Oceanologia No. 56 (2) / 14

Thematic issue:
Changes in Energy, Water and Matter Cycles - 20 Years of BALTEX Research Building Regional Earth System Knowledge - A future programme for the Baltic Sea region 7th Study Conference on BALTEX





New coupled atmosphere-ocean-ice system COSMO-CLM/NEMO: assessing air temperature sensitivity over the North and Baltic Seas
Oceanologia 2014, 56(2), 167-189

Trang Van Pham1,4,*, Jennifer Brauch2, Christian Dieterich3, Barbara Frueh2, Bodo Ahrens4
1Biodiversity and Climate Research Centre,
Senckenberganlage 25, D-60325 Frankfurt am Main, Germany;
e-mail: trang.pham-van@dwd.de
*corresponding author
2German Meteorological Service,
Frankfurterstr. 135, 63067, Offenbach am Main, Germany
3Swedish Meteorological and Hydrological Institute,
Folkborgsvägen 17, SE-601 76, Norrköping, Sweden
4Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt,
Altenhöferallee 1, 60438, Frankfurt am Main, Germany

keywords: Coupled model, atmosphere ocean-sea-ice interaction, Baltic Sea, North Sea, COSMO-CLM, NEMO, OASIS3

Received 25 October2013, revised 12 February 2014, accepted 26 February 2014.

We acknowledge support from the German Federal Ministry of Education and Research (BMBF) under grant MiKliP: DECREG/01LP1118B.


This paper introduces a newly established coupled atmosphere-ocean-ice system with the regional climate model COSMO-CLM and the ocean-sea-ice model NEMO for the North and Baltic Seas. These two models are linked via the OASIS3 coupler. Experiments with the new coupled system and with the stand-alone COSMO-CLM model forced by ERA-Interim re-analysis data over the period from 1985 to 1994 for the CORDEX Europe domain are carried out. The evaluation results of the coupled system show 2-m temperature biases in the range from -2.5 to 3 K. Simulated 2-m temperatures are generally colder in the coupled than in the uncoupled system, and temperature differences vary by season and space. The coupled model shows an improvement compared with the stand-alone COSMO-CLM in terms of simulating 2-m temperature. The difference in 2-m temperature between the two experiments are explained as downwind cooling by the colder North and Baltic Seas in the coupled system.

  References ref

Akhtar N., Brauch J., Dobler A., Ahrens B., 2014, Medicanes in an oceanatmosphere coupled regional climate model, submitted to Nat. Hazard. Earth Sys., accepted for Nat. Hazard. Earth Sys. in Open Discussion).

Bissolli P., Dittmann E., 2001, The objective weather type classification of the German Weather Service and its possibilities of application to environmental and meteorological investigations, Deut. Meteorol. Z., 10 (4), 253-260, http://dx.doi.org/10.1127/0941-2948/2001/0010-0253

Boehm U., KueckenM., Ahrens W., Block A., Hauffe D., Keuler K., Rockel B.,Will A., 2006, CLM - the climate version of LM: Brief description and long-term applications, COSMO Newsl., 6, 225-235.

BoehmU., KueckenM., Hauffe D., Gerstengarbe F. W., Werner P. C.,Flechsig M., Keuler K., BlockA., Ahrens W., Nocke T., 2004, Reliabilityof regional climatemodel simulationsof extremesand of long-termclimate, Nat. Hazard. Earth Syst.Sci., 4, 417-431, http://dx.doi.org/10.5194/nhess-4-417-2004

Christensen J. H., ChristensenO. B., 2007, A summary of the PRUDENCE model projectionsof changes in European climate by the end of this century, Climatic Change, 81 (1),7-30, http://dx.doi.org/10.1007/s10584-006-9210-7

DeeD.,UppalaS., SimmonsA., Berrisford P., PoliP., KobayashiS., Andrae U., Balmaseda M., Balsamo G., BauerP., BechtoldP., Beljaars A., vande Berg L., BidlotJ., Bormann N., Delsol C., Dragani R., Fuentes M., GeerA., Haimberger L.,Healy S., Hersbach H., Holm E., Isaksen L.,Kallberg P., Kohler M., Matricardi M., McNally A., Monge-Sanz B., Morcrette J., Park B., Peubey C., de Rosnay P., Tavolato C., Thepaut J., VitartF., 2011, The ERA-Interim reanalysis: configuration andperformance ofthedataassimilation system, Q.J. Roy. Meteor. Soc., 137 (656), 553-597, http://dx.doi.org/10.1002/qj.828

DieterichC.,SchimankeS.,Wang S.,Vaeli G.,Liu Y.,HordoirR.,Axell L., HoeglundA.,MeierH. E. M.,2013,Evaluation oftheSMHI coupled atmosphere-ice-ocean model RCA4-NEMO, Rep.Oceanogr., 47, 80 pp.

Doescher R., WyserK., Meier H. E. M., QianM., Redler R., 2010, Quantifying Arctic contributions to climate predictability in a regional coupled ocean-ice- atmospheremodel,Clim. Dynam.,34 (7-8),1157-1176, http://dx.doi.org/10.1007/s00382-009-0567-y

Giorgi F.,2006, Climate changehot-spots, Geophys. Res. Lett.,33 (8), http://dx.doi.org/10.1029/2006GL025734

Giorgi F., Jones C., Asrar G. R., 2006, Addressingclimate information needs at the regional level:theCORDEX framework,Bull.WorldMeteorol. Organ.,58, 175-183.

GriffesS. M., BiastochA., BoeningC., BryanF., DanabasogluG., Chassignet E. P., England M. H., GerdesR., HaakH., HallbergR. W.,Hazeleger W., JungclausJ., Large W. G.,Madec G., PiraniA., BonitaL., Samuels B. L., Scheinert M., Gupta A. S., Severijns C. A., Simmons H. L., Treguier A. M., WintonM., Yeager S., Yin J., 2009, CoordinatedOcean-iceReference Experiments (COREs),OceanModel.,26 (1-2),1-46, http://dx.doi.org/10.1016/j.ocemod.2008.08.007

Gustafsson B.,1997,Interactionbetween Baltic SeaandNorth Sea, Deut. Hydrograph. Z., 49 (1-2), 19 pp.

Haylock M. R., Hofstra N., KleinTankA. M. G., KlokE. J., JonesP. D.,New M., 2008, A Europeandaily high-resolutiongridded datasetof surface temperature and precipitation, J. Geophys. Res.-Atmos.,113 (D20119), 12 pp., http://dx.doi.org/10.1029/2008JD010201

Ho H. T. M., Rockel B., KapitzaH., Geyer B., Meyer E., 2012, COSTRICE - three modelonline couplingusingOASIS:problemsandsolutions,Geosci.Model Dev.Discuss., 5, 3261-3310, http://dx.doi.org/10.5194/gmdd-5-3261-2012

Hordoir R., An B. W., HaapalaJ., DieterichC., Schimanke S., Hoeglund A., Meier H. E. M.,2013, A3Doceanmodelling configurationforBaltic&NorthSea exchange analysis, Rep. Oceanograph., 48, 72 pp.

Hoyer J. L., She J.,2011, Validation of satellite SST products for the NorthSea- BalticSea region,Tech.Rep.,04-11, DanishMeteorol.Inst.,Copenhagen, 24 pp.

IPCC,2001, Climatechange 2001:the scientificbasis, Contribution of Working GroupI to the ThirdAssessment Reportof the Intergovernmental Panelon ClimateChange,[J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van derLinden,X. Dai,K.Maskell,& C. A. Johnson (eds.)],CambridgeUniv. Press,Cambridge, New York, 88 pp.

Jacob D., BaerringL., Christensen O. B., Christensen J. H., de Castro M., Déqué M., Giorgi F., HagemannS., Hirschi M., Jones R., KjellstroemE., Lenderink G., Rockel B., Sánchez E., Schaer C., Seneviratne S. I., Somot S., van Ulden A., B. van den Hurk, 2007, Aninter-comparisonof regional climate models for Europe: model performanceinpresent-dayclimate, Climatic Change,8 (1S), 31-52, http://dx.doi.org/10.1007/s10584-006-9213-4

JaegerE. B.,AndersI., LuethiD.,Rockel B.,SchaerC.,Seneviratne S. I., 2008, Analysisof ERA40-driven CLMsimulationsfor Europe, Meteorol.Z., 17 (4), 349-367, http://dx.doi.org/10.1127/0941-2948/2008/0301

Kapitza H., 2008,Highperformance computingfor computationalscience - VECPAR 2008, Lect.NotesComput.Sci.,5336, 63-68, http://dx.doi.org/10.1007/978-3-540-92859-1

KjellstroemE., DoescherR., MeierH. E. M., 2005,Atmospheric response to different sea surface temperatures in the BalticSea:coupled versus uncoupled regional climate model experiments, Nord. Hydrol.,36 (4), 397-409.

KotheS., Dobler A., Beck A., Ahrens B., 2011, Theradiation budget in a regional climate model, Clim. Dynam., 36 (5-6), 1023-1036, http://dx.doi.org/10.1007/s00382-009-0733-2

Large W., Yeager S., 2004, Diurnalto decadal global forcing for ocean and sea-ice models:the data sets and flux climatologies, NCAR Tech.Note:NCAR/TN-460+STR, CGD Div., Nat. Center Atmos. Res., 112 pp.

LevitusS., Boyer T. P.,1994, Worldocean atlas,Volume 4:temperature, NOAA Atlas NESDIS 4, NOAA, Washington D.C.

Levitus S., Burgett R.,Boyer T. P.,1994, Worldocean atlas,Volume 3:salinity, NOAA Atlas NESDIS 3, NOAA, Washington D.C.

Li L., Bozec A., Somot S., Béranger K., Bouruet-Aubertot P.,Sevault F., Crépon M., 2006, Regional atmospheric,marine processes and climate modelling, [in:] Mediterraneanclimate variability,P.Lionello,P.Malanotte& R.Boscolo (eds.),Elsevier B.V., Amsterdam, 373-397.

Lindström G., Pers C., Rosberg J., Strömqvist J., ArheimerB., 2010, Development and testing of the HYPE (Hydrological Predictionsfor the Environment)water qualitymodelfordifferent spatialscales,Hydrol.Res.,41 (3-4),295-319, http://dx.doi.org/10.2166/nh.2010.007

full, complete article (PDF, 1442 KB)

Diurnal variability of water vapour in the Baltic Sea region according to NCEP-CFSR and BaltAn65+ reanalyses
Oceanologia 2014, 56(2), 191-204

Erko Jakobson1,2,*, Hannes Keernik1,2, Andres Luhamaa2,3, Hanno Ohvril2
1Tartu Observatory,
61602, Toravere, Tartumaa, Estonia;
e-mail: erko.jakobson@ut.ee
*corresponding author
2Institute of Physics, University of Tartu,
Ulikooli 18, Tartu 50090, Estonia
3Estonian Meteorological and Hydrological Institute,
Mustamäe tee 33, Tallinn, Estonia

keywords: Precipitable water, diurnal variability, breeze, NCEP-CFSR, BaltAn65+

Received 25 October2013, revised 20 March 2014, accepted 25 March 2014.

The survey was supported by Esttonian Science Foundation under a postdoctoral grant JD189, by European Social Fund's Doctoral Studies and Internationalisation Programme DoRa and project SLOOM12073T, which are carried out by Foundation Archmedes, and by project `Estonian Radiation Climate' funded by the EU Regional Development Foundation.


Diurnal variations in water vapour in the Baltic Sea region are examined using BaltAn65+ and NCEP-CFSR reanalyses of summer (JJA) data for the period 1979-2005. A systematic difference between precipitable water (PW) diurnal variability above the land and the water is revealed. Above the land, PW diurnal variability has minimal values at 00 and 06 UTC, as in previous studies, whereas above the water, the minima are at 12 and 18 UTC. Diurnal variability in the vertical humidity profile is controlled by turbulent mixing and the diurnal behaviour of sea breezes. The impacts and proportions of diurnal variability of humidity are evaluated at different vertical levels.

  References ref

Anthes R. A.,1983, Regionalmodels of the atmosphere inmiddle latitudes, Mon.Weather Rev.,111 (6),1306-1335, http://dx.doi.org/10.1175/1520-0493(1983)111<1306:RMOTAI>2.0.CO;2

Arritt R. W.,1993, Effectsofthelarge scaleflow oncharacteristicsfeaturesof the sea breeze, J. Appl. Meteorol., 32 (1), 116-125, http://dx.doi.org/10.1175/1520-0450(1993)032<0116:EOTLSF>2.0.CO;2

BastinS.,Champollion C.,BockO.,DrobinskiP.,Masson,F.,2007,Diurnal cycleof water vaporasdocumentedbyadenseGPS network inacoastal areaduringESCOMPTEIOP2, J. Appl.Meteorol.Clim.,46 (2),167-182, http://dx.doi.org/10.1175/JAM2450.1

BengtssonL., Robinson G., Anthes R., Aonashi K., Dodson A., Elgered G., Gendt G.,Gurney R., Jietai M.,MitchellC.,MlakiM.,Rhodin G.,Silverstrin P.,WareR.,WatsonR., WergenW.,2003, TheuseofGPS measurements forwatervapordetermination, B.Am. Meteor.Soc.,84 (9), 1249-1258, http://dx.doi.org/10.1175/BAMS-84-9-1249

Bouma H. R., Stoew B., 2001,GPSobservations of dailyvariations in the atmospheric water vapor content, Phys.Chem.Earth, 26 (A6-8), 389-392.

BoumaH. R., 2002, Ground-basedGPS in climate research, Tech.Rep. No. 456L, Licentiate Thesis, School Environ.Sci. School Electric.Eng., ChalmersUniv. of Tech.,Göteborg.

Dai A., Giorgi F., TrenberthK. E., 1999a, Observed and model-simulated precipitation diurnal cycle over the contiguous United States, J. Geophys. Res., 104 (D6), 6377-6402, http://dx.doi.org/10.1029/98JD02720

DaiA.,Trenberth K. E., KarlT. R., 1999b,Effects ofclouds, soil moisture,precipitation and watervapor on diurnal temperature range, J. Climate, 12 (8), 2451-2473, http://dx.doi.org/10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2

Dai A., WangJ.,WareR.,VanHove T.,2002, Diurnalvariationinwater vapor overNorth America anditsimplicationsforsampling errorsinradiosonde humidity, J. Geophys.Res., 107 (D10),ACL 11-1-ACL 11-14, http://dx.doi.org/10.1029/2001JD000642

JakobsonE., Ohvril H., Elgered G., 2009, Diurnalvariability of precipitable water inthe Balticregion,impactontransmittanceofthedirectsolarradiation, Boreal Environ. Res., 14 (1), 45-55.

JakobsonE.,VihmaT.,2010, Atmospheric moisturebudget overthe Arctic on thebasis oftheERA-40reanalysis,Int. J. Climatol., 30 (14),2175-2194, http://dx.doi.org/10.1002/joc.2039

Kiehl J. T.,Trenberth K. E.,1997,Earth’sannual global meanenergy budget, B.Am.Meteorol.Soc.,78 (2),197-208, http://dx.doi.org/10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2

Luhamaa A., Kimmel K., Männik A., Rõõm R., 2010, High resolution re-analysis forthe Baltic Searegionduring 1965-2005 period,Clim.Dynam.,36 (3-4), 727-738, http://dx.doi.org/10.1007/s00382-010-0842-y

MaurellisA. N.,TennysonJ., 2003, Theclimaticeffectsofwater vapour, Phys. World,16 (5), 29-33.

Okulov O., Ohvril H., 2010, Columntransparency and precipitable water in Estonia. Variabilityduringthelastdecades,Lambert Acad.Publish.,Saarbrücken, 69 pp.

Ortiz deGalisteo J. P., Cachorro V.,Toledano C.,Torres B.,Laulainen N., BennounaY.,de Frutos A.,2011, Diurnalcycleofprecipitable water vapor over Spain, Q. J. Roy. Meteor. Soc., 137 (657), 948-958, http://dx.doi.org/10.1002/qj.811

Saha S., Moorthi S., PanH.-L., Wu X., WangJ., NadigaS., TrippP.,KistlerR., Woollen J., BehringerD., Liu H., Stokes D., Grumbine R., GaynoG., Wang J.,Hou Y.-T.,ChuangH.-Y., JuangH.-M. H.,Sela J., IredellM.,Treadon R.,KleistD.,VanDelstP.,KeyserD., DerberJ.,EkM.,MengJ.,Wei H.,YangR.,Lords.,VanDenDoolH.,KumarA., WangW.,LongC., ChelliahM.,XueY.,HuangB.,SchemmJ.-K.,EbisuzakiW.,LinR., Xie P.,ChenM.,ZhouS.,HigginsW.,ZouC.-Z.,LiuQ.,ChenY.,HanY., Cucurull L.,ReynoldsR. W.,RutledgeG.,GoldbergM.,2010, TheNCEP climate forecast system reanalysis,B. Am. Meteorol. Soc., 91 (8), 1015-1057, http://dx.doi.org/10.1175/2010BAMS3001.1

Wu P., Hamada J.,Mori S., TauhidY. I., YamanakaM. D., Kimura F., 2003,Diurnal variationofprecipitablewateroveramountainousareaof Sumatra Island, J. Appl. Meteorol., 42, 1107-1115, http://dx.doi.org/10.1175/1520-0450(2003)042<1107:DVOPWO>2.0.CO;2

full, complete article (PDF, KB)

Observational evidence for human impact on aerosol cloud-mediated processes in the Baltic region
Oceanologia 2014, 56(2), 205-222

Olaf Krüger1,2
1Tartu Observatory,
61602, Toravere, Tartumaa, Estonia;
e-mail: olaf.krueger@to.ee
2Institute of Physics, University of Tartu,
Ülikooli 18, 50090 Tartu, Estonia

keywords: Aerosols, clouds, radiation, Grosswetterlagen

Received 25 October2013, revised 12 February 2014, accepted 26 February 2014.


Knowledge about aerosol cloud-mediated processes is important for judging climate change in Europe during recent decades. Here, some observational evidence for anthropogenic influences is described and discussed. The emphasis is laid on the effects of the large emissions of sulphur dioxide and particulate matter during the 1980s in Europe and the subsequent strong decrease in the 1990s. In addition, an analysis of the dependence of aerosol cloud-mediated processes on atmospheric circulation patterns (Grosswetterlagen) is presented.

  References ref

AckermanA. S., ToonO. B.,StevensD. E.,Heymsfield A. J., Ramanathan V., Welton E. J., 2004 Reduction of tropical cloudiness by soot, Science, 288 (5468), 1042-1047, http://dx.doi.org/10.1126/science.288.5468.1042

Andreae M. O., Rosenfeld D., ArtaxoP.,Costa A. A., FrankG. P., Longo K. M., Silva-DiasM. A. F.,2004, SmokingRainCloudsovertheAmazon,Science, 303 (5662), 1337-1342, http://dx.doi.org/10.1126/science.1092779

Albrecht B. A.,1989,Aerosols, cloudmicrophysics,andfractional cloudiness, Science, 245 (4923), 1227-1230, http://dx.doi.org/10.1126/science.245.4923.1227

Armalis S., 1999, Wetdepositionof elemental carbon in Lithuania, Sci. TotalEnviron.,239 (1-3),89-93, http://dx.doi.org/10.1016/S0048-9697(99)00288-0

Bates T. S., Huebert B. J.,Gras J. L.,GriffithsF. B.,1998,International global atmosphericchemistry(IGAC) project’sfirstaerosolcharacterization experiment(ACE-1):Overview,J. Geophys.Res.,103 (D13),16297-16318, http://dx.doi.org/10.1029/97JD03741

Bäumer D., Vogel B., 2007, Anunexpected pattern of distinctweekly periodicities in climatological variables in Germany, Geophys. Res. Lett., 34, L03819, http://dx.doi.org/10.1029/2006GL028559

Bond T. C., DohertyS. J., Fahey D. W., ForsterP. M., Berntsen T., De Angelo B. J., Flanner M. G.,GhanS., KärcherB.,KochD.,KinneS., KondoY.,Quinn P. K., Sarofim M. C., Schultz M. G., Schulz M., Venkataraman C., ZhangH., Zhang S., Bellouin N., Guttikunda S. K., Hopke P. K., Jacobson M. Z., Kaiser J. W.,KlimontZ.,LohmannU.,SchwarzJ. P.,ShindellD., StorelvmoT., WarrenS. G.,ZenderC. S.,2013, Boundingthe roleofblack carboninthe climate system:Ascientificassessment, J. Geophys.Res. Atmos., 118, 5380-5552.

CoakleyJ. A.,1987,Effectofshipstackeffluentsoncloudreflectivity,Science 237 (4818), 1020-1022.

ConoverJ. H.,1966,Anomalous cloudlines,J. Atmos.Sci.,23 (6), 778-785, http://dx.doi.org/10.1175/1520-0469(1966)023<0778:ACL>2.0.CO;2

Devasthale A., Krüger O., Grassl H., 2005, Changein cloud top temperatures over Europe,IEEE Geosci. RemoteS., 2 (3),333-336, http://dx.doi.org/10.1109/LGRS.2005.851736

Devasthale A., Krüger O., Grassl H., 2006, Impact of ship emissionson cloud properties over coastal areas, Geophys.Res. Lett., 33, L02811, http://dx.doi.org/10.1029/2005GL024470

EermeK.,KallisA.,Veismann U.,AnskoI.,2010,Interannualvariationsof available solar radiation on seasonal level in 1955-2006 at TartuTõravere MeteorologicalStation, Theor. Appl.Climatol., 101 (3-4), 371-379, http://dx.doi.org/10.1007/s00704-009-0226-6

Eliassen A., Saltbones J., 1983, Modellingof long-range transport of sulphur over Europe:Atwo year model run and some model experiments, Atmos. Environ., 17 (8), 1457-1473, http://dx.doi.org/10.1016/0004-6981(83)90299-8

EMEP- TheEuropean MonitoringandEvaluation Programme,2004 Transboundary particulate matter in Europe, [in:] Co-operativeprogramme for monitoring and evaluation of the long-range transmissionof air pollutants in Europe, Joint CCC & MSC-W & CIAM Rep., EMEPReport 4/2004, Chemical Coord. Cent., Norwegian Inst.Air Res. (NILU),Kjeller, 159 pp.

Ferek R. J., Garrett T., Hobbs P. V., Strader S., Johnson D., TaylorJ. P.,Nielden K., Ackerman A. S., Kogan Y., Liu Q., Albrecht B. A., Babb D., 2000, Drizzle suppressioninship tracks, J. Atmos. Sci., 57, 2707-2728, http://dx.doi.org/10.1175/1520-0469(2000)057<2707:DSIST>2.0.CO;2

Gerstengarbe F. W.,WernerP. C.,2005,KatalogderGrosswetterlagenEuropas (1881-2004), Rep. 100, Potsdam Inst. Klimafolgenforschung, 153 pp.

GraßlH.,1975,Albedoreductionandradiativeheatingofcloudsbyabsorbing aerosol particles, Contrib. Atmos. Phys.,48, 199-210.

GraßlH., 1978, Strahlung ingetrübtenAtmosphärenund inWolken,Hamburger Geophys. Einzelschrif., 37, Univ. Hamburg.

Husar R. B., Prospero J. M., Stowe L. L., 1997, Characterizationoftropospheric aerosolsover oceanswith NOAA advancedveryhighresolutionradiometer opticalthicknessoperational product,J. Geophys. Res.,102, 16 889-16 909, http://dx.doi.org/10.1029/96JD04009

IPCC, 2007, Climate change2007: thephysicalsciencebasis.Contribution of working group 1 to the FourthAssessment Reportofthe Intergovernmental Panelon ClimateChange, [in:] Intergovernmental Panelon ClimateChange, S.Solomon,D.Qin,M.Manning,Z.Chen, M.Marquis,K. B.Averyt, M. Tignor &H. L. Miller (eds.), Cambridge Univ.Press, Cambridge, New York, 996 pp.

KaufmanJ., 1998, Smoke Clouds and Radiation- Brazil(SCAR-B), J. Geophys. Res., 113, 31 783-31 808, http://dx.doi.org/10.1029/98JD02281

KriebelK. T., 1978, Measuredspectralbidirectionalreflectionpropertiesoffour vegetated surfaces,Appl. Optics,17 (2),253-259, http://dx.doi.org/10.1364/AO.17.000253

Krüger O.,Fischer J.,1994,Correctionof aerosol influence in Landsat 5 ThematicMapper data, GeoJournal, 32 (1), 61-70, http://dx.doi.org/10.1007/BF00806358

Krüger O., Graßl H., 2002, Theindirectaerosol effect over Europe,Geophys. Res. Lett., 29 (19), http://dx.doi.org/10.1029/2001GL014081

KrügerO., GraßlH., 2011, SouthernOceanphytoplankton increasescloud albedo and reduces precipitation, Geophys. Res. Lett., 38, L08809, http://dx.doi.org/10.1029/2011GL047116

KrügerO., Marks R., GraßlH., 2004, Influenceof pollution on cloud reflectance, J. Geophys. Res., 109 (D24), http://dx.doi.org/10.1029/2004JD004625

Krüger O.,Tuovinen J.-P., 1997,The effect of variablesub-griddeposition factors on the results of the lagrangianlong-rangetransport model of EMEP,Atmos. Environ., 31 (24), 4199-4209, http://dx.doi.org/10.1016/S1352-2310(97)00261-6

Kulmala M.,Asmi A.,Lappalainen H. K.,BaltenspergerU.,BrenguierJ.- L., Facchini M. C., HanssonH.-C.,Hov Ø.,O’Dowd C. D.,Pöschl U., Wiedensohler A., Boers R., Boucher O., de Leeuw G., Denier vander Gon H. A. C., Feichter J., Krejci R., La j P., Lihavainen H., Lohmann U., McFiggans G., MentelT., PilinisC., RiipinenI., SchulzM., StohlA.,ŚwietlickiE., VignatiE., Alves C., AmannM., AmmannM.,Arabas S., ArtaxoP., Baars H.,Beddows D. C. S.,BergströmR., Beukes J. P., BildeM., BurkhartJ. F., Canonaco F.,Clegg S. L., Coe H.,CrumeyrolleS.,D’Anna B., Decesari S., GilardoniS., Fischer M., FjaeraaA. M., FountoukisC., GeorgeC., Gomes L.,Halloran P., Hamburger T., Harrison R. M., Herrmann H., Hoffmann T., Hoose C., Hu M.,HyvärinenA., Hõrrak U., Iinuma Y., Iversen T., Josipovic M., Kanakidou M., Kiendler-Scharr A., Kirkevåg A.,Kiss G., Klimont Z., KolmonenP., KomppulaM., KristjánssonJ.-E.,LaaksoL., Laaksonen A., LabonnoteL., LanzV. A.,LehtinenK. E. J., RizzoL. V.,MakkonenR., Manninen H. E., McMeeking G., Merikanto J., Minikin A., Mirme S., Morgan W. T., NemitzE., O’DonnellD., PanwarT. S., Pawlowska H., PetzoldA., Pienaar J. J., Pio C., Plass-Duelmer C., Prévôt A. S. H.,Pryor S.,Reddington C. L.,Roberts G., Rosenfeld D.,Schwarz J., Seland O., Sellegri K., Shen X. J., Shiraiwa M., Siebert H., Sierau B.,Simpson D.,Sun J. Y., Topping D., Tunved P., VaattovaaraP., VakkariV., Veefkind J. P., Visschedijk A.,Vuollekoski H., Vuolo R., Wehner B., WildtJ., Woodward S.,Worsnop D. R.,van Zadelhoff G.-J., Zardini A. A., Zhang K., van Zyl P. G., Kerminen V.-M., Carslaw K. S., Pandis S. N., 2011, Generaloverview:European Integrated project on Aerosol CloudClimate and AirQualityinteractions (EUCAARI) - integrating aerosol researchfromnano to global scales,Atmos.Chem.Phys., 11, 13 061-13 143, http://dx.doi.org/10.5194/acp-11-13061-2011

LangnerJ.,RodheH.,1991,A three-dimensional modelofthetropospheric sulphur cycle,J. Atmos.Chem., 13 (3),225-263, http://dx.doi.org/10.1007/BF00058134

Liepert B. G., Kukla G. J., 1997, Decline in solar radiation with increased horizontal visibility inGermanybetween 1964 and 1990,J. Climate, 10 (9),2391-2401, http://dx.doi.org/10.1175/1520-0442(1997)010<2391:DIGSRW>2.0.CO;2

LohmannU., FeichterJ., 2005, Globalindirectaerosoleffects: a review,Atmos. Chem.Phys., 5 (3),715-737, http://dx.doi.org/10.5194/acp-5-715-2005

Noone K. J., Clarke A. D., 1988, Soot scavenging measurements in Arcticsnowfall, Atmos. Environ., 22,2773-2778, http://dx.doi.org/10.1016/0004-6981(88)90444-1

O’DowdC. D., de Leeuw G., 2007, Marineaerosolproduction: areviewofthe current knowledge,Phil. Trans.RoyalSoc.A., 365 (1856),1753-1774, http://dx.doi.org/10.1098/rsta.2007.2043

Paasonen P., AsmiA., Peta jaT., Ka jos M. K., AijalaM.,JunninenH.,Holst T., Abbatt J. P. D., ArnethA., BirmiliW., vander Gon H. D.,HamedA., Hoffer A., Laakso L., Laaksonen A., RichardLeaitchW., Plass-DulmerC., PryorS. C.,RaisanenP.,ŚwietlickiE., Wiedensohler A.,WorsnopD. R., Kerminen V.-M., KulmalaM., 2013, Warming-inducedincreasein aerosol number concentrationlikely to moderate climate change,Nat. Geosci.,6, 438-442, http://dx.doi.org/10.1038/ngeo1800

PutaudJ. P., Raes F., VanDingenen R., Brüggemann E.,Facchini M. C., Decesari S., Fuzzi S., Gehrig R., Hüglin C.,La jP.,LorbeerG.,Meanhaut W., Mihalopoulus N.,Müller K., Querol X., Rodriguez S.,Schneider J., Spindler G., tenBrinkH.,TorsethK., Wiedensohler A., 2004, AEuropeanaerosol phenomenology - 2:chemical characteristicsof particulate matter at kerbside, urban,rural and background sitesinEurope,Atmos.Environ., 38 (16),2579-2595, http://dx.doi.org/10.1016/j.atmosenv.2004.01.041

Radke L. F., Coakley Jr. J. A., King M. D., 1989, Direct remote sensing observations of the effects of shipson clouds,Science, 246, 1146-1149, http://dx.doi.org/10.1126/science.246.4934.1146

Raes F.,BatesT.,McGovernF.,van Liedekerke M.,2000, The2nd Aerosol Characterization Experiment (ACE-2): General overview and main results, Tellus B, 52 (2), 111-125, http://dx.doi.org/10.1034/j.1600-0889.2000.00124.x

Ramanathan V., CrutzenP. J.,Kiehl J. T.,Rosenfeld D., 2001, Aerosols, climate andthe hydrologicalcycle,Science,294,2119-2124, http://dx.doi.org/10.1126/science.1064034

RosenfeldD.,2000,Suppressionofrainandsnowbyurbanandindustrialair pollution, Science, 287,1793-1796, http://dx.doi.org/10.1126/science.287.5459.1793

SchaapM.,DenierVanDerGonH. A. C.,Dentener F. J., VisschedijkA. J. H., VanLoon M.,tenBrinkH. M.,Putaud J.-P.,Guillaume B.,LiousseC., Builtjes P. J. H., 2004, Anthropogenic black carbon and fine aerosol distribution over Europe, J. Geophys. Res., 109 (D 18), http://dx.doi.org/10.1029/2003JD004330

Stephens B.,FeingoldG.,2009, Untangling aerosol effects on clouds and precipitationina buffered system,Nature, 461, 607-613, http://dx.doi.org/10.1038/nature08281

StjernC. W.,StohlA., KristjánssonJ. E.,2011, Haveaerosolsaffected trendsin visibilityand precipitationinEurope?,J. Geophys.Res.,116 (D 2),D02212, http://dx.doi.org/10.1029/2010JD014603

Stubenrauch C. J., RossowW. B.,KinneS.,AckermanS.,CesanaG.,Chepfer H.,Di GirolamoL.,Getzewich B.,GuignardA.,HeidingerA.,Maddux B. C.,Menzel W. P.,Minnis P.,PearlC.,PlatnickS., PoulsenC.,RiediJ., Sun-MackS.,Walther A.,WinkerD., Zeng S.,ZhaoG.,2013, Assessment ofglobal clouddatasetsfromsatellites:Project anddatabase initiatedby theGEWEXRadiation Panel,B.Am.Meteorol.Soc.,94 (7), 1031-1049, http://dx.doi.org/10.1175/BAMS-D-12-00117.1

TwomeyS.,1974, Pollutionandtheplanetaryalbedo, Atmos.Environ., 8 (12), 1251-1256, http://dx.doi.org/10.1016/0004-6981(74)90004-3

TwomeyS.,1977, Theinfluenceofpollutiononthe shortwave albedo ofclouds, J. Atmos. Sci., 34 (7), 1149-1152, http://dx.doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2

Van DingenenR., Raes F.,Putaud J.-P., Baltensperger U., Charron A., Facchini M.-C., Decesari S., Fuzzi S., Gehrig R., Hansson, H.-C., Harrison R. M., Hüglin C., Jones A. M., La j P.,Lorbeer G., Maenhaut W.,Palmgren F.,QuerolX., RodriguezS.,SchneiderJ., ten BrinkH.,Tunved P.,Torseth K.,Wehner B., Weingartner E., WiedensohlerA., Wåhlin P., 2004, A European aerosol phenomenology - 1:physical characteristicsof particulate matter at kerbside, urban,rural and background sitesinEurope,Atmos.Environ.,38 (16),2561-2577, http://dx.doi.org/10.1016/j.atmosenv.2004.01.040

WoodR.,MechosoC. R.,Bretherton C. S.,WellerR. A.,HuebertB.,Straneo F.,Albrecht B. A.,CoeH.,AllenG.,Vaughan G.,DaumP.,Fairall C., Chand D.,Gallardo Klenner L.,GarreaudR., Grados C.,CovertD. S., BatesT. S.,KrejciR.,RussellL. M.,de Szoeke S.,BrewerA.,YuterS. E., Springston S. R.,ChaigneauA., ToniazzoT.,MinnisP.,Palikonda R.,Abel S. J.,BrownW. O. J., WilliamsS.,Fochesatto J.,BrioudeJ.,BowerK. N., 2011, The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): goals, platforms,and field operations,Atmos. Chem. Phys., 11 (2), 627-654, http://dx.doi.org/10.5194/acp-11-627-2011

full, complete article (PDF, 326 KB)

The atmospheric circulation patterns during dry periods in Lithuania
Oceanologia 2014, 56(2), 223-239

Egidijus Rimkus*, Justas Kažys, Donatas Valiukas, Gintautas Stankunavičius
Department of Hydrology and Climatology, Vilnius University,
M. K. Čiurlionio 21/27, LT-03101 Vilnius, Lithuania;
e-mail: egidijus.rimkus@gf.vu.lt
*corresponding author

keywords: Droughts, atmospheric circulation, hydrothermal coefficient, TMI blocking index, NAO and AO

Received 25 October 2013, revised 1 January 2014, accepted 31 January 2014.

The study was supported by the Lithuanian-Swiss cooperation programme to reduce economic and social disparities within the enlarged European Union under project agreement No. CH-3-ŠMM-01/05.


This paper reveals the atmospheric circulation patterns during dry periods in Lithuania.~The research covers the period from 1961 to 2010. Atmospheric circulation features were analysed using the Hess and Brezowski classification of macro-circulation forms, NAO and AO indices, a 500 hPa geopotential height field and the Tibaldi-Molteni blocking index. Different phases of the dry period (developing, persisting and attenuation) were evaluated individually. Also, the regional differences of dry period formation were investigated. In general dry periods are determined by a decrease in zonal and an increase in meridional circulation forms as well as the atmospheric blocking process over the Baltic region longitudinal belt 0-20 days prior to the start of the dry period. An especially strong shift from general circulation patterns are observed during the developing phase of a dry period. Drought persistence in the Baltic region is almost always predetermined by strong anticyclonic circulation. Most drought development stages are associated with negative NAO/AO phases.

  References ref

Avotniece Z., RodinovV., LizumaL., Briede A., KļaviņšM., 2010, Trendsin the frequencyof extremeclimateeventsin Latvia,Baltica, 23 (2), 135-148.

BordiI.,Fraedrich K.,SuteraA.,2009, Observeddroughtand wetnesstrendsin Europe:an update, Hydrol. Earth Syst. Sc., 13, 1519-1530, http://dx.doi.org/10.5194/hess-13-1519-2009

Bueh C., Nakamura H., 2007, Scandinavian patternand its climaticimpact,Q. J. R. Meteor. Soc., 133 (629), 2117-2131, http://dx.doi.org/10.1002/qj.173

Bukantis A., Valiuškevičienė L., 2005, Dynamicsof extreme air temperature and precipitation and determining factors in Lithuaniain the 20th century, Ann. Geograph., 38 (1), 7-17.

Cassou C., Terray L., Phillips A. S., 2005, TropicalAtlanticinfluence on Europeanheatwaves,J. Climate, 18 (15),2805-2811, http://dx.doi.org/10.1175/JCLI3506.1

CookB. I.,SeagerR., MillerR. L.,2011,Atmosphericcirculation anomalies during twopersistent North Americandroughts:1932-1939 and 1948-1957, Clim. Dynam.,36 (11-12), 2339-2355, http://dx.doi.org/10.1007/s00382-010-0807-1

Fleig A. K., TallaksenL. M., Hisdal H., HannahD. M., 2011, Regionalhydrological drought in north-western Europe:linking a new RegionalDrought AreaIndex with weather types, Hydrol. Process.,25 (7), 1163-1179, http://dx.doi.org/10.1002/hyp.7644

Girardin M. P.,TardifJ. C.,Flannigan M. D.,BergeronY.,2006, Synoptic-scale atmospheric circulationand boreal Canadasummerdrought variabilityof the pastthreecenturies, J. Climate, 19 (10),1922-1947, http://dx.doi.org/10.1175/JCLI3716.1

Hisdal H., Tallaksen L. M., 2003,Estimationofregionalmeteorological and hydrologicaldroughtcharacteristics:a casestudyforDenmark,J. Hydrol., 281 (3), 230-247, http://dx.doi.org/10.1016/S0022-1694(03)00233-6

JaagusJ., 2006, Climaticchanges in Estoniaduring the second half of the 20thcentury inrelationship withchangesinlarge-scaleatmospheric circulation, Theor. Appl.Climatol., 83 (1-4),77-88, http://dx.doi.org/10.1007/s00704-005-0161-0

Kažys J., Rimkus E., Bukantis A., 2009, Heavy precipitation in Lithuaniain 1961-2008, Geografi ja,45 (1), 44-53.

Kažys J., Stanku—avičius G., Rimkus E., Bukantis A., Valiukas D., 2011, Long-range alternation of extremehigh day and night temperatures in Lithuania,Baltica, 24 (2), 71-82.

Kingston D. G., Fleig A. K., Tallaksen L. M., Hannah D. M., 2013, Ocean-atmosphere forcingofsummerstreamflowdroughtinGreatBritain, J. Hy- drometeorol., 14 (1),331-344, http://dx.doi.org/10.1175/JHM-D-11-0100.1

KjellströmE,BärringL.,Jacob D.,Jones R.,LenderinkG.,SchärC.,2007, Modelling dailytemperatureextremes:recent climate andfuture changes over Europe,Climatic Change,81 (S1),249-265, http://dx.doi.org/10.1007/ s10584-006-9220-5

Loyd-Hughes B., Saunders M. A., 2002, A drought climatology for Europe, Int. J. Climatol.,22 (13), 1571-1592, http://dx.doi.org/10.1002/joc.846

López-MorenoI. J.,Vicente-SerranoS. M., 2008, Positiveand negativephasesof the wintertime north Atlantic oscillationand drought occurrenceover Europe: a multitemporal-scale approach,J. Climate,21 (6), 1220-1243, http://dx.doi. org/10.1175/2007JCLI1739.1

Malone S. E., 2007, A study of meteorological drought in southeast and south central England from 1980-2006: a weather type approach, BSc. diss., Univ. Portsmouth.

Mishra A. K., Singh V.P., 2010, A review of drought concepts, J. Hydrol., 391 (1-2), 202-216, http://dx.doi.org/10.1016/j.jhydrol.2010.07.012

Pankauskas M., Bukantis A., 2006, The dynamics of the Baltic Sea Region climate humidity in 1950-2004, Ann. Geograph., 39 (1), 5-14.

Parry S., Prudhomme C., Hannaford J., Lloyd-Hughes B., 2010, Examining the spatio-temporal evolution and characteristics of large-scale European droughts, BHS Third International Symposium, Managing Consequences of a Changing Global Environment, 19-23 July, 2010, Newcastle, UK, 8 pp.

Peel M.C., Finlayson B. L., McMahon T.A., 2007, Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633-1644, http://dx.doi.org/10.5194/hess-11-1633-2007

Rimkus E., Kažys J., Bukantis A., Krotovas A., 2011, Temporal variation of extreme precipitation events in Lithuania, Oceanologia, 53 (1-TI), 259-277, http://dx.doi.org/10.5697/oc.53-1-TI.259

Rimkus E., Kažys J., Butkutė S., Gečaitė I., 2014, Snow cover variability in Lithuania over the last 50 years and its relationship with large scale atmospheric circulation, Boreal Environ. Res., (conditionally accepted on 2 April 2013).

Rimkus E., Stonevičius E., Korneev V., Kažys J., Valiuškevičius G., Pakhomau A., 2013, Dynamics of meteorological and hydrological droughts in the Neman river basin, Environ. Res. Lett., 8 (4), 10 pp., http://dx.doi.org/10.1088/1748-9326/8/4/045014

Rimkus E., Valiukas D., Kažys J., Gečaitė I., Stonevičius E., 2012, Dryness dynamics of the Baltic Sea region, Baltica, 25 (2), 129-142, http://dx.doi.org/10.5200/baltica.2012.25.13

Samaniego L., Bardossy A., 2007, Relating macroclimatic circulation patterns with characteristics of floods and droughts at the mesoscale, J. Hydrol., 335 (1-2), 109-123, http://dx.doi.org/10.5200/baltica.2012.25.13

Selianinov G.T., 1928, On agricultural climate valuation, Proc. Agric. Meteor., 20, 165-177, (in Russian).

Tammets T., 2007, Distribution of extreme wet and dry days in Estonia in last 50 years, Proc. Estonian Acad. Sci., 13 (3), 252-259.

Thorsteinsson T., Björnsson H., 2011, Climate change and energy systems: impacts, risks and adaptation in the Nordic and Baltic countries, Nordic Council Minist., Copenhagen, 226 pp.

Tibaldi S., Molteni F., 1990, On the operational predictability of blocking, Tellus A, 42 (3), 343-365, http://dx.doi.org/10.1034/j.1600-0870.1990.t01-2-00003.x

Valiukas D., 2012, Droughts analysis in Lithuania using SPI and HTC indexes, Int. conf. ‘BALWOIS 2012’, 28 May-2 June, 2012, Ohrid, 9 pp.

WernerP. C.,Gerstengarbe F. W.,2010,KatalogderGrosswetterlagen Europas (1881-2009),PIKRep., 119, Potsdam.

Zveryaev I. I., 2004, Seasonalityin precipitation variability over Europe, J. Geophys. Res.-Atmos., 109 (D5), http://dx.doi.org/10.1029/2003JD003668

full, complete article (PDF, 1208 KB)

Characteristics of cyclones causing extreme sea levels in the northern Baltic Sea
Oceanologia 2014, 56(2), 241-258

Piia Post1, Tarmo Kouts2
1Institute of Physics, University of Tartu,
Ülikooli 18, Tartu 50090, Estonia;
e-mail: piia.post@ut.ee
2Marine Systems Institute, Tallinn University of Technology,
Akadeemia tee 15a, Tallinn 12618, Estonia;
e-mail: tarmo.kouts@msi.ttu.ee

keywords: Temporal clustering, extra-tropical cyclones, extreme sea level, Baltic Sea

Received 25 October2013, revised 27 February 2014, accepted 3 March 2014.

The study was supported by the Estonian Ministry of Education and Research (IUT20-11 and Grant ETF9134) and by the EU Regional Development Foundation, Environmental Conservation and Environmental Technology R&D Program Project no. 3.2.0801.12-0044.


The basic parameters of extra-tropical cyclones in the northern Baltic are examined in relation to extreme sea level events at Estonian coastal stations between 1948 and 2010. The hypothesis whether extreme sea level events might be caused not by one intense extra-tropical cyclone, as suggested by earlier researchers, but by the temporal clustering of cyclones in a certain trajectory corridor, is tested. More detailed analysis of atmospheric conditions at the time of the two most extreme cases support this concept: the sequence of 5 cyclones building up the extreme sea level within about 10 days was very similar in structure and periodicity.

  References ref

AverkievA. S.,Klevannyy K. A.,2010,Acasestudyoftheimpactofcyclonic trajectories onsea-levelextremesintheGulfofFinland,Cont.Shelf Res., 30 (6), 707-714, http://dx.doi.org/10.1016/j.csr.2009.10.010

GrigorievS., GulevS. K., Zolina O., 2000, Innovativesoftwarefacilitatescyclone tracking andanalysis,EOST.Am.Geophys.UN.,81 (16),170-170, http://dx.doi.org/10.1029/00EO00117

Gulev S. K., Zolina O., GrigorievS., 2001, Extratropicalcyclonevariabilityin the Northern Hemisphere winter from the NCEP/NCAR reanalysis data, Clim. Dynam.,17 (10), 795-809, http://dx.doi.org/10.1007/s003820000145

HoskinsB. J., HodgesK. I.,2002, Newperspectivesonthenorthernhemisphere winter stormtracks,J. Atmos.Sci., 59 (6),1041-1061, http://dx.doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2

KalnayE.,Kanamitsu M., KistlerR.,Collins W.,DeavenD., GandinL., Iredell M.,Saha S.,White G.,WoollenJ.,ZhuY.,Leetmaa A.,Reynolds R., ChelliahM., Ebisuzaki W.,Higgins W.,Janowiak J., Mo K. C.,Ropelewski C., Wang J., Jenne J., Joseph D., 1996, The NCEP/NCAR 40-Year reanalysis project,Bull.Amer.Meteorol.Soc.,77 (3),437-472, http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

Lagemaa P., Elken J., Kõuts T., 2011, Operationalsea level forecastingin Estonia, Est.J. Eng., 17 (4), 301-331, http://dx.doi.org/10.3176/eng.2011.4.03

LinkP.,PostP.,2007, SpatialandtemporalvarianceofcyclonesintheBaltic Sea region,[in:] COST Action733, O.-E.Tveito& M. PasquiProc.5than. meet.Europ. Meteorol. Soc. Session AW8 ‘Weather types classiffications’, (EUR 22594), Europ.Commun.,Luxemburg, 69-76.

Luhamaa A., Kimmel K., Männik A., Rõõm R., 2011, High resolutionre-analysis fortheBaltic Searegionduring1965-2005period,Clim.Dynam.,36 (3-4), 727-738, http://dx.doi.org/10.1007/s00382-010-0842-y

Mailier P. J., StephensonD. B., Ferro C. A. T., Hodges K. I., 2006, Serial clustering of extratropicalcyclones,Mon. Weather Rev., 134 (8),2224-2240, http://dx.doi.org/10.1175/MWR3160.1

Raudsepp U., ToompuuA., Kõuts T., 1999, A stochasticmodel for the sea level in the Estonian coastalarea,J. MarineSyst.,22 (1),69-87, http://dx.doi.org/10.1016/S0924-7963(99)00031-7

Raudsepp U., Elken J., Kõuts T.,Liblik T.,Kikas V., LagemaaP.,UiboupinR., 2007, Forecastingskills of the HIROMB in the Gulf of Finland, Geophys. Res. Abstr.,EGU Vol. 9,10617.

Roebber P. J.,1984,Statistical analysis andupdatedclimatology ofexplosive cyclones, Mon. Weather Rev., 112 (8), 1577-1589, http://dx.doi.org/10.1175/1520-0493(1984)112<1577:SAAUCO>2.0.CO;2

Suursaar Ü., Jaagus J., Kullas T.,Tõnisson H., 2011, Estimation of sea level rise and storm surge risks along the coast of Estonia,Baltic Sea - a tool for coastal management, Littoral 2010, 12005, http://dx.doi.org/10.1051/litt/201112005

Suursaar Ü., Kullas T., Otsmann M., 2002, A model study of the sea level variations inthe Gulf of Rigaand the VäinameriSea, Cont.Shelf Res.,22 (14),2001-2019, http://dx.doi.org/10.1016/S0278-4343(02)00046-8

Suursaar Ü.,KullasT.,OtsmannM.,KõutsT.,2003, Extremesea level events inthe coastal watersof westernEstonia,J. Sea Res.,49 (4),295-303, http://dx.doi.org/10.1016/S1385-1101(03)00022-4

Suursaar Ü., Kullas T., Otsmann M., Saaremaë I., Kuik J.,Merilain M., 2006,Cyclone Gudrun inJanuary 2005andmodellingitshydrodynamic consequences in the Estoniancoastal waters, Boreal Environ.Res., 11 (2), 143-159.

Suursaar Ü.,KullasT.,Szava-KovatsR.,2010,Wind-and wavestorms, storm surges and sea level rise along the Estoniancoast of the BalticSea. Ravage of the PlanetII, WITTrans. Ecol. Environ.,127, 149-160, http://dx.doi.org/0.2495/RAV090131

Vitolo R., Stephenson D. B., CookI. M., Mitchell-Wallace K., 2009,Serial clusteringofintenseEuropeanstorms,Meteorol.Z.,18 (4),411-424, http://dx.doi.org/10.1127/0941-2948/2009/0393

Wiśniewski B., Wolski T., 2011, Physicalaspects of extremestormsurges and falls onthe Polishcoast,Oceanologia,53 (1-TI),373-390, http://dx.doi.org/10.5697/oc.53-1-TI.373

full, complete article (PDF, 837 KB)

Extreme sea levels at selected stations on the Baltic Sea coast
Oceanologia 2014, 56(2), 259-290

Tomasz Wolski1,*, Bernard Wiśniewski2, Andrzej Giza1, Halina Kowalewska-Kalkowska1, Hanna Boman3, Silve Grabbi-Kaiv4, Thomas Hammarklint5, Jürgen Holfort6, Žydrune Lydeikaite7
1University of Szczecin, Faculty of Geosciences,
al. Wojska Polskiego 107/109, 70-483 Szczecin, Poland;
e-mail: natal@univ.szczecin.pl
*corresponding author
2Maritime University of Szczecin, Faculty of Navigation,
Wały Chrobrego 1-2, 70-500 Szczecin, Poland
3Finnish Meteorological Institute,
Erik Palménin aukio 1, FI-00560 Helsinki, Finland
4Swedish Meteorological and Hydrological Institute,
Mustamäe tee 33, EST--10616 Tallinn, Estonia
5Swedish Meteorological and Hydrological Institute,
Sven Källfelts Gata 15, 42471 Göteborg, Sweden
6Bundesamt für Seeschifffahrt und Hydrographie,
Neptunallee 5, 18057 Rostock, Germany
7Environmental Protection Agency,
Taikos pr. 26, LT--91149, Klaipeda, Lithuania

keywords: Baltic Sea, extreme sea levels, storm surges and falls

Received 25 October2013, revised 6 February 2014, accepted 11 February 2014.

This work was financed by the Polish National Centre for Science research project No. 2011/01/B/ST10/06470.


The purpose of this article is to analyse and describe the extreme characteristics of the water levels and illustrate them as the topography of the sea surface along the whole Baltic Sea coast. The general pattern is to show the maxima and minima of Baltic Sea water levels and the extent of their variations in the period from 1960 to 2010. A probability analysis is carried out on the annual sea level maxima and minima for 31 water level gauges in order to define the probability of occurrence of theoretical sea levels once in a specific number of years. The spatial distribution of sea levels for hundred-year maximum and minimum water levels is illustrated. Then, the number of storm surges for the accepted criteria are presented: these numbers increased in the 50-year period analysed. The final part of the work analyses some extreme storm events and calculates the static value and dynamic deformation of the sea surface by mesoscale, deep low-pressure systems.

  References ref

Averkiev A. S., Klevanny K. A., 2007,Determining cyclone trajectories and velocitiesleading to extreme sea level risesin the Gulfof Finland, Russ.Meteorol.Hydrol., 32 (8), 514-519, http://dx.doi.org/10.3103/S1068373907080067

AverkievA. S., Klevanny K. A., 2010,Case studyoftheimpactofcyclonic trajectoriesonsea-levelextremesintheGulfofFinland,Cont.Shelf Res., 30 (6), 707-714, http://dx.doi.org/10.1016/j.csr.2009.10.010

DziadziuszkoZ.,Jednorał T.,1996,Zagrożenia powodziowe powodowane spiętrzeniamisztormowymi ubrzegów BałtykuiZalewuWiślanego,[Flood hazard causedstormsurgesoffthecoastof theBalticSeaandtheVistula Lagoon], Wiad.IMGW,19 (3), 123-133.

EkmanM., 2009, Thechanging level of the BalticSea during 300 years:a clue to understanding the Earth, Summer Inst. Hist. Geophys., Åland Islands, 155 pp.

Encyclopaediaof CoastalScience,M. L. Schwartz (ed.),2005, Springer,1211 pp., http://dx.doi.org/10.1007/1-4020-3880-1

Gönnert G., 1999, Theanalysisof storm surge climate change along the German coast during the 20th century,Quatern.Int., 56 (1),115-121, http://dx.doi.org/10.1016/S1040-6182(98)00028-7

GönnertG., 2004, Maximum stormsurgecurveduetoglobal warmingforthe EuropeanNorth Sea region during the 20th-21st century, Nat. Hazards, 32 (2), 211-218, http://dx.doi.org/10.1023/B:NHAZ.0000031314.21789.f2

GönnertG., Dube S. K., MurtyT., Seifert W., 2001, Global stormsurges:theory, observations and applications,Die Küste,63, 623 pp.

Gumbell E. J., 1958, Statistics ofextremes, ColumbiaUniv. Press,NewYork, 375 pp.

GurwellB., 2008, Coastalprotectionalong theBalticsea coast- Mecklenburg- Vorpommern,Die Küste,74, 179-188.

HammarklintT., 2009, TheSwedishSeaLevelNetwork, GLOSSExperts11th Meeting, May2009, 1-5.

Hupfer P., Harff J., Sterr H., Stigge H. J., 2003, Wasserstände an der Ostseeküste, Die Küste,66, 4-331.

International Glossary of Hydrology,1992, WMO, 385, 413 pp.

JednorałT., SztobrynM., MiłkowskaM., 2008, Zastosowaniemodelustatystyk pozycyjnych do prognozowaniaekstremalnychpoziomówMorzaBałtyckiego w polskiejstrefiebrzegowej, [Applicationof positionstatisticsforprediction of extremelevels of BalticSea in Polish coastal zone], Inż. Mors. Geotech., 5, 257-263.

JensenJ., Müller-NavaraS. H.,2008, StormsurgesontheGerman Coast,Die Küste, 74, 92-124.

Johansson M., KahmaK., Boman H., Launiainen J., 2004, Scenariosfor sea level on the Finnish coast,Boreal Environ. Res., 9, 153-166.

Kaczmarek Z., 1970, Metodystatystyczne w hydrologiii meteorologii,[Statistical methodsin hydrology and meteorology],Wyd. Kom. Łącz., Warszawa, 270 pp.

Kowalewska-KalkowskaH.,2012,Rolawezbrańsztormowych wkształtowaniu ustrojuwodnego układuDolnejOdryiZalewuSzczecińskiego, [Impactsof stormsurges on thewaterlevel inthewaterregimeof theLowerOdra and the SzczecinLagoon], Wyd.Nauk.US,258 pp.

Lisowski K., 1960, Badaniazjawisk hydrometeorologicznych na Bałtyku, [Research of hydrometeorologicaloccurrenceson the Baltic], Pomorze Zach., 1-2, 95-108.

Lisowski K., 1961, Nieokresowewahania poziomuBałtykupod wpływemczynników anemobarycznych, [Aperiodic fluctuations of the level of Baltic under anemobaricfactors],Arch. Hydrotech., 8 (1),17-42.

LisowskiK.,1963,Zjawiska sztormowe wlutym 1962iichskutki, [Storm phenomena inFebruary1962andtheirconsequences],Zesz.Nauk.PS, 39, 7-30, (in Polish with Engl. summ.).

Majewski A., 1986, Skrajnewahaniapoziomuwody u polskichwybrzeżyBałtyku, [Extreme fluctuations of the water level on the Polish Baltic coast], Inż. Mors., 2, 46-50.

Ma jewskiA.,1989,Niezwykłe krótkotrwałe wezbraniamorza upołudniowych i wschodnich brzegów Bałtyku, [Unusual short-lived sea water level oscillations on the southern and eastern coasts of the Baltic Sea], Prz. Geofiz., 34 (2), 191-199, (in Polish with Engl. summ.).

Majewski A., 1998, Katastrofalne sztormy i powodzie u południowych brzegów Morza Bałtyckiego, [Disastrous storms and floods on the southern coasts of the Baltic Sea], Inż. Mors. Geotech., 2, 67-69.

Majewski A., Dziadziuszko Z., Wiśniewska A.,1983, Monografia powodzi sztormowych 1951-1975, [Monograph of storm floods 1951-1975], Wyd. Kom. Łącz., Warszawa, 216 pp.

Richter A., Groh A., Dietrich R., 2012, Geodetic observation of sea-level change and crustal deformation in the Baltic Sea region, Phys. Chem. Earth Pt. A/B/C, 53-54, 43-53, http://dx.doi.org/10.1016/j.pce.2011.04.011

Rosenhagen G., Bork I., 2009, Rekonstruktion der Sturmwetterlage vom 13. November 1872, Die Küste, 75, 51-70.

Skriptunov N.A., Gorelits O.V., 2001, Wind-induced variations in water level in river mouths, Water Res., 28 (2), 174-179, http://dx.doi.org/10.1023/A:1010379601057

Stanisławczyk I., 2002, Validation of HIROMB model using an extreme hydrometeorological event, Environ. Chem. Phys., 24, 168-170.

Stanisławczyk I., Sztobryn M., 2000, Zmiany napełnienia Bałtyku jako wskaźnik oceanicznych wlewów powierzchniowych, [Changes in water volume content in the Baltic Sea as an indicator of surface inflows], [in:] Rola nawigacji w zabezpieczeniu działalności ludzkiej na morzu, XII Międzynarod. Konf. Nauk.-Tech., Wyd. AMW, Gdynia, 250-256, (in Polish with Engl. summ.).

Sterl A., van den Brink H., de Vries H., Haarsma R., van Meijgaard E., 2009, An ensemble study of extreme storm surge related water levels in the North Sea in a changing climate, Ocean Sci., 5, 369-378.

Stigge H. J., 1994, Die Wasserstände an der Küste Mecklenburg-Vorpommerns, Die Küste, 56, 1-24.

Suursaar ü., Kullas T., Kuusik T., 2007, Possible changes in hydrodynamic regime in the Estonian coastal waters (the Baltic Sea) as a result of changes in wind climate, J. Coast. Res., 50 (SI), 247-252.

Suursaar ü., Kullas T., Otsmann M., Kõuts T., 2003, Extreme sea level events in the coastal waters of western Estonia, J. Sea Res., 49 (4), 295-303, http://dx.doi.org/10.1016/S1385-1101(03)00022-4

Suursaar ü., Kullas T., Otsmann M., Saaremäe I., Kuik J., Merilain M., 2006, Cyclone Gudrun in January 2005 and modelling its hydrodynamic consequences in the Estonian coastal waters, Boreal Environ. Res., 11 (2), 143-159.

Suursaar Ü., Sooäär J., 2007, Decadal variations in mean and extreme sea level values along the Estonian coast of the Baltic Sea, Tellus A, 59 (2), 249-260, http://dx.doi.org/10.1111/j.1600-0870.2006.00220.x

Sztobryn M., Stigge H. J., Wielbińska D., Weidig B., Stanisławczyk I., Kańska A., Krzysztofik K., Kowalska B., Letkiewicz B., Mykita M., 2005, Storm surges in the southern Baltic (westernand central parts), Rep. No. 39, Ber. Bundesamtes fürSeeschiffahrt und Hydrographie (BSH), Hamburg, Rostock, 74 pp.

SztobrynM., WeidigB., StanisławczykI., HolfortJ., KowalskaB., MykitaM., KańskaA., KrzysztofikK., PerletI., 2009, Negativesurgesinthesouthern BalticSea(westernandcentralparts),Rep.No.45,Ber.Bundesamtes für Seeschifffahrt und Hydrographie (BSH), Hamburg, Rostock, 71 pp.

WeisseR.,vonStorchH.,2010, Marineclimateandclimatechange: storms, wind,waves, and stormsurges,Springer PraxisBooks,Chichester,219 pp., http://dx.doi.org/10.1007/978-3-540-68491-6

Wielbińska Z., 1964, Wpływcyrkulacjiatmosferyna poziom morza, [The influence of the atmosphere circulationon the sea level],Pr. PIHM, Zesz. 2.

Wiśniewski B., 1996, Wezbraniasztormowena polskimwybrzeżuBałtyku, [Storm surges on the Polish coast of the Baltic Sea], [in:] Ogólnopolska Konferencja Naukowa - Współczesne Problemy Inżynierii Środowiska Wodnego,50 lecie Wydziału Budownictwai Architektury Politechniki Szczecińskiej, Wyd. PS, Szczecin, 233 pp.

Wiśniewski B., 1997, Zmienność zapasu wody pod stępkąstatkuw czasiewezbrań sztormowych, [Variability of water reserve under a keel of ship during storm surges], Inż. Mors. Geotech.,5, 325-327, (in Polish).

WiśniewskiB.,2003,The influence oflow-pressure systems onwaterlevels inthe Odraestuary,Severo-zapadny gosudarstvenny zaochny tiekhnichesky universitet, St. Petersburg, 183-193.

Wiśniewski B., Holec M., 1983, Zarysoceanogra?i.Tom 2, Dynamikamorza,[An outlineof oceanographyVol.2,theDynamics oftheSea],Wyd. WSMW, Gdynia, 137 pp.

WiśniewskiB.,Kowalewska-KalkowskaH.,2007,Water levelfluctuationsin theOdraRiver mouth areainrelation topassagesofdeeplow-pressure systems,Ocean. Hydrobiol. St.,36 (1), 69-82, http://dx.doi.org/10.2478/v10009-007-0009-2

WiśniewskiB.,Wolski T.,2009a,Katalogi wezbrań iobniżeń sztormowych poziomów morzaoraz ekstremalnepoziomywód na polskimwybrzeżu, [Cataloguesof sealevel storm surgesandfalls andextremewaterlevels on the Polish coast], Wyd.Nauk.Akad.Mors., Szczecin, 158 pp.,(in Polish with Engl. summ.).

Wiśniewski B., WolskiT., 2009b,Occurrenceprobabilityof maximum sea levels inPolishports ofBalticSeacoast,PolishMarit.Res.,16 (3),62-69, http://dx.doi.org/10.2478/v10012-008-0035-3

Wiśniewski B., Wolski T., 2011, Physicalaspects of extremestormsurges and falls onthePolishcoast,Oceanologia,53 (1-TI),373-390, http://dx.doi.org/10.5697/oc.53-1-TI.373

Wiśniewski B., Wolski T., Giza A., 2014, AdaptacjaEuropejskiegoWysokościowego Układu Odniesienia (EVRS) dla zobrazowaniazmienności powierzchniwód MorzaBałtyckiego,[Adaptation of the European VerticalReference System (EVRS)toillustrate thevariability of the surfacewatersof the BalticSea], Wyd.Nauk. Akad.Mors., Szczecin, (in press).

Wolski T.,Wiśniewski B., 2012, Changesof maximum sea levels at selected gauge stations on the Polishand Swedish Balticcoast, Stud. Prac.WNEiZ, 29, 209-227.

Woodworth P. L., Flather R. A., WilliamsJ. A., WakelinS. L., Jevrejeva S., 2007, The dependenceofUK extremesealevelsandstormsurgesontheNorth AtlanticOscillation, Cont.Shelf Res.,27 (7),935-946, http://dx.doi.org/10.1016/j.csr.2006.12.007

WothK.,Weisse R.,von StorchH.,2006, Climatechange and NorthSeastorm surge extremes:anensemblestudyofstormsurgeextremesexpectedin a changed climate projected by four different RegionalClimateModels, Ocean Dynam.,56 (1), 3-15, http://dx.doi.org/10.1007/s10236-005-0024-3

WróblewskiA.,1975, Occurrence probability ofmaximumyearlylevelsofBaltic Sea in GdańskNowy Port,Kołobrzegand Świnoujście,Oceanology, 6, 37-53, (in Polish).

Wróblewski A., 1991, Sea level and storm surge forecasting in the Southern Baltic, Oceanologia, 31, 5-23.

full, complete article (PDF, 6584 KB)

Links between biota and climate-related variables in the Baltic region using Lake Onega as an example
Oceanologia 2014, 56(2), 291-306

Andrey N. Sharov1,2,*, Nadezhda A. Berezina1,3, Larisa E. Nazarova1, Tamara N. Poliakova1, Tatyana A. Chekryzheva1
1Northern Water Problems Institute, Karelian Research Centre, Russian Academy of Sciences,
A. Nevskogo prospect 50, Petrozavodsk 185030, Russia
2Saint-Petersburg Scientific Research Centre for Ecological Safety, Russian Academy of Sciences,
Korpusnaya 18, St. Petersburg 197110, Russia;
e-mail: sharov_an@mail.ru
*corresponding author
3Zoological Institute, Russian Academy of Sciences,
Universitetskaya embankment 1, St. Petersburg 199034, Russia

keywords: Baltic Sea catchment area, climate variables, phytoplankton, benthos

Received 25 October 2013, revised 21 February 2014, accepted 27 February 2014.

This work was supported by Biodiversity and Bioresources Programmes grants from the Russian Academy of Sciences.


This paper aims to reveal current changes (recent decades) in regional climatic variables like water temperature (WT), the duration of the ice-free period (ICE-FREE) and the precipitation rate (P), as exemplified by Petrozavodsk Bay (Lake Onega, European Russia), and to analyse their relationships with the global climatic indices NAO, AO and structural characteristics of biota (chlorophylla concentration (Chl a), phytoplankton and zoobenthos abundance/biomass) in the lake ecosystem, which lies within the Baltic Sea catchment area. Spearman's rank correlations yielded significant (p < 0.05) relationships between the NAO and planktonic Cyanobacteria abundance, and also between NAO, AO, WT, P and the abundance and biomass of zoobenthos. Chl a correlates positively (R = 0.66; p = 0.03) with WT and negatively with ICE-FREE (R = -0.53; p = 0.05). At the same time, multiple regression analysis confirmed that the global climate governs primarily the regional climatic variables and productivity level in the lake's ecosystem, whereas most of the biotic characteristics respond to variability in the regional climate.

  References ref

AdrianR., Deneke R., Mischke U., Stellmacher R., LedererP.,1995, Along-term study of the Heiligensee(1975-1992).Evidencefor effects of climaticchange on the dynamics of eutrophied lake ecosystems, Arch. Hydrobiol., 133, 315-337.

Adrian R., O’ReillyC.,ZagareseH.,BainesS. B.,HessenD. O.,KellerW., Livingstone D. M.,Sommaruga R.,StraileD.,DonkE. V.,Weyhenmeyer G. A., Winder M., 2009,Lakes assentinels ofclimatechange,Limnol. Oceanogr.,54 (6 pt. 2),283-297.

Adrian R., Walz N., Hintze T., Hoeg S., Rusche R., 1999, Effectsof ice duration on the plankton successionduring spring in a shallow polymicticlake, Freshwater Biol., 41, 621-623, http://dx.doi.org/10.1046/j.1365-2427.1999.00411.x

AustinJ., Colman S., 2008, Acentury of temperature variability in Lake Superior, Limnol. Oceanogr., 53 (6), 2724-2730, http://dx.doi.org/10.4319/lo.2008.53.6.2724

BlencknerT.,AdrianR.,LivingstoneD. M.,Jennings E.,Weyhenmeyer G. A., George D. G., Jankowski T., Jarvinen M., Nic AonghusaC., Noges T., Straile D., TeubnerK., 2007, Large-scale climaticsignatures inlakes acrossEurope. Ameta-analysis,GlobalChangeBiol., 13 (7),1314-1326, http://dx.doi.org/10.1111/j.1365-2486.2007.01364.x

DokulilM. T.,Jagsch A.,GeorgeG. D.,AnnevilleO.,Jankowski T.,WahlB., Lenhart B., Blenckner T., Teubner K., 2006, Twenty years of spatially coherent deepwater warming in lakes across Europerelated to the North Atlantic Oscillation,Limnol. Oceanogr.,51 (6), 2787-2793, http://dx.doi.org/10.4319/lo.2006.51.6.2787

DrinkwaterK. F., Belgrano A.,BorjaA.,ConversiA.,Edwards M.,Greene C. H., Ottersen G.,PershingA. J., WalkerH., 2003, Theresponseof marine ecosystems to climate variability associated with the North Atlantic Oscillation, [in:] TheNorthAtlantic Oscillation,J. W. Hurrell,Y. Kushnir,G. Ottersen &M.Visbeck(eds.), Am.Geophys. Union, Washington,211-234, http://dx.doi.org/10.1029/134GM10

EfremovaT. V., PalshinN. I., 2012, Thereactionof the water temperature inthe different types of lakes in Karelia under regional climate change, Ecol. Probl. North. Reg. Solut., Pt. 1, Apatity, 180-184, (in Russian).

Efremova T. V., Zdorovennova G. E., PalshinN. I., 2010, Iceconditionsoflakes inKarelia,[in:]Waterenvironment: learningforsustainable development, Karelian Res. Cent., Petrozavodsk, 31-40, (in Russian).

Filatov N. N.,GeorgievA. P.,EfremovaT. V.,NazarovaL. E.,Palshin N. I., Rukhovets L. A., TolstikovA. V., SharovA. N., 2012, Responseoflakes in EasternFennoscandiaand EasternAntarcticato climate change, Dokl. Earth Sci., 444 (2),752-755, http://dx.doi.org/10.1134/S1028334X1206013X

FilatovN., Rukhovets L., 2013, Ladoga Lake and OnegoLake (LakesLadozhskoye andOnezhskoye), [in:]Encyclopediaoflakes andreservoirs,L. Bengtsson, R. W.Herschy &R. W.Fairbridge (eds.),Springer,Dordrecht,Heidelberg, New York, London, 432-436.

Finland’sFifthNationalCommunicationunder theUnitedNationsFramework Conventions on climate change, 2010, Helsinki, 282 pp.

Glen G.(ed.),2010, TheimpactofclimatechangeonEuropeanlakes,Aquat. Ecol. Ser. Vol. 4, Springer, Dordrecht, Heidelberg, New York, London, 507 pp.

Järvinen M., Lehtinen S., Arvola L., 2006, Variations in phytoplankton assemblage in relation to environmental and climatic variation in a boreal lake, Verh. Int. Verein. Limnol.,29, 1841-1844.

Jeppesen E., Kronvang B., Meerhoff M., Sondergaard M., Hansen K. M., Andersen H. E., Lauridsen T. L., Beklioglu M., Ozen A. O., Olesen J. E., 2009, Climate change effectsonrunoff,catchment phosphorusloadingandlake ecological state,and potential adaptations,J. Environ.Qual., 38 (5),1030-1041, http://dx.doi.org/10.2134/jeq2008.0113

JonesI. D., ElliottJ. A., 2007, Modellingthe effectsofchanging retentiontime on abundance and composition of phytoplankton species in a small lake, FreshwaterBiol.,52,988-997, http://dx.doi.org/10.1111/j.1365-2427.2007.01746.x

Maksimov A. A., Berezina N. A., Golubkov S. M., Nikulina V. N., 2012, Long-term climate change productivity of the northern lake ecosystem, [in:] The dynamics of biological diversityand biological resourcesof the continental waters,A. F. Alimov & S. M. Golubkov (eds.), Nauka, St. Petersburg, 138-144, (in Russian).

Markensten H., 2006, Climateeffectsonearlyphytoplankton biomassoverthree decades modified by the morphometry in connected lake basins, Hydrobiologia, 559, 319-329, http://dx.doi.org/10.1007/s10750-005-1526-1

MoiseenkoT. I., Sharov A. N., 2011,The Retrospective analysis of aquatic ecosystemmodificationofRussian large lakes underanthropogenicimpacts, [in:] Ecotoxicologyaround the Globe,J. E. Visser (ed.),Nova Sci.Publ.,309-324.

Noges T., 2004, Reflectionof the changes of the North AtlanticOscillationIndex and the Gulf Stream PositionIndex in the hydrology and phytoplankton of Voirtsjärv,a large, shallow lake in Estonia,Boreal Environ. Res., 9, 401-407.

Ottersen G., Planque B., Belgrano A., PostE., Reid P. C., Stenseth N. C., 2001, Ecological effects of the North AtlanticOscillation, Oecologia, 128, 1-14, http://dx.doi.org/10.1007/s004420100655

Pociask-Karteczka J.,2006, Riverhydrology andthe NorthAtlanticOscillation: Ageneral review,AMBIO,35 (6),312-314, http://dx.doi.org/10.1579/05-S-114.1

Saeger J., Milne I., Mallett M., Sims I., 2000, Effectsof short-term oxygen depletion onfish, Environ.Toxicol.Chem.,19 (12),2937-2942, http://dx.doi.org/10.1002/etc.5620191214

SCOR-UNESCO, 1996, Determinationof photosynthetic pigments in seawater, Workinggroup 17, Paris,69 pp.

Sharov A., PolyakovaT., NazarovaL., Syarki M., Filatov N., 2012, The response of aquatic communitiesof Lake Onega and other waters of the North to climate variability, Ecol. Probl. North. Reg. Solut.,Proc.Conf., Pt. 1, Apatity, Kola Sci. Cent., 255-258, (in Russian). Sharov A. N., 2008, Phytoplankton as an indicator in estimating long-term changes inthewater qualityoflargelakes,Water Resour., 35 (6),668-673, http://dx.doi.org/10.1134/S0097807808060067

SmirnovN. P.,Vorob’evV. N.,KochanovS. J., 1998, NorthAtlanticOscillation and climate, RGGMU,SanktPetersburg, 121 pp., (in Russian).

Sondergaard M.,JensenJ. P.,Jeppesen E.,2003, Roleofsedimentand internal loading of phosphorus in shallow lakes, Hydrobiologia,506/509,135-145, http://dx.doi.org/10.1023/B:HYDR.0000008611.12704.dd

StensethN. C., Mysterud A.,OttersenG., Hurrell J. W., Chan K.-S., Lima M., 2002, Ecological effects of climate fluctuations, Science, 297, 1292-1296, http://dx.doi.org/10.1126/science.1071281

Weider J., LampertW., 1985,Differential responseofDaphnia genotypesto oxygen stress:Respirationrates, hemoglobin content and low oxygen tolerance, Oecologia, 65 (4), 487-491, http://dx.doi.org/10.1007/BF00379661

Weyhenmeyer G., 2004, Synchronyin relationships between the North Atlantic Oscillationand water chemistry among Sweden’s largest lakes, Limnol. Oceanogr.,49 (4), 1191-1201, http://dx.doi.org/10.4319/lo.2004.49.4.1191

Weyhenmeyer G.,BlencknerT.,PetterssonK.,1999,Changesoftheplankton spring outburst related to the North AtlanticOscillation,Limnol. Oceanogr., 44 (7), 1788-1792, http://dx.doi.org/10.4319/lo.1999.44.7.1788

WilhelmS., AdrianR., 2007, Long-termresponseof Dreissenapolymorpha larvae to physical and biological forcing in a shallow lake, Oecologia, 151 (1), 104-114, http://dx.doi.org/10.1007/s00442-006-0546-5

full, complete article (PDF, 196 KB)

Erosion reasons and rate on accumulative Polish dune coast caused by the January 2012 storm surge
Oceanologia 2014, 56(2), 307-326

Tomasz A. Łabuz
Institute of Marine and Coastal Sciences, University of Szczecin,
70-383 Szczecin, Poland;
e-mail: labuztom@univ.szczecin.pl

keywords: Storm surge, coastal dune erosion, sand volume changes, Polish coast

Received 25 October2013, revised 11 March 2014, accepted 21 March 2014.


The Polish coast is a non-tidal area; its shores are affected mainly by autumn-winter storm surges. Those of 6 and 14 January 2012 are representative of the forces driving the erosion of normally accumulative sections of coastal dunes, monitored by the author since 1997. The sea level maximum during these two storm surges reached 1.2 to 1.5 m amsl along the Polish coast. Land forms up to 3 m amsl were inundated. Beaches and low parts of the coast up to this height were rebuilt by sea waves attacking the coast for almost 12 days. Quantitative analyses of the morphological dynamics of the coastal dunes are presented for 57 profiles located along the coast. Only those accumulative sections of the Polish coast are analysed where sand accumulation did occur and led to new foredune development. The mean rate of dune erosion was 2.5 m3 per square metre with an average toe retreat of 1.4 m. Erosion understood as dune retreat was greater when a beach was lower (correlation coefficient 0.8). Dune erosion did not occur on coasts with beaches higher than 3.2 m or on lower ones covered by embryo dunes.

  References ref

ChubarenkoB., BurnashovE., BoldyrievV., BobkinaV., KormanovK., 2009, Long-termchanges intherateofcoastalerosionintheKaliningradOblast (south-eastBaltic), [in:] International Conferenceon Climate Change. The environmentandsocio-economicresponse in thesouthern Baltic region, A. Witkowski,J.Harff &H.-J. Isemer (eds.),Szczecin 25-28.05.2009, Conf. Proc. BALTEX No. 42, Univ.Szczecin, 101 pp.

CyberskiJ., Wróblewski A., 1999, Recentand forecastchanges insea level along the Polish coast during the period 1900-2100,Quat. Stud.Poland, SI, 77-83.

Dailidienė I., Davulienė L., Tilickis B., Stankevicius A., Myrberg K., 2006, Sea level variabilityat the Lithuanian coast of the BalticSea, Boreal Environ. Res., 11, 109-121.

Eberhards G., Lapinskis J., Saltupe B., 2006, Hurricane Erwin 2005 coastal erosion in Latvia, Baltica,19 (1),10-19.

Furmańczyk K. K., Dudzińska-Nowak J., Furmańczyk K. A., Paplińska-Swerpel B., Brzezowska N., 2011, Dune erosionas a result of the significantstormsat the westernPolish coast (DziwnówSpit example),J. Coastal Res., 64 (SI), (Proc. 11th Int. Coast. Symp.),756-759.

Heyen H., Zorita E., von Storch H., 1996, Statisticaldownscaling of monthlymean NorthAtlantic air-pressureto sea-level anomaliesin the BalticSea, Tellus A, 48 (2), 312-323, http://dx.doi.org/10.1034/j.1600-0870.1996.t01-1-00008.x

Johansson M., Boman H., KahmaK. K., Launiainen J., 2001, Trends in sea level variabilityin the BalticSea, Boreal Environ. Res., 6, 159-179.

Koltsova T., Belakova J., 2009, Storm Surges on the SouthernCoast of Gulf of Riga: case study of the LielupeRiver, [in:] Threatsto global water security, J. A. A. Jones, T. G. Vardanian & C. Hakopian (eds.), NATO Sci. Peace Secur. Ser. C: Environ. Secur., II, 91-97, http://dx.doi.org/10.1007/978-90-481-2344-5_10

Kont A., Jaagus J., Aunap R., Ratas U., Rivis R., 2008, Implications of sea-level rise for Estonia, J. Coastal Res., 24 (2), 423-431, http://dx.doi.org/10.2112/07A-0015.1

Łabuz T. A., 2005, Duneshores of PolishBalticcoast, Czas. Geogr., 76 (1-2), 19-47, (in Polish).

ŁabuzT. A.,2009,The West Pomerania coastaldunes-alertstateoftheir development, Z. Dt. Ges. Geowiss., 160 (2), 113-122.

Łabuz T. A., 2011, Effectsof storm surges on coastal dune profile reconstructionof the Świna Gate Sandbar, Czas. Geogr., 82 (4), 351-371, (in Polish).

Łabuz T. A., 2013,Polish coastaldunes-affectingfactors andmorphology, Landform Anal.,22, 33-59.

Łabuz T. A., Kowalewska-Kalkowska H., 2010, Coastalabrasion of the Świna Gate Sandbar(Pomeranian Bay coast)causedbytheheavystormsurgeon15 October2009, Abstr. ‘Storm Surges Congress 2010’, Hamburg,Germany, 13-17.2010, Univ. Hamburg,p. 115.

Łabuz T. A., Kowalewska-Kalkowska H., 2011, Coastalerosion caused by the heavy storm surge of November 2004 in the southern BalticSea, Clim. Res., 48 (SI), 93-101, http://dx.doi.org/10.3354/cr00927

Majewski A., Dziadziuszko Z., Wiśniewska A., 1983, The monograph of storm floods 1951-1975, Wyd.Kom. Łącz., Warszawa, (in Polish).

PruszakZ.,ZawadzkaE.,2005, Vulnerabilityof Poland’scoast to sea-levelrise, Coast. Eng. J., 47 (2-3), 131-155, http://dx.doi.org/10.1142/S0578563405001197

Ryabchuk D., Kolesov A., Chubarenko B., SpiridonovM., KurennoyD., Soomere T., 2011,Coastal erosion processes in theeasternGulfofFinland and their links with long-term geological and hydrometeorological factors, Boreal Environ.Res., 16 (1), 117-137.

SamuelssonM.,StigebrandtA.,1996, Maincharacteristicsofthe long-term sea level variabilityintheBalticSea,TellusA,48 (5),672-683, http://dx.doi.org/10.1034/j.1600-0870.1996.t01-4-00006.x

Sorensen C., Munk-NielsenC. C., Piontkowitz T., 2009, Storm surges in Denmark: past experiences and expectations for the future, Abstr. ‘Storm Surges Congress 2010’, Hamburg,Germany, 13-17.09.2010, Univ. Hamburg,p. 73.

Suursaar Ü.,KullasT.,OtsmannM.,KõutsT.,2003, Extremesealevel events inthe coastal waters ofwestern Estonia,J. Sea Res.,49 (4),295-303, http://dx.doi.org/10.1016/S1385-1101(03)00022-4

Suursaar Ü., Kullas T., Otsmann M., Saaremaë I., Kuik J.,Merilain M., 2006,Cyclone Gudrunin January 2005andmodellingitshydrodynamic consequences in the Estoniancoastal waters, Boreal Envioron.Res., 11, 143-169.

full, complete article (PDF, 1105 KB)

Could submarine groundwater discharge be a significant carbon source to the southern Baltic Sea?
Oceanologia 2014, 56(2), 327-347

Beata Szymczycha, Anna Maciejewska, Aleksandra Winogradow, Janusz Pempkowiak*
Institute of Oceanology, Polish Academy of Sciences,
70-383 Szczecin, Poland;
e-mail: pempa@iopan.gda.pl
* corresponding author

keywords: Bay of Puck, seepage water, dissolved organic carbon, dissolved inorganic carbon, carbon loads, carbon budget, Baltic Sea, World Ocean

Received 25 October 2013, revised 16 January 2014, accepted 20 January 2014.

The study reports the results obtained within the framework of the following projects: the statutory activities of the Institute of Oceanology Polish Academy of Sciences theme 2.2, research project No. 2012/05/N/ST10/02761 sponsored by the National Science Centre, and AMBER, the BONUS+ EU FP6 Project.


Submarine Groundwater Discharge (SGD) is an important yet poorly recognised pathway of material transport to the marine environment. This work reports on the results of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) concentrations and loads in the groundwater seeping into the southern Baltic Sea.Most of the research was carried out in the Bay of Puck (2009-2010), while in 2013 the study was extended to include several other groundwater seepage impacted areas situated along the Polish coastline. The annual average concentrations of DIC and DOC in the groundwater were equal to 64.5 ± 10.0 mg C L-1 and 5.8 ± 0.9 mg C L-1 respectively. The carbon specific flux into the Bay of Puck was estimated at 850 mg m-2 yr-1. The loads of carbon via SGD were scaled up for the Baltic Sea sub-basins and the entire Baltic Sea. The DIC and DOC fluxes via SGD to the Baltic Sea were estimated at 283.6 ± 66.7 kt yr-1 and 25.5 ± 4.2 kt yr-1. The SGD derived carbon load to the Baltic Sea is an important component of the carbon budget, which gives the sea a firmly heterotrophic status.

  References ref

Beck M., Dellwig O., Kolditz K., FreundH., Liebezeit G., SchnetgerB., Brumsack H. J.,2007, Insituporewatersamplingindeepintertidal flatsediments, Limnol.Oceanogr., 5, 136-144, http://dx.doi.org/10.4319/lom.2007.5.136

Bełdowski J.,Pempkowiak J., 2003,Horizontal andvertical variabilities of mercury concentrationandspeciation insediments oftheGdanskBasin, Southern BalticSea, Chemosphere,52 (3), 645-654, http://dx.doi.org/10.1016/S0045-6535(03)00246-7

BorgesA. V.,2005,DowehaveenoughpiecesofthejigsawtointegrateCO2 fluxes in the coastal ocean?, Estuaries, 28, 3-27, http://dx.doi.org/10.1007/BF02732750

CableJ. E.,Burnett W. C.,ChantonJ. P.,1997,Magnitudeandvariations of groundwater along a Floridamarineshoreline,Biogeochemistry, 38 (2),189-205, http://dx.doi.org/10.1023/A:1005756528516

Cai W.-J.,Wang Y.-C., Krest J., Moore W. S., 2003, The geochemistryof dissolved inorganic carboninasurficialgroundwateraquiferinNorthInlet, South Carolina,andthe carbonfluxesto thecoastalocean,Geochim.Cosmochim. Acta,67 (4),631-639, http://dx.doi.org/10.1016/S0016-7037(02)01167-5

ChenC.-T. A.,Borges A. V., 2009, Reconcilingopposingviews on carbon cycling inthe coastal ocean:continental shelves as sinksand near-shoreecosystems assourcesofatmospheric CO2 ,Deep-SeaRes.Pt. II,56 (8-10),578-590, http://dx.doi.org/10.1016/j.dsr2.2009.01.001

ChenC.-T. A.,LiuK.-K.,MacdonaldR.,2003, Continental marginexchanges, Ocean Biogeochemistry: The role of the oceancarbon cycle inglobal change, IGBPBook Series, Springer,53-97 pp.

Emelyanov E., 1995,Baltic Sea:Geology, geochemistry,palaeoceanography, pollution, P. P. Shirshov Inst. Oceanol. Russ. Acad. Sci., Atlantic Branch Baltic Ecol. Inst. Hydrosph.Acad. Nat.Sci., Kaliningrad, 119 pp.

Emerson S.,HedgesJ., 2008,Chemical oceanographyandthemarine carbon cycle, School of Oceanography, Univ. Washington, Washington, 453 pp., http://dx.doi.org/10.1017/CBO9780511793202

IPCC,2007, ClimateChange SynthesisReport.Contribution of working groups I, II and III to the Fourth Assessment Reportof the Intergovernmental Panel on ClimateChange, CambridgeUniv. Press,Cambridge, 73 pp.

Kaltin S., Haraldsson C., Anderson L. G., 2005, A rapid method for the determinationoftotal dissolved inorganic carbon in seawater withhigh accuracy andprecision, Mar.Chem.,96 (1-2)53-60, http://dx.doi.org/10.1016/j.marchem.2004.10.005

Korzeniewski K., 2003, Zatoka Pucka, Univ. Gdańsk,Gdynia.

Kotwicki L., Grzelak K., Czub M., DellwigO., Gentz T., Szymczycha B., BrottcherM.,2013, Submarinegroundwater dischargetotheBalticcoastal zone - impact on the meiofaunalcommunity,J. MarineSyst.,129, 118-126, http://dx.doi.org/10.1016/j.jmarsys.2013.06.009

Kozerski B., 2007, TheGdańskhydrological system, Wyd PG,Gdańsk,112-113. Kryza J.,Kryza H., 2006,The analyticandmodelestimation ofthedirect groundwater flow to the BalticSeaon the territoryof Poland,Geologos, 10, 153-165.

Kuliński K., PempkowiakJ., 2008, Dissolvedorganic carbon in the southern Baltic Sea: quantification offactorsaffectingitsdistribution,Estuar. Coast.Shelf Sci., 78, 38-44, http://dx.doi.org/10.1016/j.ecss.2007.11.017

KulińskiK.,PempkowiakJ.,2011, Thecarbon budget of the BalticSea, Biogeosciences, 8 (11), 3219-3230, http://dx.doi.org/10.5194/bg-8-3219-2011

KulińskiK.,PempkowiakJ.,2012, CarboncyclingintheBalticSea,Springer, Berlin, 132 pp., http://dx.doi.org/10.1007/978-3-642-19388-0

Liu Q., Dai M., Chen W., Huh C.-A., WangG., Li Q., Charette M. A., 2012, How significant is submarine groundwater discharge and its associated dissolved inorganiccarbon ina river-dominatedshelf system?,Biogeosciences, 9, 1777-1795, http://dx.doi.org/10.5194/bg-9-1777-2012

LudwigW.,Amiotte-SuchetP.,ProbsJ.-L., 1996, Riverdischargesofcarbon to the world’s oceans: determininglocal inputsofalkalinity-and ofdissolved and particulate organic carbon, Centre de geochimie de la surface, CNRS, 323, 1007-1014.

Moore W. S.,2010,Theeffectofsubmarinegroundwater discharge on the ocean, Ann. Rev. Mar. Sci., 2, 59-88, http://dx.doi.org/10.1146/annurev-marine-120308-081019

Moore W. S., Blanton J. O., Joye S. B., 2006, Estimates of flushing times,submarine ground water discharge, and nutrient fluxes to Okatee Estuary,South Carolina, J. Geophys.Res., 111, C09006, http://dx.doi.org/10.1029/2005JC003041

Omstedt A., HumborgC., PempkowiakJ.,Perttilä M., Rutgersson A., Schneider B., SmithB., 2012, Biogeochemicalcontrol of the coupled CO2-O2systemof the BalticSea: areviewof the resultsofBaltic-C, AMBIO,43 (1),49-53, http://dx.doi.org/10.1007/s13280-013-0485-4

Peltonen K., 2002, Directgroundwater flow to the BalticSea, Nordic Counc. Min., Temanord, Copenhagen, 78 pp.

Pempkowiak J., Szymczycha B., Kotwicki L., 2010,Submarine groundwater discharge (SGD) totheBalticSea,Rocz.Ochr.Śr.,12,17-32.

PempkowiakJ.,1983, C18reversed-phasetraceenrichmentofshort-andlong- chain (C2-C8-C20) fatty acidsfromdilute aqueous solutionsand sea water, J. Chromatogr.,258, 93-102, http://dx.doi.org/10.1016/S0021-9673(00)96401-X

Piekarek-JankowskaH.,Matciak M.,NowackiJ., 1994, Salinity variationsas an effectof groundwater seepage through the seabed (BayofPuck,Poland), Oceanologia, 36, 33-46.

Santos I. R., BurnettW. S., DittmarT., Suryaputra I. G. N. A.,Chanton J., 2009, Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf ofMexico subterraneanestuary, Geochim.Cosmochim.Acta, 73 (5), 1325-1339, http://dx.doi.org/10.1016/j.gca.2008.11.029

SmithA. M.,Cave R. R.,2012, Influenceoffreshwater,nutrientsandDOC in two submarine groundwater-fed estuaries on the west of Ireland, Sci. Total Environ., 438,260-270, http://dx.doi.org/10.1016/j.scitotenv.2012.07.094

Schulz H. D.,ZabelM.,2006,Marine geochemistry, Springer-Verlag, Berlin, Heidelberg, 534 pp., http://dx.doi.org/10.1007/3-540-32144-6

Szczepańska A., Zaborska A., Maciejewska A., Kuliński K., Pempkowiak J., 2012, Distribution and origin of organic matter in the Baltic sea sediments dated with 210Pband137Cs, Geochronometria,39 (1),1-9, http://dx.doi.org/10.2478/s13386-011-0058-x

Szymczycha B., Miotk M., Pempkowiak J., 2013, Submarine groundwater discharge as a source of mercury in the Bay of Puck,the Southern Baltic Sea, Water Air Soil Pollut., 224 (1542), 14 pp., http://dx.doi.org/10.1007/s11270-013-1542-0

SzymczychaB., VoglerS., Pempkowiak J., 2012, Nutrientfluxesviasubmarine groundwater dischargetotheBay of Puck,Southern Baltic, Sci.Total Environ., 438, 86-93, http://dx.doi.org/10.1016/j.scitotenv.2012.08.058

TakahashiT., SutherlandS. C., Sweeney C., Poisson A., MetzlN., TilbrookB., Bates N., Wanninkof R., Feely R. A., Sabine C., Olafsson J., No jiri Y., 2009, Globalsea-airCO2flux basedonclimatologicalsurfaceoceanpCO2, and seasonalbiological andtemperature effects,Deep-SeaRes.Pt. II, 49 (9-10), 1601-1622, http://dx.doi.org/10.1016/S0967-0645(02)00003-6

ThomasH., Bozec Y., ElkalayK., de BaarH. J. W., 2004, Enhancedopen ocean storage of CO2 fromshelf sea pumping,Science, 304, 1005-1007, http://dx.doi.org/10.1126/science.1095491

Thomas H., Pempkowiak J., WulffF., Nagel K., 2003, Autotrophy,nitrogen accumulation,and nitrogen limitation in the BalticSea:a paradox or a buffer for eutrophication,Geophys. Res. Lett., 30, 8-1/8-4.

ThomasH.,Schiettecatte L.-S.,SuykensK.,KoneY. J. M., ShadwickE. H., Prowe A. E. F.,BozecY., de BaarH. J. W., Borges A. V.,2009, Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments, Biogeosciences, 6, 267-274, http://dx.doi.org/10.5194/bg-6-267-2009

Uścinowicz S.,2011, Geochemistry oftheBalticSeasurfacesediments, Polish Geolog. Inst.-National Res. Inst., Warsaw, 138-145.

ViventsovaE. A.,VoronovA. N.,2003, Groundwater dischargetotheGulfof Finland(BalticSea):ecological aspects,Environ. Ecol., 45, 221-225. WasmundN., UhligS., 2003, Phytoplanktontrendsinthe BalticSea,J. Marine Syst., 60, 177-186.

Zektser I. S., Loaiciga H.A., 1993, Groundwaterfluxes in the global hydrologic cycle: past, presentand future,J. Hydrol., 144, 405-427, http://dx.doi.org/10.1016/0022-1694(93)90182-9

Zekster I. S., Everett L. G., DzhamalovR. G., 2007, Submarinegroundwater,CRS Press,Boca Raton.

full, complete article (PDF, 219 KB)

Impact of the emissions of international sea traffic on airborne deposition to the Baltic Sea and concentrations at the coastline
Oceanologia 2014, 56(2), 349-372

Marke Hongisto
Air Quality Research, Finnish Meteorological Institute (FMI),
Erik Palmenin aukio 1, P.O. Box 503, FI-00101, Helsinki, Finland;
e-mail: marke.hongisto@fmi.fi
* corresponding author

keywords: Baltic Sea, airborne load of nitrogen and sulphur, European emission inventories, Concentrations from Baltic Sea ship emissions

Received 25 October 2013, revised 12 February 2014, accepted 21 February 2014.

The research has received funding from the European Regional Development Fund, Central Baltic INTERREG IV A programme within the SNOOP project.


The impact of ship traffic emissions in the Baltic Sea on deposition and airborne concentrations of nitrogen and sulphur compounds in the period 2008--2011 was studied using the Hilatar chemistry transport model with a 0.068° latitude-longitude resolution. An accurate ship emission inventory based on AIS (automatic identification system) security signals was used. The uncertainty of the European emission inventories are discussed, as is an inter-comparison of the Baltic Sea airborne load and concentrations with other model-based estimates and with air quality measurements and the effect of the EU sulphur directive for ship emissions on sulphate concentrations.

  References ref

AnenbergS. C., Horowitz L. W.,TongD. Q., WestJ. J., 2010, Anestimateof the global burden of anthropogenicozone and fine particulatematteron premature humanmortality usingatmospheric modeling,Environ.HealthPersp.,118, 1189-1195, http://dx.doi.org/10.1289/ehp.0901220

AsmanW. A. H., JanssenA. J., 1987, Along range transportmodel for ammonia and ammonium for Europe,Atmos. Environ.,21 (10),2099-2119, http://dx.doi.org/10.1016/0004-6981(87)90344-1

BACC- BALTEXAssessmentof ClimateChange,2008, Assessment of climate change for the Baltic Sea basin, TheBACCAuthorTeam,Reg. Clim. Stud. Ser., Springer,Berlin, Heidelberg,474 pp., [http://www.hzg.de/institute/coastal_research/pro jects/baltex/bacc_downloads/index.html.en (9.12.2013)].

Barentsinfo,2013,Barents environmentalhotspots, [http://www.barentsinfo.fi/beac/hotspots/ (9.12.2013)].

Bartnicki J., Gusev A., Aas W., Fagerli H., ValiyaveetilS., 2012-2009, Atmospheric supply of nitrogen,lead, cadmium, mercuryand dioxins/furansto the Baltic Sea in years 2010-2009, Summ. Rep. HELCOM,MSC-W Tech. Rep. 2/2012, 1/2011,2/2010,2/2009.

Bartnicki J., GusevA.,AasW.,FagerliH.,ValiyaveetilS.,2008, Atmospheric supply of nitrogen,lead, cadmium, mercuryand dioxins/furansto the Baltic Sea in 2006, MSC-W Tech.Rep. 2/2008.

Bartnicki J.,GusevA.,AasW.,BergT., Barrett K.FagerliH.,2006-2002, Atmospheric supply of nitrogen,lead, cadmium, mercuryand dioxins/furans to the BalticSea in 2004-2001, MSC-W Tech.Rep. 3/2006-2003.

Bartnicki J.,GusevA.,Barrett K.,SimpsonD.,2002,Atmosphericsupplyof nitrogen, lead,cadmium,mercuryanddioxins/furanstotheBalticSeain 1996-2000 for the HelsinkiCommission (HELCOM), Baltic MarineEnviron. Protection Comm.,Joint MSC-W & NILU Note 6/02.

Bartnicki J., Semeena V. S., Fagerli H., 2011, Atmospheric depositionof Nitrogen to the Baltic Sea in the period 1995-2006, Atmos. Chem. Phys., 11, 10057-10069, http://dx.doi.org/10.5194/acp-11-10057-2011

Bott A., 1989, A positive definite advection scheme obtained by nonlinear renormalization of the advectivefluxes,Mon.Weather Rev. 117, 1006-1015, http://dx.doi.org/10.1175/1520-0493(1989)117<1006:APDASO>2.0.CO;2

Brandt J., Silver J. D., Christensen J. H., Andersen M. S., Bonlokke J. H., Sigsgaard T., Geels C., Gross A., Ayoe B., Hansen A. B., Hansen K. M., Hedegaard G. B., Kaas E., Frohn L. M., 2011, CEEH scientificreport No 3: Assessment of health costexternalitiesof airpollutionat the nationallevel usingthe EVA Model System, Cent.Energy,Environ. HealthRep.Ser., AarhusUniv.,National Environ.Res. Inst.,Roskilde, 98 pp.

Carstensen J., HenriksenP., 2009,Phytoplankton biomassresponseto nitrogen inputs:amethod forWFD boundarysetting appliedtoDanish coastal waters,Hydrobiologia, 633 (1),137-149, http://dx.doi.org/10.1007/s10750-009-9867-9

ChangT. Y., 1984, Rainand snow scavenging of HNO3vapour in the atmosphere, Atmos.Environ., 18 (1),191-197, http://dx.doi.org/10.1016/0004-6981(84)90242-7

ChangT. Y.,1986,Estimates of nitrateformationinrainand snow systems, J. Geophys.Res.,91 (D2),2805-2818, http://dx.doi.org/10.1029/JD091iD02p02805 Corbett J. J., WinebrakeJ. J, Green E. H., Kasibhatla P.,Eyring V.,Lauer A.,2007, Mortality from shipemissions: A globalassessment, Environ. Sci. Technol.Lett., 41 (24),8512-8518, http://dx.doi.org/10.1021/es071686z

EEA, 2012, AirBase - the Europeanair quality database, [http://www.eea.europa,eu/data-and-maps/figures]. EEA, 2013, TheimpactofinternationalshippingonEuropeanairqualityand climate forcing,Tech.Rep.No4/2013, European Environ.Agency,84 pp., http://dx.doi.org/10.2800/75763

GeelsC., HansenK. M., ChristensenJ. H., AmbelasSkjothC., EllermannT., Hedegaard G. B., HertelO., FrohnL. M.,GrossA., BrandtJ., 2011, The projected change in atmospheric nitrogen deposition to the BalticSea towards 2020,Atmos.Chem.Phys.Discuss.,11 (7),21 533-21 567, http://dx.doi.org/10.5194/acpd-11-21533-2011

HELCOM, 2011, FifthBalticSeapollution load compilation,BalticSea Environ. Proc., No.128., 217 pp.

Hertel O., Ambelas Skjoth C., Brandt J., Christensen J. H.,Frohn M.,Frydendall J.,2003, Operational mappingofatmosphericnitrogendeposition tothe Baltic Sea, Atmos.Chem. Phys., 3 (6), 2083-2099, http://dx.doi.org/10.5194/acp-3-2083-2003

Hesstvedt E., HovØ., Isaksen S. A., 1978, Quasi-steady-stateapproximationsin air pollution modelling:Comparisonof two numerical schemes for oxidant prediction,Int. J. Chem.Kinet., 10 (9),971-994, http://dx.doi.org/10.1002/kin.550100907

HongistoM.,2012, Origin andpossibleeffectsofepisodic nutrientdeposition events overtheBalticSea,Int. J. Environ.Pollut.,50 (1/2/3/4),293-307.

Hongisto M., 2011, Variabilityof the marineboundary layer parameters over the Baltic Sea sub-basins and their impact on the nitrogen deposition, Oceanologia, 53 (1-T1), 391-413.

HongistoM.,2005, Uncertainties inthemeteorologicalinputoftheChemistry- Transport Modelsand someexamples of their consequences,Int. J. Environ. Pollut., 24 (1/2/3/4), 127-153, http://dx.doi.org/10.1504/IJEP.2005.007390

Hongisto M., 2003, Modelling of the transport of nitrogen and sulphur contaminants to the Baltic Sea Region,FMIContribut. No. 40, Helsinki,188 pp.

Hongisto M., 1998, Hilatar,a regional scale grid model for the transport of sulphur and nitrogen compounds,FMIContribut.No 21, Helsinki,152 pp.

Hongisto M., Joffre S., 2005, Meteorological and climatological factors affecting the transport and deposition of nitrogen compounds over the Baltic Sea, Boreal Environ. Res., 10 (1),1-17.

Iversen T., Saltbones J., Sandnes H., Eliassen A., Hov Ø., 1989, Airborne transboundary transport of sulphur and nitrogen over Europe- Model descriptionsand calculations,EMEP MSC-W Rep. 2/89. DNMI, Oslo.

JalkanenJ.-P., BrinkA., KalliJ., Pettersson H., KukkonenJ., StipaT., 2009, A modellingsystem for theexhaustemissions ofmarine tra?c andits application inthe BalticSeaarea,Atmos.Chem.Phys.,9 (23),9209-9223, http://dx.doi.org/10.5194/acp-9-9209-2009

Jalkanen J.-P., Johansson L., Kukkonen J., Brink A., Kalli J., Stipa T., 2012, Extension of an assessment modelof ship tra?c exhaustemissions for particulate matter and carbon monoxide,Atmos.Chem.Phys.,12 (5),2641-2659, http://dx.doi.org/10.5194/acp-12-2641-2012

Jonsen J. E., Berge E., 1995, Some preliminaryresults on transport and deposition of nitrogen compounds by use of the Multilayer EulerianModel, EMEP/MSC- W, Note 4/95, 25 pp.

Jonson J. E., Tarrasón L., BartnickiJ., 2000, Effectsof internationalshipping on Europeanpollution levels,EMEP/MSC-W, Note 5/00, 24 pp.

Langner J., Andersson C., Enghardt M., 2009, Atmosphericinput of nitrogen to the BalticSea basin:Presentsituation,variability due to meteorology and impact of climate change,Boreal Environ. Res., 14, 226-237.

LindforsV.,JoffreS. M.,DamskiJ., 1991, Determination ofthewetanddry deposition of sulphur and nitrogen compounds over the BalticSea using actual meteorological data,FMIContrib. 4.

MACC, 2011, MACC European emissioninventory for the Years 2003-2007,TNO Rep. TNO-060-UT-2100-00588.

Neff J. C., Holland E. A., Dentener F. J., McDowell W. H., Russell K. M., 2002, The origin, compositionand rates of organic nitrogen deposition:Amissingpiece of the nitrogen cycle?, Biogeochemistry,57/58, 99-136, http://dx.doi.org/10.1023/A:1015791622742

Norilsk Nikel,2013, www.nornik.ru, http://www.kolagmk.ru,http://www.kolagmk.ru/ecology/monitoring, 34 pp. [see the link above to ppt presentation in Russian (9.12.2013)].

Plate E., 2000, Variabilität der Zusammensetzung anorganischer Aerosole- insbesondereder reaktiven Stickstoffverbindungen- inküstennahenGebieten der Nordsee und Ostsee, Diss. Erlang. Doktorgrad. Fachbereichs Chemie Univ. Hamburg, Schriftenr. Angewandte Analyt., Inst. Anorganische Angewandte Analyt. No 37, Univ. Hamburg, 215 pp.

Rolff C., Elmgren R., Voss M., 2008, Depositionof nitrogen and phosphorus on the Baltic Sea:seasonal patterns and nitrogen isotope composition, Biogeosciences, 5 (6),1657-1667, http://dx.doi.org/10.5194/bg-5-1657-2008

Ruoho-Airola T., Eilola K., Savchuk O. P., Parviainen M., Tarvainen V., 2012,Atmospheric nutrientinputtotheBaltic Sea from1850to2006: A reconstructionfrommodeling resultsand historicaldata,AMBIO, 41 (6), 549-557, http://dx.doi.org/10.1007/s13280-012-0319-9

Schulz M.,Ferm M., Hongisto M.,Jylha K., de Leeuw G., Marks R., Nadstazik A., PlateE., Tamm S., Sopauskiene D., Ulevicus V., 1999, Atmosphericnitrogen input to the BalticSea Proc.3rd Basys AnnualSci. Conf., 20-22 September 1999, C. Zuelicke (ed.),IOW, Warnemünde.

ScottB. C.,1982, Theoreticalestimatesofthescavengingcoe?cientforsoluble aerosol particles as a functionof precipitationtype,rate and altitude, Atmos. Environ.,16 (7), 1753-1762.

SillanpääM.,HillamoR.,SaarikoskiS.,FreyA.,Pennanen A.,MakkonenU., Spolnik Z.,vanGriekenR., Branis M.,Brunekreef B.,CjhalbotM.-C., KuhlbushT.,Sunyer J., KerminenV.-M., KulmalaM., Salonen R. O., 2006, Thechemical compositionand mass closure of particulate matter at six urban sites in Europe, Atmos. Environ.,40 (Suppl. 2), S212-S233, http://dx.doi.org/10.1016/j.atmosenv.2006.01.063

SilvaR. A.,West J. J.,ZhangY.,Anenberg S. A.,Lamarque J.-F.,Shindell D. T., Collins W. J., DalsorenS., FaluvegiG.,Folberth G.,HorowitzL. W., Nagashima T., Naik V.,Rumbold S.,SkeieR.,SudoK.,TakemuraT., BergmannD., Cameron-Smith P.,Cionni I., Doherty R. M., EyringV., Josse B., MacKenzie I. A., Plummer D., Righi M., StevensonD. S., Strode S., Szopa S., Zeng G.,2013, Globalpremature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change, Environ.Res. Lett., 8 (3), 034005, http://dx.doi.org/10.1088/1748-9326/8/3/034005

SvendsenL. M., StaafH., GustafssonB., PyhäläM., KotilainenP.,Batrnicki J., Knuuttila S., Durkin M., 2013, Review of the fifth Baltic Sea pollution load compilation for the 2013 HELCOM ministerial meeting, Baltic Sea Environ. Proc. No. 141, Helsinki Comm.

StipaT.,Jalkanen J.-P.,HongistoM.,KalliJ.,BrinkA.,2007,Emissionsof NOxfrom Balticshippingandfirstestimatesoftheireffectsonairquality and eutrophication of the BalticSea, 33 pp., [https://helda.helsinki.fi/handle/10138/1209 (9.12.2013)].

Tuovinen J.-P.,1992,A dispersion modelof air pollutantsbasedon theK theory of turbulent diffusion,Teknillinenkorkeakoulu,Teknillisenfysiikan koulutusohjelma, Diplomityö, 109 pp., (in Finnish).

Unden P.,Rontu L., Järvinen H., 2002, HIRLAM-5 Final Report,146 pp., [http://www.hirlam.org (9.12.2013)].

WinebrakeJ. J., Corbett J. J., Green E. H., LauerA., EyringV., 2009, Mitigating the health impactsofpollutionfromoceangoing shipping: Anassessmentof low-sulfurfuelmandates, Environ.Sci.Technol., 43 (13),4776-4782, http://dx.doi.org/10.1021/es803224q

full, complete article (PDF, 3605 KB)

Inorganic constituents in surface runoff from urbanised areas in winter: the case study of the city of Brest, Belarus
Oceanologia 2014, 56(2), 373-383

Ina Bulskaya1, Aliaksandr Volche2
1Department of Chemistry, A.S. Pushkin Brest State University,
Boulevard Kosmonavtov 21, 224016 Brest, Republic of Belarus;
e-mail: inabulskaya@gmail.com
2Faculty of Water Supply Systems and Soil Conservation, Brest State Technical University,
Moskovskaya str. 267, Brest, Republic of Belarus;
e-mail: volchak@tut.by

keywords: Snowmelt, surface runoff, pollution, Baltic Sea catchment area, climate variables, phytoplankton, benthos

Received 25 October 2013, revised 7 March 2014, accepted 14 March 2014.


The aim of this paper was to study the inorganic constituents of snow and snowmelt surface runoff in a case study of the city of Brest and to indicate components that could pose a threat to the environment. Samples of snow and snowmelt runoff were analysed for the following parameters: total suspended solids, pH, the contents of nitrate, phosphate and ammonium ions, and of heavy metals. The concentrations of most of these pollutants were higher in the snowmelt runoff than in snow. The concentrations of pollutants in the snowmelt surface runoff exceeded the levels established by national regulations (maximum permissible concentrations).

  References ref

AleshkaV. I.,1997,Collection ofmeasurementtechniques allowedforusein operation oflaboratories ofenvironmentalmonitoring ofindustries and organizations of Republic of Belarus,Min. Nat. Res.Environ. Prot., Belorussian Sci. Res. Cent. ‘Ecology’, Minsk,282 pp., (in Russian).

APHA - American PublicHealth Association, 1992, Standard methods for the examination of watersand wastewatersincluding bottomsediments and sludges,12th edn., Am.Publ. Health Assoc.,650 pp.

BartlettA. J., Rochfort Q., Brown L. R., Marsalek J., 2012, Causes of toxicityto Hyalella azteca in a storm water management facility receiving highway runoff and snowmelt.Part1: Polycyclic aromaticsand metals,Sci. TotalEnviron., 414, 227-237, http://dx.doi.org/10.1016/j.scitotenv.2011.11.041

Bäckström M., Karlsson S., Bäckman L., Folkeson L., Lind B., 2004, Mobilisation of heavy metals by deicing salts in a roadside environment, Water Res., 38 (3), 720-732, http://dx.doi.org/10.1016/j.watres.2003.11.006

ButtleJ. M.,Xu F.,1988, Snowmeltrunoffinsuburban environments, Nordic Hydrology, 19, 19-40.

Cañedo-Arguëlles M., Kefford B. J., Piscart C., Prat N., Schäfer R. B., Schulz C.-J., 2013, Salinisationof rivers:Anurgent ecological issue,Environ. Pollut., 173, 157-167, http://dx.doi.org/10.1016/j.envpol.2012.10.011

Chouli E.,AftiasE., DeutschJ. C., 2007, Applyingstormwater management in Greekcities: Learningfromthe Europeanexperience,Desalination,210, 61-68, http://dx.doi.org/10.1016/j.desal.2006.05.033

HanY.,LauS.-L.,Kayhanian M.,StenstromM. K.,2006, Characteristics of highway storm waterrunoff, WaterEnviron.Resour., 78 (12), 2377-2388, http://dx.doi.org/10.2175/106143006X95447

LoginovV. F., 2012, Thestate ofenvironmentinBelarus,Environ.Bull. 2011, Nat.Acad. Sci.,Min. Natur. Resour. Environ. Protect.,(in Russian).

LoginovV. F., 2011, Thestate ofenvironmentinBelarus,Environ.Bull. 2010, Nat.Acad. Sci.,Min. Natur. Resour. Environ. Protect.,(in Russian). LoginovV. F., 2010, Thestate ofenvironmentinBelarus,Environ.Bull. 2009, Nat.Acad.Sci.,Min. Natur. Resour. Environ. Protect.,(in Russian).

LoginovV. F., 2009, Thestate ofenvironmentinBelarus,Environ.Bull. 2008, Nat.Acad. Sci.,Min. Natur. Resour. Environ. Protect.,(in Russian). Marsalek J., 2003, Road salts inurban storm water:an emerging issueinstorm water management in cold climates,Water Sci. Technol., 48 (9),61-70.

Marsalek J., RochfortQ., GrapentineL., 2005, Aquatichabitat issuesinurban storm water management:challenges and potential solutions, Ecohydrol. Hydrobiol., 5, 269-279.

Parikh P., Taylor M. A., Hoagland T., Thurston H., Shuster W., 2005, Application of market mechanism and incentives to reduce stormwaterrunoff: an integrated hydrologic, economicand legal approach,Environ. Sci. Policy, 8 (2), 133-144, http://dx.doi.org/10.1016/j.envsci.2005.01.002

Perera N., Gharabaghi B., Howard K., 2013, Groundwater chloride response in the Highland Creekwatershed due to road salt application:Are-assessmentafter 20years, J. Hydrology, 479,159-168, http://dx.doi.org/10.1016/j.jhydrol.2012.11.057

Regulation MNREP& MHP,2007, Someissuesof water quality regulation in fish breeding water bodies, No. 43/42, Reg. Min. Nat. Res. Environ. Protect. Repub. Belarus,Min. HealthProtect. Repub.Belarus,67 pp., (in Russian).

RogerS.,Montreyaud-VignolesM.,AndralM. C.,HerremansL.,Fortune J. P., 1998, Mineral, physicalandchemicalanalysisofthe solidmater carriedby motorway runoff water, WaterRes., 32 (4),1119-1125, http://dx.doi.org/10.1016/S0043-1354(97)00262-5

Shchukin I. S.,MelexinA. G., Qualitative composition ofsurfacerunofffrom territory of Perm,4 Herald PNIPU, Urbanistics, 110-118, (in Russian).

StrukM. I.,KachanovskyS. B.,LoginovV. F., 2002,Naturalenvironment of Belarus, NOOO‘BIS-P’, 422 pp., (in Russian).

Sujkova N. V., Brianskaya U. V., Borovkov V. S., 2012, Qualitiesof fine suspended solidsand theirimpactonriverbedprocessesandself-purificationofriver water, WaterResour.,39 (2), 186-194, (in Russian).

TCGP - TechnicalCode of Good Practice, 2012a, Environmentalprotectionand nature.The procedure for establishing standards for discharging chemical and other substances with waste waters, 17.06-08-2012 (02120), 75 pp., (in Russian).

TCGP - TechnicalCode of GoodPractice, 2012b, Systemsofraincanalization. Engineeringnorms, 45-4.01-57-2012 (02250), 35 pp., (in Russian).

Volchek A. A., YaromskyV. N., Mikhalchukn. V., Kalinin M. Y., 2005, Mukhavets: Encyclopediaof the small river, Academy,Brest,344 pp., (in Russian).

WesterlundC., Viklander M.,2006,Particles andassociatedmetalsin road runoff during snowmelt and rainfall, Sci. TotalEnviron.,362 (1-3), 143-156, http://dx.doi.org/10.1016/j.scitotenv.2005.06.031

full, complete article (PDF, 294 KB)

Adapting flood preparedness tools to changing flood risk conditions: the situation in Poland
Oceanologia 2014, 56(2), 385-407

Zbigniew W. Kundzewicz1,2
1Institute of Agricultural and Forest Environment, Polish Academy of Sciences,
Bukowska 19, 60-809 Poznań, Poland;
e-mail: zkundze@man.poznan.pl
2Potsdam Institute for Climate Impact Research,
Telegrafenberg, D-14412 Potsdam, Germany;
e-mail: zbyszek@pik-potsdam.de

keywords: Natural hazards, floods, risk, adaptation, Poland

Received 25 October 2013, revised 27 January 2014, accepted 31 January 2014.

The preparation of this paper was funded from the EU FP7 STAR-FLOOD Project (STrengthening And Redesigning European FLOOD risk practices: Towards appropriate and resilient flood risk governance arrangements). This project also provided funding for the author's participation at the BALTEX Conference.


Flooding is the most destructive natural hazard in the Baltic Sea Basin in general and in Poland in particular. The notion includes floods from rivers and mountain torrents, as well as floods from sea surges in coastal areas, and floods from sewage systems. There have been several large floods in Poland in the last century and in recent decades, with damage exceeding 1% of the Polish GDP. The spatial and temporal characteristics of the flood risk in Poland are reviewed and observations and projections of changes in the flood hazard in the country are discussed. Furthermore, flood defences and flood preparedness systems in Poland are examined, with particular reference to the European Union (EU) Floods Directive, which is being implemented in Poland, an EU country. Finally, the public debate on flood risk and flood preparedness is reviewed.

  References ref

CEC(Commissionof European Communities),2007, DirectiveoftheEuropean Parliament and of the Council on the Assessment and Managementof Floods, Brussels. CyberskiJ.,GrześM.,Gutry-KoryckaM.,NachlikE.,KundzewiczZ. W.,2006, History of floodsontheRiver Vistula, Hydrol. Sci.J., 51 (5), 799–817, http://dx.doi.org/10.1623/hysj.51.5.799

Kundzewicz Z. W., 2009, Adaptation to floods and droughts in the Baltic Sea basin under climate change, Boreal Environ.Res., 14 (1), 193–203.

Kundzewicz Z. W., DobrowolskiA., LorencH., NiedźwiedźT., Pińskwar I., Kowalczak P.,2012, Floods in Poland,[in:] Changesin floodrisk in Europe, Z. W. Kundzewicz(ed.), IAHS Spec. Pub.No. 10, 319–334.

KundzewiczZ. W.,LugeriN.,DankersR.,Hirabayashi Y.,DöllP.,Pińskwar I.,Dysarz T.,Hochrainer S.,MatczakP.,2010,Assessingriverfloodrisk andadaptation in Europe –reviewofprojections forthefuture, Mitig. Adapt.Strateg.Glob.Change, 15 (7),641–656, http://dx.doi.org/10.1007/s11027-010-9213-6

KundzewiczZ. W.,MataL. J.,Arnell N., DöllP.,Jiménez B., Miller K., Oki T., Şen Z., Shiklomanov I., 2008, The implicationsof projected climatechange for freshwaterresourcesand their management, Hydrol. Sci. J.,53 (1), 3–10.

Kundzewicz Z. W., Mata L. J., Arnell N., Döll P., KabatP., Jiménez B., MillerK.,OkiT.,Şen Z.,ShiklomanovI.,2007, Freshwaterresourcesand their management, [in:]Climate change 2007:impacts,adaptation and vulnerability,M. L. Parry, O. F. Canziani,J. P. Palutikof, C. E. Hanson & P. J. vander Linden(eds.),Working Group IIto the FourthAssessment Report of the Intergovernmental Panelon Climate Change, Cambridge Univ.Press, Cambridge, 173–210.

Kundzewicz Z. W., Schnellhuber H.-J., 2004, Floods in the IPCCTAR perspective, Nat.Hazards,31 (1),111–128, http://dx.doi.org/10.1023/B:NHAZ.0000020257.09228.7b

KundzewiczZ. W.,SzamałekK.,KowalczakP., 1999, Thegreatfloodof1997 in Poland, Hydrol. Sci. J.,44 (6),855–870, http://dx.doi.org/10.1080/02626669909492285

Kurczyński Z., 2012, Mapy zagrożenia powodziowego i mapy ryzykapowodziowego, a Dyrektywa Powodziowa,Arch.Fotogram.,Kartogr.Teledet.,23, 209–217.

MillyP. C. D., BetancourtJ., FalkenmarkM., Hirsch R. M., KundzewiczZ. W., Lettenmaier D. P., Stouffer R. J., 2008, Stationarityis dead: whither water management?, Science, 319 (5863), 573–574, http://dx.doi.org/10.1126/science.1151915

NiedźwiedźT.,Łupikasza E., Pińskwar I.,Kundzewicz Z. W., Stoffel M., Małarzewski M., 2014, Climatologicalbackground of floodsin the northern foothills of the Tatra Mountains, Theor. Appl.Climatol., (in press).

Pińskwar I., 2009, Projekcjezmianw ekstremachopadowych w Polsce (Projections of changes in precipitation extremesin Poland),Ph. D.thesis, Univ.Life Sci., Poznań.

PruszakZ.,2000, Implication ofacceleratedsea-levelrise(ASLR) forPoland, [in:] Europeanvulnerabilityand adaptationto impactsof accelerated sea-level rise(ASLR), Proc. SURVASExpertWorkshop, A. C. delaVega-Leinert, R. J. Nicholls & R. S. J. Tol(eds.), Univ.Hamburg,FHRC, Middlesex Univ., Hamburg.

Pruszak Z., Zawadzka E., 2008, Potentialimplicationsof sea-level-rise for Poland, J. Coastal Res., 24 (2),410–422, http://dx.doi.org/10.2112/07A-0014.1

Seneviratne S. I., Nicholls N.,Easterling D., Goodess C. M., KanaeS., Kossin J., LuoY., Marengo J., McInnesK., RahimiM., ReichsteinM., Sorteberg A., Vera C., Zhang X., 2012, Changes in climate extremes and their impacts on the natural physical environment, [in:] Managing the risks of extreme events and disastersto advanceclimatechange adaptation,C. B. Field, V. Barros, T. F. Stocker, D.Qin,D. J. Dokken, K. L. Ebi,M. D. Mastrandrea, K. J. Mach,G.- K.Plattner,S. K. Allen,M. Tignor & P. M. Midgley (eds.),A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), Cambridge Univ. Press, Cambridge, New York, 109–230.

Wiśniewski B., Wolski T., 2011, Physical aspects of extremestormsurges and falls onthe Polishcoast,Oceanologia,53 (1–TI),373–390, http://dx.doi.org/10.5697/oc.53-1-TI.373

Zajączkowski M., Darecki M., Szczuciński W., 2010, Reporton the developmentof the Vistula river plume in the coastal waters of the Gulf of Gdańsk during the May2010 flood,Oceanologia, 52 (2),311–317, http://dx.doi.org/10.5697/oc.52-2.311

ZeidlerR. B.,1997, Climatechangevulnerabilityandresponsestrategiesforthe coastalzoneofPoland,ClimaticChange,36 (1–2),151–173, http://dx.doi.org/10.1023/A:1005394909182

Zolina O., 2012, Changes in intenseprecipitation in Europe, [in:] Changes in flood risk in Europe, Z. W. Kundzewicz (ed.),IAHS Spec. Pub.No. 10, 97–120.

full, complete article (PDF, 219 KB)