., Jones K. F., Fairall C. W., 2010,Production velocity ofsea spray droplets,J. Geophys.Res.,115,C12065, http://dx.doi.org/10.1029/2010JC006458

Blanchard D. C.,1963,Theelectrificationoftheatmosphere byparticlesfrom bubbles in thesea,Prog.Oceanogr.,1,73-202, http://dx.doi.org/10.1016/0079-6611(63)90004-1

ByčenkienėS., Ulevicius V., Prokopčiuk N., JasinevičienėD., 2013, Observations of the aerosol particle number concentration in the marineboundary layer over the south-eastern Baltic Sea, Oceanologia, 55 (3), 573-598, http://dx.doi.org/10.5697/oc.55-3.573

ChomkaM.,PetelskiT.,1996, Marineaerosolfluxesinthecoastalzone-BAEX experimentaldata, Oceanologia, 38, 469-484.

ChomkaM., PetelskiT.,1997, Modellingthe sea aerosol emissioninthe coastal zone, Oceanologia, 39 (3), 211-225.

Clarke A. D., Owens S. R., Zhou J.,2006, An ultrafine sea-salt flux from breakingwaves: Implicationsforcloudcondensationnucleiintheremote marine atmosphere, J. Geophys.Res.,111,D06202, http://dx.doi.org/10.1029/2005JD006565

de Leeuw G.,Neele F. P.,Hill M., SmithM. H.,VignatiE.,2000, Productionof sea spray aerosol in the surf zone, J. Geophys.Res., 105 (D24), 29397-29409, http://dx.doi.org/10.1029/2000JD900549

de Leeuw G., AndreasE. L., AnguelovaM. D., FairallC. W., Lewis E. R., O'Dowd C., Schulz M., SchwartzS. E., 2011, Productionflux of sea spray aerosol, Rev. Geophys.,49, RG2001, http://dx.doi.org/10.1029/2010RG000349

DrozdowskaV.,2007, Seasonaland spatial variabilityof surfaceseawater fluorescence properties in the Baltic and Nordic Seas:results oflidar experiments, Oceanologia, 49 (1), 59-69.

DrozdowskaV.,FredaW.,BaszanowskaE.,RudźK.,DareckiM.,HeldtJ. R., Toczek H., 2013, Spectral propertiesof natural and oil polluted Baltic seawater - resultsof measurements and modelling,Eur.Phys.J.Special Topics,222, 2157-2170, http://dx.doi.org/10.1140/epjst/e2013-01992-x

DrozdowskaV.,Fateyeva N. L., 2013, Spectrophotometric studyof naturalBaltic surfactants, [in:]Hydrobiologyinenvironment protection, T. M. Traczewska & B. Hanus-Lorenz, Oficyna Wyd.Polit. Wroc., Wrocław,25-32.

FitzgeraldJ. W.,1975,Approximationformulasfortheequilibriumsizeofan aerosol particle as a function of its dry size and compositionand the relative humidity,J.Appl. Meteorol., 14,1044-1049, http://dx.doi.org/10.1175/1520-0450(1975)014<1044:AFFTES>2.0.CO;2

Gong S. L., 2003, Aparameterization of sea-saltaerosol sourcefunctionforsub- and super-micron particles,GlobalBiogeochem. Cy.,17(4),1097, http://dx.doi.org/10.1029/2003GB002079

GongS. L.,2003,Canadian Aerosol Module: Asizesegregatedsimulation of atmospheric aerosol processes for climate and air quality models 1. Module development,J. Geophys.Res.,107 (D24),4779, http://dx.doi.org/10.1029/2001JD002002

KeeneW. C.,MaringH.,MabenJ. R.,KieberD. J., PszennyA. A.,DahlE. E., Sander R., 2007, Chemical and physical characteristics of nascent aerosols producedby burstingbubbles at a modelair/sea interface,J. Geophys.Res. Atmosph., 112 (D21), 16 pp., http://dx.doi.org/10.1029/2007JD008464

KowalczukP.,CooperW. J.,WhiteheadR. F.,DurakoM. J., SheldonW.,2003, Characterization of CDOMinan organic-richriverand surroundingcoastal ocean in the South Atlantic Bight, Aquat.Sci., 65 (4), 384-401, http://dx.doi. org/10.1007/s00027-003-0678-1. Kowalczuk P., Zabłocka M., Sagan S., Kuliński K., 2010, Fluorescencemeasuredin situas a proxy of CDOMabsorptionandDOCconcentration intheBaltic Sea, Oceanologia, 52 (3), 431-471, http://dx.doi.org/10.5697/oc.52-3.431

Kudryavtsev V. N., MakinV. K., 2009, Model of the spumesea spray generation, Geophys.Res. Lett., 36, L06801, http://dx.doi.org/10.1029/2008GL036871

LeihtmanD. L.,1970, Physicsof theatmosphericboundarylayer,Russianedn., Hidrometeoizdat. Leningrad.

LeppärantaM.,Myrberg K., 2009,Physical oceanography oftheBaltic Sea, Springer, Chichester,40 pp., http://dx.doi.org/10.1007/978-3-540-79703-6

LewandowskaA. U., FalkowskaL. M., 2013, Sea salt in aerosols over the southern Baltic.Part 1. The generationand transportation of marineparticles, Oceanologia, 55 (2), 279-298, http://dx.doi.org/10.5697/oc.55-2.279

LewisE. R., Schwartz S. E., 2004,Seasaltaerosolproduction:mechanisms, methods, measurements andmodels- Acriticalreview,Geophys.Monogr. Ser., Vol. 152, AGU, Washington, 413 pp.

Long M. S., KeeneW. C.,KieberD. J.,EricksonD. J., MaringH.,2011, Asea- state based source functionfor size-and composition-resolved marine aerosol production, Atmos.Chem. Phys., 11 (3),1203-1216, http://dx.doi.org/10.5194/acp-11-1203-2011

Massel S. R., 2007, Marineaerosol fluxes,[in:] Oceanwaves breaking and marine aerosol fluxes, Springer,New York, 229-246.

ModiniR. L.,Harris B.,Ristovski Z.,2010,The organicfraction ofbubble- generated,accumulationmode Sea Spray Aerosol (SSA), Atmos. Chem. Phys., 10 (6), 2867-2877, http://dx.doi.org/10.5194/acp-10-2867-2010

Monahan E. C.,SpielD. E.,DavidsonK. L.,1986,Amodelofmarine aerosol generation viawhitecapsandwavedisruption, [in:]Oceanicwhitecapsand theirroleinair-sea exchangeprocesses,E. C.Monahan& G.MacNiocaill, Reidel, Dordrecht, 167-174.

Monahan E. C., 1988, Modeling the generation of marine aerosols at the sea surface, Oceanologia, 26, 19-22.

Monin A. C., ObukhovA. M., 1953, Bezrazmernyje harakterustiki turbulentnosti w priziemnom sloe atmosfery,DAN SSSR, 93 (2), 223-226.

Mulcahy C., O'Dowd D., JenningsS. G.,CeburnisD.,2008, Significant enhancement of aerosol optical depth in marine air under high wind conditions, Geophys.Res. Lett., 35 (16), L16810.

NorrisS. J., BrooksI. M.,Hill M. K.,BrooksB. J., SmithM. H.,SprosonD. A., 2012, Eddycovariancemeasurements ofthesea sprayaerosolfluxoverthe open ocean, Atmos. Chem. Phys.,8 (3), 555-563.

Ovadnevaite J., MandersA.,de Leeuw G.,CeburnisD.,MonahanC.,Partanen A.-I.,etal. 2013,Aseasprayaerosolfluxparameterizationencapsulating wavestate, Atmospheric ChemistryandPhysics, 14 (4),1837-1852, http://dx.doi.org/10.5194/acpd-13-23139-2013

Petelski T., 2003, Marine aerosol fluxes over open sea calculated from vertical concentration gradients,J. AerosolSci.,34,359-371, http://dx.doi.org/10.1016/S0021-8502(02)00189-1

Petelski T., 2005, Coarse aerosol concentration over the North Polar Watersof the Atlantic, J.AerosolSci. Tech.,39 (8),695-700, http://dx.doi.org/10.1080/02786820500182362

PetelskiT.,PiskozubJ.,Paplińska-Swerpel B.,2005,Seasprayemission from thesurfaceoftheopenBalticSea,J. Geophys.Res.,110,C10023, http://dx.doi.org/10.1029/2004JC002800

PetelskiT.,PiskozubJ., 2006, Verticalcoarseaerosolfluxesinthe atmospheric surface layer over the North PolarWatersof the Atlantic,J. Geophys.Res., 111, C06039, http://dx.doi.org/10.1029/2005JC003295

Rosen M. J., Kunjappu J. T.,2012, Surfactantsand interfacialphenomena, John Wiley & Sons, 235-266, http://dx.doi.org/10.1002/9781118228920.ch5

SmithM. H.,ParkP. M.,Consterdine I. E.,1993, Marineaerosolconcentrations and estimated fluxes over the sea, Q. J. R. Meteorol. Soc., 119 (512), 809-824, http://dx.doi.org/10.1002/qj.49711951211

SchwarzJ. N.,KowalczukP.,KaczmarekS.,CotaG. F.,MitchellB. G.,Kahru M., Raine R., 2002, Twomodels for absorption by coloured dissolvedorganic matter (CDOM), Oceanologia 44 (2), 209-241.

SellegriK., O'DowdC. D., YoonY. J.,Jennings S. G., deLeeuwG., 2006, Surfactants andsubmicron seaspraygeneration,J.Geophys. Res., 111, D22215, http://dx.doi.org/10.1029/2005JD006658

TsigaridisK., Koch D., Menon S., 2013, Uncertaintiesand importance of sea spray compositionon aerosol directand indirecteffects,J. Geophys.Res. Atmos., 118 (1), 220-235, http://dx.doi.org/10.1029/2012JD018165

Van der Hoven J., 1957, Power spectrum of horizontal wind speed in the frequency rangefrom 0.0007to900cyclesperhour,J. Meteorol., 14 (2),160-164, http://dx.doi.org/10.1175/1520-0469(1957)014<0160:PSOHWS>2.0.CO;2

VeronF., HopkinsC., Harrison E. L.,MuellerJ. A.,2012,Seasprayspume droplet production in high wind speeds, Geophys. Res. Lett., 39, L16602, http://dx.doi.org/10.1029/2012GL052603

VignatiE.,Facchini M. C.,Rinaldi M.,ScannellC.,Ceburnis D.,SciareJ., KanakidouM., Myriokefalitakis S., Dentener F., O'Dowd C. D., 2010, Global scale emission and distribution of sea-spray aerosol:Sea-salt organic enrichment, Atmos. Environ.,44, 670-677, http://dx.doi.org/10.1016/j.atmosenv.2009.11.013

WesterveltD. M.,Moore R. H.,NenesA.,AdamsP. J.,2012, Effectofprimary organicsea sprayemissions oncloudcondensation nucleiconcentrations, Atmos. Chem.Phys.,12, 89-101, http://dx.doi.org/10.5194/acp-12-89-2012

Zdun A., Rozwadowska A., Kratzer S., 2011, Seasonal variability in the optical properties of Baltic aerosols, Oceanologia,53 (1), 7-34, http://dx.doi.org/10.5697/oc.53-1.007

Zieliński T.,2004, Studiesof aerosol physicalpropertiesincoastal areas, Aerosol Sci.Tech., 38 (5), 513-524, http://dx.doi.org/10.1080/02786820490466738

ZielińskiT.,ZielińskiA.,2002,Aerosol extinctionandopticalthicknessinthe atmosphere over the BalticSeadetermined with lidar, J. Aerosol Sci., 33 (6), 47-61, http://dx.doi.org/10.1016/S0021-8502(02)00043-5

full, complete article (PDF - compatibile with Acrobat 4.0), 513 KB


Nutrient turnover at the hypoxic boundary: flux measurements and model representation for the bottom water environment of the Gulf of Riga, Baltic Sea
Oceanologia 2014, 56(4), 711-735
http://dx.doi.org/10.5697/oc.56-4.711

Elvita Eglite1,3, Aigars Lavrinovič1,*, Bärbel Müller-Karulis1,2, Juris Aigars1, Rita Poikane1
1Latvian Institute of Aquatic Ecology,
8 Daugavgrivas St., LV–1048, Riga, Latvia;
e-mail: aigars.lavrinovics@lhei.lv
*corresponding author
e-mail: juris.aigars@lhei.lv
e-mail: rita.poikane@lhei.lv
2Baltic Nest Institute, Baltic Sea Centre, Stockholm University,
SE–106 91, Stockholm, Sweden;
e-mail: barbel.muller-karulis@stockholmresilience.su.se
3Leibniz Institute for Baltic Sea Research,
Warnemünde, Seestrasse 15, D–18119 Rostock, Germany;
e-mail: elvita.eglite@io-warnemuende.de

keywords: Sediment-water nutrient fluxes, denitrification, biogeochemical model, hypoxia

Received 5 March 2014, revised 20 May 2014, accepted 27 May 2014.

The study was supported by the ERAF project `Development of a mechanistic model of the Gulf of Riga ecosystem in support of an efficient national policy to ensure the protection of the Baltic Sea and to promote the sustainable use of its ecosystem' (Ref. Nr. 2010/0287/2DP/2.1.1.1.0/10/APIA/VIAA/040) and the state research programme "Impact of climate change on Latvia's water environment - KALME".

Abstract

Experimental studies of intact sediment cores from the Gulf of Riga, Baltic Sea, were conducted to estimate the response of sediment nutrient fluxes to various near-bottom water oxygen conditions. The experiment was performed in the laboratory using a batch-mode assay type system on the sediment cores held at 4°C and oxygen concentrations maintained at 1, 2, 3, 4 and 5 mg l-1.The results from the experiment were subsequently used to optimise the fit of the sediment denitrification sub-model of the Gulf of Riga basin. Sediment-water fluxes of phosphate were low and directed out of the sediments under all treatments, demonstrating a general decreasing tendency with increasing near-bottom water oxygen concentration. The sediment-water fluxes of ammonium and nitrate+nitrite demonstrated opposing trends: ammonium fluxes decreased whereas nitrate+nitrite fluxes increased with rising near-bottom water oxygen concentration. The modelled fluxes agreed well with the measured ones, with correlation coefficients of 0.75, 0.63 and 0.88 for ammonium, nitrate+nitrite and phosphate fluxes respectively. The denitrification rate in sediments was simulated at oxygen concentrations from -2 to 10 mg l-1. At oxygen concentrations <2 mg l-1the modelled denitrification was sustained by nitrate transport from water overlying the sediments. With increasing oxygen concentrations the simulated denitrification switched from the process fuelled by nitrates originating from the overlying water (Dw) to one sustained by nitrates originating from the coupled sedimentary nitrification – denitrification (Dn). Dn reached its maximum at an oxygen concentration of 5 mg l-1.

  References ref

Berzinsh V., 1980, Interannual and seasonal changes of water salinityin the Gulf of Riga, Rybohhozyaistvennye issledovanya,(BaltNIIRKH), Riga,Avots15, 3-12, (in Russian).

Blomqvist S., Abrahamsson B., 1985, An improved Kajak-typegravity core sampler for soft bottom sediments, Swiss J. Hydrology, 47 (1), 81-84, http://dx.doi.org/10.1007/BF02538187

Carman R.,WulffF.,1989, AdsorptioncapacityofphosphorusinBalticSea sediments, Estuar.Coast.ShelfSci.,29 (5),447-456, http://dx.doi.org/10.1016/0272-7714(89)90079-6

Carman R.,Aigars J., Larsen B., 1996, Carbonand nutrient geochemistryof the surface sediments of the Gulf of Riga,BalticSea, Mar.Geol., 134 (1),57-76, http://dx.doi.org/10.1016/0025-3227(96)00033-3

Carstensen J., Andersen J. H., Gustafsson B. G., Conley D. J., 2014, Deoxygenation of theBaltic Seaduringthelast century, PNAS,111 (15),5628-5633, http://dx.doi.org/10.1073/pnas.1323156111

ColeJ. A., Brown C. M., 1980, Nitritereductiontoammonium by fermentative bacteria: a shortcircuitinthebiological nitrogencycle, FEMS Microbiol. Lett., 7 (2),65-72, http://dx.doi.org/10.1111/j.1574-6941.1980.tb01578.x

Conley D. J., Carstensen J., Aerteb jerg G., Christensen P. B., Dalsgaard T., Hansen J. L. S., JosefsonA. B., 2007, Long-termchangesandimpactsof hypoxiain Danishcoastalwaters, Ecol.Appl., 17, 165-184, http://dx.doi.org/10.1890/05-0766.1

Conley D.,Humborg C., RahmL., SavchukO., WulffF., 2002, Hypoxiainthe BalticSeaand basin-scalechangesinphosphorusbiogeochemistry,Environ. Sci. Technol.,36 (24),5315-5320, http://dx.doi.org/10.1021/es025763w

Conley D. J., Johnstone R. W., 1995, Biogeochemistry of N, P and Si in Baltic Sea sediments: responseto a simulateddepositionof a spring diatombloom,Mar. Ecol.-Prog. Ser., 122, 265-276, http://dx.doi.org/10.3354/meps122265

ConleyD. J., CarstensenJ., Aigars J., AxeP., Bonsdorff E., Eremina T., Haahti B. M., Humborg C., Jonsson P., KottaJ., Lännegren C., Larsson U., Maximov A., MedinaM. R., Łysiak-PastuszakE.,Remeikaite-NikieneN.,WalveJ., Wilhelms S., Zillen L., 2011, Hypoxia is increasingin the coastal zone of the BalticSea, Environ.Sci. Technol.,45 (16),6777-6783, http://dx.doi.org/10.1021/es201212r

DalsgaardT.,NielsenL. P.,Brotas V.,Viaroli P.,UnderwoodG.,Nedwell D., Sunbäck K.,RysgaardS.,MilesA.,BartoliM.,DongL.,Thornton D. C. O., Ottosen L. D. M., Castaldelli G., Risgaard-Petersen N., 2011, Protocol handbookforNICE -nitrogen cyclinginestuaries:aprojectunderthe EU research programme:marinescience and technology (MAST III), Nat. Environ. Res. Inst., Silkeborg, Denmark, 43 pp.

Dalsgaard T., De Brabandere L., HallP. O. J., 2013, Denitrification in the water columnof the centralBalticSea, Geochim.Cosmochim.Acta., 106, 247-260, http://dx.doi.org/10.1016/j.gca.2012.12.038

DeutschB.,ForsterS.,WilhelmM.,DippnerJ. W., 2010,Denitrificationin sedimentsas a majornitrogensink in the BalticSea:an extrapolationusing sedimentcharacteristics, Biogeosciences, 7 (10), 3259-3271, http://dx.doi.org/10.5194/bg-7-3259-2010

Diaz R. J., Rosenberg R., 2008, Spreading dead zones and consequencesfor marine ecosystems, Science,321 (5891),926-929, http://dx.doi.org/10.1126/science.1156401

Eilola K.,MeierH. E. M.,Almroth E.,2009,On thedynamics ofoxygen, phosphorus andcyanobacteriaintheBalticSea;Amodelstudy,J. Marine Syst., 75 (1-2), 163-184.

FennelK.,BradyD.,DiToro D., FulweilerR. W.,GardnerW. S.,Giblin A., McCarthy M. J., RaoA., Seitzinger S., Thouvenot-KorppooM.,Graig T., 2008, Modelingdenitrification inaquaticsediments, Biogeochemistry,93 (1-2), 159-178, http://dx.doi.org/10.1007/s10533-008-9270-z

Fonselius S., 1969, Hydrographyof the BalticDeep BasinsIII, Fish.BdSweden, Ser. Hydrography, Rep.23, 97 pp.

Graham L. P., Deliang C., Christensen O. B.,Kjellström E., Krysanova V., Markus Meier H. E., Radziejewski M.,RäisánenJ., Rockel B., Ruosteeno ja K., 2008, Projectionsof future anthropogenicclimate change, [in:] Assessment of climate changesfortheBaltic Seabasin, H.-J.Bolle, M.Menenti& I.Rasool (eds.), Springer-Verlag,Berlin, Heidelberg, 133-219, http://dx.doi.org/10.1007/978-3-540-72786-6_3

Grasshoff K., Ehrhardt M., Kremling K., 1983, Methodsof seawater analysis,2nd edn., Verlag Chemie, Weinheim, 419 pp.

GunnarsA., BlomqvistS., 1997, Phosphateexchangeacrossthesediment-water interface whenshiftingfromanoxictooxicconditions -anexperimental comparisonof freshwater and brackish-marinesystems,Biogeochemistry,37, 203-226, http://dx.doi.org/10.1023/A:1005744610602

Hansson M., Andersson L., AxeP., 2011, Arealextent and volume of anoxia and hypoxia inthe BalticSea,1960-2011,SMHIRep.Oceanogr.No.42, 63 pp.

HELCOM, 2010, EcosystemHealth of the Baltic Sea 2003-2007, Balt. Sea Environ. Proc. No. 122, 17 pp.

HELCOM, 2013, Review of the Fifth Baltic Sea PollutionLoad Compilationfor the 2013 HELCOM MinisterialMeeting,Balt. Sea Environ. Proc. No.141

Henriksen K., KempM. W., 1988, Nitrificationinestuarineandcoastalmarine sediments, [in:]Nitrogencyclingincoastalmarineenvironments T. H. Blackburn & J. Sorensen (eds.), John Wiley & Sons, Chichester, 451 pp.

HietanenS.,KuparinenJ., 2008,Seasonalandshort-termvariationin denitrificationand anammoxatacoastalstationontheGulfofFinland, Baltic Sea,Hydrobiologia,596 (1), 67-77, http://dx.doi.org/10.1007/s10750-007-9058-5

Hietanen S.,Jäntti H.,Buizert C., Jürgens K., Labrenz M.,Voss M., Kuparinen J., 2012, Hypoxia and nitrogen processing in the Baltic Sea water column, Limnol. Oceanogr., 57 (1), 325-337.

Ingall E. D., Jahnke R., 1994, Evidencefor enhanced phosphorus regeneration from marine sedimentsoverlainby oxygen depleted waters,Geochim.Cosmochim. Acta,58 (11), 2571-2575, http://dx.doi.org/10.1016/0016-7037(94)90033-7

Ingall E. D., JahnkeR., 1997, Influenceof water-column anoxia on the elemental fractionationof carbonandphosphorusduringsedimentdiagenesis,Marine Geol., 139 (1-4), 219-229.

Jäntti H., Hietanen S.,2012,The effects of hypoxia on sediment nitrogen cycling in the BalticSea,Ambio,41 (2),161-169, http://dx.doi.org/10.1007/s13280-011-0233-6

Jenkins M. C., Kemp W. M., 1984, Thecoupling of nitrificationand denitrification in two estuarine sediments, Limnol. Oceanogr., 29 (3), 609-619, http://dx.doi.org/10.4319/lo.1984.29.3.0609

JensenM. K.,LomsteinE.,Sorensen J., 1990, Benthic NH4+ andNO3- flux following sedimentation of a spring phytoplankton bloom in Aarhus Bight, Denmark,Mar.Ecol.-Prog.Ser., 61 (1-2),87-96, http://dx.doi.org/10.3354/meps061087

JensenH. S.,Mortensen P. B., Andersen F. O., Rasmussen E., JensenA., 1995, Phosphorus cyclinginacoastalmarinesediment, Aarhus Bay, Denmark, Limnol.Oceanogr.,40 (5), 908-917, http://dx.doi.org/10.4319/lo.1995.40.5.0908

Kemp W. M.,Sampou P.,Caffrey J.,Mayer M.,HenriksenK.,Boynton W. R.,1990, Ammonium recyclingversusdenitrificationinChesapeakeBay sediments,Limnol.Oceanogr., 35 (7),1545-1563, http://dx.doi.org/10.4319/lo.1990.35.7.1545

KiirikkiA., LehtorantaJ., InkalaA., PitkänenH.,HietanenS,HallP. O. G., Tenberg A., Koponen J., Sarkkula J., 2006, Asimple sediment process descriptionsuitable for 3D-ecosystem modelling-Developmentandtesting in the Gulf of Finland, J. Marine Syst., 61 (1-2), 55-66, http://dx.doi.org/10.1016/j.jmarsys.2006.02.008

Koop K., Boynton W. R., Wulff F.,Carman R.,1990, Sediment-water oxygen and nutrient exchanges along a depth gradient in the BalticSea,Mar.Ecol.-Prog. Ser., 63, 65-77, http://dx.doi.org/10.3354/meps063065

KristensenE., 2000, Organicmatterdiagenesisattheoxic/anoxic interfacein coastal marine sediments, with emphasis on the role of burrowing animals, Hydrobiologia, 426 (1),1-24, http://dx.doi.org/10.1023/A:1003980226194

McCarthy M. J.,McNeal K. S.,MorseJ. W., Gardner W. S.,2008,Bottom- water hypoxia effects on sediment-water interface nitrogen transformationsin a seasonallyhypoxic,shallow bay (Corpus ChristiBay, TX,USA), Estuar. Coasts, 31 (3),521-531, http://dx.doi.org/10.1007/s12237-008-9041-z

MeierH. E. M.,Müller-Karulis B.,AnderssonH. C., DieterichC.,Eilola K., Gustafsson B. G., Höglund A.,Hordoir R.,Kuznetsov I., Neumann T., Ranjbar Z., Savchuk O. P., Schimanke S., 2012, Impact of climate change on ecological qualityindicators and biogeochemicalfluxesin theBaltic Sea:A multi- modelensemblestudy, Ambio, 41 (6), 558-573, http://dx.doi.org/10.1007/s13280-012-0320-3

MortH. P.,SlompC. P.,Gustafsson B. G.,AndersenT. J.,2010, Phosphorus recycling and burial in BalticSea sediments with contrasting redox conditions, Geochim.Cosmochim.Acta, 74 (4),1350-1362, http://dx.doi.org/10.1016/j.gca.2009.11.016

Müller-KarulisB., Aigars J., 2011, Modelingthe long-term dynamicsof nutrients and phytoplankton intheGulf ofRiga,J. MarineSyst., 87 (3-4),161-176, http://dx.doi.org/10.1016/j.jmarsys.2011.03.006

Nielsen L. P.,1992, Denitrificationinsedimentdeterminedfromisotope pairing,FEMS Microbiol.Ecol.,9 (4),357-362, http://dx.doi.org/10.1111/j.1574-6968.1992.tb04828.x

NixonS. W.,Granger S. L.,Nowicki B. L.,1995, An assessmentoftheannual mass balance of carbon, nitrogen and phosphorus in Narragansett Bay, Biogeochemistry, 35, 15-61.

OjaveerE.(ed.),1995, Ecosystem oftheGulf ofRigabetween 1920 and1990, Estonian Acad. Sci.,Tallinn,277 pp.

Omstedt A., Axell L. B., 2003, Modelling the variations of salinity and temperature inthelarge Gulfs oftheBalticSea, Cont.ShelfRes.,23,265-294, http://dx.doi.org/10.1016/S0278-4343(02)00207-8

Rahm L.,Danielsson Å., 2001, Statistical analysis of spatial and temporal variations in the BalticSea, [in:] Asystem analysis of the BalticSea, F. Wulff, L. Rahm & P. Larsson (eds.),Ecol. Ser. 148, Springer-Verlag, Berlin,329-351.

Reigstad M., Heiskanen S. A., Wassmann P., 1999, Seasonaland spatial variation ofsuspendedandsedimentednutrients(C, N,P)inthepelagicsystemof theGulfofRiga,J. MarineSyst.,23, 211-232, http://dx.doi.org/10.1016/S0924-7963(99)00059-7

Rütting T., Boeckx P., Müller C., Klemedtsson L., 2011, Assessment of the importanceof dissimilatorynitratereductionto ammonium for the terrestrial nitrogen cycle, Biogeosciences,8,1779-1791, http://dx.doi.org/10.5194/bg-8-1779-2011

Savchuk O. P., 2002, Nutrient biogeochemichalcycles inthe Gulf of Riga:scaling up field studieswith a mathematical model, J. Marine Syst., 32, 253-280, http://dx.doi.org/10.1016/S0924-7963(02)00039-8

Savchuk O. P., Wulff F., 2009, Long-termmodeling of large-scale nutrient cycles in the entire BalticSea, Hydrobiologia, 629 (1),209-224, http://dx.doi.org/10.1007/s10750-009-9775-z

StÅlnacke P., Grimvall A., Sundblad K., Tonderski A., 1999, Estimation of riverine loadsof nitrogen andphosphorustotheBalticSea,1970-1993, Environ. Monitor.Assess.,58, 173-200, http://dx.doi.org/10.1023/A:1006073015871

StockenbergA.,JohnstoneR. W.,1997, Benthic denitrificationintheGulfof Bothnia, Estuar. Coast. Shelf Sci., 45 (6), 835-843, http://dx.doi.org/10.1006/ecss.1997.0271

TamminenT.,Seppálä J., 1999,Nutrientpools,transformations,ratios, and limitation in the Gulf of Riga,the BalticSea, during four successionalstages, J. Marine Syst., 23 (1-3),83-106, http://dx.doi.org/10.1016/S0924-7963(99)00052-4

Tuominen L.,Heinánen A., Kuparinen J., Nielsen L. P., 1998, Spatial and temporal variabilityof denitrification inthesedimentsof thenorthernBalticProper, Mar.Ecol.-Prog. Ser., 172, 13-24, http://dx.doi.org/10.3354/meps172013

Vanderborght J. P., BillenG., 1975, Verticaldistributionof nitrateconcentration in interstitial water of marinesedimentswith nitrification and denitrification, Limnol. Oceanogr., 20, 953-961, http://dx.doi.org/10.4319/lo.1975.20.6.0953

VanderborghtJ. P., WollastR., BillenG., 1977, Kineticmodelsof diagenesisin disturbed sediments. Part 2. Nitrogendiagenesis,Limnol. Oceanogr., 22, 794-803, http://dx.doi.org/10.4319/lo.1977.22.5.0787

Witek Z., Humborg C., Savchuk O., Grelowski A., Łysiak-Pastuszak E., 2003, Nitrogenand phosphorus budgets of the Gulf of Gdańsk(BalticSea), Estuar. Coast. Shelf Sci., 57(1-2), 239-248, http://dx.doi.org/10.1016/S0272-7714(02)00348-7

YurkovskisA., WulffF., RahmL., Andrushaitis A., Rodrigues-Medina M., 1993, Anutrientbudget of the Gulfof Riga,BalticSea, Estuar.Coast.Shelf Sci., 37 (2),113-127, http://dx.doi.org/10.1006/ecss.1993.1046

ZillénL.,Conley D. J., AndrénT., AndrénE.,BjörckS., 2008, Pastoccurrences of hypoxia in the BalticSea and the role of climatevariability,environmental changeandhuman impact,Earth-Sci.Rev.,91 (1-4),77-92, http://dx.doi.org/10.1016/j.earscirev.2008.10.001

full, complete article (PDF - compatibile with Acrobat 4.0), 1111 KB


Regional algorithms for the estimation of chlorophyll and suspended matter concentration in the Gulf of Finland from MODIS-Aqua satellite data
Oceanologia 2014, 56(4), 737-756
http://dx.doi.org/10.5697/oc.56-4.737

Svetlana Vazyulya1,2, Alexander Khrapko1,2, Oleg Kopelevich1,2,*, Vladimir Burenkov1,2, Tatyana Eremina2, Alexey Isaev2
1P. P. Shirshov Institute of Oceanology of the Russian Academy of Sciences (SIO RAS),
36 Nakhimovsky prospect, 117997 Moscow, Russia;
e-mail: oleg@ocean.ru
*corresponding author
2Russian State Hydrometeorological University (RSHU),
98 Malookhtinsky prospect, 195196 St. Petersburg, Russia

keywords: Gulf of Finland, satellite data, algorithms, chlorophyll, suspended matter

Received 10 January 2014, revised 21 May 2014, accepted 23 May 2014.

This work was funded by the Russian Government (grant No. 11.G34.31.0078)for research under the supervision of the leading scientist at the Russian State Hydrometeorological University.

Abstract

Validation of algorithms for the retrieval of concentrations of chlorophyll (Chl)and total suspended matter (TSM) in the Gulf of Finland from satellite oceancolour data was carried out using field measurement data from summer 2012 and2013. These data included spectral values of the remote sensing reflectance Rrs(λ),Chl and TSM concentrations. Testing of the existing algorithms (OC4v4, OC3M, and the Baltic regional algorithms developed by Polish specialists) showed that all of them overestimated Chl several times. The new regional algorithms were developed on the basis of measured values of Rrs(λ), Chl and TSM (40 stations in total). Direct comparison of Chl and TSM values, obtained from MODIS-Aqua data with the algorithms developed here, with their in situ values showed reasonable agreement. The spatial distributions of Chl and TSM concentrations were constructed from MODIS-Aqua data. Errors of the atmospheric correction were analysed.

  References ref

ArtemievV. A., BurenkovV. I., Vortman M. I., Grigoriev A. V., Kopelevich O. V., KhrapkoA. N., 2000, Sea-truthmeasurementsof ocean color:a new floating spectroradiometer and its metrology, Oceanology, 40, 139-145, (translated from Okeanologiya,40, 148-155).

BaileyS. W., Werdell P. J.,2006,A multi-sensor approachfor theon-orbit validation of ocean color satellite data products, Remote Sens. Environ.,102 (1-2), 12-23, http://dx.doi.org/10.1016/j.rse.2006.01.015

BurenkovV. I.,ErshovaS. V.,KopelevichO. V.,Sheberstov S. V.,Shevchenko V. P., 2001,An estimateofthedistribution ofsuspendedmatterin the BarentsSea waters on the basis of the SeaWiFS satellite ocean color scanner, Oceanology, 41 (5), 622-628, (translated from Okeanologiya, 2001, 41 (5), 653-659).

DareckiM., FicekD.,Krężel A., OstrowskaM., MajchrowskiR.,WoźniakS. B., Bradtke K., Dera J., Woźniak B., 2008, Algorithm for the remote sensing of the Balticecosystem(DESAMBEM). Part2:Empiricalvalidation, Oceanologia, 50 (4), 509-538.

DareckiM.,StramskiD.,2004,An evaluationofMODISandSeaWiFSbio- optical algorithms inthe BalticSea, RemoteSens. Environ.,89 (3), 326-350, http://dx.doi.org/10.1016/j.rse.2003.10.012

FeldmanG. C., 2013, Oceancolor web, http://oceancolor.gsfc.nasa.gov. KopelevichO. V., SheberstovS. V., SahlingI. V., VazyulyaS. V., BurenkovV. I., 2013, Bio-opticalcharacteristicsofthe Barents,White, Black,and Caspian Seas from data of satellite ocean color scanners, http://optics.ocean.ru.

Lee Z., CarderK. L., Mobley C. D., Steward R. G., Patch J. S., 1998, Hyperspectral remote sensingforshallow waters.1.Asemianalyticalmodel,Appl.Opt., 37 (27), 6329-6338, http://dx.doi.org/10.1364/AO.37.006329

PNDF, 2012, Quantitativechemical analysis of water.Themethod for measuring suspended solids and total amount of the admixture of natural and treated wastewater bygravimetricmethod, 14.1:2.110-97,Media-Service, Moscow, 11 pp., (in Russian).

Reinart A., Kutser T., 2006, Comparisonof different satellite sensorsin detecting cyanobacterial bloom events in the BalticSea, RemoteSens. Environ.,102 (1-2), 74-85, http://dx.doi.org/10.1016/j.rse.2006.02.013

Report of SCOR-UNESCO working group 17 on determination of photosynthetic pigments, 1966, Determination of photosynthetic pigments in sea-water, UNESCO,Paris,9-16.

Woźniak B.,KrężelA.,DareckiM.,2008,Algorithm fortheremotesensing of the Baltic ecosystem (DESAMBEM). Part 1:Mathematical apparatus, Oceanologia, 50 (4), 451-508.

ZibordiG.,HolbenB.,SlutskerI.,2009, Anetwork forthe validationofocean color primaryproducts,J. Atmos.Ocean.Tech., 26 (8),1634-1651, http://dx.doi.org/10.1175/2009JTECHO654.1

full, complete article (PDF - compatibile with Acrobat 4.0), 2522 KB


Annual phytoplankton dynamics in the Gulf Saint Vincent, South Australia, in 2011
Oceanologia 2014, 56(4), 757-778
http://dx.doi.org/10.5697/oc.56-4.757

Sophie C. Leterme1,*, Jan-Georg Jendyk1, Amanda V. Ellis2, Melissa H. Brown1, Tim Kildea3
1School of Biological Sciences, Flinders University,
GPO Box 2100, Adelaide 5001, Australia;
e-mail: sophie.leterme@flinders.edu.au
*corresponding author
2Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University,
GPO Box 2100, Adelaide 5001, Australia
3South Australian Water Corporation,
250 Victoria Square, Adelaide 5000, Australia

keywords: Phytoplankton, dinoflagellates, diatoms, Australia, salinity, nutrients, annual cycle

Received 28 November2013, revised 25 March 2014, accepted 31 March 2014.

Abstract

Phytoplankton communities are the basis of many marine and freshwater foodwebs. Their composition fluctuates depending on hydrochemical conditions, such as light, temperature, salinity, pH, nutrients and turbulence. This study investigates the effect of changing environmental conditions on the coastal phytoplanktoncommunity of the Gulf St Vincent in South Australia. This is the first study simultaneously investigating the phytoplankton communities and their environment in this area and is essential to set up the baseline of future studies. In total, 179 phytoplankton species were identified and enumerated between January and December 2011. Phytoplankton communities were numerically dominated by chlorophytes during 6 months of the survey and an intense bloom (representing 62% of the overall phytoplankton community) of the diatom Cylindrotheca closterium was observed in February. Our results suggest that in the coastal waters of the Gulf St Vincent, the variability in environmental conditions is driven by temperature, wind speed/direction and the changing levels of phosphorus. However, the variabilityobserved during autumn and winter months seems to be driven by changing levels of nitrogen and silica. In this shallow environment, the wind speed is proportional to the stress at the ocean floor and should directly influence the resuspension of sediment and associated nutrients. Nutrient ratios were observed to investigate potential phytoplankton nutrient limitation patterns. These ratios indicated that nitrogen was usually the limiting nutrient, which is typical of marine systems.Since nutrient enrichment is generally the main factor driving the succession and composition of phytoplankton communities in coastal waters, further work is now needed to identify the sources of nutrients in this region where river runoff is limited and evaporation is high relative to precipitation.

  References ref

AnsoteguiA.,SarobeA.,TriguerosJ. M.,Urrutxurtu I.,OriveE.,2003,Size distribution of algal pigments and phytoplankton assemblages in a coastal- estuarineenvironment: contributionofsmalleukaryoticalgae, J. Plankton Res., 25 (4), 341-355, http://dx.doi.org/10.1093/plankt/25.4.341

Balch W. M., Holligan P. M., Ackleson S. G., Voss K. J., 1991, Biological and optical properties of mesoscale coccolithophore blooms in the Gulfof Maine, Limnol. Oceanogr.,36 (4), 629-643, http://dx.doi.org/10.4319/lo.1991.36.4.0629

Barnett E. J., Harvey N., Belperio A. P., BourmanR. P., 1997, Sea-level indicators from a Holocene,tide-dominated coastal succession,Port Pirie, South Australia, T. Roy. Soc. South Aust.,121, 125-135.

Brzezinski M. A., 1985, The Si:C:N ratio of marine diatoms:interspecific variability and the effect ofsomeenvironmentalvariables, J. Phycol.,21 (3),347-357, http://dx.doi.org/10.1111/j.0022-3646.1985.00347.x

ByeJ. A., KämpfJ., 2008, Physicaloceanography,[in:]Natural historyofGSV, S. A. Shepherd,S. Bryars,I. Kirkegaard,P. Harbison &J. T. Jennings,Roy. Soc. South Austr. Inc., Adelaide,56-70.

CarterC. M., RossA. H., SchielD. R.,Howard-WilliamsC., HaydenB., 2005, In situ microcosm experiments on the influence of nitrate and light on phytoplanktoncommunity composition, J. Exp. Mar. Biol. Ecol., 326 (1), 1-13, http://dx.doi.org/10.1016/j.jembe.2005.05.006

Cloern J. E., 1996, Phytoplankton bloom dynamicsin coastal ecosystems:a review withsome generallessons fromsustained investigation ofSan Francisco Bay, California,Rev. Geophys.,43 (2),127-168, http://dx.doi.org/10.1029/96RG00986

DonnellyA., JonesM., O'Mahony T., ByrneG., 2007, Selectingenvironmental indicator for useinstrategicenvironmentalassessment, Environ. Impact Asses., 27 (2), 161-175, http://dx.doi.org/10.1016/j.eiar.2006.10.006

DortchQ., WhitledgeT. E., 1992, Doesnitrogenorsiliconlimitphytoplankton production inthe MississippiRiverplume and nearby regions?,Cont. Shelf Res.,12 (11), 1293-1309, http://dx.doi.org/10.1016/0278-4343(92)90065-R

Elser J. J., Bracken M. E. S., Cleland E. E., Grune D. S.,Harpole W. S.,Hillebrand H., Ngai J. T., Seabloom E. W., Shurin J. B., Smith J. E., 2007, Global analysis ofnitrogenandphosphorus limitationofprimaryproducersinfreshwater, marine and terrestrial ecosystems,Ecol. Lett., 10 (12),1135-1142, http://dx.doi.org/10.1111/j.1461-0248.2007.01113.x

FurnasM. J., 1990, Insitugrowth rates ofmarinephytoplankton:approaches to measurement, communityand speciesgrowth rates,J. PlanktonRes., 12 (6), 1117-1151, http://dx.doi.org/10.1093/plankt/12.6.1117

HajduS., HöglanderH.,Larsson U., 2007, Phytoplanktonverticaldistributions and compositioninBalticSeacyanobacterialblooms,HarmfulAlgae,6 (2), 189-205, http://dx.doi.org/10.1016/j.hal.2006.07.006

Hallegraef G. M., BolchC. J. S., HillD. R. A., JamesonI., Leroi J. M., McMinn A., MurrayS.,deSalasM. F.,Saunders K. M., 2010, AlgaeofAustralia: phytoplankton of temperate coastal waters,CSIRO Publ.,Melbourne, 432 pp.

Hansen H., Koroleff F., 2007, Determinationof nutrients, [in:] Methods of seawater analysis, K. Grasshoff, K. Kremling & M.Ehrhardt (eds.), Wiley-VCH Verlag GmbH, Weinheim,41-73, http://dx.doi.org/10.1002/9783527613984.ch10

HarrisG. P.,1986, Phytoplanktonecology: structure, functionandfluctuation, Chapman &Hall, NewYork,384 pp., http://dx.doi.org/10.1007/978-94-009-4081-9

Hecky R. E., KilhamP., 1988, Nutrientlimitationof phytoplankton infreshwater and marine environments: A review of recent evidence on the effects of enrichments,Limnol.Oceanogr.,33 (4,Pt. 2),796-822, http://dx.doi.org/10.4319/lo.1988.33.4_part_2.0796

Huertas I. E., RoucoM., López-RodasV.,Costas E.,2011, Warmingwill affect phytoplankton differently:evidence through a mechanistic approach, Proc. Roy. Soc. B:Biol. Sci., http://dx.doi.org/10.1098/rspb.2011.0160

Jennings J. C., GordinL. I.,NelsonD. M.,1984,Nutrient depletionindicates highprimaryproductivityintheWeddellSea, Nature, 309 (51-54),51-54, http://dx.doi.org/10.1038/309051a0

Ji R.,Chen C., Franks P. J. S.,TownsendD. W.,Durbin E. G.,Beardsley R. C., LoughR. G., Houghton R. W., 2006, Springphytoplankton bloom and associatedlowertrophic levelfoodwebdynamics onGeorges Bank:1-D and2-Dmodelstudies,Deep-SeaRes. Pt. II, 53 (23-24),2656-2683, http://dx.doi.org/10.1016/j.dsr2.2006.08.008

Justic, D.,RabalaisN. N.,TurnerR. E.,1995, Stoichiometric nutrientbalance and origin ofcoastal eutrophication,Mar.Pollut.Bull., 30 (1),41-46, http://dx.doi.org/10.1016/0025-326X(94)00105-I

Kingston M. B., 2009, Growth and motility of the diatom Cylindrothecaclosterium: implicationsforcommercialapplications,J. NorthCarolina Acad. Sci.,125, 138-142.

LagusA., Suomela J., WeithoffG., HeikkilaK., Helminen H., SipuraJ., 2004, Species-specific differences in phytoplankton responses to N and P enrichments and the N:P ratiointhe ArchipelagoSea,northernBalticSea,J. Plankton Res., 26 (7),779-798, http://dx.doi.org/10.1093/plankt/fbh070

Legendre L., Demers S., 1984, Towards dynamicbiological oceanography and limnology,Can.. J. Fish.Aquat. Sci.,41, 2-19, http://dx.doi.org/10.1139/f84-001

Lessard E. J., Merico A., Tyrrell T., 2005, Nitrate:phosphate rations and Emiliania huxleyi blooms,Limnol.Oceanogr.,50 (3),1020-1024, http://dx.doi.org/10.4319/lo.2005.50.3.1020

Leterme S. C., Edwards M., Seuront L., AttrillM. J.,Reid P. C., John A. W. G.,2005, Decadalbasin-scalechanges indiatoms,dinoflagellates,and phytoplankton colour acrosstheNorthAtlantic,Limnol.Oceanogr.,50 (4), 1244-1253, http://dx.doi.org/10.4319/lo.2005.50.4.1244

LetermeS. C.,Ellis A. V.,Mitchell J. G., Buscot M. J.,Pollet T.,Schapira M., Seuront L., 2010, Morphological flexibility of Cocconeis placentula (Bacillariophyceae) nanostructure tochangingsalinity levels, J. Phycol., 46 (4),715-719, http://dx.doi.org/10.1111/j.1529-8817.2010.00850.x

Leterme S. C., PrimeE., MitchellJ. G., Brown M. H., EllisA. V., 2013, Diatom adaptability to environmentalchange:a casestudy of two Cocconeis species fromhigh salinityareas,Diatom Res., http://dx.doi.org/10.1080/0269249X.2012.734530

Leterme S. C., Seuront L., Edwards M., 2006, Differentialcontribution of diatoms and dinoflagellates to phytoplankton biomassinthe NEAtlanticOceanand the North Sea,Mar. Ecol.-Prog. Ser.,312, 57-65, http://dx.doi.org/10.3354/meps312057

Li A.,StoeckerD. K.,CoatsD. W., 2000,Spatial and temporalaspects of Gyrodiniumgalatheanum inChesapeakeBay:distributionandmixotrophy, J. PlanktonRes., 22 (11),2105-2124, http://dx.doi.org/10.1093/plankt/22.11.2105

Li A., StoeckerD. K.,CoatsD. W.,AdamE. J.,1996, Ingestionof fluorescently- labeled and phycoerythrin-containingprey by photosynthetic dinoflagellates, Aquat. Microb. Ecol., 10 (2), 139-147, http://dx.doi.org/10.3354/ame010139

Lips I., Lips U., 2010, Phytoplankton dynamicsaffected by coastal upwelling events inthe Gulf of FinlandinJuly-August2006, J. PlanktonRes.,32 (9),1269-1282, http://dx.doi.org/10.1093/plankt/fbq049

LoureyM. J.,TrullT. W.,2001,Seasonalnutrientdepletionandcarbonexport inthe SubantarcticandPolarFrontalZonesoftheSouthernOcean, south of Australia, J. Geophys.Res., 106 (C12), 31463-31488, http://dx.doi.org/10.1029/2000JC000287

MargalefR.,1975, Assessment ofthe effectsonplankton, [in:]Marinepollution and marine waste disposal, Proc. 2nd Int. Cong., San Remo, 17-21 December, 1973, E. A. Pearson & E. De Fra ja Frangipane (eds.), Pergamon Press, Oxford, New York, Toronto, Sydney,Paris,Braunschweig,487 pp.

MiddletonJ. F.,Bye J. A. T.,2007, Areview ofthe shelf-slopecirculationalong Australia's southernshelves: CapeLeeuwintoPortland,Prog.Oceanogr., 75 (1), 1-41, http://dx.doi.org/10.1016/j.pocean.2007.07.001

Pattiaratchi C.,NewgardJ., Hollings B., 2006, Physicaloceanographic studiesof Adelaide coastal waters using high resolutionmodelling,in-situobservations and satellite techniquest - Sub Task 2 Final TechnicalReport, 20, ACWS Tech. Rep.

PIRSAReport,2013, Fishand dolphin mortalities in South Australia,75 pp. RedfieldA. C., KetchumB. H., RichardsF. A., 1963, Theinfluenceof organisms on the compositionof sea water, [in:] Thesea, Interscience, New York, 26-77.

Rensel J. E., 1993, Severeblood hypoxia of Atlanticsalmon Salmosalar exposed to the marine diatom Chaetoceros concavicornis, [in:] Toxicphytoplankton blooms in the sea, Proc.5th Int. Conf. 'Toxic MarinePhytoplankton', Elsevier, New York, 625-630.

RiegmannR., StolteW., NoordeloosA.,SlezakD., 2000,Nutrient uptake and alkaline phosphatase EC 3:1:3:1 activity of Emilianiahuxleyi (Prymnesiophyceae), J. Phycology,36 (1),87-96, http://dx.doi.org/10.1046/j.1529-8817.2000.99023.x

Rimet F., Bouchez A., 2012,Biomonitoring river diatoms: implications of taxonomic resolution, Ecol. Indic.,15 (1), 92-99, http://dx.doi.org/10.1016/j.ecolind.2011.09.014

RoundF. E.,1981,Theecologyofalgae,Cambridge Univ.Press, Cambridge, 653 pp.

SandersR. W.,Porter K. G.,1988, Phagotrophicphytoflagellates, Adv.Microb. Ecol., 10, 167-192, http://dx.doi.org/10.1007/978-1-4684-5409-3_5

Smayda T. J., 1990, Novel and nuisance phytoplanktonblooms in the sea: evidence for a global epidemic, [in:] Toxicmarinephytoplankton, E. Granéli, B. Sunström, L. Edler & D. M. Anderson(eds.),Elsevier Sci. Ltd.,New York, 554 pp.

Stoecker D. K., Li A., Coats D. W., GustafsonD., Nannen M. K., 1997, Mixotrophy in the dinoflagellate Prorocentrum minimum, Mar. Ecol.-Prog. Ser., 152, 1-12.

SuikkanenS.,Laamanen M.,Huttunen M.,2007,Long-termchanges in phytoplanktoncommunities of theopennorthernBalticSea,Estuar. Coast. Shelf Sci., 71 (3-4), 580-592, http://dx.doi.org/10.1016/j.ecss.2006.09.004

TakedaS., 1998, Influence of iron availabilityon nutrient consumption of diatoms in the oceanicwater, Nature, 393, 774-777, http://dx.doi.org/10.1038/31674

Tanaka I., 1984, Distributionof chlorophyll a at the frontalregionformedinthe water adjacentto Funka Bay,Hokkaido, Bull. Japanese Soc. Fish. Oceanogr., 46, 9-17.

TomasC. R.,1997,Identifying marinephytoplankton, Acad.Press,SanDiego, 855 pp.

WelschmeyerN. A.,1994, Fluorometricanalysisof Chlorophyll-a inthe presence of Chlorophyll-band pheopigments,Limnol.Oceanogr.,39, 1985-1992, http://dx.doi.org/10.4319/lo.1994.39.8.1985

Zar J. H., 1999, Biostatistical analysis,Prentice-Hall, UpperSaddle River, 663 pp.

full, complete article (PDF - compatibile with Acrobat 4.0), 407 KB


Gonad maturity in female Chinese mitten crab Eriocheir sinensis from the southern Baltic Sea - the first description of ovigerous females and the embryo developmental stage
Oceanologia 2014, 56(4), 779-787
http://dx.doi.org/10.5697/oc.56-4.779

Dagmara Wójcik*, Monika Normant
Department of Experimental Ecology of Marine Organisms, University of Gdańsk,
al. Marszałka J. Piłsudskiego 46, 81–378 Gdynia, Poland;
e-mail: d.wojcik@ug.edu.pl
*corresponding author

keywords: Eriocheir sinensis, Egg-carrying females, reproduction, Southern Baltic, non-native species

Received 28 October 2013, revised 6 February 2014, accepted 18 March 2014.

Abstract

This paper describes for the first time the gonad maturity stage of Eriocheir sinensisfemales (carapace width 55.20-78.10 mm) collected in the autumns and winters of 2005–2012 in the Gulf of Gdańsk and Vistula Lagoon (southern Baltic Sea).Seventeen females had gonads in the penultimate stage, which indicates that spawning would shortly take place. Four other females had gonads in the laststage, which means they were already carrying eggs. These accounted, on average, for 17.9± 2.9% of female weight and were in the 3rd and 4th embryo developmentalstage. The results show that the low salinity of southern Baltic Sea (≤7 PSU) permits mating and fertilization as well as embryo development in E. sinensis. Itis still not clear, whether such a salinity level will enable hatching and the complete larval cycle.

  References ref

AngerK.,1991, Effectsof temperature and salinityonthe larval development of the Chinese mitten crab Eriocheirsinensis(Decapoda:Grapsidae),Mar. Ecol.- Prog. Ser., 72, 103-110, http://dx.doi.org/10.3354/meps072103

Cabral H., Costa M., 1999, Onthe occurrence of the Chinesemitten crab, Eriocheir sinensis,in Portugal (Decapoda,Brachyura),Crustaceana, 72 (1), 56-58.

Cohen A., WeinsteinA., 2001, Thepotential distribution of ChineseMittenCrabs (Eriocheir sinensis)in selected waters of the WesternUnitedStates with U.S. Bureauof Reclamation Facilities,TracyFish Coll. Facil. Stud., 20, 1-61.

CzerniejewskiP.,De Giosa M., 2013, Realized fecundityin the first brood and size of eggs of Chinesemitten crab (Eriocheirsinensis)- Laboratory studies, Int. Res. J. Biol. Sci., 2 (1), 1-6.

Czerniejewski P., Skuza L., Drotz M., Berggren M., 2012, Molecular connectedness between self and none self-sustainable populations of Chinese mitten crab (Eriocheirsinensis,H.MilneEdwards, 1853) with focus to the Swedish Lake Vänernand the Oderand VistulaRiverin Poland, Hereditas, 149 (2), 55-61, http://dx.doi.org/10.1111/j.1601-5223.2012.02246.x

Dittel A., Epifanio C., 2009, Invasionbiology of the Chinesemitten crab Eriocheir sinensis: abriefreview,J. Exp.Mar.Biol.Ecol., 374 (2), 79-92, http://dx.doi.org/10.1016/j.jembe.2009.04.012

Drotz M., Berggren M., LundbergS., Lundin K., von Proschwitz T., 2010, Invasion routes, current and historical distribution of the Chinesemitten crab (Eriocheir sinensis H.MilneEdwards, 1853)inSweden,Aquat. Inv.,5 (4),387-396, http://dx.doi.org/10.3391/ai.2010.5.4.08

Garcia-de-Lomas J.,DanaE. D.,Lopez-SantiagoJ.,GonzalezR.,CeballosG., OrtegaF., 2010, Management of the Chinesemitten crab, Eriocheirsinensis (H.Milne-Edwards, 1853)in theGuadalquivir Estuary (Southern Spain), Aquat. Inv., 5 (3), 323-330, http://dx.doi.org/10.3391/ai.2010.5.3.11

GollaschS.,2006,NOBANIS-Invasive Alien Species FactSheet-Eriocheir sinensis, Onlinedatabaseof the North European andBalticNetworkon Invasive Alien Species - NOBANIS,http://www.nobanis.org, (downloadedin February 2011).

Herborg L., Rushton S., Clare A., Bentley M., 2003, Spread of the Chinese mitten crab (Eriocheir sinensisH.MilneEdwards)inContinentalEurope: analysis of a historical data set, Hydrobiologia,503 (1-3), 21-28, http://dx.doi.org/10.1023/B:HYDR.0000008483.63314.3c

Herborg L., Weetman D., Oosterhout C., Hän ing B., 2007, Geneticpopulation structureand contemporary dispersalpatternsof a recentEuropeaninvader, theChinese mitten crab, Eriocheir sinensis, Mol.Ecol.,16 (2), 231-242, http://dx.doi.org/10.1111/j.1365-294X.2006.03133.x

Ingle R.,1986, TheChinesemittencrab EriocheirsinensisH.MilneEdwards- a contentious immigrant, The London Naturalist, 65, 101-105.

Lee C.,RemfertJ., ChangY.,2007,Responsetoselectionandevolvabilityof invasive populations,Genetica,129 (2), 179-192, http://dx.doi.org/10.1007/s10709-006-9013-9

Lee C.,GelembiukG.,2008, Evolutionary originsof invasivepopulations,Evol. Appl.,1 (3), 427-448, http://dx.doi.org/10.1111/j.1752-4571.2008.00039.x

LeppärantaM., Myrberg K., 2009,Physical oceanography oftheBaltic Sea, Springer,410 pp., http://dx.doi.org/10.1007/978-3-540-79703-6

MontúM., Anger K., BakkerC., 1996, Larval developmentof the Chinesemitten crab Eriocheir sinensisH. Milne-Edwards(Decapoda:Grapsidae)reared in the laboratory, Helgol. Meeresunters., 50 (2), 223-252, http://dx.doi.org/10.1007/BF02367153

Normant M., ChrobakM., 2002, The Chinesemittencrab Eriocheirsinensis- an immigrant from Asiain the Gulf of Gdańsk, Oceanologia, 44 (1), 124-126.

NormantM.,WiszniewskaA.,SzaniawskaA.,2000,The Chinesemitten crab Eriocheirsinensis(Decapoda: Grapsidae)fromPolishwaters,Oceanologia, 42 (3), 375-383.

OjaveerH., GollaschS., Jaanus A.,Kotta J.,Laine A., MindeA., NormantM., PanovV., 2007, Chinesemittencrab EriocheirsinensisintheBalticSea- a supply-sideinvader?, Biol. Invasions,9 (4),409-418, http://dx.doi.org/10.1007/s10530-006-9047-z

OttoT., Brandis D.,2011,First evidence ofEriocheir sinensis reproduction from Schleswig-Holstein,NorthernGermany, western Baltic Sea, Aquat. Inv., 6 (Suppl.1), S65-S69, http://dx.doi.org/10.3391/ai.2011.6.S1.015

PanningA., 1939,TheChinese mitten crab,Rep.Board ofRegents ofthe Smithsonian Institution (Washington), 3508, 409-418.

PetersN.,1933,Lebenskundlicher Teil,[in:] Diechinesische Wollhandkrabbe (EriocheirsinensisH. Milne-Edwards) in Deutschland,N. Peters,A. Panning & W. Schnakenbeck(eds.),Zool. Anz., 104, 59-155.

Peters N., 1938, Zur Fortpflanzungsbiologieder Wollhandkrabbe (Eriocheirsinensis Milne Edwards),Mitt. Hambg.Zool. Mus. Inst., 47, 112-128.

Peters N., PanningA., 1938, Neue Untersuchungen über die chinesische Wollhandkrabbein Europa, Mitt. Hambg.Zool. Mus. Inst., Hamburg,171 pp. RudnickD.,Hieb K.,Grimmer K.,ReshV.,2003,Patterns andprocessesof biological invasion: theChinesemittencrab inSanFranciscoBay,J. Bas. App. Ecol., 4 (3), 249-262, http://dx.doi.org/10.1078/1439-1791-00152

RudnickD., VeldhuizenT., TullisR., Culver C.,HiebK., TsukimuraB., 2005, AlifestorymodelfortheSanFranciscoEstuarypopulationof theChinese mittencrab, Eriocheirsinensis(Decapoda:Grapsoidea),Biol. Invasions, 7 (2), 333-350, http://dx.doi.org/10.1007/s10530-004-2286-y

Ruiz G.,FegleyL.,FofonoffP.,Cheng Y., LemaitreR.,2006,Firstrecords of Eriocheir sinensis H. Milne Edwards, 1853(Crustacea: Brachyura: Varunidae) for Chesapeake Bay and the mid-Atlantic coast of North America, Aquat. Inv., 1 (3),137-142, http://dx.doi.org/10.3391/ai.2006.1.3.7

Sax D., GainesS., 2003,Species diversity: from globaldecreases tolocal increases,TrendsEcol.Evol.,18 (11),561-566, http://dx.doi.org/10.1016/S0169-5347(03)00224-6

Shakirova F., PanovV.,Clark P., 2007, New recordsof the Chinesemittencrab, Eriocheir sinensisH.MilneEdwards,1853,fromtheVolgaRiver, Russia, Aquat. Inv., 2 (3), 169-173, http://dx.doi.org/10.3391/ai.2007.2.3.3

StevensB. G.,2006,Embryo development andmorphometryintheblueking crab Paralithodes platypus studied byusing image andcluster analysis, J. Shellfish Res., 25 (2),569-576, http://dx.doi.org/10.2983/0730-8000(2006)25[569:EDAMIT]2.0.CO;2

VeilleuxE., LafontaineY., 2007, Biologicalsynopsisof theChinesemittencrab (Eriocheirsinensis), Can. Manuscr. Rep.Fish.Aquat.Sci., 2812, 45 pp.

Żmudziński L., 1961,Decapodsof theBalticSea,Prz.Zool.,5 (4),352-360, (in Polish).

full, complete article (PDF - compatibile with Acrobat 4.0), 460 KB


Baltic herring (Clupea harengus membras) spawning grounds on the Lithuanian coast: current status and shaping factors
Oceanologia 2014, 56(4), 789-804
http://dx.doi.org/10.5697/oc.56-4.789

Aleksej Šaškov*, Andrius Šiaulys, Martynas Bučas, Darius Daunys
Coastal Research and Planning Institute, Klaipėda University,
H. Manto 54, LT-5808, Klaipėda, Lithuania;
e-mail: aleks@corpi.ku.lt
*corresponding author

keywords: Spawning bed distribution, seabed geomorphology, slope, multibeam bathymetry

Received 25 November 2013, revised 10 April 2014, accepted 23 April 2014.

This study was supported by the Norwegian Financial Mechanism (project No. LT0047).

Abstract

During the 2009 and 2010 seasons Baltic herring (Clupea harengus membras L.) spawning grounds were investigated by SCUBA divers off the Lithuanian Baltic Sea coast. The most important spawning substrate was a hard bottom overgrown with red algae Furcellaria lumbricalis, but only 32.8% of potentially suitable spawning locations had herring eggs. Bottom geomorphological analysis using multibeam bathymetry revealed that the distribution of spawning beds is not random, but is determined rather by small-scale geomorphological features. The majority of the detected spawning locations were on local elevations characterised by 2.4±1.1 m depth differences and 4.8±1.8 slopes.

  References ref

AneerG.,1989,Herring(ClupeaharengusL.)spawningandspawningground characteristics intheBalticSea,Fish.Res.,8, 169-195, http://dx.doi.org/10.1016/0165-7836(89)90030-1

Aneer G., Florell G., Kautsky V., Nellbring S., Sjostedt L., 1983,In-situ observationsof Baltic herring (Clupea harengus membras)spawning behaviour in the Asko-Landsort area, northern Baltic proper, Mar. Biol., 74, 105-110, http://dx.doi.org/10.1007/BF00413912

Cardinale M.,Arrhenius F.,2000,Decreasingweight-at-ageofAtlantic herring (Clupea harengus)fromtheBalticSea between1986 and1996:a statistical analysis,ICES J. Mar. Sci., 57 (4), 882-893, http://dx.doi.org/10.1006/jmsc.2000.0575

BaltNIIRH, 1989, Biological-ecological estimation of coastal zone productivityin the fishery area of rybkolchoz 'Baltija', Lithuanian SSR, Riga, 77 pp., (in Russian).

Bergström L., KorpinenS., Andersson A., 2007, Essentialfish habitats and fish migration patternsin the NorthernBaltic Sea, BALANCEInter. Rep. No. 29., 11th Dec. 2007.

Bučas M., 2009, Distributionpatternsand ecological role of the red alga Furcellaria lumbricalis(Hudson) J.V.Lamouroux oftheexposedBalticSeacoastof Lithuania, PhDthesis,Klaipė da Univ., 124 pp.

DaunysD.,OleninS.,PaškauskasR.,ZemlysP.,OleninaI.,BučasM.,2007, Typology and classificationof ecological status of Lithuanian coastal and transitionalwaters:an update of existingsystem,procurement of servicesfor the institutional building for the Nemunas River basin management, Tech. Rep. Transit. Fac. Pro j. No. 2004/016-925-04-06.

ElmerS.,1983,UndersokningavsillensreproductionmradeiBlekingeskargard 1980-1982, Medd. Fr.Havsffskelab.,Lysekil, 292, 1-14.

Evtjukhova B., BerzinshV., 1983, Prognosingof periodsand spawningmigration intensity in spring spawning Baltic herring of the Gulf of Riga according to the temperature factorofenvironment,Tr.BaltNIIRH, Riga: Avots,18, 62-69, (in Russian).

FedotovaE. A.,2010, Industrial-environmental characteristicsofBalticherring (Clupea harengus membras L.)in the Lithuanianeconomiczone,PhDthesis, Kaliningrad State Tech. Univ.,152 pp.,(in Russian).

GeffenA. J., 2009, Advancesinherring biology:fromsimpleto complex,coping with plasticity and adaptability,ICES J. Mar.Sci., 66 (8),1688 p. Gulbinskas S., Trimonis E., 1999, Lithodynamicprocesses in the strait of Klaipė da, Ann. Geogr., 32, 93-102, (in Lithuanian).

JorgensenH. B.,HansenM. M., BekkevoldD., RuzzanteD. E.,Loeschcke V., 2005, Marinelandscapes and population genetic structure of herring (Clupea harengus L.)in the BalticSea,Mol.Ecol., 14 (10),3219-3234, http://dx.doi.org/10.1111/j.1365-294X.2005.02658.x

ICES, 2008, Reportof the ICES AdvisoryCommitteeon FisheryManagement and AdvisoryCommitteeon Ecosystems. Book 8.BalticSea, ICES Advice,12 pp.

KääriäJ., Rajasilta M., KurkilahtiM., Soikkeli M., 1997, Spawning bed selection by the Balticherring (Clupeaharengus membras)inthe ArchipelagoofSW Finland,ICES J. Mar.Sci., 54 (5),917-923, http://dx.doi.org/10.1006/jmsc.1996.0204

Kääriä J., EklundJ., HallikainenS.,Kaäriä R.,Ra jasiltaM.,Rantaaho K., Soikkeli M., 1988, Effectsof coastal eutrophicationonthe spawning grounds of the Baltic herring in the SWArchipelago of Finland,Kieler Meeresforsch., Sonderh., 6, 348-356.

KautskyH., 1993, Methodsfor monitoring of phytobenthic plant and animal communitiesinthe BalticSea,[in:] Theecology of Balticterrestrial,coastal and offshoreareas -protection and management,M. Pliński(ed.),Gdańsk, 21-59.

KlinkhardtM., 1996, DerHering,Magdeburg,Westarp-Wiss.Heidelberg, Spektrum Akad. Verl., 1-203.

Kornilovs G., 1994, Thespawning grounds and embryonicdevelopment ofBaltic herring in the Gulf of Riga,PhDthesis, LatvianUniv., Riga,40 pp.

Koroliov A. P., 1991, Detailsof searchingand investigating forherring spawning grounds in the Baltic Sea. Underwater research methods in fishery, PINRO, Murmansk, 149-160, (in Russian).

Krasovskaya N., 2002, Spawning of Balticherring in the Vistula Lagoon:effects of environmental conditionsand stock parameters,Bull. Sea Fish.Inst., 1 (155), 3-25.

Maksimov J., LabanauskasV., OleninS., 1996, Balticherring reproductionand bottom communities studiesintheKlaipė da-Palangaarea(theBaltic Sea Lithuaniancoast),Zŭvininkystė Lietuvo je, 143-154, (in Lithuanian).

Messieh S., Rosenthal H., 1989, Massmortality of herring eggs on spawning beds on and near Fisherman's Bank,Gulf of St.Lawrence,Canada. Aquat. Living Resour., 2, 1-8, http://dx.doi.org/10.1051/alr:1989001

Olenin S., Labanauskas V., 1994, Mapping of the underwater biotopes and spawning grounds in the Lithuanian coastal zone, Žuvininkystė Lietuvoje, 70-76, (in Lithuanian).

Olenin S., Daunys D., 2004, Coastal typology based on benthic biotope and community data: the Lithuanian case study, [in:] Baltic Sea typology. Coastline Reports, G. Schernewski & M. Wielgat (eds.), Vol. 4, 65-83.

Oulasvirta P., Lehtonen H., 1988, Effects of sand extraction on herring spawning and fishing in the Gulf of Finland, Mar. Pollut. Bull., 19 (8), 383-386, http://dx.doi.org/10.1016/0025-326X(88)90272-X

Rajasilta M., Eklund J., Laine P., Jönsson N., Lorenz T., 2006, Intensive monitoring of spawning populations of the Baltic herring (Clupea harengus membras L.), Fin. Rep. Stud. Proj. Ref. No 96-068, 1997-1999, SEILI Archipelago Res., Inst. Publ. 3, Turku.

Rajasilta M., Laine P., Eklund J., 2006, Mortality of herring eggs on different algal substrates (Furcellaria spp. and Cladophora spp.) in the Baltic Sea - an experimental study, Hydrobiologia, 554 (1), 127-130, http://dx.doi.org/10.1007/s10750-005-1012-9

Rajasilta M., Eklund J., Hänninen J., Kurkilahti M., Kääriä J., Rannikko P., Soikkeli M., 1993, Spawning of herring (Clupea harengus membras L.) in the Archipelago Sea, ICES J. Mar. Sci., 50 (3), 233-246, http://dx.doi.org/10.1006/jmsc.1993.1026

Rajasilta M., Eklund J., Kaaria J., Rantaaho K., 1989, The deposition and mortality of the eggs of the Baltic herring, Clupea harengus membras, L., on different substrates in the south-west archipelago of Finland, J. Fish Biol., 34 (3), 417-427, http://dx.doi.org/10.1111/j.1095-8649.1989.tb03324.x

Silva C.D., Tytlerb P., 1973, The influence of reduced environmental oxygen on the metabolism and survival of herring and plaice larvae, Neth. J. Sea Res., 7,345-362, http://dx.doi.org/10.1016/0077-7579(73)90057-4

Veersalu A., Saat T., 2003, Chronology of embryonic development in Baltic herring Clupea harengus membras, Proc. Estonian Acad. Sci. Biol. Ecol., 52 (1), 17-25.

full, complete article (PDF - compatibile with Acrobat 4.0), 1307 KB


Population structure, morphometry and individual condition of the non-native crab Rhithropanopeus harrisii (Gould, 1841), a recent coloniser of the Gulf of Gdańsk (southern Baltic Sea)
Oceanologia 2014, 56(4), 805-824
http://dx.doi.org/10.5697/oc.56-4.805

Joanna Hegele-Drywa*, Monika Normant, Barbara Szwarc, Anna Podłuska
Department of Experimental Ecology of Marine Organisms, University of Gdańsk,
al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland;
e-mail: ocejhd@ug.edu.pl
*corresponding author

keywords: North American Harris mud crab, introduced, crustacean, invasive, Poland, condition factor

Received 22 October 2013, revised 26 February 2014, accepted 20 March 2014.

This research was funded by the Polish National Science Centre, grant No. 3016//B//P01//2011//40.

Abstract

The aim of this study was to characterise the introduced North American Harrismud crab Rhithropanopeus harrisii, which occurs in the Gulf of Gdańsk, Poland(southern Baltic Sea). Of the 920 specimens caught between 2006 and 2010,males and females made up 44 and 40% respectively, whereas juveniles (<4.4 mmcarapace width) comprised 16%. Overall carapace widths ranged from 1.96 mmto 21.40 mm (mean 9.03±4.11 mm). Ovigerous females (mean 11.12±2.76 mm)were present in the population from June to October. Most of the adult specimenscollected (n = 158) had carapace widths between 10.1 and 12.0 mm. The wet weightof R. harrisii varied from 0.005 to 4.446 g (mean 0.410±0.569 g). Females exhibiteda negative allometric increase in weight (b = 2.77), males an isometric increase inweight (b = 3.02). The condition factor (K) in R. harrisii varied from 0.02 to 0.08(mean 0.05±0.01).

  References ref

Abby-KalioN. J.,WarnerG. F.,1989, Heterochelyandhandednessintheshore crab Carcinusmaenas(L.)(Crustacea:Brachyura), Zool. J. Linn. Soc.-Lond., 96 (1), 19-26, http://dx.doi.org/10.1111/j.1096-3642.1989.tb01819.x

Ba J., Hou Z., Platvoet D., Zhu L., Li S., 2010, Is Gammarus tigrinus(Crustacea, Amphipoda) becoming cosmopolitanthrough shipping?Predictingits potential invasiverangeusing ecological nichemodeling,Hydrobiologia,649 (1),183-194, http://dx.doi.org/10.1007/s10750-010-0244-5

BaceevičiusE., Gasiūnaitė Z. R., 2008,Two crabspecies-Chinese mitten crab (Eriocheirsinensis Milne-Edwards) and mud crab (Rhithropanopeus harrisii Gould ssp. Tridentatus Maitland)in the Lithuanian coastal waters, Baltic Sea, Trans.Wat. Bull., 2, 63-68.

Balasubramanian C. P.,SuseelanC.,2001, Biochemicalcomposition of the deep- water crab Charybdissmithii,IndianJ. Fish.,48 (3), 333-335.

Bijde VaateA.,JażdżewskiK.,Ketelaars H. A. M.,GollaschS.,vanderVelde G., 2002, Geographical patterns in the range extension of Ponto-Caspian macroinvertebrate speciesin Europe,Can.J. Fish.Aquat.Sci., 59 (7),1159-1174, http://dx.doi.org/10.1139/f02-098

BrancoJ. O., MasunariS., 2000, Reproductiveecology of the blue crab Callinectes danaeSmith, 1869intheConceiçãolagoonsystem, SantaCatarina Isle, Brazil,Rev. Brasil. Biol., 60 (1), 17-27.

Costa T., Soares-Gomes A., 2008, Relative growth of the fiddler crab Uca rapax (Crustacea: Decapoda:Ocypodidae)ina tropicallagoon (Itaipu), Southeast Brazil,Pan-American J. Aquat. Sci., 3 (2), 94-100.

Cox G. W.,2004, Alienspeciesandevolution: theevolutionaryecology of exotic plants, animals,microbes,and interactingnativespecies,IslandPr.,400 pp. Czerniejewski P., 2009,Some aspectsofpopulation biologyofthemudcrab, Rhithropanopeus harrisii (Gould,1841) in the Odra estuary,Poland, Oceanol. Hydrobiol.Stud., 38 (4), 49-62.

CzerniejewskiP.,2010, Changes in conditionand in carapace length and width of the Chinese mittencrab (Eriocheirsinensis H. Milne Edwards, 1853) harvested in the Odra Riverestuaryin 1999-2007, Oceanol. Hydrobiol. Stud.,39 (2), 25-36, http://dx.doi.org/10.2478/v10009-010-0017-5

CzerniejewskiP.,RybczykA.,2008, Bodyweight,morphometry,and diet ofthe mud crab Rhithropanopeusharrisiitridentatus (Maitland,1874) inthe Odra Estuary,Poland, Crustaceana, 81 (11), 1289-1299, http://dx.doi.org/10.1163/156854008X369483

Czerniejewski P., Wawrzyniak W., 2006, Body weight, condition and carapace width and length in the Chinesemitten crab (EriocheirsinensisH.Milne-Edwards, 1853) collected from the Szczecin Lagoon (NWPoland)in spring and autumn 2001, Oceanologia, 48 (2), 275-285.

De Goes Y. M., Fransozo A., 2000, Sex ratio analysis in Eriphia gonagra (Decapoda, Xanthidae), InheringiaZool., 88, 151-157.

De Man J. G., 1892, Carcinologicalstudiesinthe LeydenMuseum,Notes Leyden Mus., 14, 225-264.

Demel K., 1953, Nowy gatunek w faunie Bałtyku, Kosmos, 2, 105-106.

DeRivera C. E., BackwellP. R. Y.,Christy J. H. C.,VehrencampS. L.,2003, Density affects female and male mate searching in the fiddler crab, Uca beebei, Behav. Ecol. Sociobiol., 53, 72-83.

Duarte M. S.,Maia-LimaF. A.,MolinaW. F., 2008,Interpopulational morphological analyses and fluctuating asymmetry in the brackish crab Cardisomaguanhumi Latreille (Decapoda,Gecarcinidae), on the Brazilian Northeast coastline, Pan-American J. Aquat.Sci., 3 (3), 294-303.

EmmanuelB. E., 2008, The fishery and bionomics of the swimming crab, Callinectes amnicola (DeRocheburne, 1883) from a tropical lagoon and its adjacent creek,South West, Nigeria, J. Fish. Aquat. Sci., 3 (2), 114-125.

FloerlO., Inglis G. J.,HaydenB. J., 2005, Arisk-based predictivetool to prevent accidental introductionsof nonindigenousmarinespecies, Environ.Manage., 35 (6), 765-778, http://dx.doi.org/10.1007/s00267-004-0193-8

Forward Jr. R. B.,2009,LarvalBiology oftheCrab Rhithropanopeus harrisii (Gould): a synthesis, Biol. Bull., 216 (3), 243-256.

FowlerA. E.,ForsströmT., vonNumersM.,VesakoskiO.,2013,The North American mud crab Rhithropanopeus harrisii (Gould, 1841) in newly colonized NorthernBaltic Sea: distributionandecology,Aquat. Inv., 8 (1), 89-96, http://dx.doi.org/10.3391/ai.2013.8.1.10

FransozoA.,GarciaR. B.,MantelattoF. L. M.,2003,Morphometryandsexual maturityof the tropicalhermitcrab Calcinustibicen(Crustacea,Anomura) from Brazil, J.Nat. Hist., 37 (3), 297-304, http://dx.doi.org/10.1080/713834686

GisslerC. F., 1884,The crabparasite, Saccilina, Am.Nat.,18 (3), 225-229, http://dx.doi.org/10.1086/273608

Gollasch S., David M., Leppäkoski E., 2011, Pilotrisk assessmentsof alien species transfer on intra-Balticship voyages, Helsinki Comm. - Baltic Mar. Environ. Protect. Comm.,HELCOM,98 pp. Gollasch S., Leppäkoski E., 1999, Initialrisk assessment of alien species in Nordic coastal waters, Nord. Counc.Minist.,Copenhagen, 244 pp.

Gonçalves F., Ribeiro R., Soares M. V. M., 1995, Rhithropanopeus harrisii (Gould), an Americancrab in the Estuary of the Mondego River, J. Crust.Biol., 15 (4), 756-762, http://dx.doi.org/10.2307/1548824

GorceG.,Erguden D.,SangunL.,CekicM.,AlagozS.,2006,Width/length relationship oftheblue crab (Callinectes spaidusRathbun1986)population living in CamlikLagoon Lake (Yumurtalik),Pakistan J. Biol. Sci., 9 (8), 1460-1486, http://dx.doi.org/10.3923/pjbs.2006.1460.1464

Hæfner P. A. Jr.,Spaargaren D. H., 1993, Interactionsof ovary and hepatopancreas during reproductive cycle of Crangon crangon (L.) I. Weight and volume relationships, J.Crust. Biol.,13 (3), 523-531, http://dx.doi.org/10.2307/1548792

Hartnoll R. G.,1969, MatinginBrachyura,Crustaceana, 161-181, http://dx.doi.org/10.1163/156854069X00420

Hegele-Drywa J.,Normant M., 2009, Feeding ecology of the Americancrab Rhithropanopeusharrisii (Crustacea,Decapoda)inthe coastal waters ofthe BalticSea,Oceanologia,51 (3), 361-375, http://dx.doi.org/10.5697/oc.51-3.361

Hegele-DrywaJ.,NormantM.,2014,Non-nativecrabRhithropanopeusharrisii (Gould, 1984) - a new component of the benthic communities in the Gulf of Gdańsk(southernBalticSea), Oceanologia,56 (1),125-139, http://dx.doi.org/10.5697/oc.56-1.125

HeppL. U., FornelR.,RestelloR. M., TrevisanA., SantosS., 2012, Intraspecific morphological variation in a freshwater crustacean Aegla Plana in Southern Brazil: effectsof geographical ssolationoncarapaceshape,J. Crust. Biol., 32 (4), 511-518, http://dx.doi.org/10.1163/193724012X630660

JensenK. R., KnudsenJ.,2005, Asummary of alien marine benthic invertebrates in Danish waters, Oceanol. Hydrobiol.Stud.,34 (Suppl.1), 137-162.

KondrackiJ.,2002, Regionalgeography of Poland, Wyd.Nauk.PWN,Warszawa, 463 pp., (in Polish).

Kotta J., OjaveerH., 2012, Rapidestablishment of the alien crab Rhithropanopeus harrisii (Gould)in the Gulf of Riga, Est.J. Ecol., 61, 4 pp., 293-298.

KujawaS., 1957, Biologyand culture of the crab Rhithropanopeusharrisii(Gould) subsp. tridentatus (Maitland)from Vistula Lagoon, Wszechświat,2, 57-59, (in Polish).

Le CrenE. D.,1951, Thelength-weight relationshipand seasonalcycleingonad weight and conditionfactorinthe perch (Percafluviatilis),J. Anim.Ecol., 20 (2), 201-219, http://dx.doi.org/10.2307/1540

Leppäkoski E.,2005, Thefirst twenty yearsof invasionbiology inthe BalticSea area, Oceanol. Hydrobiol.Stud.,34 (Suppl.1), 5-17.

López-Greco L. S., Rodríguez E. M., 1999, Annual reproduction and growth of adult crabs Chasmagnathus granulata (Crustacea, Brachyura, Grapsidae), Cah. Biol. Mar., 40, 155-164.

LuppiT. A.,SpivakE. D.,BasC. C., AngerK., 2004, Moltandgrowth ofan estuarinecrab,Chasmagnathusgranulates (Brachyura: Varunidae),inMar Chiquita coastallagoon,Argentina, J. Appl.Ichthyol., 20,333-344, http://dx.doi.org/10.1111/j.1439-0426.2004.00575.x

Maitland R. T., 1874, Naamlijst van Nederlandsche Schaaldieren, Tijdschr. Nederl. Deirk. Ver.,1, 228-269.

Majewski A., 1972, HydrologicalcharacteristicsofPolishcoastal estuary waters, Gdańsk, PIHM, 105, 3-37, (in Polish).

Mantelatto F. L.,Fernandes-Góes L. C., Fanticci M. Z.,Pardo L. M.,de Góes J. M., 2010, Acomparativestudy ofpopulation traitsbetween two SouthAmerican populations of the striped-legged hermit crab Clibanariusvittatus, ActaOecol., 36 (1),10-15, http://dx.doi.org/10.1016/j.actao.2009.09.003

MariappanP.,BalasundaramC.,SchmitzB.,2000,Decapodcrustacean chelipeds:an overview,J. Biosci,25 (3),301-313, http://dx.doi.org/10.1007/BF02703939

MathesonK., Gagnon P., 2012,Effects oftemperature, bodysize, andchela losson competitionfora limitedfood resourcebetween indigenousrock crab (Cancer irroratusSay) and recentlyintroduced green crab (Carcinus maenas L.), J. Exp. Mar.Biol.Ecol., 428, 49-56, http://dx.doi.org/10.1016/j.jembe.2012.06.003

Michalski K., 1957, Rhithropanopeusharrisiisubsp.tridentata (Mtl.)in the Rivers Vistulaand Motława,Prz.Zool., 1 (1),68-69, (in Polish).

Milke L. M., Kennedy V. S., 2001, Mud crabs (Xanthidae) in Chesapeake Bay:claw characteristics and predation onepifaunalbivalves,Invert.Biol.,120 (1),67-77, http://dx.doi.org/10.1111/j.1744-7410.2001.tb00027.x

Mohapatra A., Mohanty R. K., Mohanty S. K., Dey S. K., 2010, Carapace width and weight relationships, conditionfactor, relative conditionfactor and gonado- somaticindex(GSI) of mud crabs (Scyllaspp.)fromChilika Lagoon,India, Indian J. Mar.Sci., 39 (1),120-127.

MorganS. G,Goy J. W., CostlowJ. D., 1998, Effectofdensity,sexratio,and refractory period on spawning of the mud crab Rhithropanopeusharrisiiin the laboratory, J. Crust. Biol., 8 (2), 245-249, http://dx.doi.org/10.2307/1548316

Nash R. D. M., Valencia A. H., Geffen A. J., 2006, Theorigin of Fulton's Condition Factor- setting the record straight,Fisheries, 31 (5),236-238.

Nehring S., Leuchs H., 1999, Rhithropanopeusharrisii(Gould, 1841) (Crustacea: Decapoda)- ein amerikanischesNeozoon im Elbeästuar,Lauterbornia, 35, 49-51.

Normant M., Gibowicz M., 2008,Salinity induced changes in haemolymph osmolality and total metabolic rate of the mud crab Rhithropanopeusharrisii Gould,1841 from Baltic coastal waters,J. Exp. Mar.Biol. Ecol., 355 (2),145-152, http://dx.doi.org/10.1016/j.jembe.2007.12.014

Normant M., Miernik J., Szaniawska A., 2004, Remarks on the morphology and the lifecycleof Rhithropanopeusharrisiitridentatus(Maitland)fromthe Dead Vistula River, Oceanol. Hydrobiol. Stud., 33 (4), 93-102.

NormantM.,WiszniewskaA.,SzaniawskaA.,2000,TheChinesemittencrab Eriocheir sinensis(Decapoda: Grapsidae) fromPolishwaters, Oceanologia, 42 (3), 375-383.

OjaveerH.,GalilB. S.,MinchinD.,OleninS.,AmorimA.,Canning-Clode J., ChainhoP., CoppG. H.,GollaschS., JelmertA.,LehtiniemiM.,McKenzie C., Mikuš J., Miossec L., Occhipinti-Ambrogi A., PećarevićM., PedersonJ., Quilez-BadiaG., WijsmanJ. W. M., Zenetos A., 2014, Tenrecommendations for advancing the assessment and management of non-indigenous species in marine ecosystems, Mar. Policy, 44, 160-165, http://dx.doi.org/10.1016/j.marpol.2013.08.019

Oluwatoyin A., Akintade A., Edwin C., VictorK., 2013, AStudy of length-weight relationshipand condition factorofWest African Blue Crab (Callinectes pallidus)fromOjoCreek, Lagos, Nigeria,Am.J. Res.Comm.,1 (3),102-144.

PaavolaM., OleninS., Leppäkoski E.,2005, Areinvasivespeciesmost successful in habitat of low native species richnessacross European brackish water seas?, Estuar. Coast.Shelf Sci., 64 (4),738-750, http://dx.doi.org/10.1016/j.ecss. 2005.03.021.

Patil K. M.,Patil M. U.,2012,Length-weightrelationshipandconditionfactor of freshwater crab Barytelphusagurini,(Decapoda,Brachyura),J. Exp.Sci., 3 (5), 13-15.

Paturej E.,KrukW.,2011, Theimpact of environmentalfactorson Zooplankton communitiesin the Vistula Lagoon, Oceanol. Hydrobiol.Stud., 40 (2), 37-48.

Pinheiro M. A. A., Taddei F. G., 2005,Relationship betweenweight/carapace width and condition factor of Dilocarcinuspagei Stimpson (Crustacea, Trichodactylidae) fromPretoRiver inSa~oJosé,Sa~oPaulo, Brasil,Revis. Brasil. Zool., 22, 825-829, (in Portuguese).

PinheiroM. A. A., Hattori G. Y., 2006, Relative growthof mangrove crab Ucides cordatus (Crustacea,Brachyura,Ocypodidae)at Iguape (SP),Brazil, Braz. Arch. Biol. Technol.,49 (5), 813-823, http://dx.doi.org/10.1590/S1516-89132006000600016

PinheiroM. A. A., FiscarelliA. G., 2009, Length-weight relationship and condition factor of the mangrove crab Ucidescordatus (Linnaeus, 1763) (Crustacea, Brachyura,Ucididae), Braz. Arch.Biol.Technol., 52 (2), 397-406, http://dx.doi.org/10.1590/S1516-89132009000200017

Pro jecto-Garcia J.,CabralH., Schubart C. D., 2010, High regional differentiation in a North Americancrab speciesthroughout its native range and invaded Europeanwaters:a phylogeographic analysis, Biol. Invasions,12 (1), 253-263, http://dx.doi.org/10.1007/s10530-009-9447-y

Roche D. G.,TorchinM. E.,2007, Establishedpopulation ofthe NorthAmerican Harrismud crab, Rhithropanopeusharrisii(Gould1841)(Crustacea: Brachyura: Xanthidae)inthe PanamaCanal,Aquat.Inv.,2 (3),155-161, http://dx.doi.org/10.3391/ai.2007.2.3.1

Rodrigez G., Suarez H., 2001, Anthropogenicdispersalofdecapod crustaceansin aquatic environments,Intersciencia, 26 (7),282-288.

RuizG. M., Carlton J. T., GrosholzE. D., Hines A. H., 1997, Globalinvasionsof marine and estuarine habitats by non-indigenous species:mechanisms, extent, and consequences,Integr. Comp. Biol., 37 (6),621-632, http://dx.doi.org/10.1093/icb/37.6.621

Ryan E. P.,1956, Observations onthelifehistoryandthedistributionofthe Xanthide(mudcrabs)ofChesapeakeBay, Am. Mild.Nat., 56 (1),138-162, http://dx.doi.org/10.2307/2422450

RychterA., 1999, Energyvalue and metabolism of the mud crab Rhithropanopeus harrisii tridentatus (Crustacea,Decapoda)in relation to ecological conditions, Ph. D. thesis, Univ. Gdańsk, Gdynia,108 pp.,(in Polish).

SangunL.,TureliC.,AkamcaE.,DuysakO.,2009, Width/length-weightand width-length relationshipsfor8 crab speciesfromnorth-Mediterraneancoast of Turkey,J. Anim.Vet. Adv., 8 (1), 75-79.

Seed R., HughesR. N.,1995, Criteria forpreysize-selectioninmolluscivorous crabs with contrasting claw morphologies,J. Exp. Mar.Biol.Ecol., 193 (1-2),177-195, http://dx.doi.org/10.1016/0022-0981(95)00117-4

SilvaA. C., SilvaI. C., Hawkins S. J., BoaventuraD. M., Thompson R. C., 2010, Cheliped morphological variation of the intertidal crab Eriphia verrucosa across shores of differing exposure to wave action, J. Exp. Mar. Biol. Ecol., 391 (1-2), 84-91, http://dx.doi.org/10.1016/j.jembe.2010.06.012

SrijayaT. C., Pradeep P. J.,MithunS., Hassan A., Shaharom F., Chatterji A., 2010, Anew record on the morphometricvariationsinthe populations of Horseshoe Crab (Carcinoscorpius rotundicauda Latreille) obtained from two differentecologicalhabitats of peninsularMalaysia, OurNature,8 (1),204-211, http://dx.doi.org/10.3126/on.v8i1.4329

TuroboyskiK.,1973, BiologyandecologyofthecrabRhithropanopeusharrisii ssp. tridentatus, Mar. Biol., 23 (4),303-313, http://dx.doi.org/10.1007/BF00389338

Warburg M. R., Davidson D., Yifrach H., Sayag L., Tichomirova Y., 2012, Changes in population structure and body dimensionsof two xanthid crabs:a long-term study in a single boulder-shore, Arthropods, 1 (2),40-54.

WilliamsA. B., 1984, Shrimps,lobsters,andcrabsofthe AtlanticCoastofthe eastern United States,Maine to Florida, Smith. Inst. Press, Washington D. C., 401-404.

WolffT., 1954, Occurrence oftwo eastAmerican speciesofcrabsinEuropean waters, Nature, 174 (4421), 188-189, http://dx.doi.org/10.1038/174188a0

Zaitsev Y., ÖztürkB., 2001, Exoticspeciesinthe Aegean,Marmara,Black,Azov and Caspian Seas,Turkish Mar. Res. Foun.,Istanbul,265 pp.

Zimmermann G., Bosc P., ValadeP.,Cornette R.,AmézianeN., DebatV., 2011, Geometric morphometrics of carapace of Macrobrachiumaustrale (Crustacea: Palaemonidae)fromReunion Island,ActaZool.,93 (4),492-500, http://dx.doi.org/10.1111/j.1463-6395.2011.00524.x

ŻmudzińskiL.,1961, Decapodsof theBalticSea,Prz.Zool.,5 (4),352-360, (inPolish).

full, complete article (PDF - compatibile with Acrobat 4.0), 686 KB


Bacterial community structure influenced by Coscinodiscus sp. in the Vistula river plume
Oceanologia 2014, 56(4), 825-856
http://dx.doi.org/10.5697/oc.56-4.825

Anetta Ameryk1,*, Richard L. Hahnke2,3, Sławomira Gromisz1, Janina Kownacka1,Mariusz Zalewski1, Lena Szymanek1, Joanna Całkiewicz1, Julita Dunalska4, Jens Harder2
1National Marine Fisheries Research Institute,
Kołłątaja 1, 81-332 Gdynia, Poland;
e-mail: anetta.ameryk@mir.gdynia.pl
*corresponding author
2Max Planck Institute for Marine Microbiology,
Celsiusstrasse 1, D-28359 Bremen, Germany
3DSMZ German Collection of Microorganisms and Cell Cultures,
Inhoffenstr. 7b, D-38124 Braunschweig, Germany
4University of Warmia and Mazury in Olsztyn, Department of Water Protection Engineering,
ul. Prawocheńskiego 1, 10-720 Olsztyn, Poland

keywords: Baltic Sea, Bacterioplankton, Coscinodiscus sp., T-RFLP, Clone library

Received 2 September 2013, revised 7 April 2014, accepted 29 April 2014.

This research was carried out with the support of a grant from the Polish Ministryof Science and Higher Education (No. N N304 025334) and statutory activities of theDepartment of Fisheries Oceanography and Marine Ecology of the National MarineFisheries Research Institute (project P1-2).

Abstract

The Gulf of Gdańsk is influenced by freshwater inflow from the River Vistulaand by a wind-driven current along the coast. Bacterial communities from fivestations along a salinity gradient were sampled during one day and analysed by terminal restriction fragment length polymorphism (T-RFLP), catalysed reporter deposition-fluorescence in situ hybridisation (CARD-FISH) and 16S rRNA gene libraries. On the day of sampling, we observed a probable current-driven seawater influx into the inner part of the gulf that separated the gulf into distinct water bodies. Members of the diatom Coscinodiscus sp. dominated one of these water bodies and influenced the bacterial community. The coexistence of typicallyfreshwater and marine bacterioplankton populations in the Vistula river plumesuggested an integration of some freshwater populations into the Baltic Sea bacterioplankton.

  References ref

Allgaier M., Uphoff H., Felske A., Wagner-Döbler I., 2003, Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats, Appl. Environ. Microb., 69 (9), 5051-5059, http://dx.doi.org/10.1128/AEM.69.9.5051-5059.2003

Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D.A., 1990, Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations, Appl. Environ. Microb., 56, 1919-1925.

Amann R., Fuchs B.M., 2008, Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques, Nature, 6, 339-348.

Ameryk A., Podgórska B., Witek Z., 2005, The dependence between bacterial production and environmental conditions in the Gulf of Gdańsk, Oceanologia, 47 (1), 27-45.

Amin S.A., Parker M. S., Armbrust E.V., 2012, Interactions between diatoms and bacteria, Microbiol. Mol. Biol. Rev., 76 (3), 667-684, http://dx.doi.org/10.1128/MMBR.00007-12

Andersson A. F., Riemann L., Bertilsson S., 2010, Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities, ISME J., 4, 171-181, http://dx.doi.org/10.1038/ismej.2009.108

Azam F., Fenchel T., Field J.G., Gray J. S., Meyer-Reil L.A., Thingstad F., 1983, The ecological role of water-column microbes in the Sea, Mar. Ecol.-Prog. Ser., 10, 257-263, http://dx.doi.org/10.3354/meps010257

Björnsen P. K., 1986, Automatic determination of bacterioplankton biomass by image analysis, Appl. Environ. Microb., 51 (6), 1199-1204.

BMEPC, 1988, Guidelines for the Baltic Monitoring Programme for the third stage, Balt. Mar. Environ. Prot. Comm., Helsinki, 1-161.

Boström K.H., Simu K., Hagström Å., Riemann L., 2004, Optimization of DNA extraction for quantitative marine bacterioplankton community analysis, Limnol. Oceanogr.-Meth., 2, 365-373, http://dx.doi.org/10.4319/lom.2004.2.365

Bouvier T.C., del Giorgio P.A., 2002, Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries, Limnol. Oceanogr., 47 (2), 453-470, http://dx.doi.org/10.4319/lo.2002.47.2.0453

Buchan A., González J.M., MoranM.A., 2005, Overview of the marine Roseobacter lineage, Appl. Environ. Microb., 71 (10), 5665-5677, http://dx.doi.org/10.1128/AEM.71.10.5665-5677.2005

Campbell B. J., Kirchman D. L., 2013, Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient, ISME J., 7, 210-220, http://dx.doi.org/10.1038/ismej.2012.93

Clarke K.R., 1993, Non-parametric multivariate analyses of changes in community structure, Aust. J. Ecol., 18 (1), 117-143, http://dx.doi.org/10.1111/j.1442-9993.1993.tb00438.x

Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed- Mohideen A. S., McGarrell D.M., Marsh T., Garrity G.M., Tiedje J.M., 2009, The Ribosomal Database Project: improved alignments and new tools for rRNA analysis, Nucleic Acids Res., 37 (S1), D141-D145, http://dx.doi.org/10.1093/nar/gkn879

Collins T. J., 2007, ImageJ for microscopy, BioTechniques, 43 (Suppl. 1), 25-30.

Cottrell M.T., Kirchman D. L., 2003, Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary, Limnol. Oceanogr., 48 (1), 168-178, http://dx.doi.org/10.4319/lo.2003.48.1.0168

Crump B.C., Hopkinson C. S., Sogin M. L., Hobbie J.E., 2004, Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time, Appl. Environ. Microb., 70 (3), 1494-1505, http://dx.doi.org/10.1128/AEM.70.3.1494-1505.2004

Daims H., Brühl A., Amann R., Schleifer K.-H., Wagner M., 1999, The domainspecific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set, Syst. Appl. Microbiol., 22 (2), 434-444, http://dx.doi.org/10.1016/S0723-2020(99)80053-8

Dang H., Li T., Chen M., Huang G., 2008, Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperature coastal marine waters, Appl. Environ. Microb., 74 (1), 52-60, http://dx.doi.org/10.1128/AEM.01400-07

DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E.L., Keller K., Huber T., Dalevi D., Hu P., Andersen G. L., 2006, Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB, Appl. Environ. Microb., 72 (7), 5069-5072, http://dx.doi.org/10.1128/AEM.03006-05

Dixon P., 2003, VEGAN, a package of R functions for community ecology, J. Veg. Sci., 14 (6), 927-930, http://dx.doi.org/10.1111/j.1654-1103.2003.tb02228.x

Dunalska J.A., Górniak D., Jaworska B., Evelyn E., Gaiser E.E., 2012, Effect of temperature on organic matter transformation in a different ambient nutrient availability, Ecol. Eng., 49, 27-34, http://dx.doi.org/10.1016/j.ecoleng.2012.08.023

Edler L., 1979, Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll, Balt. Mar. Biol. Publ., 5, 1-38.

Eilers H., Pernthaler J., Peplies J., Glöckner F. O., Gerdts G., Amann R., 2001, Isolation of novel pelagic bacteria from the German Bight and their seasonal contributions to surface picoplankton, Appl. Environ. Microb., 67 (11), 5134-5142, http://dx.doi.org/10.1128/AEM.67.11.5134-5142.2001

Evans C.A., O'Reilly J. E., Thomas J.P., 1987, A handbook for measurement of chlorophyll a and primary productivity, BIOMASS Sci., 8, 114 pp.

Fukushima T., Park J., Imai A., Matsushige K., 1996, Dissolved organic carbon in a eutrophic lake; dynamics, biodegradability and origin, Aquat. Sci., 58 (2), 139-157, http://dx.doi.org/10.1007/BF00877112

Grasshoff K., Erhardt M., Kremling K. (eds.), 1983, Methods of sea water analysis, Verlag Chemie, Weinheim, 63-97, 127-187.

Hahnke R. L., Probian C., Fuchs B.M., Harder J., 2013, Variations of pelagic bacterial communities in the North Atlantic Ocean coincide with water bodies, Aquat. Microbiol. Ecol., 71 (2), 131-140, http://dx.doi.org/10.3354/ame01668

HELCOM, 1988, Guidelines for the Baltic Monitoring Programme for the third stage: Part D, Biological determinands, Balt. Sea Environ.t Proc., 27D, 1-161.

HELCOM, 2001, Manual for marine monitoring in the COMBINE programme of HELCOM. Part C. Programme for monitoring of eutrophication and its effects. Annex C-6: Phytoplankton species composition, abundance and biovolume, Baltic Marine Environment Protection Commission, Helsinki, http://www.helcom.fi/groups/monas/CombineManual/AnnexesC/en_GB/annex6/

HELCOM, 2004, The fourth Baltic Sea pollution load compilation (PLC-4), Balt. Sea Environ. Proc., 93, 188 pp.

Herlemann D. P.R., Labrenz M., Jürgens K., Bertilsson S., Waniek J. J., Andersson A. F., 2011, Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea, ISME J., 5, 1571-1579, http://dx.doi.org/10.1038/ismej.2011.41

Herlemann D. P.R., Lundin D., Labrenz M., Jürgens K., Zheng Z., Aspeborg H., Andersson A. F., 2013, Metagenomic de novo assembly of an aquatic representative of the Verrucomicrobial class Spartobacteria, mBio, 4 (3), http://dx.doi.org/10.1128/mBio.00569-12

Holmfeldt K., Dziallas C., Titelman J., Pohlmann K., Grossart H.-P., Riemann L., 2009, Diversity and abundance of freshwater Actinobacteria along environmental gradients in the brackish northern Baltic Sea, Environm. Microbiol., 11 (8), 2042-2054, http://dx.doi.org/10.1111/j.1462-2920.2009.01925.x

Hoppe H.-G., Giesenhagen H.C., Gocke K., 1998, Changing patterns of bacterial substrate decomposition in a eutrophication gradient, Aquat. Microb. Ecol., 15 (1), 1-13, http://dx.doi.org/10.3354/ame015001

Hoppe H-G., Gocke K., Koppe R., Begler C., 2002, Bacterial growth and primary production along a north-south transect of the Atlantic Ocean, Nature, 416, 168-171, http://dx.doi.org/10.1038/416168a

Huber T., Faulkner G., Hugenholtz P., 2004, Bellerophon: a program to detect chimeric sequences in multiple sequence alignments, Bioinformatics, 20 (14), 2317-2319, http://dx.doi.org/10.1093/bioinformatics/bth226

Jędrasik J., Cieślikiewicz W., Kowalewski M., Bradtke K., Jankowski A., 2008, 44 years hindcast of the sea level and circulation in the Baltic Sea, Coast. Eng., 55 (11), 849-860, http://dx.doi.org/10.1016/j.coastaleng.2008.02.026

Kirchman D., Knees E., Hodson R., 1985, Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems, Appl. Environ. Microb., 49 (3), 599-607.

Kirchman D. L., Dittel A. I., Malmstrom R.R., Cottrell M.T., 2005, Biogeography of major bacterial groups in the Delaware Estuary, Limnol. Oceanogr., 50 (5), 1697-1706, http://dx.doi.org/10.4319/lo.2005.50.5.1697

Kowalewski M., Kowalewska-Kalkowska H., 2011, Performance of operationally calculated hydrodynamic forecasts during storm surges in the Pomeranian Bay and Szczecin Lagoon, Boreal Env. Res., 16 (Suppl. A), 27-41.

Kownacka J., Gromisz S., 2011, Semi-decade dynamic of the summer phytoplankton community from the southern Baltic Proper, ICES Annual Science Conferences, 19-23 September, Gdańsk, poster.

Langenheder S., Kisand V., Lindstrom E. S., Wikner J., Tranvik L. J., 2004, Growth dynamics within bacterial communities in riverine and estuarine batch cultures, Aquat. Microb. Ecol., 37 (2), 137-148, http://dx.doi.org/10.3354/ame037137

Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.-H., 1992, Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions, Syst. Appl. Microbiol., 15 (4), 593-600, http://dx.doi.org/10.1016/S0723-2020(11)80121-9

Manz W., Amann R., Ludwig W., Vancanneyt M., Schleifer K.-H., 1996, Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment, Microbiology, 142 (5), 1097-1106, http://dx.doi.org/10.1099/13500872-142-5-1097

Martinez-Garcia M., Brazel D. M., Swan B.K., Arnosti C., Chain P. S.G., Reitenga K.G., Xie G., Poulton N. J., Gomez M. L., Masland D. E.D., Thompson B., Bellows W.K., Ziervogel K., Lo C-C., Ahmed S., Gleasner C.D., Detter C. J., Stepanauskas R., 2012, Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia, PLoS ONE, 7 (4), e35314, http://dx.doi.org/10.1371/journal.pone.0035314

Morris R.M., Rappe M. S., Connon S.A., Vergin K. L., Siebold W. A., Carlson C.A., Giovannoni S. J., 2002, SAR11 clade dominates ocean surface bacterioplankton communities, Nature, 420, 806-810, http://dx.doi.org/10.1038/nature01240

Musat N., Werner U., Knittel K., Kolb S., Dodenhof T., van Beusekom J.E., de Beer D., Dubilier N., Amann R., 2006, Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Romo Basin, Wadden Sea, Syst. Appl. Microbiol., 29 (4), 333-348, http://dx.doi.org/10.1016/j.syapm.2005.12.006

Muyzer G., Teske A., WirsenC., Jannasch H., 1995, Phylogeneticrelationshipsof Thiomicrospira species and their identification in deep-sea hydrothermal vent samplesby denaturinggradientgel electrophoresisof16SrDNAfragments, Arch.Microbiol.,164 (3),165-172, http://dx.doi.org/10.1007/BF02529967

Neef A., 1997, Anwendungder in situ Einzelzell-Identifizierung von Bakterienzur Populationsanalyse in komplexen mikrobiellen Biozönosen, Ph. D. thesis, Tech. Univ., München. OleninaI., Ha jduS., EdlerL., AnderssonA., Wasmund N., BuschS., Gobel J., Gromisz S., Huseby S., Huttunen M., Jaanus A., Kekkonen P., Ledaine I., ZiemkiewiczE.,2006, Biovolumes andsize-classesofphytoplankton inthe BalticSea, HELCOMBaltic Sea Environ.Proc., 106, 144 pp.

O'Sullivan L. A., FullerK. E., ThomasE. M., TurleyC. M., FryJ. C., Weightman A. J., 2004, Distributionand culturabilityof the uncultivated 'AGG58cluster' of the Bacteroidetes phylum in aquatic environments, FEMS Microbiol. Ecol., 47 (3), 359-370, http://dx.doi.org/10.1016/S0168-6496(03)00300-3

Pernthaler A., Pernthaler J., AmmanR., 2004, Sensitivemulticolorfluorescencein situ hybridizationfor the identification of environmental microorganisms, [in:] Molecular microbial ecology manual,2nd edn., G. Kowalchuk,F. J. de Bruijn, I. M. Head,A. D. L. Akkermans& J. vanElsas(eds.),KluwerAcad.Publ., Dordrecht, 711-126.

PinhassiJ., WindingA.,Binnerup S. J., Zweifel U. L.,RiemannB.,Hagström Å., 2003, Spatial variabilityin bacterioplanktoncommunity compositionat the Skagerrak-Kattegat Front, Mar. Ecol.-Prog. Ser., 255, 1-13, http://dx.doi.org/10.3354/meps255001

PiwoszK.,SalcherM. M.,ZederM.,AmerykA.,PernthalerJ.,2013, Seasonal population dynamicsand activityof freshwaterbacteria in brackish waters of the Gulf of Gdańsk,Limnol. Oceanogr.,58 (3), 817-826.

PommierT.,CanbäckB.,RiemannL.,BoströmK. H.,SimuK.,LundbergP., TunlidA., Hagström Å., 2007, Global patterns of diversityand community structurein marine bacterioplankton,Mol. Ecol., 16 (4),867-880, http://dx.doi.org/10.1111/j.1365-294X.2006.03189.x

Pruesse E.,PepliesJ.,GlöcknerF. O.,2012,SINA: accuratehigh-throughput multiple sequence alignmentof ribosomal RNAgenes, Bioinformatics, 28 (14), 1823-1829, http://dx.doi.org/10.1093/bioinformatics/bts252

Ramette A., 2009, Quantitative community Fingerprinting methodsfor estimating the abundance of operational taxonomicunit in natural microbial communities, Appl.Environ.Microb.,75 (8),2495-2505, http://dx.doi.org/10.1128/AEM.02409-08

RiemannL., LeitetC., PommierT., Simu K., HolmfeldtK., Larsson U. Hagström Å.,2008, Thenativebacterioplankton community inthecentralBalticSea is influenced by freshwaterbacterialspecies,Appl.Environ.Microb.,74 (2), 503-515. Rolff C., Elmgren R., 2000, Use of riverine organic matter in plankton food webs of the Baltic Sea, Mar. Ecol.-Prog. Ser., 197, 81-101, http://dx.doi.org/10.3354/meps197081

Roller C., Wagner M., Amann R., Ludwig W., Schleifer K.-H., 1994, In situ probing of Gram-positive bacteria with high DNA G+C content using 23S rRNAtargeted oligonucleotides, Microbiology, 140, 2849-2858, http://dx.doi.org/10.1099/00221287-140-10-2849

Rooney-Varga J.N., Giewat M.W., Savin M.C., Sood S., LeGresley M., Martin J. L., 2005, Links between phytoplankton and bacterial community dynamics in a coastal marine environment, Microb. Ecol., 49 (1), 163-175, http://dx.doi.org/10.1007/s00248-003-1057-0

Selje N., Simon M., Brinkhoff T., 2004, A newly discovered Roseobacter cluster in temperate and polar oceans, Nature, 427, 445-448, http://dx.doi.org/10.1038/nature02272

Shyu C., Soule T., Bent S. J., Foster J.A., Forney L. J., 2007, MiCA: A web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes, Microb. Ecol., 53 (4), 562-570, http://dx.doi.org/10.1007/s00248-006-9106-0

Simon M., Azam F., 1989, Protein content and protein synthesis rates of planktonic marine bacteria, Mar. Ecol.-Prog. Ser., 51, 201-213, http://dx.doi.org/10.3354/meps051201

Simu K., Hagström Å., 2004, Oligotrophic bacterioplankton with a novel single-cell life strategy, Appl. Environ. Microb., 70 (4), 2445-2451, http://dx.doi.org/10.1128/AEM.70.4.2445-2451.2004

Šimek K., Pernthaler J., Weinbauer M. G., Hornak K., Dolan J.R., Nedoma J., Masin M., Amann R., 2001, Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir, Appl. Environ. Microb., 67 (6), 2723-2733, http://dx.doi.org/10.1128/AEM.67.6.2723-2733.2001

UNESCO, 1983, Chemical methods for use in marine environmental monitoring. Manual and guides, Intergovern. Oceanogr. Comm., 12, 1-53.

Venables W.N., Ripley B.D., 2002, Modern applied statistics with S, Springer, New York, http://dx.doi.org/10.1007/978-0-387-21706-2

Wagner-Döbler I., Biebl H., 2006, Environmental biology of the marine Roseobacter lineage, Ann. Rev. Microbiol., 60, 255-280, http://dx.doi.org/10.1146/annurev.micro.60.080805.142115

Wallner G., Amann R., Beisker W., 1993, Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms, Cytometry, 14, 136-143.

Wang Q., Garrity G.M., Tiedje J.M., Cole J.R., 2007, Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy, Appl. Environ. Microb., 73 (16), 5261-5267, http://dx.doi.org/10.1128/AEM.00062-07

Wielgat-Rychert M., Ameryk A., Jarosiewicz A., Kownacka J., Rychert K., Szymanek L., ZalewskiM., Agatova A., Lapina N., Torgunova N., 2013, Impact of the inflow of Vistula river waters on the pelagic zone in the Gulf of Gdańsk, Oceanologia, 55 (4), 859-886, http://dx.doi.org/10.5697/oc.55-4.859

Witek Z., Humborg C., Savchuk O., Grelowski A., Łysiak-Pastuszak E., 2003, Nitrogen and phosphorus budgets of the Gulf of Gdańsk (Baltic Sea), Estuar. Coast. Shelf Sci., 57 (1-2), 239-248, http://dx.doi.org/10.1016/S0272-7714(02)00348-7

Witek Z., Ochocki S., Maciejowska M., Pastuszak M., Nakonieczny J., Podgórska B., Kownacka J. M., Mackiewicz T., Wrzesińska-Kwiecień M., 1997, Phytoplankton primary production and its utilization by the pelagic community in the coastal zone of the Gulf of Gdańsk, Mar. Ecol.-Prog. Ser., 148, 169-186, http://dx.doi.org/10.3354/meps148169

Wright E. S., Yilmaz L. S., Noguera D.R., 2012, DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences, Appl. Environ. Microb., 78 (3), 717-725, http://dx.doi.org/10.1128/AEM.06516-11

Zhang Y., Jiao N., Cottrell M.T., Kirchman D. L., 2006, Contribution of major bacterial groups to bacterial biomass production along a salinity gradient in the South China Sea, Aquat. Microb. Ecol., 43 (3), 233-241, http://dx.doi.org/10.3354/ame043233

Zhang Z., Schwartz S., Wagner L., Miller W., 2000, A greedy algorithm for aligning DNA sequences, J. Comput. Biol., 7 (1-2), 203-214, http://dx.doi.org/10.1089/10665270050081478

Zwart G., Crump B.C., Kamst-van Agterveld M.P., Hagen F., Han S-K., 2002, Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers, Aquat. Microb. Ecol., 28 (2), 141-155, http://dx.doi.org/10.3354/ame028141

full, complete article (PDF - compatibile with Acrobat 4.0), 752 KB


Impact of sand extraction from the bottom of the southern Baltic Sea on the relief and sediments of the seabed
Oceanologia 2014, 56(4), 857-880
http://dx.doi.org/10.5697/oc.56-4.857

Szymon Uścinowicz1,*, Wojciech Jegliński1, Grażyna Miotk-Szpiganowicz1, Jarosław Nowak2, Urszula Pączek1, Piotr Przezdziecki1, Kazimierz Szefler2, Grzegorz Poręba3
1Polish Geological Institute - National Research Institute, Marine Geology Branch,
Kościerska 5, 80-328 Gdańsk, Poland;
e-mail: szymon.uscinowicz@pgi.gov.pl
*corresponding author
2Maritime Institute in Gdańsk,
Długi Targ 41/42, 80-830 Gdańsk, Poland
3Department of Radioisotopes, Institute of Physics CSE, Silesian University of Technology,
Krzywoustego 2, 44-100 Gliwice, Poland

keywords: Sand extraction, dredging effects, seabed dynamics, regeneration, Southern Baltic

Received 9 August 2013, revised 25 March 2014, accepted 2 April 2014.

Abstract

Investigations of the geological structure and seabed dynamics as well as the morphological and sedimentological effects of sand extraction generated by different mining techniques were carried out in Polish waters of the Baltic Sea, NW of the Gulf of Gdańsk, at a water depth of 15-17 m. Three research cruises took place:just before, directly after and 11 months after dredging operations. Seismoacoustic profiling, a multibeam echosounder, a side-scan sonar, a 3 m vibro-corer and a box-corerwere used during the research cruises. The grain size distribution and 137Cscontent of the sand samples were determined. Marine shells were dated by the AMS14C technique and pollen analyses were carried out on samples of muddy sands lying below the marine sand. A 2 to 4.5 m thick layer of marine sands lies onthe boulder till and locally on late Pleistocene ice margin lake deposits. The 137Cs content indicates that the 0.4-0.8 m thick sand layer is mobile during storms.
After the dredging operations, four pits with diameters from 80 to 120 m,depths from 3 to 4.5 m and slopes with gradients up to 30-55° were measured. Several smaller irregularly shaped pits and double furrows 30-150 m in length and 0.3-0.5 m in depth were found. The sonar mosaic also shows a 50-100 m buffer zoneof fine sand around the pits which flowed over the dredger's side with water andsettled on the bottom.
During one year after the dredging operation the furrows generated by trailersuction hopper dredging as well as the fine sand cover around the pits disappearedcompletely. The four post-dredging pits left by stationary suction dredging wereshallower by 2-2.5 m, their diameters increased by 40-50 m, the gradient of the slopes was reduced by up to 5-10°, and the total volume was only about 3.5% smaller than directly after dredging.


  References ref

Anon, 1992, Sprawozdanie z badań geologicznych zalegania piasków do zasilania plaż Półwyspu Helskiego na obszarze Bałtykuw rejonieRozewie - Władysławowo, Report from geological investigations of sand accumulations off the Rozewie - Władysławowo coast, Arch.Maritime Office, Gdynia,12 pp.

Berglund B. E., 1979, Pollenanalysis,[in:]Palaeohydrologicalchanges inthe temperate zone inthelast15000 years,B. E. Berglund(ed.),International Geological Correlation Program, Pro ject 158B, Univ.Lund,133-167.

BoydS. E., CooperK. M., LimpennyD. S., KilbrideR., ReesH. L., Dearnaley M. P., Stevenson J., Meadows W. J., Morris C. D., 2004, Assessment ofthe re-habilitation of the seabed following marine aggregate dredging,CEFAS Sci. Ser. Tech. Rep.No. 121, 154 pp.

Cieślak A.,2001, Zarysstrategii ochrony brzegów morskich,Inż.Mor. Geotech., 2, 65-73.

Cooper K. M., Eggleton J. D., Viye S. J., Vanstaen K., Smith R., Boyd S. E., Ware S., Morris C. D., Curtis M., Limpenny D. S., Meadows W. J., 2005, Assessment of the re-habilitation of the seabed following marine aggregate dredging - part II, CEFAS Sci. Ser. Tech. Rep.No. 130, 82 pp.

ICES, 2001, Effectsofextractionofmarinesedimentsonthe marineecosystem, Coop. Res. Rep.No. 247, Copenhagen, 80 pp.

Fagri K., Iversen J., 1975, Textbook of pollen analysis,Munksgaard, Copenhagen, 295 pp.

Gajewski L., Uścinowicz Sz., 1993, Hydrologic and sedimentologic aspects of mining aggregate from the Słupsk Bank (BalticSea), Mar.Georesour. Geotec., 11 (3), 229-244, http://dx.doi.org/10.1080/10641199309379920

Graca B.,BurskaD., Matuszewska K., 2004, Theimpactofdredging deeppits on organic matter decompositioninsediments,WaterAirSoil Poll.,158 (1), 237-259, http://dx.doi.org/10.1023/B:WATE.0000044853.63461.53

Herrmann C., Krause J., Tsoupikova N., Hansen K., 1999, Marinesediment extraction in the Baltic Sea - Status Report, Baltic Sea Environ. Proc. No. 76, Helsinki Comm.,31 pp.

Humphreys B., Harrison D., ArthurtonR., LabanC., LethJ., Galtier L.,1999, Marine sand and gravel in north-west Europe. A fact-finding and scoping study, CIRIA Pro j. Rep.No. 68, London, 64 pp.

Kubicki A., Manso F., Diesing M., 2007, Morphological evolution of gravel and sand extraction pits, TromperWiek,BalticSea,Estuar.Coast. Shelf Sci., 71 (3-4), 647-656.

Łęczyński L.,2009, Morfolitodynamika przybrzeża Półwyspu Helskiego, Wyd. Uniw. Gdańsk., Gdańsk, 117 pp.

Manso, F.,Radzevicius R.,Blazauskas N.,Balay A.,SchwarzerK.,2010, Nearshore Dredginginthe BalticSea: conditionafter cessationof activities and assessment of regeneration,J. Coast. Res., SI 51, 187-194.

Paszkiewicz Cz., 1983,Średnie polefalwiatrowych wBałtyku, Stud. Mater. Oceanol.,40, 73-127.

Paszkiewicz Cz., 1994, Falowanie wiatrowe, [in:]Atlas Morza Bałtyckiego, A. Ma jewski & Z. Lauer (eds.),IMGW,Warszawa,92-95.

Pikies R., Jurowska Z., 1992, Geological map of the BalticSea bottom,1:200 000, sheet Puck, Państ. Inst. Geol., Warszawa.

SchwarzerK.,2010,Aggregateresourcesandextraction intheBalticSea: an introduction, J. Coast.Res., 51 (SI), 165-172.

Uścinowicz Sz., 2003, The SouthernBaltic relative sea level changes, glacio-isostatic rebound andshorelinedisplacement, Pol.Geol.Inst.Spec.Pap.,10, 79 pp.

Uścinowicz Sz.,2006, Arelativesea-levelcurveforPolishSouthernBalticSea, Quat. Int., 145-146, 86-105, http://dx.doi.org/10.1016/j.quaint.2005.07.007

full, complete article (PDF - compatibile with Acrobat 4.0), 5101 KB


Seasonal changes in the biochemical components ofPseudonereis anomala (Polychaeta, Nereididae) from the Alexandria coast, Egypt
Oceanologia 2014, 56(4), 881-887
http://dx.doi.org/10.5697/oc.56-4.881

Mohamed Moussa Dorgham*, Rasha Hamdy, Huda Hassan Al-Rashidy, Manal Mohamed Atta
Department of Oceanography, Faculty of Science, Alexandria University,
Alexandria, 21511, Egypt;
e-mail: mdorgham1947@yahoo.com
*corresponding author

keywords: Lipids, fatty acids, amino acids, carbohydrate

Received 21 October 2013, revised 1 April 2014, accepted 29 April 2014.

Abstract

The biochemical composition (carbohydrates, protein, lipids, fatty acids and aminoacids) of the nereid polychaete Pseudonereis anomala Gravier 1901, from a shallowpart of the Alexandria coast (Egypt), was studied seasonally. The results revealedthat P. anomala had a lower water content, higher carbohydrates and protein, butapproximately similar or higher lipid levels than several other polychaetes.
Fatty acids appeared to be dominated by unsaturated acids, constitutingseasonally 49.6-81%, while saturated acids reached high amounts in winter andspring (23.3 and 38.3% respectively). C20:5n-3 was the major polyunsaturated fatty acid, accompanied by small amounts of C18:4n-3, C20:4n-6, C16:1n-7 andC20:1n-9. C18:0 dominated the saturated fatty acids for most of the year, exceptin autumn when C16:0 was the major one.


  References ref

BlighE. G., DyerW. J., 1959,Arapidmethod oftotallipidextraction and purification, Can.J. Biochem.Phys.,37 (8),911-917, http://dx.doi.org/10.1139/o59-099

Çinar M. E., Altun C., 2007, Apreliminarystudyon populationcharacteristics of the Lessepsian species, Pseudonereis anomala (Polychaeta:Nereididae), in IskenderunBay(Levantine Sea,easternMediterranean), Turk.J.Zool., 31, 403-41.

ÇinarM. E.,ErgenZ.,2005, Lessepsianmigrantsexpandingtheirdistributional ranges; Pseudonereisanomala (Polychaeta:Nereididae)in IzmirBay (Aegean Sea),J. Mar.Biol. Assoc. UK,85 (2),313-321.

DinisM. T.,ReisJ.,ArrobasI.,1996,Evaluationofthefarmingpotentialfor Solea senegalensisKaup, a new speciesfor aquaculture inthe Mediterranean area, [in:] Book of abstracts. World Aquaculture, 29 January-2 February 1996, Bangkok, R. L. Cresswell (ed.),World Aquacult. Soc., 107-109.

DorghamM. M., HamdyR., El-Rashidy H. H., Atta M. M., 2013, Firstrecordsof polychaetes new to EgyptianMediterraneanwaters, Oceanologia,55 (1), 235-267, http://dx.doi.org/10.5697/oc.55-1.235

ErgenZ., ÇinarM. E.,1997, Polychaetaof AntalyaBay(Mediterraneancoast of Turkey),Israel J. Zool., 43, 229-241.

Gornall A. G., Bardawill C. J., David M. M., 1949, Determinationof serum proteins by means of the biuret reaction, J. Biol. Chem.,177 (2), 751-766.

Huang J. H., Jiang S. G., Lin H. Z., Zhou F. L., Ye L., 2008, Effectsof dietary highly unsaturated fatty acidsand astaxanthin on the fecundityand lipid content of pond reared Penaeus monodon (Fabricius)broodstock, Aquac. Res., 39 (3), 240-251, http://dx.doi.org/10.1111/j.1365-2109.2007.01868.x

JamesC. S.,1995,Analytical chemistryoffood,BlackieAcad.&Prof.Press, 178 pp., http://dx.doi.org/10.1007/978-1-4615-2165-5

MeunpolO., Meejing P.,Piyarativorakul S., 2005, Maturationdiet based on fatty acids content for male Penaeusmonodon (Fabricius)broodstock, Aquac. Res., 36 (12), 1216-1225, http://dx.doi.org/10.1111/j.1365-2109.2005.01342.x

Nguyen B. T.,Koshio S., SakiyamaK., IshikawaM., YokoyamaS., AbdulKader M. D.,2012,Effects ofpolychaeteextractsonreproductiveperformanceof kuruma shrimp,MarsupenaeusjaponicusBate,PartII. Ovarianmaturation and tissue lipid compositions, Aquaculture, 334-337, 65-72, http://dx.doi.org/10.1016/j.aquaculture.2011.11.038

Osman I. H., 2007, Errantiate polychaetes of commercial interest in Suez Canal: an ecological and biological study, M. Sc. Thes., Faculty of Sci., Suez Canal Univ., 188 pp.

full, complete article (PDF - compatibile with Acrobat 4.0), 102 KB