Oceanologia No. 56 (2) / 14

Thematic issue:
Changes in Energy, Water and Matter Cycles - 20 Years of BALTEX Research Building Regional Earth System Knowledge - A future programme for the Baltic Sea region 7th Study Conference on BALTEX

Contents


Preface


Papers


Papers



New coupled atmosphere-ocean-ice system COSMO-CLM/NEMO: assessing air temperature sensitivity over the North and Baltic Seas
Oceanologia 2014, no. 56(2), pp. 167-189
doi:10.5697/oc.56-2.167

Trang Van Pham1,4,*, Jennifer Brauch2, Christian Dieterich3, Barbara Frueh2, Bodo Ahrens4
1Biodiversity and Climate Research Centre,
Senckenberganlage 25, D-60325 Frankfurt am Main, Germany;
e-mail: trang.pham-van@dwd.de
*corresponding author
2German Meteorological Service,
Frankfurterstr. 135, 63067, Offenbach am Main, Germany
3Swedish Meteorological and Hydrological Institute,
Folkborgsvägen 17, SE-601 76, Norrköping, Sweden
4Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt,
Altenhöferallee 1, 60438, Frankfurt am Main, Germany

keywords: Coupled model, atmosphere ocean-sea-ice interaction, Baltic Sea, North Sea, COSMO-CLM, NEMO, OASIS3

Received 25 October 2013, revised 12 February 2014, accepted 26 February 2014.

We acknowledge support from the German Federal Ministry of Education and Research (BMBF) under grant MiKliP: DECREG/01LP1118B.

Abstract

This paper introduces a newly established coupled atmosphere-ocean-ice system with the regional climate model COSMO-CLM and the ocean-sea-ice model NEMO for the North and Baltic Seas. These two models are linked via the OASIS3 coupler. Experiments with the new coupled system and with the stand-alone COSMO-CLM model forced by ERA-Interim re-analysis data over the period from 1985 to 1994 for the CORDEX Europe domain are carried out. The evaluation results of the coupled system show 2-m temperature biases in the range from -2.5 to 3 K. Simulated 2-m temperatures are generally colder in the coupled than in the uncoupled system, and temperature differences vary by season and space. The coupled model shows an improvement compared with the stand-alone COSMO-CLM in terms of simulating 2-m temperature. The difference in 2-m temperature between the two experiments are explained as downwind cooling by the colder North and Baltic Seas in the coupled system.

  References ref

Akhtar N., Brauch J., Dobler A., Ahrens B., 2014, Medicanes in an oceanatmosphere coupled regional climate model, submitted to Nat. Hazard. Earth Sys., accepted for Nat. Hazard. Earth Sys. in Open Discussion).

Bissolli P., Dittmann E., 2001, The objective weather type classification of the German Weather Service and its possibilities of application to environmental and meteorological investigations, Deut. Meteorol. Z., 10 (4), 253-260, http://dx.doi.org/10.1127/0941-2948/2001/0010-0253

Boehm U., KueckenM., Ahrens W., Block A., Hauffe D., Keuler K., Rockel B.,Will A., 2006, CLM - the climate version of LM: Brief description and long-term applications, COSMO Newsl., 6, 225-235.

Boehm U., Kuecken M., Hauffe D., Gerstengarbe F. W., Werner P. C., Flechsig M., Keuler K., Block A., Ahrens W., Nocke T., 2004, Reliability of regional climate model simulations of extremes and of long-term climate, Nat. Hazard. Earth Syst. Sci., 4, 417-431, http://dx.doi.org/10.5194/nhess-4-417-2004

Christensen J. H., Christensen O. B., 2007, A summary of the PRUDENCE model projections of changes in European climate by the end of this century, Climatic Change, 81 (1), 7-30, http://dx.doi.org/10.1007/s10584-006-9210-7

Dee D., Uppala S., Simmons A., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M., Balsamo G., Bauer P., Bechtold P., Beljaars A., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A., Haimberger L., Healy S., Hersbach H., Holm E., Isaksen L., Kallberg P., Kohler M., Matricardi M., McNally A., Monge-Sanz B., Morcrette J., Park B., Peubey C., de Rosnay P., Tavolato C., Thepaut J., Vitart F., 2011, The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137 (656), 553-597, http://dx.doi.org/10.1002/qj.828

Dieterich C., Schimanke S., Wang S., Vaeli G., Liu Y., Hordoir R., Axell L., Hoeglund A., Meier H. E. M., 2013, Evaluation of the SMHI coupled atmosphere-ice-ocean model RCA4-NEMO, Rep. Oceanogr., 47, 80 pp.

Doescher R., Wyser K., Meier H. E. M., Qian M., Redler R., 2010, Quantifying Arctic contributions to climate predictability in a regional coupled ocean-ice- atmosphere model, Clim. Dynam., 34 (7-8), 1157-1176, http://dx.doi.org/10.1007/s00382-009-0567-y

Giorgi F., 2006, Climate change hot-spots, Geophys. Res. Lett., 33 (8), http://dx.doi.org/10.1029/2006GL025734

Giorgi F., Jones C., Asrar G. R., 2006, Addressing climate information needs at the regional level: the CORDEX framework, Bull. World Meteorol. Organ., 58, 175-183.

Griffes S. M., Biastoch A., Boening C., Bryan F., Danabasoglu G., Chassignet E. P., England M. H., Gerdes R., Haak H., Hallberg R. W., Hazeleger W., Jungclaus J., Large W. G., Madec G., Pirani A., Bonita L., Samuels B. L., Scheinert M., Gupta A. S., Severijns C. A., Simmons H. L., Treguier A. M., Winton M., Yeager S., Yin J., 2009, Coordinated Ocean-ice Reference Experiments (COREs), Ocean Model., 26 (1-2), 1-46, http://dx.doi.org/10.1016/j.ocemod.2008.08.007

Gustafsson B., 1997, Interaction between Baltic Sea and North Sea, Deut. Hydrograph. Z., 49 (1-2), 19 pp.

Haylock M. R., Hofstra N., Klein Tank A. M. G., Klok E. J., Jones P. D., New M., 2008, A European daily high-resolution gridded dataset of surface temperature and precipitation, J. Geophys. Res.-Atmos., 113 (D20119), 12 pp., http://dx.doi.org/10.1029/2008JD010201

Ho H. T. M., Rockel B., Kapitza H., Geyer B., Meyer E., 2012, COSTRICE - three model online coupling using OASIS: problems and solutions, Geosci. Model Dev. Discuss., 5, 3261-3310, http://dx.doi.org/10.5194/gmdd-5-3261-2012

Hordoir R., An B. W., Haapala J., Dieterich C., Schimanke S., Hoeglund A., Meier H. E. M., 2013, A 3D ocean modelling configuration for Baltic & North Sea exchange analysis, Rep. Oceanograph., 48, 72 pp.

Hoyer J. L., She J., 2011, Validation of satellite SST products for the North Sea- Baltic Sea region, Tech. Rep., 04-11, Danish Meteorol. Inst., Copenhagen, 24 pp.

IPCC, 2001, Climate change 2001: the scientific basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, [J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, & C. A. Johnson (eds.)], Cambridge Univ. Press, Cambridge, New York, 88 pp.

Jacob D., Baerring L., Christensen O. B., Christensen J. H., de Castro M., Déqué M., Giorgi F., Hagemann S., Hirschi M., Jones R., Kjellstroem E., Lenderink G., Rockel B., Sánchez E., Schaer C., Seneviratne S. I., Somot S., van Ulden A., B. van den Hurk, 2007, An inter-comparison of regional climate models for Europe: model performance in present-day climate, Climatic Change, 8 (1S), 31-52, http://dx.doi.org/10.1007/s10584-006-9213-4

Jaeger E. B., Anders I., Luethi D., Rockel B., Schaer C., Seneviratne S. I., 2008, Analysis of ERA40-driven CLM simulations for Europe, Meteorol. Z., 17 (4), 349-367, http://dx.doi.org/10.1127/0941-2948/2008/0301

Kapitza H., 2008, High performance computing for computational science - VECPAR 2008, Lect. Notes Comput. Sci., 5336, 63-68, http://dx.doi.org/10.1007/978-3-540-92859-1

Kjellstroem E., Doescher R., Meier H. E. M., 2005, Atmospheric response to different sea surface temperatures in the Baltic Sea: coupled versus uncoupled regional climate model experiments, Nord. Hydrol., 36 (4), 397-409.

Kothe S., Dobler A., Beck A., Ahrens B., 2011, The radiation budget in a regional climate model, Clim. Dynam., 36 (5-6), 1023-1036, http://dx.doi.org/10.1007/s00382-009-0733-2

Large W., Yeager S., 2004, Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies, NCAR Tech. Note: NCAR/TN-460+STR, CGD Div., Nat. Center Atmos. Res., 112 pp.

Levitus S., Boyer T. P., 1994, World ocean atlas, Volume 4: temperature, NOAA Atlas NESDIS 4, NOAA, Washington D.C.

Levitus S., Burgett R., Boyer T. P., 1994, World ocean atlas, Volume 3: salinity, NOAA Atlas NESDIS 3, NOAA, Washington D.C.

Li L., Bozec A., Somot S., Béranger K., Bouruet-Aubertot P., Sevault F., Crépon M., 2006, Regional atmospheric, marine processes and climate modelling, [in:] Mediterranean climate variability, P. Lionello, P. Malanotte & R. Boscolo (eds.), Elsevier B.V., Amsterdam, 373-397.

Lindström G., Pers C., Rosberg J., Strömqvist J., Arheimer B., 2010, Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales, Hydrol. Res., 41 (3-4), 295-319, http://dx.doi.org/10.2166/nh.2010.007

full, complete article (PDF, 1442 KB)


Diurnal variability of water vapour in the Baltic Sea region according to NCEP-CFSR and BaltAn65+ reanalyses
Oceanologia 2014, no. 56(2), pp. 191-204
doi:10.5697/oc.56-2.191

Erko Jakobson1,2,*, Hannes Keernik1,2, Andres Luhamaa2,3, Hanno Ohvril2
1Tartu Observatory,
61602, Toravere, Tartumaa, Estonia;
e-mail: erko.jakobson@ut.ee
*corresponding author
2Institute of Physics, University of Tartu,
Ulikooli 18, Tartu 50090, Estonia
3Estonian Meteorological and Hydrological Institute,
Mustamäe tee 33, Tallinn, Estonia

keywords: Precipitable water, diurnal variability, breeze, NCEP-CFSR, BaltAn65+

Received 25 October 2013, revised 20 March 2014, accepted 25 March 2014.

The survey was supported by Esttonian Science Foundation under a postdoctoral grant JD189, by European Social Fund's Doctoral Studies and Internationalisation Programme DoRa and project SLOOM12073T, which are carried out by Foundation Archmedes, and by project `Estonian Radiation Climate' funded by the EU Regional Development Foundation.

Abstract

Diurnal variations in water vapour in the Baltic Sea region are examined using BaltAn65+ and NCEP-CFSR reanalyses of summer (JJA) data for the period 1979-2005. A systematic difference between precipitable water (PW) diurnal variability above the land and the water is revealed. Above the land, PW diurnal variability has minimal values at 00 and 06 UTC, as in previous studies, whereas above the water, the minima are at 12 and 18 UTC. Diurnal variability in the vertical humidity profile is controlled by turbulent mixing and the diurnal behaviour of sea breezes. The impacts and proportions of diurnal variability of humidity are evaluated at different vertical levels.

  References ref

Anthes R. A., 1983, Regional models of the atmosphere in middle latitudes, Mon. Weather Rev., 111 (6), 1306-1335, http://dx.doi.org/10.1175/1520-0493(1983)111<1306:RMOTAI>2.0.CO;2

Arritt R. W., 1993, Effects of the large scale flow on characteristics features of the sea breeze, J. Appl. Meteorol., 32 (1), 116-125, http://dx.doi.org/10.1175/1520-0450(1993)032<0116:EOTLSF>2.0.CO;2

Bastin S., Champollion C., Bock O., Drobinski P., Masson, F., 2007, Diurnal cycle of water vapor as documented by a dense GPS network in a coastal area during ESCOMPTE IOP2, J. Appl. Meteorol. Clim., 46 (2), 167-182, http://dx.doi.org/10.1175/JAM2450.1

Bengtsson L., Robinson G., Anthes R., Aonashi K., Dodson A., Elgered G., Gendt G., Gurney R., Jietai M., Mitchell C., Mlaki M., Rhodin G., Silverstrin P., Ware R., Watson R., Wergen W., 2003, The use of GPS measurements for water vapor determination, B. Am. Meteor. Soc., 84 (9), 1249-1258, http://dx.doi.org/10.1175/BAMS-84-9-1249

Bouma H. R., Stoew B., 2001, GPS observations of daily variations in the atmospheric water vapor content, Phys. Chem. Earth, 26 (A6-8), 389-392.

Bouma H. R., 2002, Ground-based GPS in climate research, Tech. Rep. No. 456L, Licentiate Thesis, School Environ. Sci. School Electric. Eng., Chalmers Univ. of Tech., Göteborg.

Dai A., Giorgi F., Trenberth K. E., 1999a, Observed and model-simulated precipitation diurnal cycle over the contiguous United States, J. Geophys. Res., 104 (D6), 6377-6402, http://dx.doi.org/10.1029/98JD02720

Dai A., Trenberth K. E., Karl T. R., 1999b, Effects of clouds, soil moisture, precipitation and water vapor on diurnal temperature range, J. Climate, 12 (8), 2451-2473, http://dx.doi.org/10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2

Dai A., Wang J., Ware R., Van Hove T., 2002, Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity, J. Geophys. Res., 107 (D10), ACL 11-1-ACL 11-14, http://dx.doi.org/10.1029/2001JD000642

Jakobson E., Ohvril H., Elgered G., 2009, Diurnal variability of precipitable water in the Baltic region, impact on transmittance of the direct solar radiation, Boreal Environ. Res., 14 (1), 45-55.

Jakobson E., Vihma T., 2010, Atmospheric moisture budget over the Arctic on the basis of the ERA-40 reanalysis, Int. J. Climatol., 30 (14), 2175-2194, http://dx.doi.org/10.1002/joc.2039

Kiehl J. T., Trenberth K. E., 1997, Earth’s annual global mean energy budget, B. Am. Meteorol. Soc., 78 (2), 197-208, http://dx.doi.org/10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2

Luhamaa A., Kimmel K., Männik A., Rõõm R., 2010, High resolution re-analysis for the Baltic Sea region during 1965-2005 period, Clim. Dynam., 36 (3-4), 727-738, http://dx.doi.org/10.1007/s00382-010-0842-y

Maurellis A. N., Tennyson J., 2003, The climatic effects of water vapour, Phys. World, 16 (5), 29-33.

Okulov O., Ohvril H., 2010, Column transparency and precipitable water in Estonia. Variability during the last decades, Lambert Acad. Publish., Saarbrücken, 69 pp.

Ortiz de Galisteo J. P., Cachorro V., Toledano C., Torres B., Laulainen N., Bennouna Y., de Frutos A., 2011, Diurnal cycle of precipitable water vapor over Spain, Q. J. Roy. Meteor. Soc., 137 (657), 948-958, http://dx.doi.org/10.1002/qj.811

Saha S., Moorthi S., Pan H.-L., Wu X., Wang J., Nadiga S., Tripp P., Kistler R., Woollen J., Behringer D., Liu H., Stokes D., Grumbine R., Gayno G., Wang J., Hou Y.-T., Chuang H.-Y., Juang H.-M. H., Sela J., Iredell M., Treadon R., Kleist D., Van Delst P., Keyser D., Derber J., Ek M., Meng J., Wei H., Yang R., Lord s., Van Den Dool H., Kumar A., Wang W., Long C., Chelliah M., Xue Y., Huang B., Schemm J.-K., Ebisuzaki W., Lin R., Xie P., Chen M., Zhou S., Higgins W., Zou C.-Z., Liu Q., Chen Y., Han Y., Cucurull L., Reynolds R. W., Rutledge G., Goldberg M., 2010, The NCEP climate forecast system reanalysis, B. Am. Meteorol. Soc., 91 (8), 1015-1057, http://dx.doi.org/10.1175/2010BAMS3001.1

Wu P., Hamada J., Mori S., Tauhid Y. I., Yamanaka M. D., Kimura F., 2003, Diurnal variation of precipitable water over a mountainous area of Sumatra Island, J. Appl. Meteorol., 42, 1107-1115, http://dx.doi.org/10.1175/1520-0450(2003)042<1107:DVOPWO>2.0.CO;2

full, complete article (PDF, KB)


Observational evidence for human impact on aerosol cloud-mediated processes in the Baltic region
Oceanologia 2014, no. 56(2), pp. 205-222
doi:10.5697/oc.56-2.205

Olaf Krüger1,2
1Tartu Observatory,
61602, Toravere, Tartumaa, Estonia;
e-mail: olaf.krueger@to.ee
2Institute of Physics, University of Tartu,
Ülikooli 18, 50090 Tartu, Estonia

keywords: Aerosols, clouds, radiation, Grosswetterlagen

Received 25 October 2013, revised 12 February 2014, accepted 26 February 2014.

Abstract

Knowledge about aerosol cloud-mediated processes is important for judging climate change in Europe during recent decades. Here, some observational evidence for anthropogenic influences is described and discussed. The emphasis is laid on the effects of the large emissions of sulphur dioxide and particulate matter during the 1980s in Europe and the subsequent strong decrease in the 1990s. In addition, an analysis of the dependence of aerosol cloud-mediated processes on atmospheric circulation patterns (Grosswetterlagen) is presented.

  References ref

Ackerman A. S., Toon O. B., Stevens D. E., Heymsfield A. J., Ramanathan V., Welton E. J., 2004 Reduction of tropical cloudiness by soot, Science, 288 (5468), 1042-1047, http://dx.doi.org/10.1126/science.288.5468.1042

Andreae M. O., Rosenfeld D., Artaxo P., Costa A. A., Frank G. P., Longo K. M., Silva-Dias M. A. F., 2004, Smoking Rain Clouds over the Amazon, Science, 303 (5662), 1337-1342, http://dx.doi.org/10.1126/science.1092779

Albrecht B. A., 1989, Aerosols, cloud microphysics, and fractional cloudiness, Science, 245 (4923), 1227-1230, http://dx.doi.org/10.1126/science.245.4923.1227

Armalis S., 1999, Wet deposition of elemental carbon in Lithuania, Sci. Total Environ., 239 (1-3), 89-93, http://dx.doi.org/10.1016/S0048-9697(99)00288-0

Bates T. S., Huebert B. J., Gras J. L., Griffiths F. B., 1998, International global atmospheric chemistry (IGAC) project’s first aerosol characterization experiment (ACE-1): Overview, J. Geophys. Res., 103 (D13), 16297-16318, http://dx.doi.org/10.1029/97JD03741

Bäumer D., Vogel B., 2007, An unexpected pattern of distinct weekly periodicities in climatological variables in Germany, Geophys. Res. Lett., 34, L03819, http://dx.doi.org/10.1029/2006GL028559

Bond T. C., Doherty S. J., Fahey D. W., Forster P. M., Berntsen T., De Angelo B. J., Flanner M. G., Ghan S., Kärcher B., Koch D., Kinne S., Kondo Y., Quinn P. K., Sarofim M. C., Schultz M. G., Schulz M., Venkataraman C., Zhang H., Zhang S., Bellouin N., Guttikunda S. K., Hopke P. K., Jacobson M. Z., Kaiser J. W., Klimont Z., Lohmann U., Schwarz J. P., Shindell D., Storelvmo T., Warren S. G., Zender C. S., 2013, Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos., 118, 5380-5552.

Coakley J. A., 1987, Effect of ship stack effluents on cloud reflectivity, Science 237 (4818), 1020-1022.

Conover J. H., 1966, Anomalous cloud lines, J. Atmos. Sci., 23 (6), 778-785, http://dx.doi.org/10.1175/1520-0469(1966)023<0778:ACL>2.0.CO;2

Devasthale A., Krüger O., Grassl H., 2005, Change in cloud top temperatures over Europe, IEEE Geosci. Remote S., 2 (3), 333-336, http://dx.doi.org/10.1109/LGRS.2005.851736

Devasthale A., Krüger O., Grassl H., 2006, Impact of ship emissions on cloud properties over coastal areas, Geophys. Res. Lett., 33, L02811, http://dx.doi.org/10.1029/2005GL024470

Eerme K., Kallis A., Veismann U., Ansko I., 2010, Interannual variations of available solar radiation on seasonal level in 1955-2006 at Tartu Tõravere Meteorological Station, Theor. Appl. Climatol., 101 (3-4), 371-379, http://dx.doi.org/10.1007/s00704-009-0226-6

Eliassen A., Saltbones J., 1983, Modelling of long-range transport of sulphur over Europe: A two year model run and some model experiments, Atmos. Environ., 17 (8), 1457-1473, http://dx.doi.org/10.1016/0004-6981(83)90299-8

EMEP - The European Monitoring and Evaluation Programme, 2004 Transboundary particulate matter in Europe, [in:] Co-operative programme for monitoring and evaluation of the long-range transmission of air pollutants in Europe, Joint CCC & MSC-W & CIAM Rep., EMEP Report 4/2004, Chemical Coord. Cent., Norwegian Inst. Air Res. (NILU), Kjeller, 159 pp.

Ferek R. J., Garrett T., Hobbs P. V., Strader S., Johnson D., Taylor J. P., Nielden K., Ackerman A. S., Kogan Y., Liu Q., Albrecht B. A., Babb D., 2000, Drizzle suppression in ship tracks, J. Atmos. Sci., 57, 2707-2728, http://dx.doi.org/10.1175/1520-0469(2000)057<2707:DSIST>2.0.CO;2

Gerstengarbe F. W., Werner P. C., 2005, Katalog der Grosswetterlagen Europas (1881-2004), Rep. 100, Potsdam Inst. Klimafolgenforschung, 153 pp.

Graßl H., 1975, Albedo reduction and radiative heating of clouds by absorbing aerosol particles, Contrib. Atmos. Phys., 48, 199-210.

Graßl H., 1978, Strahlung in getrübten Atmosphären und in Wolken, Hamburger Geophys. Einzelschrif., 37, Univ. Hamburg.

Husar R. B., Prospero J. M., Stowe L. L., 1997, Characterization of tropospheric aerosols over oceans with NOAA advanced very high resolution radiometer optical thickness operational product, J. Geophys. Res., 102, 16 889-16 909, http://dx.doi.org/10.1029/96JD04009

IPCC, 2007, Climate change 2007: the physical science basis. Contribution of working group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, [in:] Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (eds.), Cambridge Univ. Press, Cambridge, New York, 996 pp.

Kaufman J., 1998, Smoke Clouds and Radiation - Brazil (SCAR-B), J. Geophys. Res., 113, 31 783-31 808, http://dx.doi.org/10.1029/98JD02281

Kriebel K. T., 1978, Measured spectral bidirectional reflection properties of four vegetated surfaces, Appl. Optics, 17 (2), 253-259, http://dx.doi.org/10.1364/AO.17.000253

Krüger O., Fischer J., 1994, Correction of aerosol influence in Landsat 5 Thematic Mapper data, GeoJournal, 32 (1), 61-70, http://dx.doi.org/10.1007/BF00806358

Krüger O., Graßl H., 2002, The indirect aerosol effect over Europe, Geophys. Res. Lett., 29 (19), http://dx.doi.org/10.1029/2001GL014081

Krüger O., Graßl H., 2011, Southern Ocean phytoplankton increases cloud albedo and reduces precipitation, Geophys. Res. Lett., 38, L08809, http://dx.doi.org/10.1029/2011GL047116

Krüger O., Marks R., Graßl H., 2004, Influence of pollution on cloud reflectance, J. Geophys. Res., 109 (D24), http://dx.doi.org/10.1029/2004JD004625

Krüger O., Tuovinen J.-P., 1997, The effect of variable sub-grid deposition factors on the results of the lagrangian long-range transport model of EMEP, Atmos. Environ., 31 (24), 4199-4209, http://dx.doi.org/10.1016/S1352-2310(97)00261-6

Kulmala M., Asmi A., Lappalainen H. K., Baltensperger U., Brenguier J.- L., Facchini M. C., Hansson H.-C., Hov Ø., O’Dowd C. D., Pöschl U., Wiedensohler A., Boers R., Boucher O., de Leeuw G., Denier van der Gon H. A. C., Feichter J., Krejci R., La j P., Lihavainen H., Lohmann U., McFiggans G., Mentel T., Pilinis C., Riipinen I., Schulz M., Stohl A., Świetlicki E., Vignati E., Alves C., Amann M., Ammann M., Arabas S., Artaxo P., Baars H., Beddows D. C. S., Bergström R., Beukes J. P., Bilde M., Burkhart J. F., Canonaco F., Clegg S. L., Coe H., Crumeyrolle S., D’Anna B., Decesari S., Gilardoni S., Fischer M., Fjaeraa A. M., Fountoukis C., George C., Gomes L., Halloran P., Hamburger T., Harrison R. M., Herrmann H., Hoffmann T., Hoose C., Hu M., Hyvärinen A., Hõrrak U., Iinuma Y., Iversen T., Josipovic M., Kanakidou M., Kiendler-Scharr A., Kirkevåg A., Kiss G., Klimont Z., Kolmonen P., Komppula M., Kristjánsson J.-E., Laakso L., Laaksonen A., Labonnote L., Lanz V. A., Lehtinen K. E. J., Rizzo L. V., Makkonen R., Manninen H. E., McMeeking G., Merikanto J., Minikin A., Mirme S., Morgan W. T., Nemitz E., O’Donnell D., Panwar T. S., Pawlowska H., Petzold A., Pienaar J. J., Pio C., Plass-Duelmer C., Prévôt A. S. H., Pryor S., Reddington C. L., Roberts G., Rosenfeld D., Schwarz J., Seland O., Sellegri K., Shen X. J., Shiraiwa M., Siebert H., Sierau B., Simpson D., Sun J. Y., Topping D., Tunved P., Vaattovaara P., Vakkari V., Veefkind J. P., Visschedijk A., Vuollekoski H., Vuolo R., Wehner B., Wildt J., Woodward S., Worsnop D. R., van Zadelhoff G.-J., Zardini A. A., Zhang K., van Zyl P. G., Kerminen V.-M., Carslaw K. S., Pandis S. N., 2011, General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) - integrating aerosol research from nano to global scales, Atmos. Chem. Phys., 11, 13 061-13 143, http://dx.doi.org/10.5194/acp-11-13061-2011

Langner J., Rodhe H., 1991, A three-dimensional model of the tropospheric sulphur cycle, J. Atmos. Chem., 13 (3), 225-263, http://dx.doi.org/10.1007/BF00058134

Liepert B. G., Kukla G. J., 1997, Decline in solar radiation with increased horizontal visibility in Germany between 1964 and 1990, J. Climate, 10 (9), 2391-2401, http://dx.doi.org/10.1175/1520-0442(1997)010<2391:DIGSRW>2.0.CO;2

Lohmann U., Feichter J., 2005, Global indirect aerosol effects: a review, Atmos. Chem. Phys., 5 (3), 715-737, http://dx.doi.org/10.5194/acp-5-715-2005

Noone K. J., Clarke A. D., 1988, Soot scavenging measurements in Arctic snowfall, Atmos. Environ., 22, 2773-2778, http://dx.doi.org/10.1016/0004-6981(88)90444-1

O’Dowd C. D., de Leeuw G., 2007, Marine aerosol production: a review of the current knowledge, Phil. Trans. Royal Soc. A., 365 (1856), 1753-1774, http://dx.doi.org/10.1098/rsta.2007.2043

Paasonen P., Asmi A., Peta ja T., Ka jos M. K., Aijala M., Junninen H., Holst T., Abbatt J. P. D., Arneth A., Birmili W., van der Gon H. D., Hamed A., Hoffer A., Laakso L., Laaksonen A., Richard Leaitch W., Plass-Dulmer C., Pryor S. C., Raisanen P., Świetlicki E., Wiedensohler A., Worsnop D. R., Kerminen V.-M., Kulmala M., 2013, Warming-induced increase in aerosol number concentration likely to moderate climate change, Nat. Geosci., 6, 438-442, http://dx.doi.org/10.1038/ngeo1800

Putaud J. P., Raes F., Van Dingenen R., Brüggemann E., Facchini M. C., Decesari S., Fuzzi S., Gehrig R., Hüglin C., La j P., Lorbeer G., Meanhaut W., Mihalopoulus N., Müller K., Querol X., Rodriguez S., Schneider J., Spindler G., ten Brink H., Torseth K., Wiedensohler A., 2004, A European aerosol phenomenology - 2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ., 38 (16), 2579-2595, http://dx.doi.org/10.1016/j.atmosenv.2004.01.041

Radke L. F., Coakley Jr. J. A., King M. D., 1989, Direct remote sensing observations of the effects of ships on clouds, Science, 246, 1146-1149, http://dx.doi.org/10.1126/science.246.4934.1146

Raes F., Bates T., McGovern F., van Liedekerke M., 2000, The 2nd Aerosol Characterization Experiment (ACE-2): General overview and main results, Tellus B, 52 (2), 111-125, http://dx.doi.org/10.1034/j.1600-0889.2000.00124.x

Ramanathan V., Crutzen P. J., Kiehl J. T., Rosenfeld D., 2001, Aerosols, climate and the hydrological cycle, Science, 294, 2119-2124, http://dx.doi.org/10.1126/science.1064034

Rosenfeld D., 2000, Suppression of rain and snow by urban and industrial air pollution, Science, 287, 1793-1796, http://dx.doi.org/10.1126/science.287.5459.1793

Schaap M., Denier Van Der Gon H. A. C., Dentener F. J., Visschedijk A. J. H., Van Loon M., ten Brink H. M., Putaud J.-P., Guillaume B., Liousse C., Builtjes P. J. H., 2004, Anthropogenic black carbon and fine aerosol distribution over Europe, J. Geophys. Res., 109 (D 18), http://dx.doi.org/10.1029/2003JD004330

Stephens B., Feingold G., 2009, Untangling aerosol effects on clouds and precipitation in a buffered system, Nature, 461, 607-613, http://dx.doi.org/10.1038/nature08281

Stjern C. W., Stohl A., Kristjánsson J. E., 2011, Have aerosols affected trends in visibility and precipitation in Europe?, J. Geophys. Res., 116 (D 2), D02212, http://dx.doi.org/10.1029/2010JD014603

Stubenrauch C. J., Rossow W. B., Kinne S., Ackerman S., Cesana G., Chepfer H., Di Girolamo L., Getzewich B., Guignard A., Heidinger A., Maddux B. C., Menzel W. P., Minnis P., Pearl C., Platnick S., Poulsen C., Riedi J., Sun-Mack S., Walther A., Winker D., Zeng S., Zhao G., 2013, Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX Radiation Panel, B. Am. Meteorol. Soc., 94 (7), 1031-1049, http://dx.doi.org/10.1175/BAMS-D-12-00117.1

Twomey S., 1974, Pollution and the planetary albedo, Atmos. Environ., 8 (12), 1251-1256, http://dx.doi.org/10.1016/0004-6981(74)90004-3

Twomey S., 1977, The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34 (7), 1149-1152, http://dx.doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2

Van Dingenen R., Raes F., Putaud J.-P., Baltensperger U., Charron A., Facchini M.-C., Decesari S., Fuzzi S., Gehrig R., Hansson, H.-C., Harrison R. M., Hüglin C., Jones A. M., La j P., Lorbeer G., Maenhaut W., Palmgren F., Querol X., Rodriguez S., Schneider J., ten Brink H., Tunved P., Torseth K., Wehner B., Weingartner E., Wiedensohler A., Wåhlin P., 2004, A European aerosol phenomenology - 1: physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ., 38 (16), 2561-2577, http://dx.doi.org/10.1016/j.atmosenv.2004.01.040

Wood R., Mechoso C. R., Bretherton C. S., Weller R. A., Huebert B., Straneo F., Albrecht B. A., Coe H., Allen G., Vaughan G., Daum P., Fairall C., Chand D., Gallardo Klenner L., Garreaud R., Grados C., Covert D. S., Bates T. S., Krejci R., Russell L. M., de Szoeke S., Brewer A., Yuter S. E., Springston S. R., Chaigneau A., Toniazzo T., Minnis P., Palikonda R., Abel S. J., Brown W. O. J., Williams S., Fochesatto J., Brioude J., Bower K. N., 2011, The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): goals, platforms, and field operations, Atmos. Chem. Phys., 11 (2), 627-654, http://dx.doi.org/10.5194/acp-11-627-2011

full, complete article (PDF, 326 KB)


The atmospheric circulation patterns during dry periods in Lithuania
Oceanologia 2014, no. 56(2), pp. 223-239
doi:10.5697/oc.56-2.223

Egidijus Rimkus*, Justas Kažys, Donatas Valiukas, Gintautas Stankunavičius
Department of Hydrology and Climatology, Vilnius University,
M. K. Čiurlionio 21/27, LT-03101 Vilnius, Lithuania;
e-mail: egidijus.rimkus@gf.vu.lt
*corresponding author

keywords: Droughts, atmospheric circulation, hydrothermal coefficient, TMI blocking index, NAO and AO

Received 25 October 2013, revised 1 January 2014, accepted 31 January 2014.

The study was supported by the Lithuanian-Swiss cooperation programme to reduce economic and social disparities within the enlarged European Union under project agreement No. CH-3-ŠMM-01/05.

Abstract

This paper reveals the atmospheric circulation patterns during dry periods in Lithuania.~The research covers the period from 1961 to 2010. Atmospheric circulation features were analysed using the Hess and Brezowski classification of macro-circulation forms, NAO and AO indices, a 500 hPa geopotential height field and the Tibaldi-Molteni blocking index. Different phases of the dry period (developing, persisting and attenuation) were evaluated individually. Also, the regional differences of dry period formation were investigated. In general dry periods are determined by a decrease in zonal and an increase in meridional circulation forms as well as the atmospheric blocking process over the Baltic region longitudinal belt 0-20 days prior to the start of the dry period. An especially strong shift from general circulation patterns are observed during the developing phase of a dry period. Drought persistence in the Baltic region is almost always predetermined by strong anticyclonic circulation. Most drought development stages are associated with negative NAO/AO phases.

  References ref

Avotniece Z., Rodinov V., Lizuma L., Briede A., KļaviņšM., 2010, Trends in the frequency of extreme climate events in Latvia, Baltica, 23 (2), 135-148.

Bordi I., Fraedrich K., Sutera A., 2009, Observed drought and wetness trends in Europe: an update, Hydrol. Earth Syst. Sc., 13, 1519-1530, http://dx.doi.org/10.5194/hess-13-1519-2009

Bueh C., Nakamura H., 2007, Scandinavian pattern and its climatic impact, Q. J. R. Meteor. Soc., 133 (629), 2117-2131, http://dx.doi.org/10.1002/qj.173

Bukantis A., Valiuškevičienė L., 2005, Dynamics of extreme air temperature and precipitation and determining factors in Lithuania in the 20th century, Ann. Geograph., 38 (1), 7-17.

Cassou C., Terray L., Phillips A. S., 2005, Tropical Atlantic influence on European heat waves, J. Climate, 18 (15), 2805-2811, http://dx.doi.org/10.1175/JCLI3506.1

Cook B. I., Seager R., Miller R. L., 2011, Atmospheric circulation anomalies during two persistent North American droughts: 1932-1939 and 1948-1957, Clim. Dynam., 36 (11-12), 2339-2355, http://dx.doi.org/10.1007/s00382-010-0807-1

Fleig A. K., Tallaksen L. M., Hisdal H., Hannah D. M., 2011, Regional hydrological drought in north-western Europe: linking a new Regional Drought Area Index with weather types, Hydrol. Process., 25 (7), 1163-1179, http://dx.doi.org/10.1002/hyp.7644

Girardin M. P., Tardif J. C., Flannigan M. D., Bergeron Y., 2006, Synoptic-scale atmospheric circulation and boreal Canada summer drought variability of the past three centuries, J. Climate, 19 (10), 1922-1947, http://dx.doi.org/10.1175/JCLI3716.1

Hisdal H., Tallaksen L. M., 2003, Estimation of regional meteorological and hydrological drought characteristics: a case study for Denmark, J. Hydrol., 281 (3), 230-247, http://dx.doi.org/10.1016/S0022-1694(03)00233-6

Jaagus J., 2006, Climatic changes in Estonia during the second half of the 20th century in relationship with changes in large-scale atmospheric circulation, Theor. Appl. Climatol., 83 (1-4), 77-88, http://dx.doi.org/10.1007/s00704-005-0161-0

Kažys J., Rimkus E., Bukantis A., 2009, Heavy precipitation in Lithuania in 1961-2008, Geografi ja, 45 (1), 44-53.

Kažys J., Stanku—avičius G., Rimkus E., Bukantis A., Valiukas D., 2011, Long-range alternation of extreme high day and night temperatures in Lithuania, Baltica, 24 (2), 71-82.

Kingston D. G., Fleig A. K., Tallaksen L. M., Hannah D. M., 2013, Ocean-atmosphere forcing of summer streamflow drought in Great Britain, J. Hy- drometeorol., 14 (1), 331-344, http://dx.doi.org/10.1175/JHM-D-11-0100.1

Kjellström E, Bärring L., Jacob D., Jones R., Lenderink G., Schär C., 2007, Modelling daily temperature extremes: recent climate and future changes over Europe, Climatic Change, 81 (S1), 249-265, http://dx.doi.org/10.1007/ s10584-006-9220-5

Loyd-Hughes B., Saunders M. A., 2002, A drought climatology for Europe, Int. J. Climatol., 22 (13), 1571-1592, http://dx.doi.org/10.1002/joc.846

López-Moreno I. J., Vicente-Serrano S. M., 2008, Positive and negative phases of the wintertime north Atlantic oscillation and drought occurrence over Europe: a multitemporal-scale approach, J. Climate, 21 (6), 1220-1243, http://dx.doi. org/10.1175/2007JCLI1739.1

Malone S. E., 2007, A study of meteorological drought in southeast and south central England from 1980-2006: a weather type approach, BSc. diss., Univ. Portsmouth.

Mishra A. K., Singh V.P., 2010, A review of drought concepts, J. Hydrol., 391 (1-2), 202-216, http://dx.doi.org/10.1016/j.jhydrol.2010.07.012

Pankauskas M., Bukantis A., 2006, The dynamics of the Baltic Sea Region climate humidity in 1950-2004, Ann. Geograph., 39 (1), 5-14.

Parry S., Prudhomme C., Hannaford J., Lloyd-Hughes B., 2010, Examining the spatio-temporal evolution and characteristics of large-scale European droughts, BHS Third International Symposium, Managing Consequences of a Changing Global Environment, 19-23 July, 2010, Newcastle, UK, 8 pp.

Peel M.C., Finlayson B. L., McMahon T.A., 2007, Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633-1644, http://dx.doi.org/10.5194/hess-11-1633-2007

Rimkus E., Kažys J., Bukantis A., Krotovas A., 2011, Temporal variation of extreme precipitation events in Lithuania, Oceanologia, 53 (1-TI), 259-277, http://dx.doi.org/10.5697/oc.53-1-TI.259

Rimkus E., Kažys J., Butkutė S., Gečaitė I., 2014, Snow cover variability in Lithuania over the last 50 years and its relationship with large scale atmospheric circulation, Boreal Environ. Res., (conditionally accepted on 2 April 2013).

Rimkus E., Stonevičius E., Korneev V., Kažys J., Valiuškevičius G., Pakhomau A., 2013, Dynamics of meteorological and hydrological droughts in the Neman river basin, Environ. Res. Lett., 8 (4), 10 pp., http://dx.doi.org/10.1088/1748-9326/8/4/045014

Rimkus E., Valiukas D., Kažys J., Gečaitė I., Stonevičius E., 2012, Dryness dynamics of the Baltic Sea region, Baltica, 25 (2), 129-142, http://dx.doi.org/10.5200/baltica.2012.25.13

Samaniego L., Bardossy A., 2007, Relating macroclimatic circulation patterns with characteristics of floods and droughts at the mesoscale, J. Hydrol., 335 (1-2), 109-123, http://dx.doi.org/10.5200/baltica.2012.25.13

Selianinov G.T., 1928, On agricultural climate valuation, Proc. Agric. Meteor., 20, 165-177, (in Russian).

Tammets T., 2007, Distribution of extreme wet and dry days in Estonia in last 50 years, Proc. Estonian Acad. Sci., 13 (3), 252-259.

Thorsteinsson T., Björnsson H., 2011, Climate change and energy systems: impacts, risks and adaptation in the Nordic and Baltic countries, Nordic Council Minist., Copenhagen, 226 pp.

Tibaldi S., Molteni F., 1990, On the operational predictability of blocking, Tellus A, 42 (3), 343-365, http://dx.doi.org/10.1034/j.1600-0870.1990.t01-2-00003.x

Valiukas D., 2012, Droughts analysis in Lithuania using SPI and HTC indexes, Int. conf. ‘BALWOIS 2012’, 28 May-2 June, 2012, Ohrid, 9 pp.

Werner P. C., Gerstengarbe F. W., 2010, Katalog der Grosswetterlagen Europas (1881-2009), PIK Rep., 119, Potsdam.

Zveryaev I. I., 2004, Seasonality in precipitation variability over Europe, J. Geophys. Res.-Atmos., 109 (D5), http://dx.doi.org/10.1029/2003JD003668

full, complete article (PDF, 1208 KB)


Characteristics of cyclones causing extreme sea levels in the northern Baltic Sea
Oceanologia 2014, no. 56(2), pp. 241-258
doi:10.5697/oc.56-2.241

Piia Post1, Tarmo Kouts2
1Institute of Physics, University of Tartu,
Ülikooli 18, Tartu 50090, Estonia;
e-mail: piia.post@ut.ee
2Marine Systems Institute, Tallinn University of Technology,
Akadeemia tee 15a, Tallinn 12618, Estonia;
e-mail: tarmo.kouts@msi.ttu.ee

keywords: Temporal clustering, extra-tropical cyclones, extreme sea level, Baltic Sea

Received 25 October 2013, revised 27 February 2014, accepted 3 March 2014.

The study was supported by the Estonian Ministry of Education and Research (IUT20-11 and Grant ETF9134) and by the EU Regional Development Foundation, Environmental Conservation and Environmental Technology R&D Program Project no. 3.2.0801.12-0044.

Abstract

The basic parameters of extra-tropical cyclones in the northern Baltic are examined in relation to extreme sea level events at Estonian coastal stations between 1948 and 2010. The hypothesis whether extreme sea level events might be caused not by one intense extra-tropical cyclone, as suggested by earlier researchers, but by the temporal clustering of cyclones in a certain trajectory corridor, is tested. More detailed analysis of atmospheric conditions at the time of the two most extreme cases support this concept: the sequence of 5 cyclones building up the extreme sea level within about 10 days was very similar in structure and periodicity.

  References ref

Averkiev A. S., Klevannyy K. A., 2010, A case study of the impact of cyclonic trajectories on sea-level extremes in the Gulf of Finland, Cont. Shelf Res., 30 (6), 707-714, http://dx.doi.org/10.1016/j.csr.2009.10.010

Grigoriev S., Gulev S. K., Zolina O., 2000, Innovative software facilitates cyclone tracking and analysis, EOS T. Am. Geophys. UN., 81 (16), 170-170, http://dx.doi.org/10.1029/00EO00117

Gulev S. K., Zolina O., Grigoriev S., 2001, Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data, Clim. Dynam., 17 (10), 795-809, http://dx.doi.org/10.1007/s003820000145

Hoskins B. J., Hodges K. I., 2002, New perspectives on the northern hemisphere winter storm tracks, J. Atmos. Sci., 59 (6), 1041-1061, http://dx.doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2

Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Leetmaa A., Reynolds R., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K. C., Ropelewski C., Wang J., Jenne J., Joseph D., 1996, The NCEP/NCAR 40-Year reanalysis project, Bull. Amer. Meteorol. Soc., 77 (3), 437-472, http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

Lagemaa P., Elken J., Kõuts T., 2011, Operational sea level forecasting in Estonia, Est. J. Eng., 17 (4), 301-331, http://dx.doi.org/10.3176/eng.2011.4.03

Link P., Post P., 2007, Spatial and temporal variance of cyclones in the Baltic Sea region, [in:] COST Action 733, O.-E. Tveito & M. Pasqui Proc. 5th an. meet.Europ. Meteorol. Soc. Session AW8 ‘Weather types classiffications’, (EUR 22594), Europ. Commun., Luxemburg, 69-76.

Luhamaa A., Kimmel K., Männik A., Rõõm R., 2011, High resolution re-analysis for the Baltic Sea region during 1965-2005 period, Clim. Dynam., 36 (3-4), 727-738, http://dx.doi.org/10.1007/s00382-010-0842-y

Mailier P. J., Stephenson D. B., Ferro C. A. T., Hodges K. I., 2006, Serial clustering of extratropical cyclones, Mon. Weather Rev., 134 (8), 2224-2240, http://dx.doi.org/10.1175/MWR3160.1

Raudsepp U., Toompuu A., Kõuts T., 1999, A stochastic model for the sea level in the Estonian coastal area, J. Marine Syst., 22 (1), 69-87, http://dx.doi.org/10.1016/S0924-7963(99)00031-7

Raudsepp U., Elken J., Kõuts T., Liblik T., Kikas V., Lagemaa P., Uiboupin R., 2007, Forecasting skills of the HIROMB in the Gulf of Finland, Geophys. Res. Abstr., EGU Vol. 9, 10617.

Roebber P. J., 1984, Statistical analysis and updated climatology of explosive cyclones, Mon. Weather Rev., 112 (8), 1577-1589, http://dx.doi.org/10.1175/1520-0493(1984)112<1577:SAAUCO>2.0.CO;2

Suursaar Ü., Jaagus J., Kullas T., Tõnisson H., 2011, Estimation of sea level rise and storm surge risks along the coast of Estonia, Baltic Sea - a tool for coastal management, Littoral 2010, 12005, http://dx.doi.org/10.1051/litt/201112005

Suursaar Ü., Kullas T., Otsmann M., 2002, A model study of the sea level variations in the Gulf of Riga and the Väinameri Sea, Cont. Shelf Res., 22 (14), 2001-2019, http://dx.doi.org/10.1016/S0278-4343(02)00046-8

Suursaar Ü., Kullas T., Otsmann M., Kõuts T., 2003, Extreme sea level events in the coastal waters of western Estonia, J. Sea Res., 49 (4), 295-303, http://dx.doi.org/10.1016/S1385-1101(03)00022-4

Suursaar Ü., Kullas T., Otsmann M., Saaremaë I., Kuik J., Merilain M., 2006, Cyclone Gudrun in January 2005 and modelling its hydrodynamic consequences in the Estonian coastal waters, Boreal Environ. Res., 11 (2), 143-159.

Suursaar Ü., Kullas T., Szava-Kovats R., 2010, Wind-and wave storms, storm surges and sea level rise along the Estonian coast of the Baltic Sea. Ravage of the Planet II, WIT Trans. Ecol. Environ., 127, 149-160, http://dx.doi.org/0.2495/RAV090131

Vitolo R., Stephenson D. B., Cook I. M., Mitchell-Wallace K., 2009, Serial clustering of intense European storms, Meteorol. Z., 18 (4), 411-424, http://dx.doi.org/10.1127/0941-2948/2009/0393

Wiśniewski B., Wolski T., 2011, Physical aspects of extreme storm surges and falls on the Polish coast, Oceanologia, 53 (1-TI), 373-390, http://dx.doi.org/10.5697/oc.53-1-TI.373

full, complete article (PDF, 837 KB)


Extreme sea levels at selected stations on the Baltic Sea coast
Oceanologia 2014, no. 56(2), pp. 259-290
doi:10.5697/oc.56-2.259

Tomasz Wolski1,*, Bernard Wiśniewski2, Andrzej Giza1, Halina Kowalewska-Kalkowska1, Hanna Boman3, Silve Grabbi-Kaiv4, Thomas Hammarklint5, Jürgen Holfort6, Žydrune Lydeikaite7
1University of Szczecin, Faculty of Geosciences,
al. Wojska Polskiego 107/109, 70-483 Szczecin, Poland;
e-mail: natal@univ.szczecin.pl
*corresponding author
2Maritime University of Szczecin, Faculty of Navigation,
Wały Chrobrego 1-2, 70-500 Szczecin, Poland
3Finnish Meteorological Institute,
Erik Palménin aukio 1, FI-00560 Helsinki, Finland
4Swedish Meteorological and Hydrological Institute,
Mustamäe tee 33, EST--10616 Tallinn, Estonia
5Swedish Meteorological and Hydrological Institute,
Sven Källfelts Gata 15, 42471 Göteborg, Sweden
6Bundesamt für Seeschifffahrt und Hydrographie,
Neptunallee 5, 18057 Rostock, Germany
7Environmental Protection Agency,
Taikos pr. 26, LT--91149, Klaipeda, Lithuania

keywords: Baltic Sea, extreme sea levels, storm surges and falls

Received 25 October 2013, revised 6 February 2014, accepted 11 February 2014.

This work was financed by the Polish National Centre for Science research project No. 2011/01/B/ST10/06470.

Abstract

The purpose of this article is to analyse and describe the extreme characteristics of the water levels and illustrate them as the topography of the sea surface along the whole Baltic Sea coast. The general pattern is to show the maxima and minima of Baltic Sea water levels and the extent of their variations in the period from 1960 to 2010. A probability analysis is carried out on the annual sea level maxima and minima for 31 water level gauges in order to define the probability of occurrence of theoretical sea levels once in a specific number of years. The spatial distribution of sea levels for hundred-year maximum and minimum water levels is illustrated. Then, the number of storm surges for the accepted criteria are presented: these numbers increased in the 50-year period analysed. The final part of the work analyses some extreme storm events and calculates the static value and dynamic deformation of the sea surface by mesoscale, deep low-pressure systems.

  References ref

Averkiev A. S., Klevanny K. A., 2007, Determining cyclone trajectories and velocities leading to extreme sea level rises in the Gulf of Finland, Russ. Meteorol. Hydrol., 32 (8), 514-519, http://dx.doi.org/10.3103/S1068373907080067

Averkiev A. S., Klevanny K. A., 2010, Case study of the impact of cyclonic trajectories on sea-level extremes in the Gulf of Finland, Cont. Shelf Res., 30 (6), 707-714, http://dx.doi.org/10.1016/j.csr.2009.10.010

Dziadziuszko Z., Jednorał T., 1996, Zagrożenia powodziowe powodowane spiętrzeniami sztormowymi u brzegów Bałtyku i Zalewu Wiślanego, [Flood hazard caused storm surges off the coast of the Baltic Sea and the Vistula Lagoon], Wiad. IMGW, 19 (3), 123-133.

Ekman M., 2009, The changing level of the Baltic Sea during 300 years: a clue to understanding the Earth, Summer Inst. Hist. Geophys., Åland Islands, 155 pp.

Encyclopaedia of Coastal Science, M. L. Schwartz (ed.), 2005, Springer, 1211 pp., http://dx.doi.org/10.1007/1-4020-3880-1

Gönnert G., 1999, The analysis of storm surge climate change along the German coast during the 20th century, Quatern. Int., 56 (1), 115-121, http://dx.doi.org/10.1016/S1040-6182(98)00028-7

Gönnert G., 2004, Maximum storm surge curve due to global warming for the European North Sea region during the 20th-21st century, Nat. Hazards, 32 (2), 211-218, http://dx.doi.org/10.1023/B:NHAZ.0000031314.21789.f2

Gönnert G., Dube S. K., Murty T., Seifert W., 2001, Global storm surges: theory, observations and applications, Die Küste, 63, 623 pp.

Gumbell E. J., 1958, Statistics of extremes, Columbia Univ. Press, New York, 375 pp.

Gurwell B., 2008, Coastal protection along the Baltic sea coast - Mecklenburg - Vorpommern, Die Küste, 74, 179-188.

Hammarklint T., 2009, The Swedish Sea Level Network, GLOSS Experts 11th Meeting, May 2009, 1-5.

Hupfer P., Harff J., Sterr H., Stigge H. J., 2003, Wasserstände an der Ostseeküste, Die Küste, 66, 4-331.

International Glossary of Hydrology, 1992, WMO, 385, 413 pp.

Jednorał T., Sztobryn M., Miłkowska M., 2008, Zastosowanie modelu statystyk pozycyjnych do prognozowania ekstremalnych poziomów Morza Bałtyckiego w polskiej strefie brzegowej, [Application of position statistics for prediction of extreme levels of Baltic Sea in Polish coastal zone], Inż. Mors. Geotech., 5, 257-263.

Jensen J., Müller-Navara S. H., 2008, Storm surges on the German Coast, Die Küste, 74, 92-124.

Johansson M., Kahma K., Boman H., Launiainen J., 2004, Scenarios for sea level on the Finnish coast, Boreal Environ. Res., 9, 153-166.

Kaczmarek Z., 1970, Metody statystyczne w hydrologii i meteorologii, [Statistical methods in hydrology and meteorology], Wyd. Kom. Łącz., Warszawa, 270 pp.

Kowalewska-Kalkowska H., 2012, Rola wezbrań sztormowych w kształtowaniu ustroju wodnego układu Dolnej Odry i Zalewu Szczecińskiego, [Impacts of storm surges on the water level in the water regime of the Lower Odra and the Szczecin Lagoon], Wyd. Nauk. US, 258 pp.

Lisowski K., 1960, Badania zjawisk hydrometeorologicznych na Bałtyku, [Research of hydrometeorological occurrences on the Baltic], Pomorze Zach., 1-2, 95-108.

Lisowski K., 1961, Nieokresowe wahania poziomu Bałtyku pod wpływem czynników anemobarycznych, [Aperiodic fluctuations of the level of Baltic under anemobaric factors], Arch. Hydrotech., 8 (1), 17-42.

Lisowski K., 1963, Zjawiska sztormowe w lutym 1962 i ich skutki, [Storm phenomena in February 1962 and their consequences], Zesz. Nauk. PS, 39, 7-30, (in Polish with Engl. summ.).

Majewski A., 1986, Skrajne wahania poziomu wody u polskich wybrzeży Bałtyku, [Extreme fluctuations of the water level on the Polish Baltic coast], Inż. Mors., 2, 46-50.

Ma jewski A., 1989, Niezwykłe krótkotrwałe wezbrania morza u południowych i wschodnich brzegów Bałtyku, [Unusual short-lived sea water level oscillations on the southern and eastern coasts of the Baltic Sea], Prz. Geofiz., 34 (2), 191-199, (in Polish with Engl. summ.).

Majewski A., 1998, Katastrofalne sztormy i powodzie u południowych brzegów Morza Bałtyckiego, [Disastrous storms and floods on the southern coasts of the Baltic Sea], Inż. Mors. Geotech., 2, 67-69.

Majewski A., Dziadziuszko Z., Wiśniewska A.,1983, Monografia powodzi sztormowych 1951-1975, [Monograph of storm floods 1951-1975], Wyd. Kom. Łącz., Warszawa, 216 pp.

Richter A., Groh A., Dietrich R., 2012, Geodetic observation of sea-level change and crustal deformation in the Baltic Sea region, Phys. Chem. Earth Pt. A/B/C, 53-54, 43-53, http://dx.doi.org/10.1016/j.pce.2011.04.011

Rosenhagen G., Bork I., 2009, Rekonstruktion der Sturmwetterlage vom 13. November 1872, Die Küste, 75, 51-70.

Skriptunov N.A., Gorelits O.V., 2001, Wind-induced variations in water level in river mouths, Water Res., 28 (2), 174-179, http://dx.doi.org/10.1023/A:1010379601057

Stanisławczyk I., 2002, Validation of HIROMB model using an extreme hydrometeorological event, Environ. Chem. Phys., 24, 168-170.

Stanisławczyk I., Sztobryn M., 2000, Zmiany napełnienia Bałtyku jako wskaźnik oceanicznych wlewów powierzchniowych, [Changes in water volume content in the Baltic Sea as an indicator of surface inflows], [in:] Rola nawigacji w zabezpieczeniu działalności ludzkiej na morzu, XII Międzynarod. Konf. Nauk.-Tech., Wyd. AMW, Gdynia, 250-256, (in Polish with Engl. summ.).

Sterl A., van den Brink H., de Vries H., Haarsma R., van Meijgaard E., 2009, An ensemble study of extreme storm surge related water levels in the North Sea in a changing climate, Ocean Sci., 5, 369-378.

Stigge H. J., 1994, Die Wasserstände an der Küste Mecklenburg-Vorpommerns, Die Küste, 56, 1-24.

Suursaar ü., Kullas T., Kuusik T., 2007, Possible changes in hydrodynamic regime in the Estonian coastal waters (the Baltic Sea) as a result of changes in wind climate, J. Coast. Res., 50 (SI), 247-252.

Suursaar ü., Kullas T., Otsmann M., Kõuts T., 2003, Extreme sea level events in the coastal waters of western Estonia, J. Sea Res., 49 (4), 295-303, http://dx.doi.org/10.1016/S1385-1101(03)00022-4

Suursaar ü., Kullas T., Otsmann M., Saaremäe I., Kuik J., Merilain M., 2006, Cyclone Gudrun in January 2005 and modelling its hydrodynamic consequences in the Estonian coastal waters, Boreal Environ. Res., 11 (2), 143-159.

Suursaar Ü., Sooäär J., 2007, Decadal variations in mean and extreme sea level values along the Estonian coast of the Baltic Sea, Tellus A, 59 (2), 249-260, http://dx.doi.org/10.1111/j.1600-0870.2006.00220.x

Sztobryn M., Stigge H. J., Wielbińska D., Weidig B., Stanisławczyk I., Kańska A., Krzysztofik K., Kowalska B., Letkiewicz B., Mykita M., 2005, Storm surges in the southern Baltic (western and central parts), Rep. No. 39, Ber. Bundesamtes für Seeschiffahrt und Hydrographie (BSH), Hamburg, Rostock, 74 pp.

Sztobryn M., Weidig B., Stanisławczyk I., Holfort J., Kowalska B., Mykita M., Kańska A., Krzysztofik K., Perlet I., 2009, Negative surges in the southern Baltic Sea (western and central parts), Rep. No. 45, Ber. Bundesamtes für Seeschifffahrt und Hydrographie (BSH), Hamburg, Rostock, 71 pp.

Weisse R., von Storch H., 2010, Marine climate and climate change: storms, wind, waves, and storm surges, Springer Praxis Books, Chichester, 219 pp., http://dx.doi.org/10.1007/978-3-540-68491-6

Wielbińska Z., 1964, Wpływ cyrkulacji atmosfery na poziom morza, [The influence of the atmosphere circulation on the sea level], Pr. PIHM, Zesz. 2.

Wiśniewski B., 1996, Wezbrania sztormowe na polskim wybrzeżu Bałtyku, [Storm surges on the Polish coast of the Baltic Sea], [in:] Ogólnopolska Konferencja Naukowa - Współczesne Problemy Inżynierii Środowiska Wodnego, 50 lecie Wydziału Budownictwa i Architektury Politechniki Szczecińskiej, Wyd. PS, Szczecin, 233 pp.

Wiśniewski B., 1997, Zmienność zapasu wody pod stępką statku w czasie wezbrań sztormowych, [Variability of water reserve under a keel of ship during storm surges], Inż. Mors. Geotech., 5, 325-327, (in Polish).

Wiśniewski B., 2003, The influence of low-pressure systems on water levels in the Odra estuary, Severo-zapadny gosudarstvenny zaochny tiekhnichesky universitet, St. Petersburg, 183-193.

Wiśniewski B., Holec M., 1983, Zarys oceanogra?i. Tom 2, Dynamika morza, [An outline of oceanography Vol. 2, the Dynamics of the Sea], Wyd. WSMW, Gdynia, 137 pp.

Wiśniewski B., Kowalewska-Kalkowska H., 2007, Water level fluctuations in the Odra River mouth area in relation to passages of deep low-pressure systems, Ocean. Hydrobiol. St., 36 (1), 69-82, http://dx.doi.org/10.2478/v10009-007-0009-2

Wiśniewski B., Wolski T., 2009a, Katalogi wezbrań i obniżeń sztormowych poziomów morza oraz ekstremalne poziomy wód na polskim wybrzeżu, [Catalogues of sea level storm surges and falls and extreme water levels on the Polish coast], Wyd. Nauk. Akad. Mors., Szczecin, 158 pp., (in Polish with Engl. summ.).

Wiśniewski B., Wolski T., 2009b, Occurrence probability of maximum sea levels in Polish ports of Baltic Sea coast, Polish Marit. Res., 16 (3), 62-69, http://dx.doi.org/10.2478/v10012-008-0035-3

Wiśniewski B., Wolski T., 2011, Physical aspects of extreme storm surges and falls on the Polish coast, Oceanologia, 53 (1-TI), 373-390, http://dx.doi.org/10.5697/oc.53-1-TI.373

Wiśniewski B., Wolski T., Giza A., 2014, Adaptacja Europejskiego Wysokościowego Układu Odniesienia (EVRS) dla zobrazowania zmienności powierzchni wód Morza Bałtyckiego, [Adaptation of the European Vertical Reference System (EVRS) to illustrate the variability of the surface waters of the Baltic Sea], Wyd. Nauk. Akad. Mors., Szczecin, (in press).

Wolski T., Wiśniewski B., 2012, Changes of maximum sea levels at selected gauge stations on the Polish and Swedish Baltic coast, Stud. Prac. WNEiZ, 29, 209-227.

Woodworth P. L., Flather R. A., Williams J. A., Wakelin S. L., Jevrejeva S., 2007, The dependence of UK extreme sea levels and storm surges on the North Atlantic Oscillation, Cont. Shelf Res., 27 (7), 935-946, http://dx.doi.org/10.1016/j.csr.2006.12.007

Woth K., Weisse R., von Storch H., 2006, Climate change and North Sea storm surge extremes: an ensemble study of storm surge extremes expected in a changed climate projected by four different Regional Climate Models, Ocean Dynam., 56 (1), 3-15, http://dx.doi.org/10.1007/s10236-005-0024-3

Wróblewski A., 1975, Occurrence probability of maximum yearly levels of Baltic Sea in Gdańsk Nowy Port, Kołobrzeg and Świnoujście, Oceanology, 6, 37-53, (in Polish).

Wróblewski A., 1991, Sea level and storm surge forecasting in the Southern Baltic, Oceanologia, 31, 5-23.

full, complete article (PDF, 6584 KB)


Links between biota and climate-related variables in the Baltic region using Lake Onega as an example
Oceanologia 2014, no. 56(2), pp. 291-306
doi:10.5697/oc.56-2.291

Andrey N. Sharov1,2,*, Nadezhda A. Berezina1,3, Larisa E. Nazarova1, Tamara N. Poliakova1, Tatyana A. Chekryzheva1
1Northern Water Problems Institute, Karelian Research Centre, Russian Academy of Sciences,
A. Nevskogo prospect 50, Petrozavodsk 185030, Russia
2Saint-Petersburg Scientific Research Centre for Ecological Safety, Russian Academy of Sciences,
Korpusnaya 18, St. Petersburg 197110, Russia;
e-mail: sharov_an@mail.ru
*corresponding author
3Zoological Institute, Russian Academy of Sciences,
Universitetskaya embankment 1, St. Petersburg 199034, Russia

keywords: Baltic Sea catchment area, climate variables, phytoplankton, benthos

Received 25 October 2013, revised 21 February 2014, accepted 27 February 2014.

This work was supported by Biodiversity and Bioresources Programmes grants from the Russian Academy of Sciences.

Abstract

This paper aims to reveal current changes (recent decades) in regional climatic variables like water temperature (WT), the duration of the ice-free period (ICE-FREE) and the precipitation rate (P), as exemplified by Petrozavodsk Bay (Lake Onega, European Russia), and to analyse their relationships with the global climatic indices NAO, AO and structural characteristics of biota (chlorophyll a concentration (Chl a), phytoplankton and zoobenthos abundance/biomass) in the lake ecosystem, which lies within the Baltic Sea catchment area. Spearman's rank correlations yielded significant (p < 0.05) relationships between the NAO and planktonic Cyanobacteria abundance, and also between NAO, AO, WT, P and the abundance and biomass of zoobenthos. Chl a correlates positively (R = 0.66; p = 0.03) with WT and negatively with ICE-FREE (R = -0.53; p = 0.05). At the same time, multiple regression analysis confirmed that the global climate governs primarily the regional climatic variables and productivity level in the lake's ecosystem, whereas most of the biotic characteristics respond to variability in the regional climate.

  References ref

Adrian R., Deneke R., Mischke U., Stellmacher R., Lederer P., 1995, A long-term study of the Heiligensee (1975-1992). Evidence for effects of climatic change on the dynamics of eutrophied lake ecosystems, Arch. Hydrobiol., 133, 315-337.

Adrian R., O’Reilly C., Zagarese H., Baines S. B., Hessen D. O., Keller W., Livingstone D. M., Sommaruga R., Straile D., Donk E. V., Weyhenmeyer G. A., Winder M., 2009, Lakes as sentinels of climate change, Limnol. Oceanogr., 54 (6 pt. 2), 283-297.

Adrian R., Walz N., Hintze T., Hoeg S., Rusche R., 1999, Effects of ice duration on the plankton succession during spring in a shallow polymictic lake, Freshwater Biol., 41, 621-623, http://dx.doi.org/10.1046/j.1365-2427.1999.00411.x

Austin J., Colman S., 2008, A century of temperature variability in Lake Superior, Limnol. Oceanogr., 53 (6), 2724-2730, http://dx.doi.org/10.4319/lo.2008.53.6.2724

Blenckner T., Adrian R., Livingstone D. M., Jennings E., Weyhenmeyer G. A., George D. G., Jankowski T., Jarvinen M., Nic Aonghusa C., Noges T., Straile D., Teubner K., 2007, Large-scale climatic signatures in lakes across Europe. A meta-analysis, Global Change Biol., 13 (7), 1314-1326, http://dx.doi.org/10.1111/j.1365-2486.2007.01364.x

Dokulil M. T., Jagsch A., George G. D., Anneville O., Jankowski T., Wahl B., Lenhart B., Blenckner T., Teubner K., 2006, Twenty years of spatially coherent deepwater warming in lakes across Europe related to the North Atlantic Oscillation, Limnol. Oceanogr., 51 (6), 2787-2793, http://dx.doi.org/10.4319/lo.2006.51.6.2787

Drinkwater K. F., Belgrano A., Borja A., Conversi A., Edwards M., Greene C. H., Ottersen G., Pershing A. J., Walker H., 2003, The response of marine ecosystems to climate variability associated with the North Atlantic Oscillation, [in:] The North Atlantic Oscillation, J. W. Hurrell, Y. Kushnir, G. Ottersen & M. Visbeck (eds.), Am. Geophys. Union, Washington, 211-234, http://dx.doi.org/10.1029/134GM10

Efremova T. V., Palshin N. I., 2012, The reaction of the water temperature in the different types of lakes in Karelia under regional climate change, Ecol. Probl. North. Reg. Solut., Pt. 1, Apatity, 180-184, (in Russian).

Efremova T. V., Zdorovennova G. E., Palshin N. I., 2010, Ice conditions of lakes in Karelia, [in:] Water environment: learning for sustainable development, Karelian Res. Cent., Petrozavodsk, 31-40, (in Russian).

Filatov N. N., Georgiev A. P., Efremova T. V., Nazarova L. E., Palshin N. I., Rukhovets L. A., Tolstikov A. V., Sharov A. N., 2012, Response of lakes in Eastern Fennoscandia and Eastern Antarctica to climate change, Dokl. Earth Sci., 444 (2), 752-755, http://dx.doi.org/10.1134/S1028334X1206013X

Filatov N., Rukhovets L., 2013, Ladoga Lake and Onego Lake (Lakes Ladozhskoye and Onezhskoye), [in:] Encyclopedia of lakes and reservoirs, L. Bengtsson, R. W. Herschy & R. W. Fairbridge (eds.), Springer, Dordrecht, Heidelberg, New York, London, 432-436.

Finland’s Fifth National Communication under the United Nations Framework Conventions on climate change, 2010, Helsinki, 282 pp.

Glen G. (ed.), 2010, The impact of climate change on European lakes, Aquat. Ecol. Ser. Vol. 4, Springer, Dordrecht, Heidelberg, New York, London, 507 pp.

Järvinen M., Lehtinen S., Arvola L., 2006, Variations in phytoplankton assemblage in relation to environmental and climatic variation in a boreal lake, Verh. Int. Verein. Limnol., 29, 1841-1844.

Jeppesen E., Kronvang B., Meerhoff M., Sondergaard M., Hansen K. M., Andersen H. E., Lauridsen T. L., Beklioglu M., Ozen A. O., Olesen J. E., 2009, Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations, J. Environ. Qual., 38 (5), 1030-1041, http://dx.doi.org/10.2134/jeq2008.0113

Jones I. D., Elliott J. A., 2007, Modelling the effects of changing retention time on abundance and composition of phytoplankton species in a small lake, Freshwater Biol., 52, 988-997, http://dx.doi.org/10.1111/j.1365-2427.2007.01746.x

Maksimov A. A., Berezina N. A., Golubkov S. M., Nikulina V. N., 2012, Long-term climate change productivity of the northern lake ecosystem, [in:] The dynamics of biological diversity and biological resources of the continental waters, A. F. Alimov & S. M. Golubkov (eds.), Nauka, St. Petersburg, 138-144, (in Russian).

Markensten H., 2006, Climate effects on early phytoplankton biomass over three decades modified by the morphometry in connected lake basins, Hydrobiologia, 559, 319-329, http://dx.doi.org/10.1007/s10750-005-1526-1

Moiseenko T. I., Sharov A. N., 2011, The Retrospective analysis of aquatic ecosystem modification of Russian large lakes under anthropogenic impacts, [in:] Ecotoxicology around the Globe, J. E. Visser (ed.), Nova Sci. Publ., 309-324.

Noges T., 2004, Reflection of the changes of the North Atlantic Oscillation Index and the Gulf Stream Position Index in the hydrology and phytoplankton of Voirtsjärv, a large, shallow lake in Estonia, Boreal Environ. Res., 9, 401-407.

Ottersen G., Planque B., Belgrano A., Post E., Reid P. C., Stenseth N. C., 2001, Ecological effects of the North Atlantic Oscillation, Oecologia, 128, 1-14, http://dx.doi.org/10.1007/s004420100655

Pociask-Karteczka J., 2006, River hydrology and the North Atlantic Oscillation: A general review, AMBIO, 35 (6), 312-314, http://dx.doi.org/10.1579/05-S-114.1

Saeger J., Milne I., Mallett M., Sims I., 2000, Effects of short-term oxygen depletion on fish, Environ. Toxicol. Chem., 19 (12), 2937-2942, http://dx.doi.org/10.1002/etc.5620191214

SCOR-UNESCO, 1996, Determination of photosynthetic pigments in seawater, Working group 17, Paris, 69 pp.

Sharov A., Polyakova T., Nazarova L., Syarki M., Filatov N., 2012, The response of aquatic communities of Lake Onega and other waters of the North to climate variability, Ecol. Probl. North. Reg. Solut., Proc. Conf., Pt. 1, Apatity, Kola Sci. Cent., 255-258, (in Russian). Sharov A. N., 2008, Phytoplankton as an indicator in estimating long-term changes in the water quality of large lakes, Water Resour., 35 (6), 668-673, http://dx.doi.org/10.1134/S0097807808060067

Smirnov N. P., Vorob’ev V. N., Kochanov S. J., 1998, North Atlantic Oscillation and climate, RGGMU, Sankt Petersburg, 121 pp., (in Russian).

Sondergaard M., Jensen J. P., Jeppesen E., 2003, Role of sediment and internal loading of phosphorus in shallow lakes, Hydrobiologia, 506/509, 135-145, http://dx.doi.org/10.1023/B:HYDR.0000008611.12704.dd

Stenseth N. C., Mysterud A., Ottersen G., Hurrell J. W., Chan K.-S., Lima M., 2002, Ecological effects of climate fluctuations, Science, 297, 1292-1296, http://dx.doi.org/10.1126/science.1071281

Weider J., Lampert W., 1985, Differential response of Daphnia genotypes to oxygen stress: Respiration rates, hemoglobin content and low oxygen tolerance, Oecologia, 65 (4), 487-491, http://dx.doi.org/10.1007/BF00379661

Weyhenmeyer G., 2004, Synchrony in relationships between the North Atlantic Oscillation and water chemistry among Sweden’s largest lakes, Limnol. Oceanogr., 49 (4), 1191-1201, http://dx.doi.org/10.4319/lo.2004.49.4.1191

Weyhenmeyer G., Blenckner T., Pettersson K., 1999, Changes of the plankton spring outburst related to the North Atlantic Oscillation, Limnol. Oceanogr., 44 (7), 1788-1792, http://dx.doi.org/10.4319/lo.1999.44.7.1788

Wilhelm S., Adrian R., 2007, Long-term response of Dreissena polymorpha larvae to physical and biological forcing in a shallow lake, Oecologia, 151 (1), 104-114, http://dx.doi.org/10.1007/s00442-006-0546-5

full, complete article (PDF, 196 KB)


Erosion reasons and rate on accumulative Polish dune coast caused by the January 2012 storm surge
Oceanologia 2014, no. 56(2), pp. 307-326
doi:10.5697/oc.56-2.307

Tomasz A. Łabuz
Institute of Marine and Coastal Sciences, University of Szczecin,
70-383 Szczecin, Poland;
e-mail: labuztom@univ.szczecin.pl

keywords: Storm surge, coastal dune erosion, sand volume changes, Polish coast

Received 25 October 2013, revised 11 March 2014, accepted 21 March 2014.

Abstract

The Polish coast is a non-tidal area; its shores are affected mainly by autumn-winter storm surges. Those of 6 and 14 January 2012 are representative of the forces driving the erosion of normally accumulative sections of coastal dunes, monitored by the author since 1997. The sea level maximum during these two storm surges reached 1.2 to 1.5 m amsl along the Polish coast. Land forms up to 3 m amsl were inundated. Beaches and low parts of the coast up to this height were rebuilt by sea waves attacking the coast for almost 12 days. Quantitative analyses of the morphological dynamics of the coastal dunes are presented for 57 profiles located along the coast. Only those accumulative sections of the Polish coast are analysed where sand accumulation did occur and led to new foredune development. The mean rate of dune erosion was 2.5 m3 per square metre with an average toe retreat of 1.4 m. Erosion understood as dune retreat was greater when a beach was lower (correlation coefficient 0.8). Dune erosion did not occur on coasts with beaches higher than 3.2 m or on lower ones covered by embryo dunes.

  References ref

Chubarenko B., Burnashov E., Boldyriev V., Bobkina V., Kormanov K., 2009, Long-term changes in the rate of coastal erosion in the Kaliningrad Oblast (south-east Baltic), [in:] International Conference on Climate Change. The environment and socio-economic response in the southern Baltic region, A. Witkowski, J. Harff & H.-J. Isemer (eds.), Szczecin 25-28.05.2009, Conf. Proc. BALTEX No. 42, Univ. Szczecin, 101 pp.

Cyberski J., Wróblewski A., 1999, Recent and forecast changes in sea level along the Polish coast during the period 1900-2100, Quat. Stud. Poland, SI, 77-83.

Dailidienė I., Davulienė L., Tilickis B., Stankevicius A., Myrberg K., 2006, Sea level variability at the Lithuanian coast of the Baltic Sea, Boreal Environ. Res., 11, 109-121.

Eberhards G., Lapinskis J., Saltupe B., 2006, Hurricane Erwin 2005 coastal erosion in Latvia, Baltica, 19 (1), 10-19.

Furmańczyk K. K., Dudzińska-Nowak J., Furmańczyk K. A., Paplińska-Swerpel B., Brzezowska N., 2011, Dune erosion as a result of the significant storms at the western Polish coast (Dziwnów Spit example), J. Coastal Res., 64 (SI), (Proc. 11th Int. Coast. Symp.), 756-759.

Heyen H., Zorita E., von Storch H., 1996, Statistical downscaling of monthly mean North Atlantic air-pressure to sea-level anomalies in the Baltic Sea, Tellus A, 48 (2), 312-323, http://dx.doi.org/10.1034/j.1600-0870.1996.t01-1-00008.x

Johansson M., Boman H., Kahma K. K., Launiainen J., 2001, Trends in sea level variability in the Baltic Sea, Boreal Environ. Res., 6, 159-179.

Koltsova T., Belakova J., 2009, Storm Surges on the Southern Coast of Gulf of Riga: case study of the Lielupe River, [in:] Threats to global water security, J. A. A. Jones, T. G. Vardanian & C. Hakopian (eds.), NATO Sci. Peace Secur. Ser. C: Environ. Secur., II, 91-97, http://dx.doi.org/10.1007/978-90-481-2344-5_10

Kont A., Jaagus J., Aunap R., Ratas U., Rivis R., 2008, Implications of sea-level rise for Estonia, J. Coastal Res., 24 (2), 423-431, http://dx.doi.org/10.2112/07A-0015.1

Łabuz T. A., 2005, Dune shores of Polish Baltic coast, Czas. Geogr., 76 (1-2), 19-47, (in Polish).

Łabuz T. A., 2009, The West Pomerania coastal dunes - alert state of their development, Z. Dt. Ges. Geowiss., 160 (2), 113-122.

Łabuz T. A., 2011, Effects of storm surges on coastal dune profile reconstruction of the Świna Gate Sandbar, Czas. Geogr., 82 (4), 351-371, (in Polish).

Łabuz T. A., 2013, Polish coastal dunes - affecting factors and morphology, Landform Anal., 22, 33-59.

Łabuz T. A., Kowalewska-Kalkowska H., 2010, Coastal abrasion of the Świna Gate Sandbar (Pomeranian Bay coast) caused by the heavy storm surge on 15 October 2009, Abstr. ‘Storm Surges Congress 2010’, Hamburg, Germany, 13-17.2010, Univ. Hamburg, p. 115.

Łabuz T. A., Kowalewska-Kalkowska H., 2011, Coastal erosion caused by the heavy storm surge of November 2004 in the southern Baltic Sea, Clim. Res., 48 (SI), 93-101, http://dx.doi.org/10.3354/cr00927

Majewski A., Dziadziuszko Z., Wiśniewska A., 1983, The monograph of storm floods 1951-1975, Wyd. Kom. Łącz., Warszawa, (in Polish).

Pruszak Z., Zawadzka E., 2005, Vulnerability of Poland’s coast to sea-level rise, Coast. Eng. J., 47 (2-3), 131-155, http://dx.doi.org/10.1142/S0578563405001197

Ryabchuk D., Kolesov A., Chubarenko B., Spiridonov M., Kurennoy D., Soomere T., 2011, Coastal erosion processes in the eastern Gulf of Finland and their links with long-term geological and hydrometeorological factors, Boreal Environ. Res., 16 (1), 117-137.

Samuelsson M., Stigebrandt A., 1996, Main characteristics of the long-term sea level variability in the Baltic Sea, Tellus A, 48 (5), 672-683, http://dx.doi.org/10.1034/j.1600-0870.1996.t01-4-00006.x

Sorensen C., Munk-Nielsen C. C., Piontkowitz T., 2009, Storm surges in Denmark: past experiences and expectations for the future, Abstr. ‘Storm Surges Congress 2010’, Hamburg, Germany, 13-17.09.2010, Univ. Hamburg, p. 73.

Suursaar Ü., Kullas T., Otsmann M., Kõuts T., 2003, Extreme sea level events in the coastal waters of western Estonia, J. Sea Res., 49 (4), 295-303, http://dx.doi.org/10.1016/S1385-1101(03)00022-4

Suursaar Ü., Kullas T., Otsmann M., Saaremaë I., Kuik J., Merilain M., 2006, Cyclone Gudrun in January 2005 and modelling its hydrodynamic consequences in the Estonian coastal waters, Boreal Envioron. Res., 11, 143-169.

full, complete article (PDF, 1105 KB)


Could submarine groundwater discharge be a significant carbon source to the southern Baltic Sea?
Oceanologia 2014, no. 56(2), pp. 327-347
doi:10.5697/oc.56-2.327

Beata Szymczycha, Anna Maciejewska, Aleksandra Winogradow, Janusz Pempkowiak*
Institute of Oceanology, Polish Academy of Sciences,
70-383 Szczecin, Poland;
e-mail: pempa@iopan.gda.pl
* corresponding author

keywords: Bay of Puck, seepage water, dissolved organic carbon, dissolved inorganic carbon, carbon loads, carbon budget, Baltic Sea, World Ocean

Received 25 October 2013, revised 16 January 2014, accepted 20 January 2014.

The study reports the results obtained within the framework of the following projects: the statutory activities of the Institute of Oceanology Polish Academy of Sciences theme 2.2, research project No. 2012/05/N/ST10/02761 sponsored by the National Science Centre, and AMBER, the BONUS+ EU FP6 Project.

Abstract

Submarine Groundwater Discharge (SGD) is an important yet poorly recognised pathway of material transport to the marine environment. This work reports on the results of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) concentrations and loads in the groundwater seeping into the southern Baltic Sea. Most of the research was carried out in the Bay of Puck (2009-2010), while in 2013 the study was extended to include several other groundwater seepage impacted areas situated along the Polish coastline. The annual average concentrations of DIC and DOC in the groundwater were equal to 64.5 ± 10.0 mg C L-1 and 5.8 ± 0.9 mg C L-1 respectively. The carbon specific flux into the Bay of Puck was estimated at 850 mg m-2 yr-1. The loads of carbon via SGD were scaled up for the Baltic Sea sub-basins and the entire Baltic Sea. The DIC and DOC fluxes via SGD to the Baltic Sea were estimated at 283.6 ± 66.7 kt yr-1 and 25.5 ± 4.2 kt yr-1. The SGD derived carbon load to the Baltic Sea is an important component of the carbon budget, which gives the sea a firmly heterotrophic status.

  References ref

Beck M., Dellwig O., Kolditz K., Freund H., Liebezeit G., Schnetger B., Brumsack H. J., 2007, In situ pore water sampling in deep intertidal flat sediments, Limnol. Oceanogr., 5, 136-144, http://dx.doi.org/10.4319/lom.2007.5.136

Bełdowski J., Pempkowiak J., 2003, Horizontal and vertical variabilities of mercury concentration and speciation in sediments of the Gdansk Basin, Southern Baltic Sea, Chemosphere, 52 (3), 645-654, http://dx.doi.org/10.1016/S0045-6535(03)00246-7

Borges A. V., 2005, Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean?, Estuaries, 28, 3-27, http://dx.doi.org/10.1007/BF02732750

Cable J. E., Burnett W. C., Chanton J. P., 1997, Magnitude and variations of groundwater along a Florida marine shoreline, Biogeochemistry, 38 (2), 189-205, http://dx.doi.org/10.1023/A:1005756528516

Cai W.-J., Wang Y.-C., Krest J., Moore W. S., 2003, The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean, Geochim. Cosmochim. Acta, 67 (4), 631-639, http://dx.doi.org/10.1016/S0016-7037(02)01167-5

Chen C.-T. A., Borges A. V., 2009, Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2 , Deep-Sea Res. Pt. II, 56 (8-10), 578-590, http://dx.doi.org/10.1016/j.dsr2.2009.01.001

Chen C.-T. A., Liu K.-K., Macdonald R., 2003, Continental margin exchanges, Ocean Biogeochemistry: The role of the ocean carbon cycle in global change, IGBP Book Series, Springer, 53-97 pp.

Emelyanov E., 1995, Baltic Sea: Geology, geochemistry, palaeoceanography, pollution, P. P. Shirshov Inst. Oceanol. Russ. Acad. Sci., Atlantic Branch Baltic Ecol. Inst. Hydrosph. Acad. Nat. Sci., Kaliningrad, 119 pp.

Emerson S., Hedges J., 2008, Chemical oceanography and the marine carbon cycle, School of Oceanography, Univ. Washington, Washington, 453 pp., http://dx.doi.org/10.1017/CBO9780511793202

IPCC, 2007, Climate Change Synthesis Report. Contribution of working groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, 73 pp.

Kaltin S., Haraldsson C., Anderson L. G., 2005, A rapid method for the determination of total dissolved inorganic carbon in seawater with high accuracy and precision, Mar. Chem., 96 (1-2) 53-60, http://dx.doi.org/10.1016/j.marchem.2004.10.005

Korzeniewski K., 2003, Zatoka Pucka, Univ. Gdańsk, Gdynia.

Kotwicki L., Grzelak K., Czub M., Dellwig O., Gentz T., Szymczycha B., Brottcher M., 2013, Submarine groundwater discharge to the Baltic coastal zone - impact on the meiofaunal community, J. Marine Syst., 129, 118-126, http://dx.doi.org/10.1016/j.jmarsys.2013.06.009

Kozerski B., 2007, The Gdańsk hydrological system, Wyd PG, Gdańsk, 112-113. Kryza J., Kryza H., 2006, The analytic and model estimation of the direct groundwater flow to the Baltic Sea on the territory of Poland, Geologos, 10, 153-165.

Kuliński K., Pempkowiak J., 2008, Dissolved organic carbon in the southern Baltic Sea: quantification of factors affecting its distribution, Estuar. Coast. Shelf Sci., 78, 38-44, http://dx.doi.org/10.1016/j.ecss.2007.11.017

Kuliński K., Pempkowiak J., 2011, The carbon budget of the Baltic Sea, Biogeosciences, 8 (11), 3219-3230, http://dx.doi.org/10.5194/bg-8-3219-2011

Kuliński K., Pempkowiak J., 2012, Carbon cycling in the Baltic Sea, Springer, Berlin, 132 pp., http://dx.doi.org/10.1007/978-3-642-19388-0

Liu Q., Dai M., Chen W., Huh C.-A., Wang G., Li Q., Charette M. A., 2012, How significant is submarine groundwater discharge and its associated dissolved inorganic carbon in a river-dominated shelf system?, Biogeosciences, 9, 1777-1795, http://dx.doi.org/10.5194/bg-9-1777-2012

Ludwig W., Amiotte-Suchet P., Probs J.-L., 1996, River discharges of carbon to the world’s oceans: determining local inputs of alkalinity - and of dissolved and particulate organic carbon, Centre de geochimie de la surface, CNRS, 323, 1007-1014.

Moore W. S., 2010, The effect of submarine groundwater discharge on the ocean, Ann. Rev. Mar. Sci., 2, 59-88, http://dx.doi.org/10.1146/annurev-marine-120308-081019

Moore W. S., Blanton J. O., Joye S. B., 2006, Estimates of flushing times, submarine ground water discharge, and nutrient fluxes to Okatee Estuary, South Carolina, J. Geophys. Res., 111, C09006, http://dx.doi.org/10.1029/2005JC003041

Omstedt A., Humborg C., Pempkowiak J., Perttilä M., Rutgersson A., Schneider B., Smith B., 2012, Biogeochemical control of the coupled CO2-O2 system of the Baltic Sea: a review of the results of Baltic-C, AMBIO, 43 (1), 49-53, http://dx.doi.org/10.1007/s13280-013-0485-4

Peltonen K., 2002, Direct groundwater flow to the Baltic Sea, Nordic Counc. Min., Temanord, Copenhagen, 78 pp.

Pempkowiak J., Szymczycha B., Kotwicki L., 2010, Submarine groundwater discharge (SGD) to the Baltic Sea, Rocz. Ochr. Śr., 12, 17-32.

Pempkowiak J., 1983, C18 reversed-phase trace enrichment of short- and long- chain (C2-C8-C20) fatty acids from dilute aqueous solutions and sea water, J. Chromatogr., 258, 93-102, http://dx.doi.org/10.1016/S0021-9673(00)96401-X

Piekarek-Jankowska H., Matciak M., Nowacki J., 1994, Salinity variations as an effect of groundwater seepage through the seabed (Bay of Puck, Poland), Oceanologia, 36, 33-46.

Santos I. R., Burnett W. S., Dittmar T., Suryaputra I. G. N. A., Chanton J., 2009, Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary, Geochim. Cosmochim. Acta, 73 (5), 1325-1339, http://dx.doi.org/10.1016/j.gca.2008.11.029

Smith A. M., Cave R. R., 2012, Influence of fresh water, nutrients and DOC in two submarine groundwater-fed estuaries on the west of Ireland, Sci. Total Environ., 438, 260-270, http://dx.doi.org/10.1016/j.scitotenv.2012.07.094

Schulz H. D., Zabel M., 2006, Marine geochemistry, Springer-Verlag, Berlin, Heidelberg, 534 pp., http://dx.doi.org/10.1007/3-540-32144-6

Szczepańska A., Zaborska A., Maciejewska A., Kuliński K., Pempkowiak J., 2012, Distribution and origin of organic matter in the Baltic sea sediments dated with 210Pb and 137Cs, Geochronometria, 39 (1), 1-9, http://dx.doi.org/10.2478/s13386-011-0058-x

Szymczycha B., Miotk M., Pempkowiak J., 2013, Submarine groundwater discharge as a source of mercury in the Bay of Puck, the Southern Baltic Sea, Water Air Soil Pollut., 224 (1542), 14 pp., http://dx.doi.org/10.1007/s11270-013-1542-0

Szymczycha B., Vogler S., Pempkowiak J., 2012, Nutrient fluxes via submarine groundwater discharge to the Bay of Puck, Southern Baltic, Sci. Total Environ., 438, 86-93, http://dx.doi.org/10.1016/j.scitotenv.2012.08.058

Takahashi T., Sutherland S. C., Sweeney C., Poisson A., Metzl N., Tilbrook B., Bates N., Wanninkof R., Feely R. A., Sabine C., Olafsson J., No jiri Y., 2009, Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects, Deep-Sea Res. Pt. II, 49 (9-10), 1601-1622, http://dx.doi.org/10.1016/S0967-0645(02)00003-6

Thomas H., Bozec Y., Elkalay K., de Baar H. J. W., 2004, Enhanced open ocean storage of CO2 from shelf sea pumping, Science, 304, 1005-1007, http://dx.doi.org/10.1126/science.1095491

Thomas H., Pempkowiak J., Wulff F., Nagel K., 2003, Autotrophy, nitrogen accumulation, and nitrogen limitation in the Baltic Sea: a paradox or a buffer for eutrophication, Geophys. Res. Lett., 30, 8-1/8-4.

Thomas H., Schiettecatte L.-S., Suykens K., Kone Y. J. M., Shadwick E. H., Prowe A. E. F., Bozec Y., de Baar H. J. W., Borges A. V., 2009, Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments, Biogeosciences, 6, 267-274, http://dx.doi.org/10.5194/bg-6-267-2009

Uścinowicz S., 2011, Geochemistry of the Baltic Sea surface sediments, Polish Geolog. Inst.-National Res. Inst., Warsaw, 138-145.

Viventsova E. A., Voronov A. N., 2003, Groundwater discharge to the Gulf of Finland (Baltic Sea): ecological aspects, Environ. Ecol., 45, 221-225. Wasmund N., Uhlig S., 2003, Phytoplankton trends in the Baltic Sea, J. Marine Syst., 60, 177-186.

Zektser I. S., Loaiciga H.A., 1993, Groundwater fluxes in the global hydrologic cycle: past, present and future, J. Hydrol., 144, 405-427, http://dx.doi.org/10.1016/0022-1694(93)90182-9

Zekster I. S., Everett L. G., Dzhamalov R. G., 2007, Submarine groundwater, CRS Press, Boca Raton.

full, complete article (PDF, 219 KB)


Impact of the emissions of international sea traffic on airborne deposition to the Baltic Sea and concentrations at the coastline
Oceanologia 2014, no. 56(2), pp. 349-372
doi:10.5697/oc.56-2.349

Marke Hongisto
Air Quality Research, Finnish Meteorological Institute (FMI),
Erik Palmenin aukio 1, P.O. Box 503, FI-00101, Helsinki, Finland;
e-mail: marke.hongisto@fmi.fi
* corresponding author

keywords: Baltic Sea, airborne load of nitrogen and sulphur, European emission inventories, Concentrations from Baltic Sea ship emissions

Received 25 October 2013, revised 12 February 2014, accepted 21 February 2014.

The research has received funding from the European Regional Development Fund, Central Baltic INTERREG IV A programme within the SNOOP project.

Abstract

The impact of ship traffic emissions in the Baltic Sea on deposition and airborne concentrations of nitrogen and sulphur compounds in the period 2008--2011 was studied using the Hilatar chemistry transport model with a 0.068° latitude-longitude resolution. An accurate ship emission inventory based on AIS (automatic identification system) security signals was used. The uncertainty of the European emission inventories are discussed, as is an inter-comparison of the Baltic Sea airborne load and concentrations with other model-based estimates and with air quality measurements and the effect of the EU sulphur directive for ship emissions on sulphate concentrations.

  References ref

Anenberg S. C., Horowitz L. W., Tong D. Q., West J. J., 2010, An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling, Environ. Health Persp., 118, 1189-1195, http://dx.doi.org/10.1289/ehp.0901220

Asman W. A. H., Janssen A. J., 1987, A long range transport model for ammonia and ammonium for Europe, Atmos. Environ., 21 (10), 2099-2119, http://dx.doi.org/10.1016/0004-6981(87)90344-1

BACC - BALTEX Assessment of Climate Change, 2008, Assessment of climate change for the Baltic Sea basin, The BACC Author Team, Reg. Clim. Stud. Ser., Springer, Berlin, Heidelberg, 474 pp., [http://www.hzg.de/institute/coastal_research/pro jects/baltex/bacc_downloads/index.html.en (9.12.2013)].

Barentsinfo, 2013, Barents environmental hotspots, [http://www.barentsinfo.fi/beac/hotspots/ (9.12.2013)].

Bartnicki J., Gusev A., Aas W., Fagerli H., Valiyaveetil S., 2012-2009, Atmospheric supply of nitrogen, lead, cadmium, mercury and dioxins/furans to the Baltic Sea in years 2010-2009, Summ. Rep. HELCOM, MSC-W Tech. Rep. 2/2012, 1/2011, 2/2010, 2/2009.

Bartnicki J., Gusev A., Aas W., Fagerli H., Valiyaveetil S., 2008, Atmospheric supply of nitrogen, lead, cadmium, mercury and dioxins/furans to the Baltic Sea in 2006, MSC-W Tech. Rep. 2/2008.

Bartnicki J., Gusev A., Aas W., Berg T., Barrett K. Fagerli H., 2006-2002, Atmospheric supply of nitrogen, lead, cadmium, mercury and dioxins/furans to the Baltic Sea in 2004-2001, MSC-W Tech. Rep. 3/2006-2003.

Bartnicki J., Gusev A., Barrett K., Simpson D., 2002, Atmospheric supply of nitrogen, lead, cadmium, mercury and dioxins/furans to the Baltic Sea in 1996-2000 for the Helsinki Commission (HELCOM), Baltic Marine Environ. Protection Comm., Joint MSC-W & NILU Note 6/02.

Bartnicki J., Semeena V. S., Fagerli H., 2011, Atmospheric deposition of Nitrogen to the Baltic Sea in the period 1995-2006, Atmos. Chem. Phys., 11, 10057-10069, http://dx.doi.org/10.5194/acp-11-10057-2011

Bott A., 1989, A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes, Mon. Weather Rev. 117, 1006-1015, http://dx.doi.org/10.1175/1520-0493(1989)117<1006:APDASO>2.0.CO;2

Brandt J., Silver J. D., Christensen J. H., Andersen M. S., Bonlokke J. H., Sigsgaard T., Geels C., Gross A., Ayoe B., Hansen A. B., Hansen K. M., Hedegaard G. B., Kaas E., Frohn L. M., 2011, CEEH scientific report No 3: Assessment of health cost externalities of air pollution at the national level using the EVA Model System, Cent. Energy, Environ. Health Rep. Ser., Aarhus Univ., National Environ. Res. Inst., Roskilde, 98 pp.

Carstensen J., Henriksen P., 2009, Phytoplankton biomass response to nitrogen inputs: a method for WFD boundary setting applied to Danish coastal waters, Hydrobiologia, 633 (1), 137-149, http://dx.doi.org/10.1007/s10750-009-9867-9

Chang T. Y., 1984, Rain and snow scavenging of HNO3 vapour in the atmosphere, Atmos. Environ., 18 (1), 191-197, http://dx.doi.org/10.1016/0004-6981(84)90242-7

Chang T. Y., 1986, Estimates of nitrate formation in rain and snow systems, J. Geophys. Res., 91 (D2), 2805-2818, http://dx.doi.org/10.1029/JD091iD02p02805 Corbett J. J., Winebrake J. J, Green E. H., Kasibhatla P., Eyring V., Lauer A., 2007, Mortality from ship emissions: A global assessment, Environ. Sci. Technol. Lett., 41 (24), 8512-8518, http://dx.doi.org/10.1021/es071686z

EEA, 2012, AirBase - the European air quality database, [http://www.eea.europa,eu/data-and-maps/figures]. EEA, 2013, The impact of international shipping on European air quality and climate forcing, Tech. Rep. No 4/2013, European Environ. Agency, 84 pp., http://dx.doi.org/10.2800/75763

Geels C., Hansen K. M., Christensen J. H., Ambelas Skjoth C., Ellermann T., Hedegaard G. B., Hertel O., Frohn L. M., Gross A., Brandt J., 2011, The projected change in atmospheric nitrogen deposition to the Baltic Sea towards 2020, Atmos. Chem. Phys. Discuss., 11 (7), 21 533-21 567, http://dx.doi.org/10.5194/acpd-11-21533-2011

HELCOM, 2011, Fifth Baltic Sea pollution load compilation, Baltic Sea Environ. Proc., No. 128., 217 pp.

Hertel O., Ambelas Skjoth C., Brandt J., Christensen J. H., Frohn M., Frydendall J., 2003, Operational mapping of atmospheric nitrogen deposition to the Baltic Sea, Atmos. Chem. Phys., 3 (6), 2083-2099, http://dx.doi.org/10.5194/acp-3-2083-2003

Hesstvedt E., Hov Ø., Isaksen S. A., 1978, Quasi-steady-state approximations in air pollution modelling: Comparison of two numerical schemes for oxidant prediction, Int. J. Chem. Kinet., 10 (9), 971-994, http://dx.doi.org/10.1002/kin.550100907

Hongisto M., 2012, Origin and possible effects of episodic nutrient deposition events over the Baltic Sea, Int. J. Environ. Pollut., 50 (1/2/3/4), 293-307.

Hongisto M., 2011, Variability of the marine boundary layer parameters over the Baltic Sea sub-basins and their impact on the nitrogen deposition, Oceanologia, 53 (1-T1), 391-413.

Hongisto M., 2005, Uncertainties in the meteorological input of the Chemistry- Transport Models and some examples of their consequences, Int. J. Environ. Pollut., 24 (1/2/3/4), 127-153, http://dx.doi.org/10.1504/IJEP.2005.007390

Hongisto M., 2003, Modelling of the transport of nitrogen and sulphur contaminants to the Baltic Sea Region, FMI Contribut. No. 40, Helsinki, 188 pp.

Hongisto M., 1998, Hilatar, a regional scale grid model for the transport of sulphur and nitrogen compounds, FMI Contribut. No 21, Helsinki, 152 pp.

Hongisto M., Joffre S., 2005, Meteorological and climatological factors affecting the transport and deposition of nitrogen compounds over the Baltic Sea, Boreal Environ. Res., 10 (1), 1-17.

Iversen T., Saltbones J., Sandnes H., Eliassen A., Hov Ø., 1989, Airborne transboundary transport of sulphur and nitrogen over Europe - Model descriptions and calculations, EMEP MSC-W Rep. 2/89. DNMI, Oslo.

Jalkanen J.-P., Brink A., Kalli J., Pettersson H., Kukkonen J., Stipa T., 2009, A modelling system for the exhaust emissions of marine tra?c and its application in the Baltic Sea area, Atmos. Chem. Phys., 9 (23), 9209-9223, http://dx.doi.org/10.5194/acp-9-9209-2009

Jalkanen J.-P., Johansson L., Kukkonen J., Brink A., Kalli J., Stipa T., 2012, Extension of an assessment model of ship tra?c exhaust emissions for particulate matter and carbon monoxide, Atmos. Chem. Phys., 12 (5), 2641-2659, http://dx.doi.org/10.5194/acp-12-2641-2012

Jonsen J. E., Berge E., 1995, Some preliminary results on transport and deposition of nitrogen compounds by use of the Multilayer Eulerian Model, EMEP/MSC- W, Note 4/95, 25 pp.

Jonson J. E., Tarrasón L., Bartnicki J., 2000, Effects of international shipping on European pollution levels, EMEP/MSC-W, Note 5/00, 24 pp.

Langner J., Andersson C., Enghardt M., 2009, Atmospheric input of nitrogen to the Baltic Sea basin: Present situation, variability due to meteorology and impact of climate change, Boreal Environ. Res., 14, 226-237.

Lindfors V., Joffre S. M., Damski J., 1991, Determination of the wet and dry deposition of sulphur and nitrogen compounds over the Baltic Sea using actual meteorological data, FMI Contrib. 4.

MACC, 2011, MACC European emission inventory for the Years 2003-2007, TNO Rep. TNO-060-UT-2100-00588.

Neff J. C., Holland E. A., Dentener F. J., McDowell W. H., Russell K. M., 2002, The origin, composition and rates of organic nitrogen deposition: A missing piece of the nitrogen cycle?, Biogeochemistry, 57/58, 99-136, http://dx.doi.org/10.1023/A:1015791622742

Norilsk Nikel, 2013, www.nornik.ru, http://www.kolagmk.ru, http://www.kolagmk.ru/ecology/monitoring, 34 pp. [see the link above to ppt presentation in Russian (9.12.2013)].

Plate E., 2000, Variabilität der Zusammensetzung anorganischer Aerosole - insbesondere der reaktiven Stickstoffverbindungen - in küstennahen Gebieten der Nordsee und Ostsee, Diss. Erlang. Doktorgrad. Fachbereichs Chemie Univ. Hamburg, Schriftenr. Angewandte Analyt., Inst. Anorganische Angewandte Analyt. No 37, Univ. Hamburg, 215 pp.

Rolff C., Elmgren R., Voss M., 2008, Deposition of nitrogen and phosphorus on the Baltic Sea: seasonal patterns and nitrogen isotope composition, Biogeosciences, 5 (6), 1657-1667, http://dx.doi.org/10.5194/bg-5-1657-2008

Ruoho-Airola T., Eilola K., Savchuk O. P., Parviainen M., Tarvainen V., 2012, Atmospheric nutrient input to the Baltic Sea from 1850 to 2006: A reconstruction from modeling results and historical data, AMBIO, 41 (6), 549-557, http://dx.doi.org/10.1007/s13280-012-0319-9

Schulz M., Ferm M., Hongisto M., Jylha K., de Leeuw G., Marks R., Nadstazik A., Plate E., Tamm S., Sopauskiene D., Ulevicus V., 1999, Atmospheric nitrogen input to the Baltic Sea Proc. 3rd Basys Annual Sci. Conf., 20-22 September 1999, C. Zuelicke (ed.), IOW, Warnemünde.

Scott B. C., 1982, Theoretical estimates of the scavenging coe?cient for soluble aerosol particles as a function of precipitation type, rate and altitude, Atmos. Environ., 16 (7), 1753-1762.

Sillanpää M., Hillamo R., Saarikoski S., Frey A., Pennanen A., Makkonen U., Spolnik Z., van Grieken R., Branis M., Brunekreef B., Cjhalbot M.-C., Kuhlbush T., Sunyer J., Kerminen V.-M., Kulmala M., Salonen R. O., 2006, The chemical composition and mass closure of particulate matter at six urban sites in Europe, Atmos. Environ., 40 (Suppl. 2), S212-S233, http://dx.doi.org/10.1016/j.atmosenv.2006.01.063

Silva R. A., West J. J., Zhang Y., Anenberg S. A., Lamarque J.-F., Shindell D. T., Collins W. J., Dalsoren S., Faluvegi G., Folberth G., Horowitz L. W., Nagashima T., Naik V., Rumbold S., Skeie R., Sudo K., Takemura T., Bergmann D., Cameron-Smith P., Cionni I., Doherty R. M., Eyring V., Josse B., MacKenzie I. A., Plummer D., Righi M., Stevenson D. S., Strode S., Szopa S., Zeng G., 2013, Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change, Environ. Res. Lett., 8 (3), 034005, http://dx.doi.org/10.1088/1748-9326/8/3/034005

Svendsen L. M., Staaf H., Gustafsson B., Pyhälä M., Kotilainen P., Batrnicki J., Knuuttila S., Durkin M., 2013, Review of the fifth Baltic Sea pollution load compilation for the 2013 HELCOM ministerial meeting, Baltic Sea Environ. Proc. No. 141, Helsinki Comm.

Stipa T., Jalkanen J.-P., Hongisto M., Kalli J., Brink A., 2007, Emissions of NOx from Baltic shipping and first estimates of their effects on air quality and eutrophication of the Baltic Sea, 33 pp., [https://helda.helsinki.fi/handle/10138/1209 (9.12.2013)].

Tuovinen J.-P., 1992, A dispersion model of air pollutants based on the K theory of turbulent diffusion, Teknillinen korkeakoulu, Teknillisen fysiikan koulutusohjelma, Diplomityö, 109 pp., (in Finnish).

Unden P., Rontu L., Järvinen H., 2002, HIRLAM-5 Final Report, 146 pp., [http://www.hirlam.org (9.12.2013)].

Winebrake J. J., Corbett J. J., Green E. H., Lauer A., Eyring V., 2009, Mitigating the health impacts of pollution from oceangoing shipping: An assessment of low-sulfur fuel mandates, Environ. Sci. Technol., 43 (13), 4776-4782, http://dx.doi.org/10.1021/es803224q

full, complete article (PDF, 3605 KB)


Inorganic constituents in surface runoff from urbanised areas in winter: the case study of the city of Brest, Belarus
Oceanologia 2014, no. 56(2), pp. 373-383
doi:10.5697/oc.56-2.373

Ina Bulskaya1, Aliaksandr Volche2
1Department of Chemistry, A.S. Pushkin Brest State University,
Boulevard Kosmonavtov 21, 224016 Brest, Republic of Belarus;
e-mail: inabulskaya@gmail.com
2Faculty of Water Supply Systems and Soil Conservation, Brest State Technical University,
Moskovskaya str. 267, Brest, Republic of Belarus;
e-mail: volchak@tut.by

keywords: Snowmelt, surface runoff, pollution, Baltic Sea catchment area, climate variables, phytoplankton, benthos

Received 25 October 2013, revised 7 March 2014, accepted 14 March 2014.

Abstract

The aim of this paper was to study the inorganic constituents of snow and snowmelt surface runoff in a case study of the city of Brest and to indicate components that could pose a threat to the environment. Samples of snow and snowmelt runoff were analysed for the following parameters: total suspended solids, pH, the contents of nitrate, phosphate and ammonium ions, and of heavy metals. The concentrations of most of these pollutants were higher in the snowmelt runoff than in snow. The concentrations of pollutants in the snowmelt surface runoff exceeded the levels established by national regulations (maximum permissible concentrations).

  References ref

Aleshka V. I., 1997, Collection of measurement techniques allowed for use in operation of laboratories of environmental monitoring of industries and organizations of Republic of Belarus, Min. Nat. Res. Environ. Prot., Belorussian Sci. Res. Cent. ‘Ecology’, Minsk, 282 pp., (in Russian).

APHA - American Public Health Association, 1992, Standard methods for the examination of waters and wastewaters including bottom sediments and sludges, 12th edn., Am. Publ. Health Assoc., 650 pp.

Bartlett A. J., Rochfort Q., Brown L. R., Marsalek J., 2012, Causes of toxicity to Hyalella azteca in a storm water management facility receiving highway runoff and snowmelt. Part 1: Polycyclic aromatics and metals, Sci. Total Environ., 414, 227-237, http://dx.doi.org/10.1016/j.scitotenv.2011.11.041

Bäckström M., Karlsson S., Bäckman L., Folkeson L., Lind B., 2004, Mobilisation of heavy metals by deicing salts in a roadside environment, Water Res., 38 (3), 720-732, http://dx.doi.org/10.1016/j.watres.2003.11.006

Buttle J. M., Xu F., 1988, Snowmelt runoff in suburban environments, Nordic Hydrology, 19, 19-40.

Cañedo-Arguëlles M., Kefford B. J., Piscart C., Prat N., Schäfer R. B., Schulz C.-J., 2013, Salinisation of rivers: An urgent ecological issue, Environ. Pollut., 173, 157-167, http://dx.doi.org/10.1016/j.envpol.2012.10.011

Chouli E., Aftias E., Deutsch J. C., 2007, Applying storm water management in Greek cities: Learning from the European experience, Desalination, 210, 61-68, http://dx.doi.org/10.1016/j.desal.2006.05.033

Han Y., Lau S.-L., Kayhanian M., Stenstrom M. K., 2006, Characteristics of highway storm water runoff, Water Environ. Resour., 78 (12), 2377-2388, http://dx.doi.org/10.2175/106143006X95447

Loginov V. F., 2012, The state of environment in Belarus, Environ. Bull. 2011, Nat. Acad. Sci., Min. Natur. Resour. Environ. Protect., (in Russian).

Loginov V. F., 2011, The state of environment in Belarus, Environ. Bull. 2010, Nat. Acad. Sci., Min. Natur. Resour. Environ. Protect., (in Russian). Loginov V. F., 2010, The state of environment in Belarus, Environ. Bull. 2009, Nat. Acad. Sci., Min. Natur. Resour. Environ. Protect., (in Russian).

Loginov V. F., 2009, The state of environment in Belarus, Environ. Bull. 2008, Nat. Acad. Sci., Min. Natur. Resour. Environ. Protect., (in Russian). Marsalek J., 2003, Road salts in urban storm water: an emerging issue in storm water management in cold climates, Water Sci. Technol., 48 (9), 61-70.

Marsalek J., Rochfort Q., Grapentine L., 2005, Aquatic habitat issues in urban storm water management: challenges and potential solutions, Ecohydrol. Hydrobiol., 5, 269-279.

Parikh P., Taylor M. A., Hoagland T., Thurston H., Shuster W., 2005, Application of market mechanism and incentives to reduce stormwater runoff: an integrated hydrologic, economic and legal approach, Environ. Sci. Policy, 8 (2), 133-144, http://dx.doi.org/10.1016/j.envsci.2005.01.002

Perera N., Gharabaghi B., Howard K., 2013, Groundwater chloride response in the Highland Creek watershed due to road salt application: A re-assessment after 20 years, J. Hydrology, 479, 159-168, http://dx.doi.org/10.1016/j.jhydrol.2012.11.057

Regulation MNREP & MHP, 2007, Some issues of water quality regulation in fish breeding water bodies, No. 43/42, Reg. Min. Nat. Res. Environ. Protect. Repub. Belarus, Min. Health Protect. Repub. Belarus, 67 pp., (in Russian).

Roger S., Montreyaud-Vignoles M., Andral M. C., Herremans L., Fortune J. P., 1998, Mineral, physical and chemical analysis of the solid mater carried by motorway runoff water, Water Res., 32 (4), 1119-1125, http://dx.doi.org/10.1016/S0043-1354(97)00262-5

Shchukin I. S., Melexin A. G., Qualitative composition of surface runoff from territory of Perm, 4 Herald PNIPU, Urbanistics, 110-118, (in Russian).

Struk M. I., Kachanovsky S. B., Loginov V. F., 2002, Natural environment of Belarus, NOOO ‘BIS-P’, 422 pp., (in Russian).

Sujkova N. V., Brianskaya U. V., Borovkov V. S., 2012, Qualities of fine suspended solids and their impact on riverbed processes and self-purification of river water, Water Resour., 39 (2), 186-194, (in Russian).

TCGP - Technical Code of Good Practice, 2012a, Environmental protection and nature. The procedure for establishing standards for discharging chemical and other substances with waste waters, 17.06-08-2012 (02120), 75 pp., (in Russian).

TCGP - Technical Code of Good Practice, 2012b, Systems of rain canalization. Engineering norms, 45-4.01-57-2012 (02250), 35 pp., (in Russian).

Volchek A. A., Yaromsky V. N., Mikhalchuk n. V., Kalinin M. Y., 2005, Mukhavets: Encyclopedia of the small river, Academy, Brest, 344 pp., (in Russian).

Westerlund C., Viklander M., 2006, Particles and associated metals in road runoff during snowmelt and rainfall, Sci. Total Environ., 362 (1-3), 143-156, http://dx.doi.org/10.1016/j.scitotenv.2005.06.031

full, complete article (PDF, 294 KB)


Adapting flood preparedness tools to changing flood risk conditions: the situation in Poland
Oceanologia 2014, no. 56(2), pp. 385-407
doi:10.5697/oc.56-2.385

Zbigniew W. Kundzewicz1,2
1Institute of Agricultural and Forest Environment, Polish Academy of Sciences,
Bukowska 19, 60-809 Poznań, Poland;
e-mail: zkundze@man.poznan.pl
2Potsdam Institute for Climate Impact Research,
Telegrafenberg, D-14412 Potsdam, Germany;
e-mail: zbyszek@pik-potsdam.de

keywords: Natural hazards, floods, risk, adaptation, Poland

Received 25 October 2013, revised 27 January 2014, accepted 31 January 2014.

The preparation of this paper was funded from the EU FP7 STAR-FLOOD Project (STrengthening And Redesigning European FLOOD risk practices: Towards appropriate and resilient flood risk governance arrangements). This project also provided funding for the author's participation at the BALTEX Conference.

Abstract

Flooding is the most destructive natural hazard in the Baltic Sea Basin in general and in Poland in particular. The notion includes floods from rivers and mountain torrents, as well as floods from sea surges in coastal areas, and floods from sewage systems. There have been several large floods in Poland in the last century and in recent decades, with damage exceeding 1% of the Polish GDP. The spatial and temporal characteristics of the flood risk in Poland are reviewed and observations and projections of changes in the flood hazard in the country are discussed. Furthermore, flood defences and flood preparedness systems in Poland are examined, with particular reference to the European Union (EU) Floods Directive, which is being implemented in Poland, an EU country. Finally, the public debate on flood risk and flood preparedness is reviewed.

  References ref

CEC (Commission of European Communities), 2007, Directive of the European Parliament and of the Council on the Assessment and Management of Floods, Brussels. Cyberski J., Grześ M., Gutry-Korycka M., Nachlik E., Kundzewicz Z. W., 2006, History of floods on the River Vistula, Hydrol. Sci. J., 51 (5), 799–817, http://dx.doi.org/10.1623/hysj.51.5.799

Kundzewicz Z. W., 2009, Adaptation to floods and droughts in the Baltic Sea basin under climate change, Boreal Environ. Res., 14 (1), 193–203.

Kundzewicz Z. W., Dobrowolski A., Lorenc H., Niedźwiedź T., Pińskwar I., Kowalczak P., 2012, Floods in Poland, [in:] Changes in flood risk in Europe, Z. W. Kundzewicz (ed.), IAHS Spec. Pub. No. 10, 319–334.

Kundzewicz Z. W., Lugeri N., Dankers R., Hirabayashi Y., Döll P., Pińskwar I., Dysarz T., Hochrainer S., Matczak P., 2010, Assessing river flood risk and adaptation in Europe – review of projections for the future, Mitig. Adapt. Strateg. Glob. Change, 15 (7), 641–656, http://dx.doi.org/10.1007/s11027-010-9213-6

Kundzewicz Z. W., Mata L. J., Arnell N., Döll P., Jiménez B., Miller K., Oki T., Şen Z., Shiklomanov I., 2008, The implications of projected climate change for freshwater resources and their management, Hydrol. Sci. J., 53 (1), 3–10.

Kundzewicz Z. W., Mata L. J., Arnell N., Döll P., Kabat P., Jiménez B., Miller K., Oki T., Şen Z., Shiklomanov I., 2007, Freshwater resources and their management, [in:] Climate change 2007: impacts, adaptation and vulnerability, M. L. Parry, O. F. Canziani, J. P. Palutikof, C. E. Hanson & P. J. van der Linden (eds.), Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, 173–210.

Kundzewicz Z. W., Schnellhuber H.-J., 2004, Floods in the IPCC TAR perspective, Nat. Hazards, 31 (1), 111–128, http://dx.doi.org/10.1023/B:NHAZ.0000020257.09228.7b

Kundzewicz Z. W., Szamałek K., Kowalczak P., 1999, The great flood of 1997 in Poland, Hydrol. Sci. J., 44 (6), 855–870, http://dx.doi.org/10.1080/02626669909492285

Kurczyński Z., 2012, Mapy zagrożenia powodziowego i mapy ryzyka powodziowego, a Dyrektywa Powodziowa, Arch. Fotogram., Kartogr. Teledet., 23, 209–217.

Milly P. C. D., Betancourt J., Falkenmark M., Hirsch R. M., Kundzewicz Z. W., Lettenmaier D. P., Stouffer R. J., 2008, Stationarity is dead: whither water management?, Science, 319 (5863), 573–574, http://dx.doi.org/10.1126/science.1151915

Niedźwiedź T., Łupikasza E., Pińskwar I., Kundzewicz Z. W., Stoffel M., Małarzewski M., 2014, Climatological background of floods in the northern foothills of the Tatra Mountains, Theor. Appl. Climatol., (in press).

Pińskwar I., 2009, Projekcje zmian w ekstremach opadowych w Polsce (Projections of changes in precipitation extremes in Poland), Ph. D. thesis, Univ. Life Sci., Poznań.

Pruszak Z., 2000, Implication of accelerated sea-level rise (ASLR) for Poland, [in:] European vulnerability and adaptation to impacts of accelerated sea-level rise (ASLR), Proc. SURVAS Expert Workshop, A. C. de la Vega-Leinert, R. J. Nicholls & R. S. J. Tol (eds.), Univ. Hamburg, FHRC, Middlesex Univ., Hamburg.

Pruszak Z., Zawadzka E., 2008, Potential implications of sea-level-rise for Poland, J. Coastal Res., 24 (2), 410–422, http://dx.doi.org/10.2112/07A-0014.1

Seneviratne S. I., Nicholls N., Easterling D., Goodess C. M., Kanae S., Kossin J., Luo Y., Marengo J., McInnes K., Rahimi M., Reichstein M., Sorteberg A., Vera C., Zhang X., 2012, Changes in climate extremes and their impacts on the natural physical environment, [in:] Managing the risks of extreme events and disasters to advance climate change adaptation, C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G.- K. Plattner, S. K. Allen, M. Tignor & P. M. Midgley (eds.), A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), Cambridge Univ. Press, Cambridge, New York, 109–230.

Wiśniewski B., Wolski T., 2011, Physical aspects of extreme storm surges and falls on the Polish coast, Oceanologia, 53 (1–TI), 373–390, http://dx.doi.org/10.5697/oc.53-1-TI.373

Zajączkowski M., Darecki M., Szczuciński W., 2010, Report on the development of the Vistula river plume in the coastal waters of the Gulf of Gdańsk during the May 2010 flood, Oceanologia, 52 (2), 311–317, http://dx.doi.org/10.5697/oc.52-2.311

Zeidler R. B., 1997, Climate change vulnerability and response strategies for the coastal zone of Poland, Climatic Change, 36 (1–2), 151–173, http://dx.doi.org/10.1023/A:1005394909182

Zolina O., 2012, Changes in intense precipitation in Europe, [in:] Changes in flood risk in Europe, Z. W. Kundzewicz (ed.), IAHS Spec. Pub. No. 10, 97–120.

full, complete article (PDF, 219 KB)