Oceanologia No. 55 (4) / 13




Synoptic conditions governing upwelling along the Polish Baltic coast
Oceanologia 2013, 55(4), 767-785

Ewa Bednorz1, Marek Półrolniczak1, Bartosz Czernecki1,2
1Adam Mickiewicz University, Department of Climatology,
Dzięgielowa 27, 61-680 Poznań, Poland;
e-mail: ewabedno@amu.edu.pl
e-mail: marekpol@amu.edu.pl
2Institute of Meteorology and Water Management,
National Research Institute, Centre for Poland's Climate Monitoring,
Podleśna 61, 01-673 Warsaw, Poland;
e-mail: nwp@amu.edu.pl

keywords: upwelling, Baltic Sea, atmospheric circulation

Received 4 February 2013, revised 21 May 2013, accepted 12 June 2013.


The study analyses atmospheric feedback to the occurrence of upwelling along the Polish Baltic coast. Upwelling events were identified on the basis of daily mean sea surface temperature (SST) maps from the period 1982-2010 derived from the NOAA OI SST V2 High Resolution Dataset. Synoptic conditions favourable to the occurrence of upwelling were determined on the basis of the NCEP/NCAR reanalysis data. On average, there are approximately 23 days with upwelling each year along the Polish Baltic coast, which account for approximately 13% of the warm period (April-September). The pressure pattern with an anticyclone centred over Scandinavia and extending over northern Europe induces a north-easterly flow of air along the Polish Baltic coast, which causes upwelling. Such a circulation pattern is accompanied by positive air temperature anomalies. The opposite pressure conditions, during which a trough of low pressure encompasses Scandinavia, cause a westerly flow over the southern part of the Baltic basin, which effectively inhibits upwelling along the Polish Baltic coast.

  References ref

Barnston A. G., Livezey R.E., 1987, Classification, seasonality and persistence of low-frequency atmospheric circulation patterns, Mon. Weather Rev., 115(6), 1083-1126, http://dx.doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2

Bednorz E., 2011, Synoptic conditions of snow cover occurrence in central European lowlands, Int. J. Climatol., 31(8), 1108-1118, http://dx.doi.org/10.1002/joc.2130

Birkeland K.W., Mock C.J., 1996, Atmospheric circulation patterns associated with heavy snowfall events, Bridger Bowl, Montana U.S.A., Mt. Res. Dev., 16(3), 281-286, http://dx.doi.org/10.2307/3673951

Bychkova I., Viktorov S., 1987, Use of satellite data for identification and classification of upwelling in the Baltic Sea, Oceanology, 27(2), 158-162.

Bychkova I., Viktorov S., Shumakher D., 1988, A relationship between the large scale atmospheric circulation and the origin of coastal upwelling in the Baltic, Meteorol. Gidrol., 10(9), 1-98, (in Russian).

Choiński A., 2011, Przykłady upwellingów w Zatoce Koszalińskiej, Bad. Fizjogr. Ser. A - Geogr. Fiz., A 62, 7-16.

Dayan U., Tubia A., Levy I., 2012, On the importance of synoptic classification methods with respect to environmental phenomena, Int. J. Climatol., 32(5), 681-694, http://dx.doi.org/10.1002/joc.2297

Esteban P., Jones P.D., Martin-Vide J., Mases M., 2005, Atmospheric circulation patterns related to heavy snowfall days in Andorra, Pyrenees, Int. J. Climatol., 25(3), 319-329, http://dx.doi.org/10.1002/joc.1103

Hurrell J.W., Deser C., 2009, North Atlantic climate variability: the role of the North Atlantic Oscillation, J. Marine Syst., 78(1), 28-41, http://dx.doi.org/10.1016/j.jmarsys.2008.11.026

Jankowski A., 2002, Variability of coastal water hydrodynamics in the southern Baltic - hindcast modelling of an upwelling event along the Polish coast, Oceanologia, 44(4), 395-418.

Kalkstein L.S., Tan G., Skindlov J.A., 1987, An evaluation of three Clustering procedures for use in synoptic climatological classification, J. Clim. Appl. Meteorol., 26(6), 717-730, http://dx.doi.org/10.1175/1520-0450(1987)026<0717:AEOTCP>2.0.CO;2

Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Leetmaa A., Reynolds R., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Jenne R., Joseph D., 1996, The NMC/NCAR 40-Year Reanalysis Project, B. Am. Meteorol. Soc., 77(3), 437-471, http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

Kowalewski M., Ostrowski M., 2005, Coastal up- and downwelling in the southern Baltic, Oceanologia, 47(4), 453-475.

Krężel A., Ostrowski M., Szymelfenig M., 2005, Sea surface temperature distribution during upwelling along the Polish Baltic coast, Oceanologia, 47(4), 415-432.

Lehmann A., Krauss W., Hinrichsen H.H., 2002, Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea, Tellus A, 54(3), 299-316, http://dx.doi.org/10.1034/j.1600-0870.2002.00289.x

Lehmann A., Myrberg K., 2008, Upwelling in the Baltic Sea - a review, J. Marine Syst., 74(S), 3-12, http://dx.doi.org/10.1016/j.jmarsys.2008.02.010

Lehmann A., Myrberg K., Höflich K., 2012, A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990-2009, Oceanologia, 54(3), 369-393, http://dx.doi.org/10.5697/oc.54-3.369

Myrberg K., Andrejev O., 2003, Main upwelling regions in the Baltic Sea - a statistical analysis based on three-dimensional modelling, Boreal Environ. Res., 8(2), 97-112.

NOAA, 2010, High resolution SST data products from PSD, [http://www.esrl.noaa.gov/psd/].

Paszyński J., Niedźwiedź T., 1999, Klimat, [in:] Geografia Polski - środowisko przyrodnicze, L. Starkel (ed.), Wyd. Nauk. PWN, Warszawa, 669 pp.

Reynolds R.W., Smith T.M., 1994, Improved global sea surface temperature analyses using optimum interpolation, J. Climate, 7(6), 929-948, http://dx.doi.org/10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2

Reynolds R.W., Smith T.M., Liu C., Chelton D. B., Casey K.S., Schlax M.G., 2007, Daily high-resolution-blended analyses for sea surface temperature, J. Climate, 20(22), 5473-5496, http://dx.doi.org/10.1175/2007JCLI1824.1

Siegel H., Gerth M., Tschersich G., 2006, Sea surface temperature development of the Baltic Sea in the period 1990-2004, Oceanologia, 48(S), 119-131.

Tomczak M., Godfrey J., 1994, Regional oceanography: introduction, Pergamon Press, Oxford, 422 pp.

Urbański J.A., 1995, Upwellings of the Polish coast of the Baltic Sea, Prz. Geofiz., 40(2), 141-153, (in Polish).

Vahtera E., Laanemets J., Pavelson J., Huttunen M., Kononen K., 2005, Effect of upwelling on the pelagic environment and bloom-forming cyanobacteria in the western Gulf of Finland, Baltic Sea, J. Marine Syst., 58(1-2), 67-82, http://dx.doi.org/10.1016/j.jmarsys.2005.07.001

Ward J.H., 1963, Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc., 58(301), 236-244, http://dx.doi.org/10.1080/01621459.1963.10500845

Wilks D.S., 1995, Statistical methods in the atmospheric sciences: an introduction, Int. Geophys. Ser. Vol. 59, Acad. Press, San Diego, CA, 464 pp.

Yarnal B., 1993, Synoptic climatology in environmental analysis, Belhaven Press, London, 20 pp.

Yarnal B., Comrie A.C., Frakes B., Brown D.P., 2001, Developments and prospects in synoptic climatology, Int. J. Climatol., 21(5), 1923-1950, http://dx.doi.org/10.1002/joc.675

Zalewski M., Ameryk A., Szymelfenig M., 2005, Primary production and chlorophyll a concentration during upwelling events along the Hel Peninsula (the Baltic Sea), Ocean. Hydrobiol. Stud., 34(2), 97-113.

full, complete article (PDF - compatibile with Acrobat 4.0), 4613 KB

Seasonal variability in the Baltic Sea level
Oceanologia 2013, 55(4), 787-807

Małgorzata Stramska1, Halina Kowalewska-Kalkowska2,*, Marek Świrgoń2
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland;
e-mail: stramska@iopan.gda.pl
*corresponding author
2University of Szczecin, Department of Earth Sciences,
A. Mickiewicza 16, 70-383 Szczecin, Poland

keywords: Baltic Sea, regional oceanography, marginal and semi-enclosed seas, Sea level: variations and mean

Received 15 April 2013, revised 18 June 2013, accepted 9 July 2013.

This work was supported through the SatBałtyk project funded by the European Union through the European Regional Development Fund, (contract No. POIG.01.01.02-22-011/09 entitled "The satellite monitoring of the Baltic Sea environment").


Sea level is subject to spatial and temporal variability on different scales. In this paper we investigate seasonal variability in the open Baltic Sea level using daily satellite altimetry data for the period 1 January 1993-31 December 2010. Our results indicate that there is a well-pronounced seasonal cycle in the 18-year average sea level and in its standard deviation. The average annual SLA amplitude in the open Baltic Sea is about 18 cm. The seasonal cycle of the SLA in the Baltic Sea is asymmetric in shape. In the autumn and winter (about 240-260 days per year), the 18-year average daily SLA are higher than the 18-year annual average SLA. In the spring and summer (about 100-120 days per year), the 18-year average daily SLA are lower than the 18-year annual average SLA. A similar asymmetry of the seasonal cycle is not observed in the North Sea and North Atlantic SLA data. The annual pattern of the sea level variability in the Baltic Sea is evident if one considers multi-year average time series, but the cycle can be obscured in some years.

  References ref

Andersson H.C., 2002, Influence of long-term regional and large-scale atmospheric circulation on the Baltic sea level, Tellus A, 54(1), 76-88, http://dx.doi.org/10.1034/j.1600-0870.2002.00288.x

Bouffard J., Roblou L., Birol F., Pascual A., Fenoglio-Marc L., Cancet M., Morrow R., Ménard Y., 2011, Introduction and assessment of improved altimetry strategies: case study over the North Western Mediterranean Sea, [in:] Coastal altimetry, S. Vignudelli, A.G. Kostianoy, P. Cipollini & J. Benveniste (eds.), Springer Publ., 1st edn., 297-330, http://dx.doi.org/10.1007/978-3-642-12796-0

Bouffard J., Vignudelli S., Cipollini P., Menard Y., 2008, Exploiting the potential of an improved multimission altimetric dataset over the coastal ocean, Geophys. Res. Lett., 35, L10601, http://dx.doi.org/10.1029/2008GL033488

Church J.A., White N.J., 2006, A 20th century acceleration in global sea level rise, Geophys. Res. Lett., 33, L01602, http://dx.doi.org/10.1029/2005GL024826

Church J.A., Woodworth P.L., Aarup T., Wilson W. S. (eds.), 2010, Understanding sea-level rise and variability, Wiley-Blackwell, Chichester, Oxford, Hoboken, 456 pp.

Cotton D., Allan T., Menard Y., le Traon P.Y., Cavaleri L., Doombos E., Challenor P., 2004, Global altimeter measurements by leading Europeans, requirements for future satellite altimetry, Tech. Rep. European Project EVR1-CT2001-20009, Brussels, 47 pp.

Dangendorf S., Wahl T., Hein H., Jensen J., Mai S., Mudersbach C., 2012, Mean sea level variability and influence of the North Atlantic Oscillation on long-term trends in the German Bight, Water 2012, 4(1), 170-195, http://dx.doi.org/10.3390/w4010170

Donnelly C., Strömqvist J., Arheimer B., 2011, Modelling climate change effects on nutrient discharges from the Baltic Sea catchment: processes and results, Proc. Symp. H04, IUGG2011, Melbourne, Australia, July 2011, (IAHS Publ. 3XX, 2011).

Donner R.V., Ehrcke R., Barbosa S.M., Wagner J., Donges J.F., Kurths J., 2012, Spatial patterns of linear and nonparametric long-term trends in Baltic sea-level variability, Nonlinear Proc. Geoph., 19(1), 95-111, http://dx.doi.org/10.5194/npg-19-95-2012

Ekman M., 2009, The changing level of the Baltic Sea during 300 years: a clue to understanding the Earth, Summer Inst. Histor. Geophys., Aland Islands, 168 pp.

Ekman M., Makinen J., 1996, Mean sea surface topography in the Baltic Sea and its transition area to the North Sea: a geodetic solution and comparisons with oceanographic models, J. Geophys. Res.-Oceans, 101(C5), 11993-11999, http://dx.doi.org/10.1029/96JC00318

Ekman M., Stigebrandt A., 1990, Secular change of the seasonal variation in sea level and of the pole tide in the Baltic Sea, J. Geophys. Res.-Oceans, 95(C5), 5379-5383, http://dx.doi.org/10.1029/JC095iC04p05379

Gross R.S., 2000, The excitation of the Chandler wobble, Geophys. Res. Lett., 27(15), 2329-2332, http://dx.doi.org/10.1029/2000GL011450

Gustafsson B.G., Andersson H.C., 2001, Modeling the exchange of the Baltic Sea from the meridional atmospheric pressure difference across the North Sea, J. Geophys. Res.-Oceans, 106(69), 1973119744, http://dx.doi.org/10.1029/2000JC000593

HELCOM, 2009, Eutrophication in the Baltic Sea - an integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region, Balt. Sea Environ. Proc. No. 115B, 148 pp.

Horton R., Herweijer C., Rosenzweig C., Liu J., Gornitz V., Ruane A.C., 2008, Sea level rise projections for current generation CGCMs based on the semi-empirical method, Geophys. Res. Lett., 35(2), http://dx.doi.org/10.1029/2000JC000593

Hunicke B., Luterbacher J., Pauling A., Zorita E., 2008, Regional differences in winter sea-level variations in the Baltic Sea for the past 200 years, Tellus A, 60(2), 384-393, http://dx.doi.org/10.1111/j.1600-0870.2007.00298.x

Hunicke B., Zorita E., 2006, Influence of temperature and precipitation on decadal Baltic Sea level variations in the 20th century, Tellus A, 58(1), 141-153, http://dx.doi.org/10.1111/j.1600-0870.2006.00157.x

Hunicke B., Zorita E., 2008, Trends in the amplitude of Baltic Sea level annual cycle, Tellus A, 60(1), 154-164, http://dx.doi.org/10.1111/j.1600-0870.2007.00277.x

IPCC, 2007, Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change, [in:] Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor & H.L. Miller (eds.), Cambridge Univ. Press, Cambridge, New York, 996 pp.

Jevrejeva S., Moore J.C., Woodworth P.L., Grinsted A., 2005, Influence of largescale atmospheric circulation on European sea level: results based on the wavelet transform method, Tellus A, 57(2), 183-193, http://dx.doi.org/10.1111/j.1600-0870.2005.00090.x

Leppäranta M., Myrberg K., 2009, Physical oceanography of the Baltic Sea, Springer-Praxis, Chichester, 378 pp., http://dx.doi.org/10.1007/978-3-540-79703-6

Leuliette E., Nerem S.R., Mitchum T., 2004, Calibration of TOPEX/Poseidon and Jason altimeter data to construct a continuous record of mean sea level change, Mar. Geod., 27(1-2), 79-94, http://dx.doi.org/10.1080/01490410490465193

Łabuz T.A., Kowalewska-Kalkowska H., 2011, Coastal erosion caused by the heavy storm surge of November 2004 in the southern Baltic Sea, Climate Res., 48(1), 93-101, http://dx.doi.org/10.3354/cr00927

Madsen K.S., Høyer J.L., Tscherning C.C., 2007, Near-coastal satellite altimetry: sea surface height variability in the North Sea-Baltic Sea area, Geophys. Res. Lett., 34(14), L14601, http://dx.doi.org/10.1029/2007GL029965

Nerem R.S., Chambers D.P., Choe C., Mitchum G.T., 2010, Estimating mean sea level change from the TOPEX and Jason altimeter missions, Mar. Geod., 33(1), 435-446, http://dx.doi.org/10.1080/01490419.2010.491031

Omstedt A., Elken J., Lehmann A., Piechura J., 2004, Knowledge of the Baltic Sea physics gained during the BALTEX and related programmes, Progr. Oceanogr., 63(1-2), 1-28, http://dx.doi.org/10.1016/j.pocean.2004.09.001

Pattullo J., Munk W., Revelle R., Strong E., 1955, The seasonal oscillation in sea level, J. Mar. Res., 14(1), 88-113.

Peltier W.R., 1998, Postglacial variations in the level of the Sea: implications for climate dynamics and solid-earth geophysics, Rev. Geophys., 36(4), 603-689, http://dx.doi.org/10.1029/98RG02638

Peltier W.R., 2004, Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G(VM2) model and GRACE, Ann. Rev. Earth. Planet Sci., 32, 111-149, http://dx.doi.org/10.1146/annurev.earth.32.082503.144359

Plag H.P., Tsimplis M.N., 1999, Temporal variability of the seasonal sea-level cycle in the North Sea and Baltic Sea in relation to climate variability, Global Planet. Change, 20(2-3), 173-203, http://dx.doi.org/10.1016/S0921-8181(98)00069-1

Poutanen M., Stipa T., 2001, Temporal and spatial variation of the sea surface topography of the Baltic Sea, [in:] Gravity, geoid and geodynamics 2000, M.G. Sideris (ed.), IAG Internat. Symp., Vol. 123, Springer-Verlag, Berlin-Heidelberg-New York, 398 pp.

Rahmstorf S., 2007, A semi-empirical approach to projecting future sea level rise, Science, 315(5810), 368-370, http://dx.doi.org/10.1126/science.1135456

Samuelsson M., Stigebrandt A., 1996, Main characteristics of the long-term sea level variability in the Baltic Sea, Tellus A, 48(5), 672-683, http://dx.doi.org/10.1034/j.1600-0870.1996.t01-4-00006.x

Solvsteen C., Hansen C., 2006, Validation of the operational wave models WAVEWATCH-III and Mike21-OSW against satellite altimetry and coastal buoys, Royal Danish Administr. Navig. Hydrogr., Copenhagen, 53 pp.

Soudarin L., Crétaux J.F., Cazenave A., 1999, Vertical crustal motions from the DORIS space - geodesy system, Geophys. Res. Lett., 26, 1207-1210, http://dx.doi.org/10.1029/1999GL900215

Stanisz A., 2006, Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny, Vol. 1, Wyd. Statsoft Polska, Kraków, 532 pp.

Steele M., Ermold W., 2007, Steric sea level change in the Northern Seas, J. Climate, 20(3), 403-417, http://dx.doi.org/10.1175/JCLI4022.1

Stramska M., 2013, Temporal variability of the Baltic Sea level based on satellite observations, Estuarine Coast. Shelf Sci., (in press).

Stramska M., Chudziak N., 2013, Recent mutiyear trends in the Baltic Sea level, Oceanologia, 55(2), 319-337, http://dx.doi.org/10.5697/oc.55-2.319

Stramska M., Świrgoń M., 2013, Influence of atmospheric forcing and freshwater discharge on interannual variability of the vertical diffuse attenuation coefficient at 490 nm in the Baltic Sea, Remote Sens. Environ., (in press).

Tamisiea M.E., Hill E.M., Ponte R.M., Davis J.L., Velicogna I., Vinogradova N.T., 2010, Impact of self-attraction and loading on the annual cycle in sea level, J. Geophys. Res.-Oceans, 115, C07004, http://dx.doi.org/10.1029/2009JC005687

Tebaldi C., Strauss B.H., Zervas C.E., 2012, Modelling sea level rise impacts on storm surges along US coasts, Environ. Res. Lett., 7(1), 014032, http://dx.doi.org/10.1088/1748-9326/7/1/014032

Tsimplis M.N., Woodworth P.L., 1994, The global distribution of the seasonal sea level cycle calculated from coastal tide gauge data, J. Geophys. Res.-Oceans, 99(C8), 16031-16039, http://dx.doi.org/10.1029/94JC01115

Vignudelli S., Kostianoy A. G., Cipollini P., Benveniste J. (eds.), 2011, Coastal altimetry, Springer-Verlag, Berlin-Heidelberg, 578 pp., http://dx.doi.org/10.1007/978-3-642-12796-0

Vinogradov S.V., Ponte R.M., 2010, Annual cycle in coastal sea level from tide gauges and altimetry, J. Geophys. Res.-Oceans, 115(C4), C04021, http://dx.doi.org/10.1029/2009JC005767

full, complete article (PDF - compatibile with Acrobat 4.0), 1283 KB

Acoustic noise generation under plunging breaking waves
Oceanologia 2013, 55(4), 809-836

Zygmunt Klusek1, Aliaksandr Lisimenka2
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland;
e-mail: klusek@iopan.gda.pl
2Maritime Institute in Gdańsk,
Długi Targ 41/42, 80-830 Gdańsk, Poland;
e-mail: sasha@im.gda.pl

keywords: wave breaking, noise generation by breaker, wave energy dissipation

Received 15 March 2013, revised 1 August 2013, accepted 17 September 2013.

The experimental part of the work was supported by an EC grant "Transnational access to large-scale tests in the large wave flume (GWK) at the Forschungszentrum Küste (FZK)" contract No. HPRI-2001-CT-00157.


The paper presents results of investigations performed in a wave channel in order to determine associations between the dissipation of surface wave energy during breaking and acoustic noise emission.
     The experiments were carried out in fresh water in the Large Wave Flume (GWK) at the Forschungszentrum Küste (FZK) in Hanover (Germany). Relationships between the acoustic noise energy and losses of surface wave energy were estimated over the broad acoustic frequency band from 350 to 12 500 Hz, and the characteristic temporal changes of the spectral properties of noise in the breaking process were demonstrated.
   It was found that the ratio of acoustic noise energy generated during wave breaking to the energy dissipation of single plunging breakers with heights of 1.6-2.8 m were in the 10-9- 10-8 range and found to be in reasonable agreement with the results of some previous experiments performed for smaller scales of breaking wave.
   The study contributes to the development of a passive acoustic method for the parameterization of sea surface dynamic processes.

  References ref

Allen J.B., Berkley D.A., 1979, Image method for efficiently simulating small room acoustics, J. Acoust. Soc. Am., 65(4), 943-950, http://dx.doi.org/10.1121/1.382599

Andrew R.K., Farmer D.M., Kirlin R.L., 2001, Broadband parametric imaging of breaking ocean waves, J. Acoust. Soc. Am., 110(1), 150-162, http://dx.doi.org/10.1121/1.1377870

Bass S.J., Hay A.E., 1998, Ambient noise in the natural surf zone: wave breaking frequencies, IEEE OCEANS ’98 Conf. Proc., 1373-1377.

Brekhovskikh L., Lysanov Yu., 1982, Fundamentals of ocean acoustics, Springer-Verlag, New York, 279 pp., http://dx.doi.org/10.1007/978-3-662-02342-6

Carey W.M., Fitzgerald J.M., Monahan E.C., Wang Q., 1993, Measurement of the sound produced by a tipping trough with fresh and salt water, J. Acoust. Soc. Am., 93(6), 3178-3192, http://dx.doi.org/10.1121/1.405702

Cartmill J.W., Su M.Y., 1993, Bubble size distribution under saltwater and freshwater breaking waves, Dynam. Atmos. Oceans, 20(1-2), 25-31, http://dx.doi.org/10.1016/0377-0265(93)90046-A

Chanson H., Lee J.-F., 1997, Plunging jet characteristics of plunging breakers, Coast. Eng., 31(1-4), 125-141, http://dx.doi.org/10.1016/S0378-3839(96)00056-7

Chanson H., Aoki S., Hoque A., 2006, Bubble entrainment and dispersion in plunging jet flows: Freshwater versus seawater, J. Coastal Res., 22(3), 664-677, http://dx.doi.org/10.2112/03-0112.1

Deane G.B., 1997, Sound generation and air entrainment by breaking waves in the surf zone, J. Acoust. Soc. Am., 102(5), 2671-2689, http://dx.doi.org/10.1121/1.420321

Deane G.B., 2000, A model for horizontal directionality of breaking wave noise in the surf zone, J. Acoust. Soc. Am., 107(1), 177-192, http://dx.doi.org/10.1121/1.428299

Deane G.B., 2012, Surface tension effects in breaking wave noise, J. Acoust. Soc. Am., 132(2), 700-708, http://dx.doi.org/10.1121/1.4730887

Deane G.B., Stokes M.D., 1999, Air entrainment and bubble size distribution in the surf zone, J. Phys. Oceanogr., 29, 1393-1403, http://dx.doi.org/10.1175/1520-0485(1999)029<1393:AEPABS>2.0.CO;2

Deane G.B., Stokes M.D., 2002, Scale dependence of bubble creation mechanisms in breaking waves, Nature, 418, 839-844, http://dx.doi.org/10.1038/nature00967

Deane G.B., Stokes M.D., 2010, Model calculations of the underwater noise of breaking waves and comparison with experiment, J. Acoust. Soc. Am., 127(6), 3394-3410, http://dx.doi.org/10.1121/1.3419774

Ding L., Farmer D., 1993, Passive acoustical measurements of scale, probability, and intensity of wave breaking, OCEANS ’93 - Engineering in harmony with ocean, IEEE Proc., Vol. 2, II-193-197.

Ding L., Farmer D., 1994, Observations of breaking surface wave statistics, J. Phys. Oceanogr., 24, 1368-1387, http://dx.doi.org/10.1175/1520-0485(1994)024<1368:OOBSWS>2.0.CO;2

Duncan J.H., 1981, An investigation of breaking waves produced by a towed hydrofoil, Philos. T. Roy. Soc. A, 317, 331-348.

Farmer D. M., Vagle S., 1989, Waveguide propagation of ambient sound in the ocean-surface bubble layer, J. Acoust. Soc. Am., 86(5), 1897-1908, http://dx.doi.org/10.1121/1.398568

Garrett G., Li M., Farmer D., 2000, The connection between bubble size spectra and energy dissipation rates in the upper ocean, J. Phys. Oceanogr., 30, 2163-2171, http://dx.doi.org/10.1175/1520-0485(2000)030<2163:TCBBSS>2.0.CO;2

Hammad R.N.S., 1988, Simulation of noise distribution in rectangular rooms by means of computer modeling techniques, Appl. Acoust., 24, 211-228, http://dx.doi.org/10.1016/0003-682X(88)90026-6

Hollett R.D., 1994, Observations of underwater sound at frequencies below 1500Hz from breaking waves at sea, J. Acoust. Soc. Am., 95, 165-170, http://dx.doi.org/10.1121/1.408374

Kennedy R.M., 1992, Sea surface sound dipole source dependence on wave-breaking variables, J. Acoust. Soc. Am., 91(4), 1974-1982, http://dx.doi.org/10.1121/1.403681

Klusek Z., Jakacki J., 1997, On the concentrations of gas bubbles measured acoustically in the Baltic Sea - wind and time dependences, Proc. Int. Symp. Hydroacoust. Ultrasonics, EAA Symposium (formerly 13th FASE Symposium), Jurata, May 1997, A. Stepnowski &amp; E. Kozaczka (eds.), 103-108.

Kolaini A.R., Crum L.A., 1994, Observations of underwater sound from laboratory breaking waves and the implications concerning ambient noise in the ocean, J. Acoust. Soc. Am., 96(3), 1755-1765, http://dx.doi.org/10.1121/1.410254

Kolaini R., Roy A., Gardner D.L., 1994, Low-frequency acoustic emissions in fresh and salt water, J. Acoust. Soc. Am., 96(3), 1966-1772, http://dx.doi.org/10.1121/1.411323

Kolaini A.R., 1998, Sound radiation by various types of laboratory breaking waves in fresh and salt water, J. Acoust. Soc. Am., 103(1), 300-308, http://dx.doi.org/10.1121/1.421115

Lamarre E., Melville W.K., 1991, Air entrainment and dissipation in breaking waves, Nature, 351, 469-472, http://dx.doi.org/10.1038/351469a0

Loewen M.R., Melville W. K., 1991, Microwave backscatter and acoustic radiation from breaking waves, J. Fluid Mech., 224, 601-623, http://dx.doi.org/10.1017/S0022112091001891

Loewen M.R., Melville W.K., 1994, An experimental investigation of the collective oscillations of bubble plumes entrained by breaking waves, J. Acoust. Soc. Am., 95, 1329-1343, http://dx.doi.org/10.1121/1.408573

Makris N.C., Wilson J.D., 2008, Quantifying hurricane destructive power, wind speed, and air-sea material exchange with natural undersea sound, Geophys. Res. Let., 35(10), L10603, http://dx.doi.org/10.1029/2008GL033200

Manasseh R., Babanin A.V., Forbes C., Rickards K., Bobevski I., Ooi A., 2006, Passive acoustic determination of wave-breaking events and their severity across the spectrum, J. Atmos. Oceanic Technol., 23, 599-618, http://dx.doi.org/10.1175/JTECH1853.1

Massel S., 2013, Ocean surface waves: their physics and prediction, 2nd edn., World Sci., London-Singapore-New Jersey, 491 pp., http://dx.doi.org/10.1142/9789814460125_0012

Means S.L., Heitmeyer R.M., 2001, Low-frequency sound generation by an individual open-ocean breaking wave, J. Acoust. Soc. Am., 110(2), 761-767, http://dx.doi.org/10.1121/1.1379729

Means S.L., Heitmeyer R.M., 2002, Surf-generated noise signatures: A comparison of plunging and spilling breakers, J. Acoust. Soc. Am., 112(2), 481-489, http://dx.doi.org/10.1121/1.1491256

Medwin H., Clay C.S., 1998, Fundamentals of acoustical oceanography, Acad. Press, San Diego, 712 pp.

Medwin H., Daniel A.C., 1990, Acoustical measurements of bubble production by spilling breakers, J. Acoust. Soc. Am., 88(1), 408-412, http://dx.doi.org/10.1121/1.399917

Melville W.K., 1994, Energy dissipation by breaking waves, J. Phys. Oceanogr., 24(10), 2041-2049, http://dx.doi.org/10.1175/1520-0485(1994)024<2041:EDBBW>2.0.CO;2

Nepf H.M., Wu C.H., Chan E.S., 1998, A comparison of two- and three-dimensional wave breaking, J. Phys. Oceanogr., 28(7), 1496-1510, http://dx.doi.org/10.1175/1520-0485(1998)028<1496:ACOTAT>2.0.CO;2

Nystuen J.A., 1986, Rainfall measurements using underwater ambient noise, J. Acoust. Soc. Am., 79(4), 972-982, http://dx.doi.org/10.1121/1.393695

Orris G.J., Nicholas M., 2000, Collective oscillations of fresh and salt water bubble plumes, J. Acoust. Soc. Am., 107(2), 771-787, http://dx.doi.org/10.1121/1.428253

Papanicolaou P., Raichlen F., 1988, Wave and bubble characteristics in the surf zone, [in:] Sea surface sound: Natural mechanisms of surface generated noise in the ocean, R. B. Kerman (ed.), Kluwer Publ., Dordrecht, 97-109.

Schindall J.A., Heitmeyer R.M., 1996, Breaking wave noise measurements at frequencies below 400 Hz, J. Acoust. Soc. Am., 100(4), 2732-2739, http://dx.doi.org/10.1121/1.416813

Tęgowski J., 2004, A laboratory study of breaking waves, Oceanologia, 46(3), 365-382.

Updegraff G.E., Anderson V.C., 1991, Bubble noise and wavelet spills recorded 1 m below the ocean surface, J. Acoust. Soc. Am., 89(5), 2264-2279, http://dx.doi.org/10.1121/1.400917
full, complete article (PDF - compatibile with Acrobat 4.0), 407 KB

Impact of ship-borne nitrogen deposition on the Gulf of Finland ecosystem: an evaluation
Oceanologia 2013, 55(4), 837-857

Urmas Raudsepp1, Jaan Laanemets1, Ilja Maljutenko1, Marke Hongisto2, Jukka-Pekka Jalkanen2
1Marine Systems Institute, Tallinn University of Technology,
Akadeemia tee 15a,12618 Tallinn, Estonia;
e-mail: urmas.raudsepp@msi.ttu.ee
e-mail: jaan.laanemets@msi.ttu.ee
e-mail: ilja.maljutenko@msi.ttu.ee
2Air Quality Research, Finnish Meteorological Institute,
P.O. Box 503, FI-00101 Helsinki, Finland;
e-mail: Marke.Hongisto@fmi.fi
e-mail: Jukka-Pekka.Jalkanen@fmi.fi

keywords: ship nitrogen deposition, nitrogen fixation, ecological modelling, Gulf of Finland

Received 16 April 2013, revised 29 July 2013, accepted 27 August 2013.

The work presented in this study was jointly funded by the European Regional Development Fund, Central Baltic INTERREG IV A Programme within the project SNOOP and the European Union's Seventh Framework Programme FP/2007-2011 within the projects ECOSUPPORT, grant agreement No. 217246.


The degree of inter-annual variability in spring and summer phytoplankton blooms and nitrogen fixation in response to the deposition of oxidized nitrogen originating from ship emissions (hereafter nitrogen deposition) was evaluated in the Gulf of Finland (Baltic Sea) based on 10-year (1997-2006) simulation results using a coupled hydrodynamic (GETM) and ecological (ERGOM) model. Ship emissions were generated for 2008 using the Ship Traffic Emission Assessment Model, and ship nitrogen deposition was calculated using the Hilatar chemistry-transport model over the Baltic Sea. The annual ship nitrogen deposition in the Gulf of Finland was 1.6 kt N, about 12% of the annual atmospheric deposition, and increased in summer, up to 30% compared to the monthly atmospheric deposition. Ship nitrogen deposition caused an increase in spring and post-bloom primary production in two functional groups (diatoms and flagellates), at the same time reducing phosphate resources in the upper layer. Nitrogen fixation due to ship nitrogen deposition decreased by 1-1.6 kt N year-1 (2-6%). The effect of ship nitrogen deposition on nitrogen fixation was greater in the western and central Gulf of Finland. The additional ship nitrogen deposition to the Gulf was practically compensated for by a decrease in nitrogen fixation.

  References ref

Alenius P., Myrberg K., Nekrasov A., 1998, The physical oceanography of the Gulf of Finland: a review, Boreal Environ. Res., 3, 97-125.

Bartnicki J., Semeena V. S., Fagerli H., 2011, Atmospheric deposition of nitrogen to the Baltic Sea in the period 1995-2006, Atmos. Chem. Phys., 11(19), 10057-10069, http://dx.doi.org/10.5194/acp-11-10057-2011

Bergström S., Alexandersson H., Carlsson B., Fosefsson W., Karlsson K.G., Westring G., 2001, Climate and hydrology of the Baltic Sea, [in:] A system analysis of the Baltic Sea, F.V. Wulff, L.A. Rahm & P.Laarson (eds.), Springer-Verlag, Berlin, 75-112.

Bronk D. A., See J.H., Bradley P., Killberg L., 2007, DON as a source of bioavailable nitrogen for phytoplankton, Biogeosciences, 4(3), 283-296, http://dx.doi.org/10.5194/bg-4-283-2007

Burchard H., Bolding K., Villarreal M.R., 2004, Three-dimensional modelling of estuarine turbidity maxima in a tidal estuary, Ocean Dyn., 54(2), 250-265, http://dx.doi.org/10.1007/s10236-003-0073-4

Burchard H., Janssen F., Bolding K., Umlauf L., Rennau H., 2009, Model simulations of dense bottom currents in the Western Baltic Sea, Cont. Shelf Res., 29(1), 205-220, http://dx.doi.org/10.1016/j.csr.2007.09.010

Döscher R., Willèn U., Jones C., Rutgersson A., Meier H.E.M., Hansson U., Graham L.P., 2002, The development of the regional coupled ocean-atmosphere model RCAO, Boreal Environ. Res., 7, 183-192.

Döscher R., Wyser K., Meier H.E.M., Qian M., Redler R., 2010, Quantifying Arctic contributions to climate predictability in a regional coupled ocean-ice-atmosphere model, Clim. Dynam., 34(7-8), 1157-1176, http://dx.doi.org/10.1007/s00382-009-0567-y

Eilola K., Gustafsson B.G., Meier H.E.M., Neumann T., Savchuk O.P., 2011, Evaluation of biogeochemical cycles in an ensemble of three state-of-the-art numerical models of the Baltic Sea, J. Marine Res., 88(2), 267-284, http://dx.doi.org/10.1016/j.jmarsys.2011.05.004

Eilola K., Meier H.E.M., Almroth E., 2009, On the dynamics of oxygen, phosphorus and cyanobacteria in the Baltic Sea: a model study, J. Marine Syst., 75(1-2), 163-184, http://dx.doi.org/10.1016/j.jmarsys.2008.08.009

Elken J., Raudsepp U., Lips U., 2003, On the estuarine transport reversal in deep layers of the Gulf of Finland, J. Sea Res., 49(4), 267-274, http://dx.doi.org/10.1016/S1385-1101(03)00018-2

Gräwe U., Burchard H., 2012, Storm surges in the Western Baltic Sea: the present and a possible future, Clim. Dynam., 39(1-2), 165-183, http://dx.doi.org/10.1007/s00382-011-1185-z

HELCOM, 2002, Environment of the Baltic Sea area 1994-1998, Balt. Sea Environ. Proc. No. 82B, 215 pp.

HELCOM, 2009, Eutrophication in the Baltic Sea, Balt. Sea Environ. Proc. No. 115B, 152 pp.

HELCOM, 2010, Maritime activities in the Baltic Sea - an integrated thematic assessment on maritime activities and response to pollution at sea in the Baltic Sea Region, Balt. Sea Environ. Proc. No. 123, 68 pp.

Hongisto M., 2003, Modelling of the transport of nitrogen and sulfur contaminants to the Baltic Sea Region, FMI Contribut. No. 40, Helsinki, 137 pp.

Hongisto M., 2011, Variability of the marine boundary layer parameters over the Baltic Sea sub-basins and their impact on the nitrogen deposition, Oceanologia, 53(1-T), 391-413.

Hongisto M., Joffre S., 2005, Meteorological and climatological factors affecting the transport and deposition of nitrogen compounds over the Baltic Sea, Boreal Environ. Res., 10(1), 1-17.

Höglund A., Meier H.E.M., Broman B., Kriezi E., 2009, Validation and correction of regionalised ERA-40 wind fields over the Baltic Sea using the Rossby Centre Atmosphere model RCA3.0., Oceanografi, 97, 46 pp.

Jalkanen J.P., Brink A., Kalli J., Pettersson H., Kukkonen J., Stipa T., 2009, A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area, Atmos. Chem. Phys., 9(23), 9209-9223, http://dx.doi.org/10.5194/acp-9-9209-2009

Jalkanen J.P., Johansson L., Kukkonen J., 2013, A comprehensive inventory of the ship traffic exhaust emissions in the Baltic Sea from 2006 to 2009, AMBIO, 14 pp., http://dx.doi.org/10.1007/s13280-013-0389-3

Jalkanen J.P., Johansson L., Kukkonen J., Brink A., Kalli J., Stipa T., 2012, Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide, Atmos. Chem. Phys., 12(5), 2641-2659, http://dx.doi.org/10.5194/acp-12-2641-2012

Janssen F., Schrum C., Backhaus J., 1999, A climatological dataset of temperature and salinity for the North Sea and the Baltic Sea, Ger. J. Hydrography, 9, 1-245.

Kalli J., Saikku R., Repka S., Tapaninen U., 2012, Maritime traffic externalities in the Gulf of Finland until 2030, Transport, 27(1), 92-101, http://dx.doi.org/10.3846/16484142.2012.668497

Kahru M., Savchuk O.P., Elmgren R., 2007, Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability, Mar. Ecol.-Prog. Ser., 343, 15-23, http://dx.doi.org/10.3354/meps06943

Kivi K., Kaitala S., Kuosa H., Kuparinen J., Leskinen E., Lignell R., Marcussen B., Tamminen T., 1993, Nutrient limitation and grazing control of Baltic plankton community during annual succession, Limnol. Oceanogr., 38(5), 893-905, http://dx.doi.org/10.4319/lo.1993.38.5.0893

Kuznetsov I., Neumann T., 2013, Simulation of carbon dynamics in the Baltic Sea with a 3D model, J. Marine Syst., 111-112, 164-174, http://dx.doi.org/10.1016/j.jmarsys.2012.10.011

Laamanen M., Kuosa H., 2005, Annual variability of biomass and heterocysts of the N2-fixing cyanobacterium Aphanizomenon flos-aquae in the Baltic Sea with reference to Anabaena spp. and Nodularia spumigena, Boreal Environ. Res., 10(1), 19-30.

Laanemets J., Lilover M.-J., Raudsepp U., Autio R., Vahtera E., Lips I., Lips U., 2006, A fuzzy logic model to describe the cyanobacteria Nodularia spumigena blooms in the Gulf of Finland, Baltic Sea, Hydrobiologia, 554(1), 31-45, http://dx.doi.org/10.1007/s10750-005-1004-x

Lehmann A., Myrberg K., 2008, Upwelling in the Baltic Sea - a review, J. Marine Syst., 74(Suppl.), 3-12, http://dx.doi.org/10.1016/j.jmarsys.2008.02.010

Lehtimäki J., Moisander P., Sivonen K., Kononen K., 1997, Growth, nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria, Appl. Environ. Microbiol., 63(5), 1647-1656.

Lignell R., Heiskanen A.S., Kuosa H., Gundersen K., Kuuppo-Leinikki P., Pajuniemi R., Uitto A., 1993, Fate of phytoplankton spring bloom: Sedimentation and carbon flow in the planktonic food web in the northern Baltic, Mar. Ecol.-Prog. Ser., 94, 239-252, http://dx.doi.org/10.3354/meps094239

Lindfors V., Joffre S.M., Damski J., 1993, Meteorological variability of the wet and dry deposition of sulfur and nitrogen compounds over the Baltic Sea, J. Water Air Soil Pollut., 66(1-2), 1-28, http://dx.doi.org/10.1007/BF00477058

Lindström G., Pers C., Rosberg J., Strömqvist J., Arheimer B., 2010, Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales, Hydrol. Res., 41(3-4), 295-319, http://dx.doi.org/10.2166/nh.2010.007

Maar M., Moller E.F., Larsen J., Madsen K.S., Wan Z., She J., Jonasson L., Neumann T., 2011, Ecosystem modelling across a salinity gradient from the North Sea to the Baltic Sea, Ecol. Model., 222(10), 1696-1711, http://dx.doi.org/10.1016/j.ecolmodel.2011.03.006

Neumann T., 2000, Towards a 3D-ecosystem model of the Baltic Sea, J. Marine Syst., 25(3-4), 405-419, http://dx.doi.org/10.1016/S0924-7963(00)00030-0

Neumann T., 2010, Climate-change effects on the Baltic Sea ecosystem: a model study, J. Marine Syst., 81(3), 213-224, http://dx.doi.org/10.1016/j.jmarsys.2009.12.001

Neumann T., Fennel W., Kremp C., 2002, Experimental simulations with an ecosystem model of the Baltic Sea: a nutrient load reduction experiment, Glob. Biogeochem. Cy., 16(3), 7-1-7-19, http://dx.doi.org/10.1029/2001GB001450

Neumann T., Schernewski G., 2005, An ecological model evaluation of two nutrient abatement strategies for the Baltic Sea, J. Marine Syst., 56(1-2), 195-206, http://dx.doi.org/10.1016/j.jmarsys.2004.10.002

Neumann T., Schernewski G., 2008, Eutrophication in the Baltic Sea and shifts in nitrogen fixation analyzed with a 3D ecosystem model, J. Marine Syst., 74(1-2), 592-602, http://dx.doi.org/10.1016/j.jmarsys.2008.05.003

Niemi A., 1979, Blue-green algal blooms and N:P ratio in the Baltic Sea, Acta Bot. Fenn., 110, 57-61.

Pitkänen H., Lehtoranta J., Räike A., 2001, Internal nutrient fluxes counteract decreases in external load: the case of the estuarial eastern Gulf of Finland, Baltic Sea, Ambio, 30, 195-201.

Rolff C., Almesjö L., Elmgren R., 2007, Nitrogen fixation and abundance of the diazotrophic cyanobacterium Aphanizomenon sp. in the Baltic proper, Mar. Ecol.-Prog. Ser., 332, 107-118, http://dx.doi.org/10.3354/meps332107

Schneider B., Nausch G., Nagel K., Wasmund N., 2003, The surface water CO2 budget for the Baltic Proper: a new way to determine nitrogen fixation, J. Marine Syst., 42(1-2), 53-64, http://dx.doi.org/10.1016/S0924-7963(03)00064-2

Seifert T., Tauber F., Kayser B., 2001, A high resolution spherical grid topography of the Baltic Sea, Baltic Sea Science Congress, Stockholm 25-29 November 2001, Poster No. 147, Abstr. Vol., 2nd edn., [http://www.io-warnemuende.de/iowtopo].

Smagorinsky J., 1963, General circulation experiment with the primitive equations. I. The basic experiment, Mon. Weather Rev., 91, 99-164, http://dx.doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

Stipa T., Jalkanen J.-P., Hongisto M., Kalli J., Brink A., 2007, Emissions of NOx from Baltic shipping and first estimates of their effects on air quality and eutrophication of the Baltic Sea, ShipNOEm project rep., http://www.shipnodeff.org/images/stories/noxemissionsbalticisbn978-951-53-3028-4.pdf.

Taylor K.E., 2001, Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106(D7), 7183-7192, http://dx.doi.org/10.1029/2000JD900719

Umlauf L., Burchard H., 2005, Second-order turbulence closure models for geophysical boundary layers: a review of recent work, Cont. Shelf Res., 25(7-8), 795-827, http://dx.doi.org/10.1016/j.csr.2004.08.004

Unden P., Rontu L., Jävinen H., Lynch P., Calvo J., Cats G., Cuxart J., Eerola K., Fortelius C., Garcia-Moya J.A., Jones C., Lenderlink G., McDonald A., McGrath R., Navascues B., Nielsen N.W., Ødegaard V., Rodriguez E., Rummukainen M., Rööm R., Sattler K., Sass B.H., Savijärvi H., Schreur B.W., Sigg R., The H., Tijm A., 2002, HIRLAM-5 scientific documentation, HIRLAM-5 project, SMHI, Norrköoping, 144 pp.

Vahtera E., Conley D.J., Gustafsson B.G., Kuosa H., Pitkanen H., Savchuk O.P., Tamminen T., Viitasalo M., Voss M., Wasmund N., Wulf F., 2007, Internal ecosystem feedbacks enhance nitrogen-fixing cyan obacteria blooms and complicate management in the Baltic Sea, Ambio, 36(2), 186-194, http://dx.doi.org/10.1579/0044-7447(2007)36[186:IEFENC]2.0.CO;2

Vahtera E., Laanemets J., Pavelson J., Huttonen M., Kononen K., 2005, Effect of upwelling on the pelagic environment and bloom-forming cyanobacteria in the western Gulf of Finland, Baltic Sea, J. Marine Syst., 58(1-2), 67-82, http://dx.doi.org/10.1016/j.jmarsys.2005.07.001

Wasmund N., 1997, Occurrence of cyanobacterial blooms in the Baltic Sea in relation to environmental conditions, Hydrobiologia, 82(2), 169-184, http://dx.doi.org/10.1002/iroh.19970820205

Zhurbas V.M., Laanemets J., Vahtera E., 2008, Modeling of the mesoscale structure of coupled upwelling/downwelling events and the related in put of nutrients to the upper mixed layer in the Gulf of Finland, Baltic Sea, J. Geophys. Res., 113, C05004, http://dx.doi.org/10.1029/2007JC004280

full, complete article (PDF - compatibile with Acrobat 4.0), 690 KB

Impact of the inflow of Vistula river waters on the pelagic zone in the Gulf of Gdańsk
Oceanologia 2013, 55(4), 859-886

Magdalena Wielgat-Rychert1,*, Anetta Ameryk2, Anna Jarosiewicz1, JaninaKownacka2, Krzysztof Rychert1, Lena Szymanek2, Mariusz Zalewski2, Alina Agatova3, Natalia Lapina3, Nadezhda Torgunova3
1Pomeranian University in Słupsk,
K. Arciszewskiego 22a, 76-200 Słupsk, Poland;
e-mail: wielgatm@wp.pl
*corresponding author
2National Marine Fisheries Research Institute,
H. Kołłątaja 1, 81-332 Gdynia, Poland
3Russian Federal Research Institute of Fisheries & Oceanography (VNIRO),
V. Krasnoselskaya 17, 107140 Moscow, Russia

keywords: Baltic Sea, Gulf of Gdańsk, estuarine mixing, bacterioplankton, phytoplankton

Received 29 June 2012, revised 20 February 2013, accepted 1 August 2013.

The study was supported by the Polish Ministry of Science and Higher Education as statutory activities of the Department of Fisheries Oceanography and Marine Ecology of the National Marine Fisheries Research Institute (project O-147) and statutory activities of the Department of Ecology of the Pomeranian University in Słupsk (project 11.6.13). This study was also supported by the Polish Ministry of Science and Higher Education project N N304 025334.


The biomass, production, composition of autotrophic phytoplankton and hetero-trophic bacteria were studied along with environmental and biological parameters. Samples were taken from Vistula river water (at Kiezmark) and from the river plume to the outer stations in the Gulf of Gdańsk (Baltic Sea) in June 2005. The phytoplankton biomass gradient appeared to be simply the result of dilution of the river water in the sea water, whereas the bacterial abundance and biomass dropped between the river station and the first sea water stations, a decrease that cannot be explained by the dilution effect. The Vistula water stimulated the production mainly of bacterioplankton but also of phytoplankton in the river plume as compared to rates measured in Vistula waters and at the open sea stations. However, this stimulation did not result in a measurable increase in biomasses, probably because of the short retention time of water in the river plume. Phytoplankton production was correlated with phytoplankton biomass (Chl a), while bacterial production was correlated with phytoplankton production and phytoplankton biomass (Chl a).

  References ref

Agatova A. I., Lapina N. M., 1994, Estimation of rates of the organic matter transformation and nutrients regeneration in the Bering Sea, Hydrobiology, 21(2), 217-225.

Agatova A. I., Lapina N.M., Torgunova N., Kirpichev K., 2001, Biochemical study of brackish-water marine ecosystems, Water Resour., 28(4), 428-437, http://dx.doi.org/10.1023/A:1010401907179

Agatova A.I., Sapoznikov V., Vintovkin V.R., 1985, The effect of activity of seston phosphatase on the rate of phosphorus mineralization and its turnover in production-destruction cycle, Okeanologiya, 25, 66-73.

Amann R.I., Binder B.J., Olson R.J., Chisholm S.W., Devereux R., StahlD.A., 1990, Combination of 16S rRNA-targeted oligonucleotide probes with ow cytometry for analyzing mixed microbial populations, Appl. Environ. Microbiol., 56(6), 1919-1925.

Ameryk A., Podgórska B., Witek Z., 2005, The dependence between bacterial production and environmental conditions in the Gulf of Gdańsk, Oceanologia, 47(1), 27-45.

Ǽrtebjerg Nielsen G., Bresta A.-M., 1984, Guidelines for the measurement of phytoplankton primary production, The Baltic Mar. Biol. Publ. 1, Denmark, 23 pp.

Bouvier T.C., del Giorgio P.A., 2002, Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries, Limnol. Oceanogr., 47(2), 453-470, http://dx.doi.org/10.4319/lo.2002.47.2.0453

Bralewska J.M., 1992, Cycling seasonal fluctuations of the phytoplankton biomass and composition in the Gdansk Basin in 1987-1988, Proc. 1992 ICES Meeting, Copenhagen, 40 pp.

Cauwet G., 2002, DOM in the coastal zone, [in:] Biogeochemistry of marine dissolved organic matter, D. A. Hansell & C.A. Carlson (eds.), Acad. Press, San Diego, 579-609.

Chin-Leo G., Benner R., 1992, Enhanced bacterioplankton production and respiration at intermediate salinities in the Mississippi River plume, Mar. Ecol.-Prog. Ser., 87, 87-103, http://dx.doi.org/10.3354/meps087087

Chróst R.J., 1991, Microbial enzymes in aquatic environments, Springer-Verlag, New York, 385 pp., http://dx.doi.org/10.1007/978-1-4612-3090-8

Chróst R.J., Siuda W., 2006, Microbial production, utilization, and enzymatic degradation of organic matter in the upper trophogenic layer in the pelagial zone of lakes along a eutrophication gradient, Limnol. Oceanogr., (1, part 2), 749-762, http://dx.doi.org/10.4319/lo.2006.51.1_part_2.0749

Cole J.J., Findlay S., Pace M.L., 1988, Bacterial production in fresh and saltwater ecosystems: a cross-system overview , Mar. Ecol.-Prog. Ser., 43, 1-10, http://dx.doi.org/10.3354/meps043001

Cottrell M.T., Kirchman D.L., 2003, Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary, Limnol. Oceanogr., 48(1), 168-178, http://dx.doi.org/10.4319/lo.2003.48.1.0168

Crump B.C., Hopkinson C.S., Sogin M.L., Hobbie J.E., 2004, Microbial Biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time, Appl. Environ. Microbiol., 70(3), 1494-1505, http://dx.doi.org/10.1128/AEM.70.3.1494-1505.2004

del Giorgio P.A., Cole J.J., 1998, Bacterial growth efficiency in natural aquatic systems, Annu. Rev. Ecol. Syst., 29, 503-541, http://dx.doi.org/10.1146/annurev.ecolsys.29.1.503

Edler L., 1979, Recommendations on methods for marine biological studies in the Baltic Sea, phytoplankton and chlorophyll, Baltic Mar. Biol. Publ., 5, 24 pp.

Evans C.A., O’Reilly J.E., Thomas J.P., 1987, A handbook for measurement of chlorophyll a and primary productivity, BIOMASS Sci. Ser., 8, 114 pp.

Findlay S.M.L., Pace D.L., Cole J.J., Caraco N.F., Peierls B., 1991, Weak coupling of bacterial and algal production in a heterotrophic ecosystem: the Hudson River estuary, Limnol. Oceanogr., 36(2), 268-278, http://dx.doi.org/10.4319/lo.1991.36.2.0268

Fuhrman J.A., Azam F., 1980, Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica and California, Appl. Environ. Microbiol., 39(6), 1085-1095.

Gasiūnaitė Z.R., Cardoso A.C., Heiskanen A.-S., Henriksen P., Kauppila P., Olenina I., Pilkaitytė R., Purina I., Razinkovas A., Sagert S., Schubert H., Wasmund N., 2005, Seasonality of coastal phytoplankton in the Baltic Sea: influence of salinity and eutrophication, Estuar. Coast Shelf Sci., 65(1-2), 239-52.

Glöckner F.O., Fuchs B.M., Amann R., 1999, Bacterioplankton composition of lakes and oceans: a first comparison based on fluorescence in situ hybridization, Appl. Environ. Microbiol., 65, 3721-3726.

Grelowski A., Wojewódzki T., 1996, The impact of the Vistula River on the hydrological conditions in the Gulf of Gdańsk in 1994, Bull. Sea Fish. Inst., 137, 23-33.

Gromisz S., Witek Z., 2001, Main phytoplankton assemblages in the Gulf of Gdańsk and the Pomeranian Bay from 1994 to 1997, Bull. Sea Fish. Inst., 153, 31-51.

HELCOM, 2001, Manual for marine monitoring in the COMBINE programme of HELCOM. Part C. Programme for monitoring of eutrophication and its effects. Annex C-6: Phytoplankton species composition, abundance and biovolume, Baltic Marine Environment Protection Commission, Helsinki, [http://www.helcom.fi/groups/monas/CombineManual/AnnexesC/enGB/annex6/].

HELCOM, 2004, The fourth Baltic Sea pollution load compilation (PLC-4), Balt. Sea Environ. Proc. No. 93, 188 pp.

Herlemann D. P.R., Labrenz M., Jürgens K., Bertilsson S., Waniek J.J., Andersson A.F., 2011, Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea, ISME J., 5, 1571-1579, http://dx.doi.org/10.1038/ismej.2011.41

Hobbie J.E., Daley R.J., Jasper S., 1977, Use of nuclepore filters for counting bacteria by fluorescence microscopy, Appl. Environ. Microbiol., 33, 1225-1228.

Jost G., Pollehne F., 1998, Coupling of autotrophic and heterotrophic processes in a Baltic estuarine mixing gradient (Pomeranian Bight), Hydrobiologia, 363(1-3), 107-115, http://dx.doi.org/10.1023/A:1003109302187

Kirchman D.L., 2002, The ecology of Cytophaga-Flavobacteria in aquatic environments, FEMS Microbiol. Ecol., 39(2), 91-100, http://dx.doi.org/10.1111/j.1574-6941.2002.tb00910.x

Kirchman D. L., Dittel A.I., Malmstrom R.R., Cottrell M.T., 2005, Biogeography of major bacterial groups in the Delaware Estuary, Limnol. Oceanogr., 50(5), 1697-1706, http://dx.doi.org/10.4319/lo.2005.50.5.1697

Kuparinen J., 1988, Development of bacterioplankton during winter and early spring at the entrance to the Gulf of Finland, Baltic Sea, Verh. Int. Verein. Limnol., 23, 1869-1878.

Lee D.Y., Keller D.P., Crump B.C., Hood R.R., 2012, Community metabolism and energy transfer in the Chesapeake Bay estuarine turbidity maximum, Mar. Ecol.-Prog. Ser., 449, 65-82, http://dx.doi.org/10.3354/meps09543

Lowry O.H., Rosebrough N.J., Fair A.L., Randall R.J., 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265-275.

Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.-H., 1992, Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions, Syst. Appl. Microbiol., 15, 593-600, http://dx.doi.org/10.1016/S0723-2020(11)80121-9

Matciak M., Nowacki J., 1995, The Vistula river discharge front - surface observations, Oceanologia, 37(1), 75-88.

Menden-Deuer S., Lessard E.J., 2000, Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton, Limnol. Oceanogr., 45(3), 569-579, http://dx.doi.org/10.4319/lo.2000.45.3.0569

Nausch G., Nehring D., Nagel K., 2008, Nutrient concentrations, trends, and their relation to eutrophication, [in:] State and evolution of the Baltic Sea, 1952-2005, R. Feistel, G. Nausch & N. Wasmund (eds.), John Wiley & Sons, Inc., Hoboken, New Jersey, 337-366.

Ochocki S., Nakonieczny J., Chmielowski H., Zalewski M., 1995, The hydrochemical and biological impact of the river Vistula on the pelagic system of the Gulf of Gdańsk in 1994. Part 2. Primary production and chlorophyll a, Oceanologia, 37(2), 207-226.

Packard T.T., Williams P.J., 1981, Rates of respiratory oxygen consumption and electron transport in surface seawater from the northeast Atlantic, Oceanol. Acta, 4, 351-358.

Pastuszak M., Witek Z., Nagel K., Wielgat M., Grelowski A., 2005, Role of the Oder estuary (southern Baltic) in transformation of the riverine nutrient loads, J. Marine Syst., 57(1-2), 30-54, http://dx.doi.org/10.1016/j.jmarsys.2005.04.005

Pernthaler A., Pernthaler J., Amann R., 2002, Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria, Appl. Environ. Microbiol., 68, 3094-3101, http://dx.doi.org/10.1128/AEM.68.6.3094-3101.2002

Piwosz K., Salcher M.M., Zeder M., Ameryk A., Pernthaler J., 2013, Seasonal dynamics and activity of typical freshwater bacteria in brackish waters of the Gulf of Gdańsk, Limnol. Oceanogr., 58(3), 817-826.

Renk H., 2000, Primary production of the southern Baltic, Stud. Mater. MIR Ser. A, 35, 78 pp., (in Polish).

Renk H., Ochocki S., Kurzyk S., 2000, In situ and simulated in situ primary production in the Gulf of Gdańsk, Oceanologia, 42(2), 263-282.

Riemann B., Bjornsen P.K., Newell S., Fallon R., 1987, Calculation of cell production of coastal bacteria based on measured incorpora tion of 3H-thymidine, Limnol. Oceanogr., 32(2), 471-476, http://dx.doi.org/10.4319/lo.1987.32.2.0471

Sekar R., Pernthaler A., Pernthaler J., Warnecke F., Posch T., Amann R., 2003, An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization , Appl. Environ. Microbiol., 69(5), 2928-2935, http://dx.doi.org/10.1128/AEM.69.5.2928-2935.2003

Shiah F.-K., Ducklow H.W., 1994, Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth rate in Chesapeake Bay, Limnol. Oceanogr., 39(6), 1243-1258, http://dx.doi.org/10.4319/lo.1994.39.6.1243

Smith E.M., 1998, Coherence of microbial respiration rate and cell-specific bacterial activity in a coastal planktonic community, Aquat. Microb. Ecol., 16, 27-35, http://dx.doi.org/10.3354/ame016027

Smith E.M., Kemp W.M., 2003, Planktonic and bacterial respiration along an estuarine gradient: responses to carbon and nutrient enrichment, Aquat. Microb. Ecol., 30, 251-261, http://dx.doi.org/10.3354/ame030251

Steemann-Nielsen E., 1952, The use of radiocarbon 14C for measuring organic production in the sea, J. Cons. Int. Explor. Mer., 18, 117-140.

Troussellier M., Schäafer H., Batailler N., Bernard L., Courties C., Lebaron P., Muyzer G., Servais P., Vives-Rego J., 2002, Bacterial activity and genetic richness along an estuarine gradient (Rhone River plume, France), Aquat. Microb. Ecol., 28(1), 13-24, http://dx.doi.org/10.3354/ame028013

UNESCO, 1983, Chemical methods for use in marine environmental monitoring, Manual and guides, IOC 12, 53 pp.

Vaqué D., Casamayor E.O., Gasol J.M., 2001, Dynamics of whole community bacterial production and grazing losses in seawater incuba tions as related to the changes in the proportions of bacteria with different DNA content, Aquat. Microb. Ecol., 25(2), 163-177, http://dx.doi.org/10.3354/ame025163

Wallner G., Amann R., Beisker W., 1993, Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms, Cytometry, 14(2), 136-143, http://dx.doi.org/10.1002/cyto.990140205

Wasmund N., Andrushaitis A., Łysiak-Pastuszak E., Muller-Karulis B., Nausch G., Neumann T., Ojaveer H., Olenina I., Postel L., Witek Z., 2001, Trophic status of the South-Eastern Baltic Sea: a comparison of coastal and open areas, Estuar. Coast Shelf Sci., 53(6), 849-864, http://dx.doi.org/10.1006/ecss.2001.0828

Wasmund N., Siegel H., 2008, Phytoplankton, [in:] State and evolution of the Baltic Sea, 1952-2005, R. Feistel, G. Nausch & N. Wasmund (eds.), John Wiley & Sons, Inc., Hoboken, New Jersey, 441-481.

Wasmund N., Zalewski M., Busch S., 1999, Phytoplankton in large river plumes in the Baltic Sea, ICES J. Mar. Sci., 56(Suppl.), 23-32.

Witek Z., Bralewska J., Chmielowski H., Drgas A., Gostkowska J., Kokacz M., Knurowski J., Krajewska-Sołtys A., Lorenz Z., Maciejewska K., Mackiewicz T., Nakonieczny J., Ochocki S., Warzocha J.,Piechura J., Renk H., Stopiński M., Witek B., 1993, Structure and function of marine ecosystem in the Gdańsk Basin on the basis of studies performed in 1987, Stud. Mater. Oceanol., 63, 1-124.

Witek Z., Humborg C., Savchuk O., Grelowski A., Łysiak-Pastuszak E., 2003, Nitrogen and phosphorus budgets of the Gulf of Gdańsk (Baltic Sea), Estuar. Coast Shelf Sci., 57(1-2), 239-248, http://dx.doi.org/10.1016/S0272-7714(02)00348-7

Witek Z., Ochocki S., Maciejowska M., Pastuszak M., Nakonieczny J., Podgórska B., Kownacka J.M., Mackiewicz T., Wrzesińska-Kwiecień M., 1997, Phytoplankton primary production and its utilization by the pelagic community in the coastal zone of the Gulf of Gdańsk (southern Baltic), Mar. Ecol.-Prog. Ser., 148, 169-186, http://dx.doi.org/10.3354/meps148169

Witek Z., Ochocki S., Nakonieczny J., Podgórska B., Drgas A., 1999, Primary production and decomposition of organic matter in the epipe lagic zone of the Gulf of Gdańsk, an estuary of the Vistula, ICES J. Mar. Sci., 56(Suppl.), 3-14.

Zweifel U., Wikner J., Hagstrom A., 1995, Dynamics of dissolved organic carbon in a coastal ecosystem, Limnol. Oceanogr., 40(2), 299-305, http://dx.doi.org/10.4319/lo.1995.40.2.0299

full, complete article (PDF - compatibile with Acrobat 4.0), 1266 KB

Rotifer trophic state indices as ecosystem indicators in brackish coastal waters
Oceanologia 2013, 55(4), 887-899

Agnieszka Gutkowska*, Ewa Paturej, Ewa Kowalska
Department of Applied Ecology, University of Warmia and Mazury in Olsztyn,
M. Oczapowskiego 5, 10-957 Olsztyn, Poland;
e-mail: agnieszka.gutkowska@uwm.edu.pl
*corresponding author

keywords: rotifers, trophic state index, brackish waters, indicator species, zooplankton, Vistula Lagoon

Received 18 April 2013, revised 2 August 2013, accepted 6 September 2013.

The study was carried out as part of the research projects "Monitoring the Vistula Lagoon water quality on the basis of satellite remote sensing" (MONTRANSAT) co-financed by the European Union from European Regional Development Fund, and "System of environmental and spatial information as the background for sustainable management of the Vistula Lagoon ecosystem" (VISLA) financed by the Polish-Norwegian Research Fund.


Thanks to their short life cycles, rotifers react rapidly to changes in environmental conditions and so may be useful for biological monitoring. The objective of this paper was to investigate the applicability of rotifer trophic state indices as indicators of the trophic state of brackish waters, as exemplified by the Vistula Lagoon. Carried out in summer from 2007 to 2011, this study showed no significant correlation between the Lagoon's trophic state and the rotifer structure. This confirms the limited applicability of rotifer trophic state indices for evaluating water quality in brackish water bodies.

  References ref

Adamkiewicz-Chojnacka B., 1983, Dynamics of the Vistula Lagoon zooplankton-numbers, Oceanologia, 16, 99-132.

Armengol X., Esparcia A., Miracle M.R., 1998, Rotifer vertical distribution in a strongly stratified lake: a multivariate analysis, Hydrobiologia, 387-388, 161-170, http://dx.doi.org/10.1023/A:1017054129742

Bosque T., Hernandez R., Todoli R., Oltra R., 2001, Effect of salinity, temperature and food level on the demographic characteristics of the sea water rotifer Synchaeta littoralis Rousselet, J. Exp. Mar. Biol. Ecol., 258(1), 55-64, http://dx.doi.org/10.1016/S0022-0981(00)00345-2

Bottrell H.H., Duncan A., Gliwicz Z.M., Grygierek E., Herzig A., Hillbricht-Ilkowska A., Kurasawa H., Larsson P., Węgleńska T., 1976, A review of some problems in zooplankton production studies , Norw. J. Zool., 24, 419-456.

Bricker S.B., Clement C.G., Pirhalla D.E., Orlando S.P., Farrow D.R.G., 1999, National estuarine eutrophication assessment: Effects of nutrient enrichment in the nation’s estuaries, NOAA, National Ocean Service, Spec. Proj. Office & Natnl. Center. Coast. Ocean Sci., Silver Spring, 71 pp.

Carlson R.E., 1977, Trophic state index for lakes, Limnol. Oceanogr., 22(2), 361-369, http://dx.doi.org/10.4319/lo.1977.22.2.0361

Chubarenko B., Margoński P., 2008, The Vistula Lagoon, [in:] Ecology of Baltic coastal waters, U. Schiewer (ed.), Ecol. Stud. Vol. 197, Springer-Verlag, Berlin-Heidelberg, 167-195.

Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, European Comm. PE-CONS 3639/1/00, Rev. 1, 22 December 2000, Luxemburg, 73 pp.

Dmitrieva O.A., Semenova A.S., 2011, Seasonal dynamics of phyto- and zooplankton and their interactions in the hypereutrophic reservoir, Inland Water Biol., 4(3), 308-315, http://dx.doi.org/10.1134/S1995082911030059

Duggan I.C., Green J.D., Shiel R.J., 2001, Distribution of rotifers in North Island, New Zealand, and their potential use as bioindicators of the lake trophic state, Hydrobiologia, 446-447, 155-164, http://dx.doi.org/10.1134/S1995082911030059

Duggan I.C., Green J.D., Shiel R.J., 2002, Distribution of rotifers in North Island, New Zealand lakes: Relationships to environmental and historical factors, Freshwater Biol., 47(2), 195-206, http://dx.doi.org/10.1046/j.1365-2427.2002.00742.x

Ejsmont-Karabin J., 1998, Empirical equations for biomass calculation of planktonic rotifers, Pol. Arch. Hydrobiol., 45, 513-522.

Ejsmont-Karabin J., 2012, The usefulness of zooplankton as lake ecosystem indicators: rotifer trophic state index, Pol. J. Ecol., 60(2), 339-350.

Ferdous Z., Muktadir A. K.M., 2009, A review: Potentiality of zooplankton as a bioindicator, Am. J Appl. Sci., 6(10), 1815-1819, http://dx.doi.org/10.3844/ajassp.2009.1815.1819

Heerkloss R., Schnese W., Adamkiewicz-Chojnacka B., 1991, Seasonal variation in the biomass of zooplankton in two shallow coastal water inlets differing in their stage of eutrophication, Int. Revue Hydrobiol., 76(3), 397-404.

Hillbricht-Ilkowska A., Patalas K., 1967, Methods of production and biomass estimation and some problems of quantitative calculation methods of zooplankton, Ekol. Pol. B., 13(2), 139-172, (in Polish).

International Standard 1997 (ISO 10519:1997), Determination of chlorophyll content, Int. Org. Standarizat., Switzerland.

Janakiraman A., Naveed M.S., Altaff K., 2012, Impact of domestic sewage pollution on rotifer abundance in Adyar estuary, Int. J. Environ. Sci., 3(1), 689-696.

Jeppesen E., Nñges P., Davidson T.A., Haberman J., Nñges T., Blank K., Lauridsen T.L., Søndergaard M., Sayer C., Laugaste R., Johansson L.S., Bjerring R., Amsinck S.L., 2011, Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD), Hydrobiologia, 676(1), 279-297, http://dx.doi.org/10.1007/s10750-011-0831-0

Joyce C.B., Vina-Herbon C., Metcalfe D. J., 2005, Biotic variation in coastal water bodies in Sussex, England: Implications for saline lagoons, Estuar. Coast. Shelf Sci., 65, 633-644, http://dx.doi.org/10.1016/j.ecss.2005.07.006

Kamaladasa A.I., Jayatunga Y.N.A., 2007, Composition, density and distribution of zooplankton in South West and East Lakes of Beira Lake soon after the restoration of South West Lake, Cey. J. Sci. (Bio. Sci.), 36(1), 1-7.

Karabin A., 1985, Pelagic zooplankton (Rotatoria + Crustacea). Variation in the process of lake eutrophication. I. Structural and quantita tive features, Ekol. Pol., 33(4), 567-616.

Kasprzak K., Niedbała W., 1981, Biocenotic indicators in quantitative research, [in:] Methods applied in soil zoology, M. Górny & L. Grüm (eds.), PWN, Warszawa, 397-416, (in Polish).

Kaya M., Fontaneto D., Segers H., Altindag A., 2010, Temperature and salinity as interacting drivers of species richness of planktonic rotifers in Turkish continental waters, J. Limnol., 69(2), 297-304, http://dx.doi.org/10.4081/jlimnol.2010.297

Kondracki J., 2002, Polish regional geography, PWN, Waraw, 440 pp., (in Polish).

Kruk M., 2012, The Vistula Lagoon between the land and the sea. Troublesome consequences, [in:] The Vistula Lagoon. Environment and its research in the VISLA project, M. Kruk, A. Rychter & M. Mróz (eds.), PWSZ, Elbląg, 178 pp.

ageed A.A. A., 2007, Distribution and long-term historical changes of zooplankton assemblages in Lake Manzala (South Mediterranean Sea, Egypt), Egypt. J. Aquat. Res., 33(1), 183-192.

Margoński P., Horbowa K., 2003, Are there any trends in water quality, chlorophyll a and zooplankton of the Vistula Lagoon (Southern Baltic Sea ) as a result of changes in nutrient loads?, 7th Int. Special. IWA Conf., Diffuse ollution and basin management, Dublin, Ireland, 17-21 August.

Marques S.C., Azeiteiro U.M., Marques J.C., Neto J.M., Pardal M.A., 2006, Zooplankton and ichthyoplankton communities in a temperat e estuary: spatial and temporal patterns, J Plankton Res., 28(3), 297-312, http://dx.doi.org/10.1093/plankt/fbi126

May L., O’Hare M., 2005, Changes in rotifer species composition and abundance along a trophic gradient in Loch Lomond, Scotland, UK, Hydrobiologia, 546(1), 397-404, http://dx.doi.org/10.1007/s10750-005-4282-3

Moss B., 2007, Shallow lakes, the water framework directive and life. What should it all be about?, Hydrobiologia, 584, 381-394, http://dx.doi.org/10.1007/s10750-007-0601-1

Nõges P., van de Bund W., Cardoso A.C., Solimini A.G., Heiskanen A.S., 2009, Assessment of the ecological status of European surface waters: a work in progress, Hydrobiologia, 633, 197-211, http://dx.doi.org/10.1007/s10750-009-9883-9

Oleszkiewicz J., 1996, Water - source of life, source of destruction, Ekopartner, 6, 37-40, (in Polish).

Orlando S.P. Jr., Wendt P.H., Klein C.J., Pattillo M.E., Dennis K.C., Ward G.H., 1994, Salinity characteristics of South Atlantic estuaries , U.S. Dept. Commerce, Natnl. Oceanic Atmosph. Administrat., Silver Spring, MD.? Özçalkap S., Temel M., 2011, Seasonal changes in zooplankton community structure in Lake Kuçukçekmece, Istanbul, Turkey, Turk. J. Zool., 35(5), 689-700.

Park G.S., Marshall H. G., 2000, Estuarine relationships between zooplankton community structure and trophic gradients, J. Plankton Res., 22(1), 121-135, http://dx.doi.org/10.1093/plankt/22.1.121

Paturej E., 2006, Assessment of the trophic state of the coastal Lake Gardno based on community structure and zooplankton-related indices, Electron. J. Pol. Agr. Univ. Ser. Biol., 9(2), #17.

Paturej E., Goździejewska A., 2005, Zooplankton-based assessment of the trophic state of three coastal lakes -Łebsko, Gardno, and Jamno, Bull. Sea Fish. Inst., 3(166), 7-26.

Paturej E., Gutkowska A., Mierzejewska J., 2012, Long-term quantitative and qualitative changes in the zooplankton community of the Vistula Lagoon, J. Coastal Res., (in press), http://dx.doi.org/10.2112/JCOASTRES-D-12-00111.1

Różańska Z., 1963, Zooplankton of the Vistula Lagoon, Zesz. Nauk. WSR Olsztyn, 16(278), 41-57, (in Polish).

Rychter A., Paturej E., Jabłońska-Barna I., 2011, Zwierzęta Zalewu Wiślanego, [in:] Zalew Wiślany - środowisko przyrodnicze oraz nowoczesne metody jego badania na przykładzie projektu VISLA, M. Kruk, A. Rychter & M. Mróz (eds.), PWSZ, Elbląg, 67-89.

Semenova A.S., Aleksandrov S.V., 2009, The zooplankton consumption of primary production and an assessment of the waterbody trophic state on the basis of its structural and functional characteristics, Inland Water Biol., 2(4), 348-354, http://dx.doi.org/10.1134/S1995082909040099

Standard methods for the examination of water and wastewater, 1999, Am. Public Health Assoc., Am. Water Works Assoc., Water Environ. Federation, Washington, D.C.

Starmach K., 1955, Test methods for plankton, PWRiL, Warszawa, 132 pp., (in Polish).

Špoljar M., Tomljanović T., Lalić I., 2011, Eutrophication impact on zooplankton community: a shallow lake approach , Holist. Approach Environ., 1(4), 131-142.

Tasevska O., Kostoski G., Guseska D., 2010, Rotifers based assessment of the Lake Dojran water quality, BALWOIS 2010, Ohrid, Republic of Macedonia, 25-29 May 2010.

Vollenweider R.A., Kerekes J., 1982, Eutrophication of waters. Monitoring, assessment and control, OECD, Paris, 156 pp.

Wolska M., Piasecki W., 2004, Planktonic organisms as indicators of trophic conditions in the channel of the Odra river mouth, Zesz. Problem. Post. Nauk Roln., 501, 485-490.

Xiong J., Mei X., Liu J., 2003, Comparative studies on community structure, biodiversity of plankton and zoobenthos in four lakes of different trophic states in China, Asian Fish. Sci., 16, 361-372.

Yoshida T., Urabe J., Elser J.J., 2003, Assessment of ‘top-down’ and ‘bottom-up’ forces as determinants of rotifer distribution among lakes in Ontario, Canada, Ecol. Res., 18(6), 639-650, http://dx.doi.org/10.1111/j.1440-1703.2003.00596.x

Żmudziński L., Szarejko D., 1955, Hydrographic and biological studies of the Vistula Lagoon, Prace MIR, 8, 283-312, (in Polish).
full, complete article (PDF - compatibile with Acrobat 4.0), 356 KB

Epibiotic mites associated with the invasive Chinese mitten crab Eriocheir sinensis - new records of Halacaridae from Poland
Oceanologia 2013, 55(4), 901-915

Monika Normant1, Andrzej Zawal2,*, Tapas Chatterjee3, Dagmara Wójcik1
1Department of Experimental Ecology of Marine Organism,
Institute of Oceanography, University of Gdańsk,
al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland
2Department of Invertebrate Zoology and Limnology, University of Szczecin,
Wąska 13, 71-415 Szczecin, Poland;
e-mail: zawal@univ.szczecin.pl
*corresponding author
3Department of Biology, Indian School of Learning,
I.S.M. Annexe, P.O. - I.S.M., Dhanbad 826004, Jharkhand, India

keywords: Eriocheir sinensis, non-native species, epibiotic mites, Halacaridae, Oribatida, Hydrachnidia

Received 23 April 2013, revised 20 June 2013, accepted 12 August 2013.

This research was supported by grant No. N304 082 31/3219 from the Polish Ministry of Education and Science.


Seven epibiotic halacarid mites (Caspihalacarus hyrcanus, two species of Copidognathus, Halacarellus petiti, Porohalacarus alpinus, Soldanellonyx monardi and S. chappuisi), two oribatid mites (Hydrozetes lacustris and Trhypochthoniellus longisetus) and one water mite (Piona pusilla) were found on the setae-covered claws of eighteen Chinese mitten crabs (Eriocheir sinensis) collected from fresh and brackish waters in Poland and Germany. The most abundant of the 111 mite individuals recorded was one of the Copidognathus species (N = 52); this was followed by H. petiti (N = 38) and C. hyrcanus (N = 13). This is the first record of H. petiti and of the genus Copidognathus from Polish waters. The possibility of migrating over long distances assisted by catadromous mitten crabs enhances mite dispersal, as well as their introduction to new environments.

  References ref

Abelló P., Corbera J., 1996, Epibiont bryozoans (Bryozoa, Ctenostomatida) of the crab Goneplax rhomboids (Brachyura, Goneplacidae) off the Ebro delta (western Mediterranean), Misc. Zool., 19, 43-52.

Angelier E., 1950, Halacarus (Halacarellus) petiti - halacariens nouveau d’etang de salses (Pyréenées Orientales), Vie Milieu, 1, 214-216.

Anger K., 1991, Effects of temperature and salinity on the larval development of the Chinese mitten crab Eriocheir sinensis (Decapoda: Grapsidae), Mar. Ecol.-Prog. Ser., 72, 103-110, http://dx.doi.org/10.3354/meps072103

Bartsch I., 1976a, Zur Systematik und Verbreitung der Halacarellus-Arten (Halacaridae, Acari) an der Bretagne-Küste, Ent. Mitt. Zool. Mus. Hamburg, 5, 97-109.

Bartsch I., 1976b, Copidognathus stevcici n. sp., eine parasitisch lebende Halacaride (Halacaridae, Acari), Thalassia Jugosl., 12, 399-404.

Bartsch I., 1979, Halacaridae (Acari) von der Atlantikk ?uste Nordamerikas: Beschreibung der Arten, Mikrofauna Meeresbod., 79, 1-62.

Bartsch I., 1989, Marine mites (Halacaroidea: Acari): a geographical and ecological survey, Hydrobiologia, 178(1), 21-42, http://dx.doi.org/10.1007/BF00006111

Bartsch I., 1996, Halacarids (Halacaroidea, Acari) in freshwater. Multiple invasions from the Paleozoic onwards?, J. Nat. Hist., 30(1), 67-99, http://dx.doi.org/10.1080/00222939600770051

Bartsch I., 2004, The Black Sea halacarid fauna (Halacaridae, Acari): faunal comparison with the Mediterranean, Eastern North Atlantic, North Sea, and Baltic and reflection on its origin, Zoosystemat. Evol., 80(2), 143-158, http://dx.doi.org/10.1002/mmnz.20040800202

Bartsch I., 2007, Acari: Halacaroidea, [in:] Chelicerata: Areneae, Acari I. Süßwasserfauna von Mitteleuropa, R. Gerecke (ed.), Spektrum Akad. Verlag, 7(2-1), 113-157.

Bartsch I., 2008a, Global diversity of halacarid mites (Halacaridae: Acari:Arachnida) in freshwater, Hydrobiologia, 595(1), 317-322, http://dx.doi.org/10.1007/s10750-007-9026-0

Bartsch I., 2008b, Freshwater halacarid mites (Halacaridae: Prostigmata: Acari) from Tunisia, three new records and notes on geographical distribution of these species, Ent. Mitt. Zool. Mus. Hamburg, 15, 15-27.

Bartsch I., 2009, Checklist of marine and freshwater halacarid mite genera and species (Halacaridae: Acari) with notes on synonyms, habitats, distribution and descriptions of the taxa, Zootaxa, 1998, 1-170.

Bartsch I., 2011, North American freshwater Halacaridae (Acari): Literature survey and new records, Int. J. Acarol., 37(6), 490-510, http://dx.doi.org/10.1080/01647954.2010.525528

Bartsch I., Gerecke R., 2011, A new freshwater mite of the marine genus Halacarellus (Acari: Halacaridae) from the Austrian Alps (Styria, Gesäuse 912National Park): Description and reflections on its origin, Zool. Anz., 250(2), 151-159, http://dx.doi.org/10.1016/j.jcz.2011.02.003

Bartsch I., Panesar A.R., 2000, Die Meeresmilbe Caspidohalacarus hyrcanus in der Donau bei Wien, ein ponto-kaspisches Relikt, Nat. Mus., 130, 258-263.

Biesiadka E., 1972, Water mites (Hydracarina) of the Wielkopolski National Park, Pr. Monogr. Przyr. Wielkop. Parku Nar., 5, 1-103, (in Polish).

Bij de Vaate A., Jażdżewski K., Ketelaars H.A.M., Gollasch S., Van der Velde G., 2002, Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe, Can. J. Fish. Aquat. Sci., 59(7), 1159-1174, http://dx.doi.org/10.1139/f02-098

Chatterjee T., De Troch M., Chan B.K.K., 2008, Descriptions of two species of Copidognathus halacarid mites (Acari, Halacaridae) from Zanzibar, Tanzania, Zootaxa, 1809, 49-60.

Chatterjee T., De Troch M., Chang C.Y., 2006, Three halacarid mites of the genus Copidognathus (Acari, Halacaridae) from Zanzibar, Tanzania, Cah. Biol. Mar., 47(2), 177-187.

Chatterjee T., Marshall D.J., Pesic V., 2012, New records of Copidognathus mites (Acari: Halacaridae) from mangroves in Brunei Darussalam with descriptions of two new species, Zootaxa, 3269, 18-30.

Chatterjee T., Pavićević A., Pešić V., 2010, New records of the halacarid mites (Acari: Halacaridae) from Croatia, Zesz. Nauk. Uniw. Szczecińskiego, Acta Biol., 17, 85-89.

Cohen A.N., Carlton J.T., 1997, Transoceanic transport mechanisms: introduction of the Chinese mitten crab, Eriocheir sinensis, to California, Pac. Sci., 51, 1-11.

Czerniejewski P., Rybczyk A., Wawrzyniak W., 2010, Diet of the Chinese mitten crab, Eriocheir sinensis H. Milne Edwards, 1853, and potential effects of the crab on the aquatic community in the River Odra/Oder estuary (N.-W. Poland), Crustaceana, 83(2), 195-205, http://dx.doi.org/10.1163/001121609X12591347509202

Czerniejewski P., Skuza L., Drotz M.K., Berggren M., 2012, Molecular connectedness between self- and non-self-sustainable populations of Chinese mitten crab (Eriocheir sinensis, H. Milne Edwards, 1853) with focus to the Swedish Lake Vänern and the Oder and Vistula River in Poland , Hereditas, 149(2), 55-61, http://dx.doi.org/10.1111/j.1601-5223.2012.02246.x

Davids C., 1997, The influence of larval parasitism on history strategies in water mites (Acari, Hydrachnidia), Arch. Hydrobiol., 141, 35-43.

Dovgal I., Chatterjee T., Ingole B., 2008, An overview of Suctorian ciliates (Ciliophora, Suctoria) as epibionts of halacarid mites (Acari, Halacaridae), Zootaxa, 1810, 60-68.

Dovgal I., Chatterjee T., Subba Rao D. V., Chan B.K.K., De Troch M., 2009, New records of Praethecacineta halacari (Schilz) (Suctorea: Ciliophora) from Taiwan, Tanzania and Canada, Mar. Biodivers. Rec., 2(1).

Drotz M.K., Berggren M., Lundberg S., Lundin K., von Proschwitz T., 2010, Invasion routes, current and historical distribution of the Chinese mitten crab (Eriocheir sinensis H. Milne Edwards, 1853) in Sweden, Aquat. Inv., 5(4),387-396, http://dx.doi.org/10.3391/ai.2010.5.4.08

Fladung E., 2000, Untersuchungen zur Bestandsregulierung und Verwertung der Chinesischen Wollhandkrabbe (Eriocheir sinensis) unter besonderer Berücksichtigung der Fischereiverh ?altnisse im Elbe/Havel-Gebiet, Schriften des Instituts für Binnenfischerei e.V. Potsdam-Sacrow, Band 5, 1-82.

Gil J.I., Garzón F.M., 1979, Verlardeacarus gasconi n. gen. n. sp. parasitando las branquias de Peltarium spinulosum (White, 1843) (Decapoda Brachyura), Rev. Biol. Uruguay, 7, 107-116.

Green J., MacQuitty M., 1987, Halacarid Mites, SBF, 36, 178 pp.

Herborg L.M., Rushton S.P., Clare A.S., Bentley M.G., 2003, Spread of the Chinese mitten crab (Eriocheir sinensis, H. Milne Edwards) in Continental Europe: analysis of a historical data set, Hydrobiologia, 503(1-3), 21-28, http://dx.doi.org/10.1023/B:HYDR.0000008483.63314.3c

Husmann S., 1982, Aktivkohlefilter als künstliche Biotope stygophiler und stygobionter Grundwassertiere, Arch. Hydrobiol., 95, 139-155.

Kagainis U., 2011, Revision of the checklist of Latvian oribatid mites (Acari:Oribatida), with notes on previous studies and new species for the fauna of Latvia, Latv. Entomol., 50, 31-40.

Lowe S., Browne M., Boudjelas S., De Poorter M., 2000, 100 of the World’s Worst Invasive Alien Species A selection from the Global Invasive Species Database, The Invasive Species Specialist Group (ISSG), Special. Group of Species Survival Commission (SSC), World Conserv. Union, 12 pp.

Mahunka S., 2011, New and little known oribatid mites from Madagascar (Acari:Oribatda) II, Acta Zool. Acad. Sci. Hung., 57, 1-21.

Martens A., Gerecke R., Grabow K., 2006, Caspihalacarus hyrcanus (Acari) im Oberrhein, Der erste Fund einer neozoischen Wassermilbe in Deutschland und Frankreich, Lauterbornia, 56, 27-34.

McGaw I.J., 2006, Epibionts of sympatric species of cancer crabs in Barkley so und, British Columbia, J. Crustacean Biol., 26(1), 85-93, http://dx.doi.org/10.1651/C-2601.1

Motaşs C., Şoarec-Tănăsachi J., 1943, Un Halacaride reliquat ponto-caspien dans le Danube, Bul. Soc. Natur. Romania, 16, 1-7.

Newell I.M., 1956, A parasitic species of Copidognathus (Acari: Halacaridae), P. Hawaii. Entomol. Soc., 16, 122-125.

Nixdorf B., Hemm M., Hoffmann A., Richter P., 2004, Gülper See, [in:] Dokumentation von Zustand und Entwicklung der wichtigsten Seen Deutschlands, Teil 5, Brandenburg, 51-53.

Normant M., Chrobak M., Skóra K.E., 2002, The Chinese mitten crab Eriocheir sinensis - an immigrant from Asia in the Gulf of Gdańsk, Oceanologia, 44(1), 124-126.

Normant M., Korthals J., Szaniawska A., 2007, Epibiota associated with setae on Chinese mitten crab claws (Eriocheir sinensis H. Milne-Edwards, 1853): a first record, Oceanologia, 49(1), 137-143.

Normant M., Król M., Jakubowska M., 2012, Effect of salinity on the physiology and bioenergetics of adult Chinese mitten crabs Eriocheir sinensis, J. Exp. Mar. Biol. Ecol., 416-417, 215-220, http://dx.doi.org/10.1016/j.jembe.2012.01.001

Ojaveer H., Gollasch S., Jaanus A., Kotta J., Laine A.O., Minde A., Normant M., Panov V.E., 2007, Chinese mitten crab Eriocheir sinensis in the Baltic Sea - a supply-side or invader?, Biol. Invasions, 9(4), 409-418, http://dx.doi.org/10.1007/s10530-006-9047-z

Olmeda A.S., Blanco M.M., Perez-Sanchez J.L., Luzon M., Villarroel M., Gibello A., 2011, Occurrence of the oribatid mite Trhypochthoniellus longis etus (Acari:Trhypochthoniidae) on tilapia Oreochromis niloticus, Dis. Aquat. Organ., 94(1), 77-82, http://dx.doi.org/10.3354/dao02309

Panning A., 1938, The Chinese mitten crab , Rep. Board Regent. Smithsonian Inst., 3508, Washington, 361-375.

Panning A., 1952, Die Chinesische Wollhandkrabbe, Die Neue Brehm-Bücherei, H. 70, Akad. Verlagsgesellsch, Geest & Portig K.-G., Leipzig, 1-46.

Pepato A. R., Santos C., Tiago C.G., 2005, Two new closely related species of Copidognathus (Acari, Halacaridae) associated with crabs, Cah. Biol. Mar., 46, 69-79.

Pešić V., Smit H., Datry T., 2010, New records of water mites (Acari:Hydrachnidia, Halacaroidea) from Patagonia (Chile), Syst. Appl. Acarol., 15, 151-160.

Sobecka E., Hajek G.J., Skorupiński Ł., 2011, Four pathogens found associated with Eriocheir sinensis H. Milne-Edwards, 1853 (Crustacea: Brachyura:Grapsidae) from Lake Dąbie (Poland), Oceanol. Hydrobiol. St., 40(1), 96-99, http://dx.doi.org/10.2478/s13545-011-0010-y

Subías L.S., 2011, Listado sistemático, sinonímico y biogeográfico de los Acaros Oribátidos (Acariformes, Oribatida) del mundo (excepto fósiles), edn. April 2012, 561 pp., http://www.ucm.es/info/zoo/Artropodos/Catalogo.pdf.

Szalay L., 1970, Verzeichnis der aus dem Karpatenbecken bisher bekannt gewordenen Wassermilben (Hydracarina, Acari), Acarologia, 12, 136-159.

Vajnštejn B.A., 1980, Key to larval water mites, Nauka, Leningrad, 238 pp., (in Russian).

Veilleux E., de Lafontaine Y., 2007, Biological synopsis of the Chinese mitten crab (Eriocheir sinensis), Can. Manuscr. Rep. Fish. Aquat. Sci., 2812, vi+45 pp.

Veldtman R., Lado T.F., Botes A., Proches S., Timm A.E., Geertsema H., Chown S.L., 2011, Creating novel food webs on introduced Australian acacias: indirect effects of galling biological control agents, Divers. Distrib., 17(5), 958-967, http://dx.doi.org/10.1111/j.1472-4642.2011.00781.x

Viets K., 1928, Wassermilben aus dem Schwarzen Meer, dem Kaspischen Meer und dem Aral See, Abh. Nat. Wiss. Ver. Brem., 27, 47-80.

Viets K., 1931, Über eine an Krebskiemen parasitierende Halacaride aus Australien, Zool. Anz., 96, 115-120.

Weigmann G., 1997, New and old species of Malaconothroidea from Europe (Acari, Oribatida), Spixiana, 20(3), 199-218.

Weigmann G., Deischel R., 2007, Acari: Limnic Oribatida, [in:] Chelicerata: Areneae, Acari I. Süßwasserfauna von Mitteleuropa, R. Gerecke (ed.), Spektrum Akad. Verlag 7/2-1, 89-112 pp.

Wiszniewski J., 1939, Über die Fauna der Kiemenhöhle der Flusskrebse, Arch. Hydrobiol. Ryb., 12, 124-162.

Zawal A., 1992, Water mites (Hydracarina) of three small lakes in the neighbourhood of Poznań, Acta Hydrobiol., 34, 157-174.

Zawal A., 1998, Water mites (Hydracarina) in the brachial cavity of crayfish Orconectes limosus (Raf. 1817), Acta Hydrobiol., 40, 49-54.

Zawal A., 2003, The role of insects in the dispersion of water mites, Acta Biol. Univ. Daugavpilensis, 3, 9-15.

Zawal A., 2006, Materials for knowledge of water mites (Acari: Hydrachnidia) in the neighbourhood of Złocieniec (NW Poland), Acta Biologica, 13, 163-169, (in Polish).

Zawal A., 2007, Water mites (Hydrachnidia) of the ‘Szare Lake’ nature reserve and its protection zone, Par. Nar. Rez. Przyr., 26, 57-78, (in Polish).

full, complete article (PDF - compatibile with Acrobat 4.0), 807 KB

Effect of temperature on two reef-building corals Pocillopora damicornis and P. verrucosa in the Red Sea
Oceanologia 2013, 55(4), 917-935

Abdulmohsin A. Al-Sofyani1,*, Yahya A. M. Floos2
1Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University,
Post Box. No. 80207, Jeddah-21589, Saudi Arabia;
e-mail: sofyani@hotmail.com
*corresponding author
2Department of Marine Biology, Faculty of Marine & Environmental Science,
Hodeidah University, Republic of Yemen

keywords: coral bleaching, temperature, zooxanthellae, global warming, Red Sea

Received 29 October 2012, revised 26 August 2013, accepted 6 September 2013.


The effects of temperature on two reef building corals Pocillopora damicornis and P. verrucosa inhabiting the Obhur Creek, a small embayment on the western, Red Sea coast of Saudi Arabia, was studied from December 2009 to November 2010. The overall annual range of seawater temperature in Obhur Creek was between 24.5°C and 33°C. Zooxanthellae abundance and diversity showed seasonal variations: the number of zooxanthellae in P. damicornis was slightly higher than in P. verrucosa, and the abundance of zooxanthellae of both species was low in summer and high during winter. The respiration rate of P. verrucosa did not vary between summer and winter, suggesting compensatory acclimation. In contrast, the respiratory rate in P. damicornis was lower in winter than in summer. During the winter season the metabolic rate was higher in both species owing to the optimum seawater temperature (30°C). As a result of the abundance of zooxanthellae and the optimum seawater temperature, the growth rates of the skeletons of the two coral species were higher in winter and lower in summer. In general, the results showed that P. damicornis is more flexible with respect to temperature than P. damicornis. The difference in zooxanthellae thermal tolerances at 35°C may be due to the algal genotypes between the two species, resulting in P. damicornis becoming bleached as the rate of metabolism exceeds the rate of photosynthesis with increasing temperature.

  References ref

Al-Sofyani A. A., 1987, Studies on growth and reproduction of Red Sea scleractinia, M.Sc. thesis, King Abdulaziz Univ., Jeddah, 102 pp.

Al-Sofyani A.A., 1991, Physiology and ecology of Stylophora pistillata and Echinopora gemmacea from the Red Sea, Ph.D. thesis, Glasgow, 167 pp.

Al-Sofyani A.A., 2000, Bleaching of Some Red Sea Corals at Ubhour Bay, Jeddah, Int. Symp. on the Extent of Coral Reef Bleaching. Riyadh, 1, p. 18.

Al-Sofyani A.A., 2002, The country report for Saudi Arabia: the status of coral reefs in Saudi Arabia, regional coral reef survey 2002, The report submitted to the Regional Organisation for the Conservation of the Environment of the Red Sea and Gulf of Aden (PERSGA), July 2002, PERSGA, Jeddah, 70 pp.

Al-Sofyani A., Davies P.S., 1992, Seasonal variation in production and respiration of Red Sea Corals, Proc. 7th Int. Coral Reef Symp., Guam, Micronesia, 1, 351-357.

Atkinson M.J., Carlson B., Crow G.L., 1995, Coral growth in high-nutrient, low pH seawater: a case study of corals cultured at the Waikiki Aquarium, Honolulu, Hawaii, Coral Reefs, 14(4), 215-223.

Baker A.C., Starger C.J., McClanahan T.R., Glynn P.W., 2004, Corals’ adaptive response to climate change, Nature, 430(7001), 741-741, http://dx.doi.org/10.1038/430741a

Brown B.E., Dunne R.P., Goodson M.S., Douglas A.E., 2000, Bleaching patterns in reef corals, Nature, 404, 142-143, http://dx.doi.org/10.1038/35004657

Brown B.E., Dunne R.P., Goodson M.S., Douglas A.E., 2002, Experience shapes the susceptibility of a reef coral to bleaching, Coral Reefs, 21, 119-126.

Calvin M., Muscatine L., 1997, Oxidative stress in the symbiotic sea anemone Aiptasia pulchella (Carlgren, 1943): contribution of the animal to superoxideion production at elevated temperature, Biol. Bull., 192(2), 444-456, http://dx.doi.org/10.2307/1542753

Coffroth M.A., Santos S.R., 2005, Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium, Protist, 156(1), 19-34, http://dx.doi.org/10.1016/j.protis.2005.02.004

Coles S.L., Brown B.E., 2003, Coral bleaching - capacity for acclimatization and adaptation, Adv. Mar. Biol., 46, 183-223, http://dx.doi.org/10.1016/S0065-2881(03)46004-5

Coles S.L., Jokiel P.L., 1977, Effects of temperature on photosynthesis and respiration in hermatypic corals, Mar. Biol., 43(3), 209-216, http://dx.doi.org/10.1007/BF00402313

Dvies P.S., 1980, Respiration in some Atlantic reef corals in relation to vertical distribution and growth form, Biol. Bull., 158(2), 187-194, http://dx.doi.org/10.2307/1540930

Davies P.S., 1984, The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydoxi, Coral Reefs, 2, 181-186.

Davies P.S., 1991, Effect of daylight variation on the energy budgets of shallow water coral, Mar. Biol., 108(1), 137-144, http://dx.doi.org/10.1007/BF01313481

Downs C.A., Fauth J.E., Halas J.C., Dustan P., Bemiss J., Woodley C.M., 2002, Oxidative stress and seasonal coral bleaching, Free Radic. Biol. Med., 33(4), 533-543, http://dx.doi.org/10.1016/S0891-5849(02)00907-3

Drew E.A., 1972, The biology and physiology of alga-invertebrate symbioses. II. The density of symbiotic algal cell in a number of hermatypic hard corals and alcyonarians from various depth, J. Exp. Mar. Biol. Ecol., 9(1), 71-75, http://dx.doi.org/10.1016/0022-0981(72)90008-1

Dunne R.P., Brown B.E., 2001, The influence of solar radiation on bleaching of shallow water reef corals in the Andaman Sea, 1993-1998, Coral Reefs, 20, 201-210.

Dustan P., 1979, Distribution of zooxanthellae and photosynthetic chlorop last pigments of the reef-building coral, Montastrea annularis in relation to depth on a West Indian coral reef, Bull. Mar. Sci., 29, 79-95.

Dustan P., 1982, Depth-dependent photoadaption by zooxanthellae of Montastrea annularis, Mar. Biol., 68(3), 253-264, http://dx.doi.org/10.1007/BF00409592

Edward A.J., 1987, Climate and oceanography, [in:] Red Sea: key environments, A.J. Edward & S.M. Head (eds.), Int. Union Conserv. Nature Nat. Res., Pergamon Press., Oxford, 45-89.

Fabricius K., Mieog J.C., Colin P.L., Idip D., van Oppen M.J.H., 2004, Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories, Mol. Ecol., 13(8), 2445-2458, http://dx.doi.org/10.1111/j.1365-294X.2004.02230.x

Falkowski P.G., Dubinski Z., 1981, Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the gulf of Eilat, Nature, 289, 172-174, http://dx.doi.org/10.1038/289172a0

Fitt W.K., Brown B.E., Warner M.E., Dunne R.P., 2001, Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals, Coral Reefs, 20(1), 51-65, http://dx.doi.org/10.1007/s003380100146

Floros C.D., Samways M.J., Armstrong B., 2004, Taxonomic patterns of bleaching within a South African coral assemblage, Biodivers. Conserv., 13(6), 1175-1194, http://dx.doi.org/10.1023/B:BIOC.0000018151.67412.c7

Goreau T.R., 1959, The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions, Biol. Bull., 116(1), 59-75.

Hallock P., 2001, Coral reefs, carbonate sediment, nutrients, and global change, [in:] Ancient reef ecosystems: their evolution, paleoecology and importance in earth history, G.D. Stanley (ed.), Kluwer Acad./Plenum Publ., New York, 388-427.

Hochachka P.W., Somero G.N., 1984, Biochemical adaptations, Princeton Univ. Press, Princeton, 560 pp.

Hoegh-Guldberg O., 1999, Climate change, coral bleaching and the future of the world’s coral reefs, Greenpeace, Sydney, 28 pp.

Jan S.A. A., 2001, Effects of zinc on Fungi corals from the Red Sea, M.Sc. thesis, King Abdulaziz Univ., Jeddah, 92 pp.

Karako-Lampert S., Katcoff D.J., Achituv Y., Dubinsky Z., Stambler N., 2004, Do clades of symbiotic dinoflagellates in scleractinian corals of the Gulf of Eilat (Red Sea) differ from those of other coral reefs?, J. Exp. Mar. Biol. Ecol., 311(2), 301-314, http://dx.doi.org/10.1016/j.jembe.2004.05.015

Kleypas J.A., Buddemeier R.W., Gattuso J.-P., 2001, The future of coral reefs in an age of global change, Int. J. Earth Sci., 90(2), 426-437, http://dx.doi.org/10.1007/s005310000125

Lewis C.L., Coffroth M.A., 2004, The acquisition of exogenous algal symbionts by an octocoral after bleaching, Science, 304(5676), 1490-1492, http://dx.doi.org/10.1126/science.1097323

Lewis J.B., Post E.E., 1982, Respiration and energetics in West Indian Gorgonacea (Anthozoa, Octocorallia), Comp. Biochem. Physiol., 71(A), 457-459.

Loya Y., Sakai K., Yamazato K., Nakano Y., Sambali H., van Woesik R., 2001, Coral bleaching: the winners and losers, Ecol. Lett., 4(2), 122-131, http://dx.doi.org/10.1046/j.1461-0248.2001.00203.x

McClanahan T.R., Baird A. H., Marshall P.A., Toscano M.A., 2004, Comparing bleaching and mortality responses of hard corals between so uthern Kenya and the Great Barrier Reef, Australia, Mar. Pollut. Bull., 48(3-4), 327-335, http://dx.doi.org/10.1016/j.marpolbul.2003.08.024

Nakamura E., Yasutsugu Y., Tanaka J., 2004, Photosynthetic activity of a temperature coral Acropora Pruinosa (Scleractinia, Anthozoa) with symbiotic algae in Japan, Phycol. Res., 52(1), 38-44, http://dx.doi.org/10.1111/j.1440-1835.2004.tb00313.x

Papina M., Meziane T., van Woesik R., 2003, Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsatu rated fatty acids, Comp. Biochem. Physiol. B, 135(3), 533-537, http://dx.doi.org/10.1016/S1096-4959(03)00118-0

Porter J.W., Muscatine L., Dubinsky Z., Falkowski P.G., 1984, Primary production and photoadaptation in light- and shade-adapted colonies of the symbiotic coral, Stylophora pistillata, Proc. Roy. Soc. B.-Biol. Sci., 222(222), 161-180, http://dx.doi.org/10.1098/rspb.1984.0057

Ralph P.J., Larkum A.W. D., Kühl M., 2005, Temporal patterns in effective quantum yield of individual zooxanthellae expelled during bleaching, J. Exp. Mar. Biol., 316(1), 17-28, http://dx.doi.org/10.1016/j.jembe.2004.10.003

Rowan R., Knowlton N., 1995, Intraspecific diversity and ecological zonation in coral-algal symbiosis, Proc. Natl. Acad. Sci., 92(7), 2850-2853, http://dx.doi.org/10.1073/pnas.92.7.2850

Rowan R., Knowlton N., Baker A., Jara J., 1997, Landscape ecology of algal symbionts creates variation in episodes of coral bleaching, Nature, 388, 265-269, http://dx.doi.org/10.1038/40843

Stimson J., 1997, The annual cycle of density of zooxanthellae in the tissues of field and laboratory-held Pocillopora damicornis (Linnaeus), J. Exp. Mar. Biol. Ecol., 214(1-2), 35-48, http://dx.doi.org/10.1016/S0022-0981(96)02753-0

Stimson J., Kinzie R.A., 1991, The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions, J. Exp. Biol. Ecol., 153(1), 63-74, http://dx.doi.org/10.1016/S0022-0981(05)80006-1

Thinh L.V., 1991, Photo-adaptation in two species of Acropora growth under controlled conditions, Photosynthetica, 25, 365-371.

Toller W.W., Rowan R., Knowlton N., 2001, Repopulation of zooxanthellae in the Caribbean corals Montastrea annularis and M. faveolata following experimental and disease-associated bleaching, Biol. Bull., 201(3), 360-373, http://dx.doi.org/10.2307/1543614

full, complete article (PDF - compatibile with Acrobat 4.0), 203 KB

Sedimentation from suspension and sediment accumulation rate in the River Vistula prodelta, Gulf of Gdańsk (Baltic Sea)
Oceanologia 2013, 55(4), 937-950

Mateusz Damrat1, Agata Zaborska2, Marek Zajączkowski2
1Institute of Geological Sciences, Jagiellonian University,
Oleandry 2a, 30-063 Kraków, Poland
2Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55,81-712 Sopot, Poland;
e-mail: trapper@iopan.gda.pl
*corresponding author

keywords: sedimentation from suspension, sediment accumulation rates, sediment redeposition, river discharge, Gulf of Gdańsk, Baltic Sea

Received 27 May 2013, revised 23 August 2013, accepted 18 September 2013.

The project within which this paper was prepared was funded by the Institute of Oceanology, Polish Academy of Sciences, and the National Science Centre, grantNo. 2011/01/B/ST10/06529.


The River Vistula is one of the largest suppliers of fresh water and terrigenous matter to the Baltic Sea. The impact of this river on the Baltic coastal system and the fate of the sediment delivered to the Gulf of Gdańsk are not well understood. Spatial transport patterns, as well as the settling, deposition and accumulation of the sediments were studied at the Vistula prodelta in different seasons from January 2012 to January 2013. The concentration of suspended matter in the water column was measured with optical methods, the sedimentation rate was determined with sediment traps, and the sediment accumulation rate was estimated using 210Pb dating. Our data shows that the annual supply of sediment to the sediment-water interface exceeds the annual rate of sediment accumulation in the outer Vistula prodelta by a factor of three. Sediment trapping during rough weather showed that significant sediment redeposition was taking place, even at depths of 55 m. The dynamic sedimentary processes occurring in the Vistula prodelta mean that that more than two-thirds of the sediment mass can be remobilized and then redeposited in deeper parts of the Gdańsk Basin.

  References ref

Budillon F., Violante C., Conforti A., Esposito E., Insinga D., Iorio M., Porfido S., 2005, Event beds in the recent prodelta stratigraphic record of the small flood-prone Bonea Stream (Amalfi Coast, Southern Italy), Mar. Geol., 222-223, 419-441, http://dx.doi.org/10.1016/j.margeo.2005.06.013

CSO - Central Statistical Office, 2011, Statistical yearbook of the Republic of Poland 2011, CSO, Warsaw, p. 84.

Emeis K., Christiansen C., Edelvang K., Jähmlich S., Kozuch J., Laima M., Leipe T., Löffler A., Lund-Hansen L.C., Miltner A., Pazdro K., Pempkowiak J., Pollehne F., Shimmield T., Voss M., Witt G., 2002, Material transport from the near shore to the basinal environment in the southern Baltic Sea. II: Synthesis of data on origin and properties of material, J. Marine Syst., 35,(3-4), 151-168, http://dx.doi.org/10.1016/S0924-7963(02)00127-6

Flynn W.W., 1968, The determination of polonium-210 in environmental materials, Anal. Chim. Acta, 43, 221-227, http://dx.doi.org/10.1016/S0003-2670(00)89210-7

Keen T.R., Bentley S.J., Chad Vaughan W., Blain C.A., 2004, The generation and preservation of multiple hurricane beds in the northern Gulf of Mexico, Mar. Geol., 210(1-4), 79-105, http://dx.doi.org/10.1016/j.margeo.2004.05.022

Koszka-Maroń D., 2009, Facies model of the contemporary delta lobe of the Vistula River, Oceanol. Hydrobiol. St., 38(Suppl. 1), 57-68.

Kunzendorf H., Emeis K.-C., Christiansen C., 1998, Sedimentation in the central Baltic Sea as viewed by non-destructive Pb-210-dating, Geogr. Tidsskr., 98, 1-9.

Łajczak A., Plit J., Soja R., Starkel L., Warowna J., 2007, Changes of the Vistula river channel and floodplain in the last 200 years, Geogr. Pol., 72(2), 65-87.

Pruszak Z., van Ninh P., Szmytkiewicz M., Manh Hung N., Ostrowski R., 2005, Hydrology and morphology of two river mouth regions (temperate Vistula Delta and subtropical Red River Delta), Oceanologia, 47(3), 365-385.

Suplińska M.M., Pietrzak-Flis Z., 2008, Sedimentation rates and dating of bottom sediments in the Southern Baltic Sea region, Nukleonika, 53(Suppl. 2), 105-111.

Syvitski J.P.M., Kettner A., Correggiari A., Nelson B.W., 2005, Distributary channels and their impact on sediment dispersal, Mar. Geol., 222-223, 75-94, http://dx.doi.org/10.1016/j.margeo.2005.06.030

Szczepańska A., Zaborska A., Maciejewska A., Kuliński K., Pempkowiak J., 2012, Distribution and origin of organic matter in the Baltic sea sediments dated with 210Pb and 137Cs, Geochronometria, 39(1), 1-9, http://dx.doi.org/10.2478/s13386-011-0058-x

Voss M., Liskow I., Pastuszak M., Rüß D., Schulte U., Dippner J.W., 2005, Riverine discharge into a coastal bay: a stable isotope study in theGulf of Gdańsk, Baltic Sea, J. Marine Syst., 57(1-2), 127-145, http://dx.doi.org/10.1016/j.jmarsys.2005.04.002

Zaborska A., Carrol J., Papucci C., Pempkowiak J., 2007, Intercomparison of alpha and gamma spectrometry techniques used in 210Pb geochronology, J. Environ. Radioactiv., 93(1), 38-50, http://dx.doi.org/10.1016/j.jenvrad.2006.11.007

Zajączkowski M., 2002, On the use of sediment traps in sedimentation measurements in glaciated fjords, Pol. Polar Res., 23(2), 161-174.

Zajączkowski M., Włodarska-Kowalczuk M., 2007, Dynamic sedimentary environments of an Arctic glacier-fed river estuary (Adventfjorden, Svalbard). I. Flux, deposition, and sediment dynamics, Estuar. Coast. Shelf Sci., 74(1-2), 285-296, http://dx.doi.org/10.1016/j.ecss.2007.04.015

Zajączkowski M., Darecki M., Szczuciński W., 2010, Report on the development of the Vistula River plume in the coastal waters of the Gulf of Gdańsk during the May 2010 flood, Oceanologia, 52(2), 311-317, http://dx.doi.org/10.5697/oc.52-2.311

full, complete article (PDF - compatibile with Acrobat 4.0), 209 KB

Geochemical and acoustic evidence for the occurrence of methane in sediments of the Polish sector of the southern Baltic Sea
Oceanologia 2013, 55(4), 951-978

Aleksandra Brodecka1,*, Piotr Majewski2, Jerzy Bolałek2, Zygmunt Klusek2
1Institute of Oceanography, University of Gdańsk,
al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland;
e-mail: oceabr@ug.edu.pl
*corresponding author
2Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55,81-712 Sopot, Poland

keywords: methane, sediments, southern Baltic, gas bubbles, SMTZ

Received 27 March 2013, revised 1 August 2013, accepted 26 September 2013.

The research was supported by the Polish Ministry of Science and Higher Education grant No. N306 441638 entitled "Occurrence and transformations of methane in sediments of the southern Baltic Sea", by the BONUS project"BALTIC GAS. Methane emission in the Baltic Sea: Gas storage and effects of climate change and eutrophication (2009-2011)" and by the National Science Centre grant No. DEC-2011/03/N/ST10/05633 "Acoustic recognition of gas-bearing sediment forms in the southern Baltic Sea and quantitative assessment of gas outflows".


This paper presents the results of geochemical and acoustic investigations of sediments in the Polish sector of the southern Baltic Sea. Its objective was to indicate areas of gas bubble formation and the occurrence of methane. Over 3000 nautical miles of transects were recorded using a variety of hydroacoustic instruments, and five coring points were selected for further analyses of pore waters (CH4, SO4-2, H2S, NH4+, total alkalinity) and sediments (grain size distribution, Corg, Ntot, LOI and WC). Gas turned out to be present at shallow depths in different forms such as recent and buried pockmarks, and gas-saturated sediments (including gas pockets and seepages). It was found that methane was widespread in the sediments of the study area, both in the surface sediments, e.g. in the vicinity of the Hel Peninsula or in the central Gulf of Gdańsk, and in deeper sediment layers, e.g. in the Gdańsk Deep and the Słupsk Furrow. Chemical analysis showed that as a result of the rapid decomposition of organic matter, sulphates were depleted in the top 20 cm layer of sediments and that methane was produced atrelatively shallow depths (in some areas even at depths of 20-30 cm bsf) compared to other regions of the Baltic, reaching concentrations of >6 mmol l-1 in the 30-40 cm layer below the sediment surface. The sulphate-methane transition zone (SMTZ) was 4-37 cm thick and was situated in the uppermost 50 cm of the sediments.

  References ref

Abegg F., Anderson A.L., 1997, The acoustic turbid layer in muddy sediments of Eckernförde Bay, Western Baltic: methane concentration, saturation and bubble characteristics, Mar. Geol., 137(1-2), 137-147, http://dx.doi.org/10.1016/S0025-3227(96)00084-9

Anderson A.L., Hampton L.D., 1980, Acoustics of gas-bearing sediments I. Background, J. Acoust. Soc. Am., 67(6), 1865-1889, http://dx.doi.org/10.1121/1.384453

Andrulewicz E., Witek Z., 2002, Anthropogenic pressure and environmental effects on the Gulf of Gdańsk: recent management efforts, [in:] Baltic coastal ecosystems: central and eastern european studies, G. Schernewski & U. Schiewer (eds.), Springer CEEDES Ser., 119-139.

Barnes R.O., Goldberg E.D., 1976, Methane production and consumption in anoxic marine sediments, Geology, 4(5), 297-300, http://dx.doi.org/10.1130/0091-7613(1976)4<297:MPACIA>2.0.CO;2

Boetius A., Ravenschlag K., Schubert C.J., Rickert D., Widdel F., Gieseke A., Amann R., Jørgensen B.B., Witte U., Pfannkuche O., 2000, A marine microbial consortium apparently mediating anaerobic oxidation of methane, Nature, 407, 623-626, http://dx.doi.org/10.1038/35036572

Bolałek J., Frankowski L., 2003, Selected nutrients and iron in interstitial waters of the estuary of Southern Baltic (Gulf of Gdańsk and the Pome ranian Bay) in relation to redox potential, Water Air Soil Poll., 147(1-4), 39-50.

Bolałek J., 2010, Interstitial waters, [in:] Physical, biological and chemical examination of marine sediments, J. Bolałek (ed.), Wyd. Univ. Gdańsk, Gdańsk, 525-551, (in Polish).

Brink K.H., Robinson A. R., 2005, Global coastal ocean: regional studies and syntheses, Harvard Univ. Press, 1090 pp.

Brodecka A., Bolałek J., 2011, Geochemical factors controlling the occurrence of methane in sediments of the Gulf of Gdańsk, [in:] Interdyscyplinarne zagadnienia w górnictwie i geologii, Ofic. Wyd. PWr., Wrocław, 73-83, (in Polish).

Burska D., Frankowski L., Bolałek J., 1999, Temporal variability in the chemicalcomposition of bottom sediments in the Pomeranian Bay (Southern Baltic), Oceanologia, 41(3), 445-459.

Bussmann I., Suess E., 1998, Groundwater seepage in Eckernförde Bay (Western Baltic Sea): effect on methane and salinity distribution of the water column, Cont. Shelf Res., 18(14-15), 1795-1806, http://dx.doi.org/10.1016/S0278-4343(98)00058-2

Carman R., Jonsson P., 1991, Distribution patterns of different forms of phosphorus in some surficial sediments of the Baltic Sea, Chem. Geol., 90(1-2), 91-106, http://dx.doi.org/10.1016/0009-2541(91)90036-Q

Clay C.S., Medwin H., 1977, Acoustical oceanography: principles and applications, John Wiley & Sons, New York, 544 pp.

Claypool G.E., Kaplan I.R., 1974, The origin and distribution of methane in marine sediments, [in:] Natural gases in marine sediments, I.R. Kaplan (ed.), Plenum Press, New York, 99-139.

Claypool G.E., Kvenvolden K.A., 1983, Methane and other hydrocarbon gases in marine sediment, Ann. Rev. Earth Planet Sci., 11, 299-327, http://dx.doi.org/10.1146/annurev.ea.11.050183.001503

Cyberska B., 1990, Salinity of waters in the Gdańsk Basin, [in:] The Gulf of Gdańsk, A. Majewski (ed.), Wyd. Geol., Warszawa, 237-255.

Davis A.M., 1992, Shallow gas: an overview, Cont. Shelf Res., 12(10), 1077-1079, http://dx.doi.org/10.1016/0278-4343(92)90069-V

Dickens G.R., Koelling M., Smith D.C., Schnieders L., IODP Expedition (302 scientists), 2007, Rhizon sampling of pore waters on scientific drilling expeditions: an example from the IODP Expedition 302, Arctic Coring Expedition (ACEX), Sci. Drill., 4, 22-25, http://dx.doi.org/10.2204/iodp.sd.4.08.2007

Engvall A.G., 1978, The fate of nitrogen in early diagenesis of Baltic sediments, Ph.D. thesis, Univ. Stockholm, Stockholm, 16 pp.

Fleischer P., Orsi T.H., Richardson M.D., Anderson A.L., 2001, Distribution of free gas in marine sediments: a global overview, Geo-Mar. Lett., 21(2), 103-122, http://dx.doi.org/10.1007/s003670100072

Geodekyan A. A., Trotsuik V.Y., 1990, Pockmarks at the Baltic bottom - the indicators of hydrocarbon migration process from the deep layers, [in:] Combined geoacoustic-gasimetric and lithogeochemical in vestigations in the Baltic Sea, A.A. Geodekyan, V.Y. Trotsiuk & A. Blazhchishin (eds.), Inst. Oceanol., RAS, Moscow, 6-11, (in Russian).

Graca B., Witek Z., Burska D., Białkowska I., Łukawska-Matuszewska K., Bolałek J., 2006, Pore water phosphate and ammonia below the permanent halocline in the south-eastern Baltic Sea and their benthic fluxes under anoxic conditions, J. Marine Syst., 63(3-4), 141-154, http://dx.doi.org/10.1016/j.jmarsys.2006.06.003

Grasshoff K., Ehrhardt M., Kremling K., 1983, Methods of sea water analysis, Verlag Chem., 419 pp.

Grasshoff K., Ehrhardt M., Kremling K., 1999, Methods of seawater analysis, Wiley-Vch Verlag Weinheim, 603 pp., http://dx.doi.org/10.1002/9783527613984

Hansson M., Andersson L., Axe P., 2011, Areal extent and volume of anoxia and hypoxia in the Baltic Sea, 1960-2011, Rep. Oceanography, 42, 76 pp.

Hedges J.I., Stern J.H., 1984, Carbon and nitrogen determinations of carbonate containing solids, Limnol. Oceanogr., 29, 657-663, http://dx.doi.org/10.4319/lo.1984.29.3.0657

HELCOM, 1998, The third Baltic Sea pollution load compilation (PLC-3), Balt. Sea Environ. Proc. No. 70, 133 pp.

Hermanowicz W., Dojlido D., Zerbe J., Dożanska W., Koziorowski B., 1999, Fizyczno-chemiczne badanie wody i ścieków, Arkady, Warszawa, 555 pp.

Hinz K., Kögler F., Richter I., Seibold E., 1971, Reflexions-seismische Unter-suchungen mit einer pneumatischen Schallquelle und einem Sedimentecholot in der westlichen Ostsee. Teil II. Untersuchungsergebnisse und geologische Deutung, Meyniana, 21, 17-21.

Hoehler T.M., Alperin M.J., Albert D. B., Martens C.S., 1994, Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium, Global Biogeochem. Cy., 8(4), 451-463, http://dx.doi.org/10.1029/94GB01800

Iversen N., Jørgensen B.B., 1985, Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark), Limnol. Oceanogr., 30(5), 944-955, http://dx.doi.org/10.4319/lo.1985.30.5.0944

Jankowska H., 1993, The bottom deposits of Puck Bay, Stud. Mat. Oceanogr., 64, 163-171, (in Polish).

Jørgensen B.B., Fossing H., Endler R., 2011, Methane content of sediment core 374180-6GC, Bornholm Basin, Baltic Sea, [in:] Chemistry of sediment cores of RV Poseidon cruise PO392, B.B. Jørgensen, H. Fossing & R. Endler (eds.), http://dx.doi.org/10.1594/PANGAEA.762358

Jørgensen B.B., Weber A., Zopfi J., 2001, Sulfate reduction and anaerobic oxidation in Black Sea sediments, Deep-Sea Res. Pt. I, 48(9), 2097-2120, http://dx.doi.org/10.1016/S0967-0637(01)00007-3

Kiene R.P., 1991, Production and consumption of methane in aquatic systems, [in:] Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes, J.E. Rogers & W. B. Whitman (eds.), Am. Soc. Microbiol., Washington, 298 pp.

Klusek Z., Sutin A., Matveev A., Potapov A., 1995, Observation of nonlinear scattering of acoustical waves at sea sediments, Acoust. Lett., 18(11), 198-203.

Kramarska R., 1995, Surficial bottom sediments and sediments 1 m below the sea bottom surface, [in:] Geological atlas of the southern Baltic, 1:500 000, E. Mojski, R. Dadlez, B. Słowanska, S. Uścinowicz & J. Zachowicz (eds.), Pol. Geol. Inst., Sopot-Warszawa, 1-63, (in Polish).

Laier T., Jensen J.B., 2007, Shallow gas depth-contour map of the Skagerrak-western Baltic Sea region, Geo-Mar. Lett., 27(2-4), 127-141, http://dx.doi.org/10.1007/s00367-007-0066-2

Łukawska-Matuszewska K., Bolałek J., 2008, Spatial distribution of phosphorus forms in sediments in the Gulf of Gdańsk (southern Baltic Sea), Cont. Shelf Res., 28(7), 977-990, http://dx.doi.org/10.1016/j.csr.2008.01.009

Łysiak-Pastuszak E., Drgas N., 2004, Oxygen and hydrogen sulphide, [in:] Environmental conditions in the Polish zone of the Southern Baltic Sea during 2001, W. Krzyminski, M. Miętus & E. Łysiak-Pastuszak (eds.), Inst. Meteorol. Water Manag., Gdynia, (in Polish).

Łysiak-Pastuszak E., Drgas N., Piątkowska Z., 2004, Eutrophication in the Polish coastal zone: the past, present status and future scenarios, Mar. Pollut. Bull., 49(3), 186-195, http://dx.doi.org/10.1016/j.marpolbul.2004.02.007

Majewski A. (ed.), 1990, The Gulf of Gdańsk, Wyd. Geol., IMGW, Warszawa, (in Polish).

Majewski A., 1994, Natural environmental conditions of the Gulf of Gdańsk and its coastline, [in:] The pollution and renewal of the Gulf of Gdańsk, J. Błażejewski & D. Schuller (eds.), Univ. Gdańsk, Gdynia, 22-35, (in Polish).

Majewski P., Klusek Z., 2011, Expressions of shallow gas in the Gdańsk Basin, Zesz. Nauk. Akad. Mar. Woj., 4, 187 pp.

Maksymowska D., 1998, Organic matter degradation in the water column and bottom sediments of the Gulf of Gdańsk, Ph.D. thesis, Univ. Gdańsk, Gdynia, 147 pp.

Martens C.S., Albert D. B., Alperin M.J., 1998, Biogeochemical processes controlling methane in gassy coastal sediments - Part 1. A model coupling organic matter flux to gas production, oxidation and transport, Cont. Shelf Res., 18(14-15), 1741-1770, http://dx.doi.org/10.1016/S0278-4343(98)00056-9

Martens C.S., Albert D.B., Alperin M.J., 1999, Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernförde Bay, German Baltic Sea, Am. J. Sci., 299(7-9), 589-610, http://dx.doi.org/10.1016/S0278-4343(98)00056-9

Martens C.S., Berner R.A., 1974, Methane production in the interstitial waters of sulfate-depleted marine sediments, Science, 185(4157), 1167-1169, http://dx.doi.org/10.1126/science.185.4157.1167

Martens C.S., Berner R.A., 1977, Interstitial water chemistry of anoxic Long Island Sound sediments, 1. Dissolved gases, Limnol. Oceanogr., 22(1), 10-25, http://dx.doi.org/10.4319/lo.1977.22.1.0010

Mathys M., Thießen O., Theilen F., Schmidt M., 2005, Seismic characterisation of gas-rich near surface sediments in the Arkona Basin, Baltic Sea, Mar. Geophys. Res., 26(2-4), 207-224, http://dx.doi.org/10.1007/s11001-005-3719-4

Mogollón J.M., Dale A.W., Fossing H., Regnier P., 2012, Timescales for the development of methanogenesis and free gas layers in recently-deposited sediments of Arkona Basin (Baltic Sea), Biogeosciences, 9, 1915-1933, http://dx.doi.org/10.5194/bg-9-1915-2012

Mojski J.E., Dadlez R., Słowanska B., Uścinowicz S., Zachow icz J. (eds.), 1995, Geological atlas of the southern Baltic, 1:500000, Pol. Geol. Inst., Sopot-Warszawa, 1-63, (in Polish).

Müller P.J., 1977, C/N ratios in Pacific deep-sea sediments: effect of inorganic ammonium and organic nitrogen compounds sorbed by clays, Geochim. Cosmochim. Ac., 41(6), 765-776, http://dx.doi.org/10.1016/0016-7037(77)90047-3

Orłowski A., 2009, Acoustic tracking dynamic phenomena in marine ecosystems, Hydroacoustics, 12, 167-180.

Parsons T.R., Maaita Y., Lalli C.M., 1985, A manual of chemical and biological methods for seawater analysis, Pergamon Press, Oxford, 201 pp.

Piker L., Schmaljohann R., Imhoff J., 1998, Dissimilatory sulfate reduction and methane production in Gotland Deep sediments (Baltic Sea) during a transition period from oxic to anoxic bottom water (1993-1996), Aquat. Microb. Ecol., 14(2), 183-193, http://dx.doi.org/10.3354/ame014183

Pimenov N.V., Ulyanova M.O., Kanapatsky T.A., Veslopolova E.F., Sigalevich P.A., Sivkov V.V., 2010, Microbially mediated methane and sulfur cycling in pockmark sediments of the Gdańsk Basin, Baltic Sea, Geo-Mar. Lett., 30(3-4), 439-448, http://dx.doi.org/10.1007/s00367-010-0200-4

Reeburgh W. S., 1976, Methane consumption in Cariaco Trench waters and sediments, Earth Planet. Sci. Lett., 28(3), 337-344, http://dx.doi.org/10.1016/0012-821X(76)90195-3

Reeburgh W.S., 1996, ‘Soft spots’ in the global methane budget, [in:] Microbial growth on C1 compounds, M.E. Lidstrom & F.R. Tabita (eds.), Kluwer Acad. Publ., Dordrecht, 334-342.

Reindl A., Bolałek J., 2012, Methane flux from sediment into near-bottom water in the coastal area of the Puck Bay (Southern Baltic), Oceanol. Hydrobiol. St., 41(3), 40-47, http://dx.doi.org/10.2478/s13545-012-0026-y

Rudowski S., Szefler K., Zajfert G., 2010, Gas in sediments of the Puck Bay, [in:] Geologia i geomorfologia Pobrzeża i południowego Bałtyku, Vol. 8, 119-129, (in Polish).

Sampei Y., Matsumoto E., 2001, C/N ratios in a sediment core from Nakaumi Lagoon, southwest Japan - usefulness as an organic source indicator, Geochem. J., 35(3), 189-205, http://dx.doi.org/10.2343/geochemj.35.189

Schmale O., Schneider von Deimling J., Gülzow W., Nausch G., Waniek J.J., Rehder G., 2010, Distribution of methane in the water column of the Baltic Sea, Geophys. Res. Lett., 37(12), L12604, http://dx.doi.org/10.1029/2010GL043115

Schulz H.D., 2006, Quantification of early diagenesis: dissolved constituents in marine pore water, [in:] Marine geochemistry, H.D. Schulz & M. Zabel (eds.), 75-125.

Seeberg-Elverfeldt J., Schlüter M., Feseker T., Kölling M., 2005, Rhizon sampling of pore waters near the sediment/water interface of aquatic systems, Limnol. Oceanogr. Meth., 3, 361-371, http://dx.doi.org/10.4319/lom.2005.3.361

Schüler F., 1952, Untersuchungen über die Mächtigkeiten von Schlickschichten mit Hilfe des Echographen, Deutsche Hydrographische Zeitschrift, 5, 220-231.

Shepard F.P., 1954, Nomenclature based on sand-silt-clay ratios, J. Sediment. Petrol., 24(3), 151-158, http://dx.doi.org/10.1306/D4269774-2B26-11D7-8648000102C1865D

Szczepańska T., Uścinowicz S., 1994, Geochemical atlas of the southern Baltic, Pol. Geol. Inst., Warszawa, 1-55, (in Polish).

Szczepańska A., Zaborska A., Maciejewska A., Kuliński K., Pempkowiak J., 2012, Distribution and origin of organic matter in the Baltic Sea sediments dated with 210Pb and 137Cs, Geochronometria, 39(1), 1-9, http://dx.doi.org/10.2478/s13386-011-0058-x

Tęgowski J., Jakacki J., Klusek Z., Rudowski S., 2003, Nonlinear acoustical methods in the detection of gassy sediments in the Gulf of Gdańsk, Hydroacoustics, 5-6, 151-158.

Thießen O., Schmidt M., Theilen F., Schmitt M., Klein G., 2006, Methane formation and distribution of acoustic turbidity in organic-rich surface sediments in the Arkona Basin, Baltic Sea, Cont. Shelf Res., 26(19), 2469-2483, http://dx.doi.org/10.1016/j.csr.2006.07.020

Thomsen T.R., Finster K., Ramsing N.B., 2001, Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment, Appl. Environ. Microb., 67(4), 1646-1656, http://dx.doi.org/10.1128/AEM.67.4.1646-1656.2001

Treude T., 2003, Anaerobic oxidation of methane in marine sediments, Ph.D. thesis, Univ. Bremen., 272 pp.

Uścinowicz S., 1995, Quaternary thickness, [in:] Geological atlas of the southern Baltic, 1:500 000, J.E. Mojski, R. Dadlez, B. Słowanska, S. Uścinowicz & J. Zachowicz (eds.), Pol. Geol. Inst., Sopot-Warszawa, 1-63, (in Polish).

Uścinowicz S. (ed.), 2011, Geochemistry of Baltic Sea surface sediments, Pol. Geol. Inst.- Nat. Res. Inst., Warsaw, 355 pp.

Vogler S., Szymczycha B., Gentz T., Dellwig O., Kotwicki L., Endler R., Pempkowiak J., Węsławski J.M., Schlüter M., Böttcher M.E., 2010, The impact of submarine ground water discharge on a coastal ecosystem of the southern Baltic Sea: Results from the BONUS+ project AMBER, Geophys. Res. Abs., 12, 2974 pp.

Wever Th.F., Abegg F., Fiedler H.M., Fechner G., Stender I.H., 1998, Shallow gas in the muddy sediments of Eckernförde Bay, Germany, Cont. Shelf Res., 18(14-15), 1715-1739, http://dx.doi.org/10.1016/S0278-4343(98)00055-7

Wever Th.F., Lühder R., Voss H., Knispel U., 2006, Potential environmental control of free shallow gas in the seafloor of Eckernförde Bay, Germany, Mar. Geol., 225(1-4), 1-4, http://dx.doi.org/10.1016/j.margeo.2005.08.005

Whiticar M.J., 1982, The presence of methane bubbles in the acoustically turbid sediments of Eckernförde Bay, Baltic Sea, [in:] Dynamic environment of the ocean floor, K.A. Fanning & F.T. Manheim (eds.), Lexington Books, Lexington, MA, 219-235.

Whiticar M.J., 2002, Diagenetic relationships of methanogenesis, nutrients, acoustic turbidity, pockmarks and freshwater seepages in Eckernförde Bay, Mar. Geol., 182(1-2), 29-53, http://dx.doi.org/10.1016/S0025-3227(01)00227-4

Whiticar M.J., Faber E., Schoell M., 1986, Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-isotope evidenceGeochim. Cosmochim. Ac., 50(5), 693-709, http://dx.doi.org/10.1016/0016-7037(86)90346-7

Wilkens R.H., Richardson M.D., 1998, The influence of gas bubbles on sediment acoustic properties: in situ, laboratory, and the oretical results from Eckernförde Bay, Baltic Sea, Cont. Shelf Res., 18(14-15), 1859-1892, http://dx.doi.org/10.1016/S0278-4343(98)00061-2

Witek Z., Ochocki S., Maciejowska M., Pastuszak M., Nakonieczny J., Podgórska B., Kownacka J.M., Mackiewicz T., Wrzesińska-Kwiecień M., 1997, Phytoplankton primary production and its utilization by the pelagic community in the coastal zone of the Gulf of Gdańsk (southern Baltic), Mar. Ecol.-Prog. Ser., 148, 169-186, http://dx.doi.org/10.3354/meps148169

Witek Z., Ochocki S., Nakonieczny J., Podgórska B., Drgas A., 1999, Primary production and decomposition of organic matter in the epipelagic zone of the Gulf of Gdańsk, an estuary of the Vistula, ICES J. Mar. Sci., 56(Suppl.), 3-14.

Yamamoto S., Alcauskas J.B., Crozier T.E., 1976, Solubility of methane in distilled water and seawater, J. Chem. Eng. Data, 21(1), 78-80, http://dx.doi.org/10.1021/je60068a029

Zehnder A.J.B., Brock T.D., 1980, Anaerobic methane oxidation: occurrence and ecology, Appl. Environ. Microb., 39(1), 194-20

full, complete article (PDF - compatibile with Acrobat 4.0), 1053 KB

Dinoflagellate cyst distribution in recent sediments along the south-east coast of India
Oceanologia 2013, 55(4), 979-1003

Dhiraj Dhondiram Narale, Jagadish S. Patil, Arga Chandrashekar Anil*
CSIR - National Institute of Oceanography,
Dona Paula, Goa 403 004, India;
e-mail: acanil@nio.org
*corresponding author

keywords: dinoflagellate cysts, heterotrophic, phototrophic, south-east coast of India, coastal sediments

Received 2 January 2013, revised 2 August 2013, accepted 26 September 2013.

The financial support for this work was received from the Ministry of Earth Sciences (MoES) under the Indian XBT programme and the Ballast Water Management programme, funded by the Directorate General of Shipping, India.


The spatial variation in the dinoflagellate cyst assemblage from the south-east coast of India is presented along with a comparison of the cyst abundance from other regions of the world.Samples from 8 stations revealed the presence of 24 species from the genera Protoperidinium, Zygabikodinium, Gonyaulax, Lingulodinium and Gyrodinium. Cyst abundance was comparatively high at northern stations and was well correlated with the fine-grained (silt-clay dominated) sediments. In contrast, low cyst abundance was recorded in sandy sediments at southern stations. Fourteen cyst-forming dinoflagellate species previously unrecorded in planktonic samples were detected in the sediments. The cystabundance recorded here is low (29-331 cysts g-1dry sediment) as compared to sub-tropical and temperate regions, but it is on a par with tropical regions, including the west coast of India.Comparison of the cyst assemblage along the Indian coast revealed a smaller number of potentially harmful and red-tide-forming dinoflagellate species on the south-east coast (6 species) than on the west coast (10 species). Furthermore, calcareous cysts of the genus Scrippsiella reported from the west coast were not observed in this study although their planktonic cells have been reported.

  References ref

Anderson D.M., Fukuyo Y., Matsuoka K., 1995, Cyst methodologies, [in:] Manual on harmful marine microalgae, G.M. Hallegraeff, D.M. Anderson & A.D. Cembella (eds.), IOC Manuals and Guides, Vol. 33, UNESCO, Paris, 229-245.

Anderson D.M., Wall D., 1978, The potential importance of benthic cysts of Gonyaulax tamarensis and Gonyaulax excavata in initiating toxic dinoflagellate blooms, J. Phycol., 14(2), 224-234, http://dx.doi.org/10.1111/j.1529-8817.1978.tb02452.x

Aydin H., Matsuoka K., Minareci E., 2011, Distribution of dinoflagellate cysts in recent sediments from Izmir Bay (Aegean Sea, Eastern Mediterranean), Mar. Micropaleontol., 80(1-2), 44-52, http://dx.doi.org/10.1016/j.marmicro.2011.03.004

Barton A. D., Dutkiewicz S., Flierl G., Bragg J., Follows M.J., 2010, Patterns of diversity in marine phytoplankton, Science, 327, 1509-1511, http://dx.doi.org/10.1126/science.1184961

Boessenkool K.P., Gelder M.V., Brinkhuis H., Troelstra S.R., 2001, Distribution of organic-walled dinoflagellate cysts in surface sediments from transects across the Polar Front offshore southeast Greenland, J. Quarternary Sci., 16(7), 661-666, http://dx.doi.org/10.1002/jqs.654

Buchanan J.B., 1984, Sediment analysis, [in:] Methods for the study of marine benthos, N. A. Holme & A. D. McIntyre (eds.), Blackwell Sci. Publ., Oxford, 45-65.

Dale B., 1983, Dinoflagellate resting cysts: ‘Benthic plankton’, [in:] Survival strategies of the algae, G. A. Fryxell (ed.), Cambridge Univ. Press, Cambridge, 69-136.

Dale B., 2000, Dinoflagellate cysts as indicators of cultural eutrophication and industrial pollution in coastal sediments, [in:] The application of microfossils to environmental geology, R. E. Martin (ed.), Kluwer Acad., Plenum Publ., New York, 305-321.

Dale B., 2001a, The sedimentary records of dinoflagellate cysts: Looking back into the future of phytoplankton blooms, Sci. Mar., 65(2), 257-272.

Dale B., 2001b, Marine dinoflagellate cysts as indicators of eutrophication and industrial pollution: A discussion, Sci. Total Environ., 264(3), 235-240, http://dx.doi.org/10.1016/S0048-9697(00)00719-1

D’Costa P.M., Anil A.C., Patil J.S., Hegde S., D’Silva M.S., Chourasia M., 2008, Dinoflagellates in a mesotrophic, tropical environment influenced by monsoon, Estuar. Coast. Shelf Sci., 77(1), 77-90, http://dx.doi.org/10.1016/j.ecss.2007.09.002

Drake L. A., Meyer A. E., Forsberg R. L., Baier R. E., Doblin M. A., Heinemann S., Johnson W. P., Koch M., Rublee P. A., Dobbs F. C., 2005, Potential invasion of microorganisms and pathogens via ‘interior hull fouling’: Biofilms inside ballast-water tanks, Biol. Invasions, 7(6), 969-982, http://dx.doi.org/10.1007/s10530-004-3001-8

D’Silva M.S., Anil A.C., D’Costa P.M., 2011, An overview of dinoflagellate cysts in recent sediments along the west coast of India, Indian J. Geo.-Mar. Sci., 40(5), 697-709.

D’Silva M.S., Anil A.C., Borole D.V., Nath B.N., Singhal R.K., 2012, Tracking the history of dinoflagellate cyst assemblages in sediments from the west coast of India, J. Sea Res., 73, 86-100, http://dx.doi.org/10.1016/j.seares.2012.06.013

D’Silva S.M., Anil A.C., Savant S.S., 2013, Dinoflagellate cyst assemblages in recent sediments of Visakhapatnam harbour, east coast of India: Influence of environmental characteristics, Mar. Pollut. Bull., 66(1-2), 59-72, http://dx.doi.org/10.1016/j.marpolbul.2012.11.012

Elshanawany R., Zonneveld K., Ibrahim M.I., Kholeif S.E.A., 2010, Distribution patterns of recent organic-walled dinoflagellate cysts in relation to environmental parameters in the Mediterranean Sea, Palynology, 34(2), 233-260, http://dx.doi.org/10.1080/01916121003711665

Esper O., Zonneveld K.A.F., 2002, Distribution of organic-walled dinoflagellate cysts in surface sediments of the Southern Ocean (eastern Atlantic sector) between the Subtropical Front and the Weddell Gyre, Mar. Micropaleontol., 46(1-2), 177-208, http://dx.doi.org/10.1016/S0377-8398(02)00041-5

Furio E.F., Azanza R.V., Fukuyo Y., Matsuoka K., 2012, Review of geographical distribution of dinoflagellate cysts in Southeast Asian coasts, Coast. Mar. Sci., 35(1), 20-33.

Garate-Lizarraga I., Hernandez-Orozco M.L., Band-Schmidt C.J., Serrano-Casillas G., 2001, Red tides along the coasts of the Baja California Sur, Mexico (1984 to 1999), Oceanides, 16(2), 127-134.

Godhe A., Karunasagar I., Karlson B., 2000, Dinoflagellate cysts in recent marine sediments from SW India, Bot. Mar., 43(1), 39-48, http://dx.doi.org/10.1515/BOT.2000.004

Godhe A., McQuoid M.R., 2003, Influence of benthic and pelagic environmental factors on the distribution of dinoflagellate cysts in surface sediments along the Swedish west coast, Aquat. Microb. Ecol., 32, 185-201, http://dx.doi.org/10.3354/ame032185

Harland R., Nordberg K., Filipsson H.L., 2006, Dinoflagellate cysts and hydrographical change in Gullmar Fjord, west coast of Sweden, Sci. Total Environ., 355(1-3), 204-231, http://dx.doi.org/10.1016/j.scitotenv.2005.02.030

Head M.J., 1996, Modern dinoflagellate cysts and their biological affinities, [in:] Palynology principles and applications, J. Janosnius & D.C. McGregor (eds.), AASP Foundation, Dallas, 1197-1248.

Hesse K.J., Tillmann U., Nehring S., Brockmann U., 1996, Factors controlling phytoplankton distribution in coastal waters of the German Bight North Sea, [in:] Biology and ecology of shallow Coastal waters, A. Eleftheriou, A.D. Ansell & C.J. Smith (eds.), Olsen and Olsen, Fredensborg, 11-22.

Holzwarth U., Esper O., Zonneveld K., 2007, Distribution of organic-walled dinoflagellate cysts in shelf surface sediments of the Benguela upwelling system in relationship to environmental conditions, Mar. Micropaleontol., 64(1-2), 91-119, http://dx.doi.org/10.1016/j.marmicro.2007.04.001

Hwang C.-H., Kim K.-Y., Lee Y., Kim C.-H., 2011, Spatial distribution of dinoflagellate resting cysts in Yellow Sea surface sediments, Algae, 26(1), 41-50, http://dx.doi.org/10.4490/algae.2011.26.1.041

Joyce L.B., Pitcher G.C., du Randt A., Monteiro P.M.S., 2005, Dinoflagellate cysts from surface sediments of Saldanha Bay, South Africa: an indication of the potential risk of harmful algal blooms, Harmful Algae, 4(2), 309-318, http://dx.doi.org/10.1016/j.hal.2004.08.001

Kawamura H., 2004, Dinoflagellate cyst distribution along a shelf to slope transect of an oligotrophic tropical sea (Sunda Shelf, South China Sea), Phycol. Res., 52(4), 355-375, http://dx.doi.org/10.1111/j.1440-1835.2004.tb00345.x

Madhav V.G., Kondalarao B., 2004, Distribution of phytoplankton in the coastal waters of east coast of India, Indian J. Geo.-Mar. Sci., 33(3), 262-268.

Madhu N.V., Jyothibabu R., Maheswaran P.A., Gerson V.J., Gopalakrishnan T.C., Nair K.K.C., 2006, Lack of seasonality in phytoplankton standing stock (chlorophyll a) and production in the western Bay of Bengal, Cont. Shelf Res., 26(16), 1868-1883, http://dx.doi.org/10.1016/j.csr.2006.06.004

Matsuoka K., Fukuyo Y., 2000, Technical guide for modern dinoflagellate cyst study, WESTPAC-HAB/WESTPAC/IOC, Japan Soc. Promotion Sci.

Matsuoka K., Joyce L.B., Kotani Y., Matsuyama Y., 2003, Modern dinoflagellate cysts in hypertrophic coastal waters of Tokyo Bay, Japan. J. Plankton Res., 25(12), 1461-1470, http://dx.doi.org/10.1093/plankt/fbg111

McMinn A., 1990, Recent dinoflagellate cyst distribution in eastern Australia, Rev. Palaeobot. Palyno., 65(1-4), 305-310, http://dx.doi.org/10.1016/0034-6667(90)90080-3

Moestrup Ø., Akselman R., Cronberg G., Elbraechter M., Fraga S., Halim Y., Hansen G., Hoppenrath M., Larsen J., Lundholm N., Nguyen L.N., Zingone A., (eds.), 2009 onwards, IOC-UNESCO taxonomic reference list of harmful micro algae , [available online at http://www.marinespecies.org/HAB], (accessed on 2013-6-28).

Montresor M., Zingone A., Sarno D., 1998, Dinoflagellate cyst production at a coastal Mediterranean site, J. Plankton Res., 20(12), 2291-2312, http://dx.doi.org/10.1093/plankt/20.12.2291

Musale A.S., Desai D.V., 2010, Distribution and abundance of macrobenthic polychaetes along the South Indian coast, Environ. Monit. Assess., 178(1-4), 423-436, http://dx.doi.org/10.1007/s10661-010-1701-3

Naidu P.D., Patil J.S., Narale D.D., Anil A.C., 2012, A first look at the dinoflagellate cysts abundance in the Bay of Bengal: Implications on late quaternary productivity and climate change, Curr. Sci., 102(3), 495-498.

Orlova T.Y., Morozova T.V., Gribble K.E., Kulis D.M., Anderson D. M., 2004, Dinoflagellate cysts in recent marine sediments from the east coast of Russia, Bot. Mar., 47(3), 184-201, http://dx.doi.org/10.1515/BOT.2004.019

Persson A., Rosenberg R., 2003, Impact of grazing and bioturbation of marine benthic deposit feeders on dinoflagellate cysts, Harmful Algae, 2(1), 43-50, http://dx.doi.org/10.1016/S1568-9883(03)00003-9

Ribeiro S., Berge T., Lundholm N., Andersen T.J., Abrantes F., Ellegaard M., 2011, Phytoplankton growth after a century of dormancy illuminates past resilience to catastrophic darkness, Nat. Commun., 2, 311, http://dx.doi.org/10.1038/ncomms1314

Satta C.T., Angles S., Garce E., Lugli A., Padedda B.M., Sechi N., 2010, Dinoflagellate cysts in recent sediments from two semi-enclosed areas of the Western Mediterranean Sea subject to high human impact, Deep-Sea Res. Pt. II, 57(3-4), 256-267, http://dx.doi.org/10.1016/j.dsr2.2009.09.013

Shankar D., Vinayachandran P.N., Unnikrishnan A.S., 2002, The monsoon currents in the north Indian Ocean, Prog. Oceanogr., 52(1), 63-120, http://dx.doi.org/10.1016/S0079-6611(02)00024-1

Shetye S.R., Shenoi S.S.C., Gouveia A.D., Michael G.S., Sundar D., Nampoothiri G., 1991, Wind-driven costal upwelling along the eastern boundary of Bay of Bengal during southwest monsoon, Cont. Shelf Res., 11(11), 1397-1408, http://dx.doi.org/10.1016/0278-4343(91)90042-5

Shin H.H., Yoon Y. H., Matsuoka K., 2007, Modern dinoflagellate cysts distribution off the eastern part of Geoje Island, Korea, Ocean Sci. J., 42(1), 31-39, http://dx.doi.org/10.1007/BF03020908

Solignac S., Grosfjeld K., Giraudeau J., de Vernal A., 2009, Distribution of recent dinocyst assemblages in the western Barents Sea, Norw. J. Geol., 89, 109-119.

Sonneman J.A., Hill D.R.A., 1997, A taxonomic survey of cyst-producing dinoflagellates from recent sediments of Victorian coastal waters, Australia, Bot. Mar., 40(1-6), 149-178.

Sprangers M., Dammers N., Brinkhuis H., van Weering T.C.E., Lotter A.F., 2004, Modern organic-walled dinoflagellate cyst distribution off shore NW Iberia, tracing the upwelling system, Rev. Palaeobot. Palyno., 128(1-2), 97-106, http://dx.doi.org/10.1016/S0034-6667(03)00114-3

Su-Myat, Koike K., 2013, A red tide off the Myanmar coast: Morphological and genetic identification of the dinoflagellate composition, Harmful Algae, 27(7), 149-158, http://dx.doi.org/10.1016/j.hal.2013.05.010

Targarona J., Warnaar J., Boessenkool K.P., Brinkhuis H., Canals M., 1999, Recent dinoflagellate cyst distribution in the North Canary Basin, NW Africa, Grana, 38(2-3), 170-178, http://dx.doi.org/10.1080/00173139908559225

Tripathy S.C., Kusumakimari B.A.V.L., Sarma V.V., Murty T.V.R., 2005, Evaluation of trophic state and plankton abundance from the environmental parameters of Visakhapatnam Harbour and near-shore waters, east coast of India, Asian J. Microbiol. Biotech. Env. Sc., 7(4), 831-838.

Vijaykumaran K., 2005, Productivity parameters in relation to hydrography of the inshore surface waters off Visakhapatnam, J. Mar. Biol. Ass. India, 47(2), 115-120.

Wall D., Dale B., 1968, Modern dinoflagellate cysts and evolution of the Peridiniales, Micropaleontology, 14(3), 265-304, http://dx.doi.org/10.2307/1484690

Wang Z.H., Matsuoka K., Qi Y.Z., Chen J.F., Lu S.H., 2004, Dinoflagellate cyst records in recent sediments from Daya Bay, South China Sea, Phycol. Res., 52(4), 396-407, http://dx.doi.org/10.1111/j.1440-1835.2004.tb00348.x

Zonneveld K.A.F., Versteegh G.J.M., deLange G.J., 1997, Preservation of organic-walled dinoflagellate cysts in different oxygen regimes: A 10000 year natural experiment, Mar. Micropaleontol., 29(3-4), 393-405, http://dx.doi.org/10.1016/S0377-8398(96)00032-1

Zonneveld K.A.F., Brummer G.J.A., 2000, Palaeo-ecological significance, transport and preservation of organic walled dinoflagellate cysts in the Somali Basin, NW Arabian Sea, Deep-Sea Res. Pt. II, 47(9-11), 2229-2256, http://dx.doi.org/10.1016/S0967-0645(00)00023-0

Zonneveld K.A.F., Marret F., Versteegh G.J.M., Bogus K., Bouimetarhana I., Crouch E., de Vernal A., Elshanawany R., Esper O., Forke S., Grøsfjeld K., Henry M., Holzwarth U., Bonnet S., Edwards L., Kielt J.-F., Kim S.-Y., Ladouceur S., Ledu D., Chen L., Limoges A., Lu S.-H., Mahmoud M.S., Marino G., Matsouka K., Londeix L., Matthiessen J., Mildenhal D.C., Mudie P., Neil H.L., Pospelova V., Qi Y., Radi T., Rochon A., Sangiorgi F., Solignac S., Turon J.-L., Wang Y., Wang Z., Young M., Richerol T., Verleye T., 2013, Atlas of modern dinoflagellate cyst distribution based on 2405 datapoints, Rev. Palaeobot. Palyno., 191, 1-198, http://dx.doi.org/10.1016/j.revpalbo.2012.08.003

full, complete article (PDF - compatibile with Acrobat 4.0), 916 KB