Oceanologia No. 55 (3) / 13


Invited paper


Invited paper

Anthropogenic radionuclides 137Cs and 90Sr in the southern Baltic Sea ecosystem
Oceanologia 2013, no. 55(3), pp. 485-517

Tamara Zalewska1,*, Maria Suplińska2
1Institute of Meteorology and Water Management - National Research Institute, Maritime Branch,
Waszyngtona 42, 81-342 Gdynia, Poland;
e-mail: tamara.zalewska@imgw.pl
*corresponding author
2Central Laboratory for Radiological Protection,
Konwaliowa 7, 03-194 Warsaw, Poland

keywords: 137Cs, 90Sr, southern Baltic

Received 4 January 2013, revised 28 May 2013, accepted 4 June 2013.


The radioisotopes of caesium (137Cs) and strontium (90Sr) make the greatest contribution to the radioactivity level due to artificial radionuclides in the Baltic Sea, where the level of 137Cs contamination is higher than in any other part of the world ocean. The main sources of man-made radionuclides are the Chernobyl accident in 1986 and the nuclear weapons tests carried out in the 1950s and 1960s. This study discusses the distribution patterns and trends in activity concentrations of 137Cs and 90Sr recorded in various compartments of the marine environment of the southern Baltic Sea. It is based on an investigation of radioactive substances as part of the Polish National Environmental Monitoring Programme. In 2010 the average concentration of 137Cs in the southern Baltic was 35 Bq m-3, while the level of 90Sr in these waters has remained at much the same level in recent years (ca 8 Bq m-3). The distribution of isotopes in the bottom sediments reflect historical events that can be identified in sediment profiles. The activity concentrations of the caesium isotope are the highest in sediments from the Gulf of Gdansk, whereas the least polluted sediments are found in the Bornholm Basin, in the western part of the southern Baltic. The highest concentrations of 137Cs in benthic plants were measured in the red alga Polysiphonia fucoides: 22.3 Bq kg-1 d.w. in June and 40.4 Bq kg-1 in September. These levels were much higher than those found in the bivalve Mytilus trossulus (7.3 Bq kg-1 d.w.). 137Cs concentrations in fish have decreased in time, reflecting the trends recorded in seawater. In 2010 the respective 137Cs activities in Clupea harengus, Platichthys flesus and Gadus morhua were 4.7, 4.9 and 6.6 Bq kg-1 w.w.

  References ref

Anon, 2008, Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive), Off. J. Europ. Union, L 164/19, 19-44.

Atwood D.A. (ed.), 2010, Radionuclides in the environment, Wiley, 522 pp.

Boisson F., Hutchins D.A., Fowler S.W., Fisher N. S., Teyessie J.-L., 1997, Influence of temperature on the accumulation and retention of 11 radionuclides by marine alga Fucus vesiculosus, Mar. Pollut. Bull., 35 (7-12), 313-327, http://dx.doi.org/10.1016/S0025-326X(97)00092-1.

Burger J., Gochfeld M., Kosson D. S., Powers C. W., Jewett S., Friedlander B., Chenelot H., Volz C.D., Jeitner C., 2006, Radionuclides from Amchitka and Kiska Islands in the Aleutians: establishing a baseline for future biomonitoring, J. Environ. Radioact., 91 (1-2), 27-40, http://dx.doi.org/10.1016/j.jenvrad.2006.08.003.

Feistel R., Nausch G., Matthäus W., Hagen E., 2003, Temporal and spatial evolution of the Baltic deep water renewal in spring 2003, Oceanologia, 45 (4), 623-642.

Grzybowska D., 1989, Concentration of 137Cs and 90Sr in marine fish from the southern Baltic Sea, Acta Hydrobiol., 31, 139-147.

HELCOM, 1995, Radioactivity in the Baltic Sea 1984-1991, Baltic Sea Environ. Proc. No. 61, 182 pp.

HELCOM, 1997, Manual for marine monitoring in the COMBINE programme of HELCOM, Baltic Mar. Environ. Prot. Commiss., Helsinki, http://www.helcom.fi/groups/monas/CombineManual/en_GB/main/.

HELCOM, 2003, Radioactivity in the Baltic Sea 1992-2006, Baltic Sea Environ. Proc. No. 85, 102 pp.

HELCOM, 2009, Radioactivity in the Baltic Sea 1999-2006, Baltic Sea Environ. Proc. No. 117, 64 pp.

IAEA, 2005, Worldwide marine radioactivity studies (WOMARS): radionuclide levels in oceans and sea, IAEA-TECDOC-1429, IAEA, Vienna 187 pp.

IAEA, 2010, HELCOM-MORS proficiency test determination of radionuclides in fish flesh sample, IAEA/AQ/13, 70 pp.

Ikaheimonen T.K., Outola I., Vartti V.P., Kotilainen P., 2009, Radioactivity in the Baltic Sea: inventories and temporal trends of 137Cs and 90Sr in water and sediments, J. Radioanal. Nucl. Chem., 282 (2), 419-425, http://dx.doi.org/10.1007/s10967-009-0144-1.

Knapińska-Skiba D., Bojanowski R., Piękoś R., 2003, Activity concentration of caesium-137 in seawater and plankton of the Pomeranian Bay (the southern Baltic Sea) before and after flood in 1997, Mar. Pollut. Bull., 46 (2), 1558-1562, http://dx.doi.org/10.1016/S0025-326X(03)00317-5.

Knapińska-Skiba D., Bojanowski R., Radecki Z., 1994, Sorption and release of radiocaesium from particulate matter of the Baltic coastal zone, Neth. J. Aquat. Ecol., 28 (3-4), 413-419, http://dx.doi.org/10.1007/BF02334211.

Knapińska-Skiba D., Bojanowski R., Radecki Z., Łotocka M., 1995, The biological and physico-chemical uptake of radiocaesium by particulate matter of natural origin (Baltic Sea), Neth. J. Aquat. Ecol., 29 (3-4), 283-290, http://dx.doi.org/10.1007/BF02084226.

Knapinska-Skiba D., Bojanowski R., Radecki Z., Millward G.E., 2001, Activity concentrations and fluxes of radiocesium in the southern Baltic Sea, Estuar. Coast. Shelf Sci., 53 (6), 779-786, http://dx.doi.org/10.1006/ecss.2001.0812.

Knapińska-Skiba D., Bojanowski R., Piękoś R., 2002, Dissolved and suspended forms of caesium-137 in marine and riverine environments of the southern Baltic ecosystem, Nukleonika, 47 (2), 53-58.

Kryshev A. I., Ryabov I.N., 2000, A dynamic model of 137Cs accumulation by fish of different age classes, J. Environ. Radioact., 50 (3), 221-233, http://dx.doi.org/10.1016/S0265-931X(99)00118-6.

Littler M.M., Littler D. S., 1980, The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model, Amer. Nat., 116 (1), 25-44, http://dx.doi.org/10.1086/283610.

Lobban C. S., Harrison P. J., 1997, Seaweed ecology and physiology, Cambridge Univ. Press, New York, 366 pp.

Malek M.A., Nakahara M., Nakamura R., 2004, Uptake, retention and organ/tissue distribution of 137Cs by Japanese catfish, J. Environ. Radioact., 77, 191-204, http://dx.doi.org/10.1016/j.jenvrad.2004.03.006.

Nielsen S.P., Bengston P., Bojanowski R., Hagel P., Herrmann J., Ilus E., Jakobson E., Motiejunas S., Panteleev Y., Skujina A., Suplinska M., 1999, The radiological exposure of man from radioactivity in the Baltic Sea, Sci. Tot. Environ., 237-238, 133-141, http://dx.doi.org/10.1016/S0048-9697(99)00130-8.

Piechura J., Beszczyńska-Möller A., 2004, Inflow waters in the deep regions of the southern Baltic Sea - transport and transformations, Oceanologia, 46 (1), 113-141.

Pinder J.E., Hinton T.G., Whicker F.W., 2006, Foliar uptake of cesium from the water column by aquatic macrophytes, J. Environ. Radioact., 85 (1), 23-47, http://dx.doi.org/10.1016/j.jenvrad.2005.05.005.

Sawidis T., Heinrich G., Brown M.T., 2003, Cesium-137 concentrations in marine macroalgae from different biotopes in the Aegean Sea (Greece), Ecotox. Environ. Safe., 54 (3), 249-254, http://dx.doi.org/10.1016/S0147-6513(02)00021-0.

Smith J.T., Kudelsky A. V., Ryabov I.N., Daire S.E., Boyer L., Blust R. J., Fernandez J.A., Hadderingh R.H., Voitsekhovitch O.V., 2002, Uptake and elimination of radiocaesium in fish and the ‘size effect’, J. Environ. Radioact., 62 (2), 145-164, http://dx.doi.org/10.1016/S0265-931X(01)00157-6.

Skwarzec B., 2011, Inflow of radionuclides to the Baltic Sea, [in:] Geochemistry of Baltic Sea surface sediments, S. Uścinowicz (ed.), Pol. Geol. Inst. - Nat. Res. Inst., Warsaw, 355 pp.

Suplińska M., 2002, Vertical distribution of 137Cs, 210Pb, 226Ra and 239, 240Pu in bottom sediments from the Southern Baltic Sea in the years 1998-2000, Nukleonika, 47 (2), 45-52.

Suplińska M., Grzybowska D., 2000, Monitoring skażeń promieniotwórczych w wybranych składnikach ekosystemu Bałtyku Południowego, Postępy Techniki Jądrowej, 43 (3), 35-44.

Suplińska M., Pietrzak-Flis Z., 2008, Sedimentation rates and dating in bottom sediments in the Southern Baltic Sea region, Nukleonika, 53 (Suppl. 2), 105-111.

Szefer P., 2002a, Metals, metalloids and radionuclides in the Baltic Sea ecosystem, Tr. Met. Environ., Vol. 5, 1-752.

Szefer P., 2002b, Metal pollutants and radionuclides in the Baltic Sea - an overview, Oceanologia, 44 (2), 129-178.

Tomczak J., 1988, Radionuclides, [in:] Environmental conditions of the Polish zone of the Baltic Sea in 1987, Inst. Meteorol. Water Manag., Gdynia, 238-245, (in Polish).

Tomczak J., 1999, Artificial radionuclides, [in:] Environmental conditions of the Polish zone of the Baltic Sea in 1998, Inst. Meteorol. Water Manag., Gdynia, 170-176, (in Polish).

UNSCEAR, 1977, Sources and effects of ionizing radiation, UN, New York.

UNSCEAR, 1988, Sources and effects of ionizing radiation, UN, New York.

UNSCEAR, 2000, Sources and effects of ionizing radiation, UN, New York.

Volchok H. L., Kulp J. L., Eckelmann W.R., Gaetjen I. E., 1957, Determination of 90Sr and 140Ba in bone, dairy products, vegetation and soil, Ann. N. Y. Acad. Sci., 71, 293-304, http://dx.doi.org/10.1111/j.1749-6632.1957.tb54602.x.

Zalewska T., 2012a, Seasonal changes of 137Cs in benthic plants from the southern Baltic Sea, J. Radioanal. Nucl. Chem., 292 (1), 211-218, http://dx.doi.org/10.1007/s10967-011-1546-4.

Zalewska T., 2012b, Distribution of 137Cs in benthic plants along depth profiles in the outer Puck Bay (Baltic Sea), J. Radioanal. Nucl. Chem., 293 (2), 679-688, http://dx.doi.org/10.1007/s10967-012-1723-0.

Zalewska T., Lipska J., 2006, Contamination of the southern Baltic Sea with 137Cs and 90Sr over the period 2000-2004, J. Environ. Radioact., 91 (1-2), 1-14, http://dx.doi.org/10.1016/j.jenvrad.2006.08.001.

Zalewska T., Saniewski M., 2011a, Bioaccumulation of 137Cs by benthic plants and macroinvertebrates, Ocean. Hydrobiol. Stud., 40 (3), 1-8, http://dx.doi.org/10.2478/s13545-011-0023-6.

Zalewska T., Saniewski M., 2011b, Bioaccumulation of gamma emitting radionuclides in red algae from the Baltic Sea under laboratory conditions, Oceanologia, 53 (2), 631-650, http://dx.doi.org/10.5697/oc.53-2.631.

Zalewska T., Saniewski M., 2012, Radionuclides of anthropogenic origin - 137Cs and 90Sr, [in:] Environmental conditions of the Polish zone of the Baltic Sea in 2010, Inst. Meteor. Water Manag., Gdynia, (in Polish).

Zalewska T., Suplińska M., 2012, Reference organisms for assessing the impact of ionizing radiation on the environment of the southern Baltic Sea, Ocean. Hydrobiol. Stud., 41 (4), 1-7, http://dx.doi.org/10.2478/s13545-012-0033-z.

Zalewska T., Suplińska M., 2013, Fish pollution with anthropogenic 137Cs in the southern Baltic Sea, Chemosphere, 90 (6), http://dx.doi.org/10.1016/j.chemosphere.2012.07.012.
full, complete article (PDF - compatibile with Acrobat 4.0), 465 KB


Activation of the operational ecohydrodynamic model (3D CEMBS) - the hydrodynamic part
Oceanologia 2013, no. 55(3), pp. 519-541

Lidia Dzierzbicka-Głowacka*, Maciej Janecki, Artur Nowicki, Jaromir Jakacki
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland;
e-mail: dzierzb@iopan.gda.pl
*corresponding author

keywords: Baltic Sea, 3D model, hydrodynamic model

Received 16 January 2013, revised 16 April 2013, accepted 5 May 2013.

The study was supported by the Polish State Committee of Scientific Research (grants: N N305 111636, N N306 353239). Partial support was also provided by the Satellite Monitoring of the Baltic Sea Environment - the SatBałtyk project funded by the European Union through the European Regional Development Fund contract No. POIG 01.01.02-22-011/09.


The paper describes the hydrodynamic part of the coupled ice-ocean model that also includes the ecosystem predictive model. The Baltic Sea model is based on the Community Earth System Model (CESM from NCAR – National Centre for Atmospheric Research). CESM was adopted for the Baltic Sea as a coupled sea-ice model. It consists of the Community Ice CodE (CICE, model version 4.0) and the Parallel Ocean Program (POP, version 2.1). The models are linked through a coupler (CPL7), which is based on the Model Coupling Toolkit (MCT) library. The current horizontal resolution is about 2 km (1/48 degrees). The ocean model has 21 vertical levels and is forced by atmospheric fields from the European Centre for Medium Weather Forecast (ECMWF). A preliminary validation of the hydrodynamic module with in situ measurements and reanalysis from My Ocean (http://www.myocean.eu) has also been done. In the operational mode, 48-hour atmospheric forecasts provided by the UM model from the Interdisciplinary Centre for Mathematical and Computational Modelling of Warsaw University (ICM) are used. The variables presented on the website in real time for a 48-hour forecast are temperature, salinity, currents, sea surface height, ice thickness and ice coverage (http://deep.iopan.gda.pl/CEMBaltic/new_lay/index.php). The embedded model of the marine ecosystem, like ice, is not taken into account in this paper.

  References ref

Arakawa A., Lamb V.R., 1977, Computational design of the basic dynamic processes of the UCLA general circulation model, Methods Comput. Phys., 17, 173-265, http://dx.doi.org/10.1016/B978-0-12-460817-7.50009-4.

BALTEX, 1977, BALTEX Phase I 1993-2002. State of the art report. BALTEX Secr. Publ., 31, 181 pp.

BALTEX, 2006a, BALTEX Phase II 2003-2012. Science framework and implementation strategy, BALTEX Secr. Publ., 34, 90 pp.

BALTEX, 2006b, Assessment of climate change for the Baltic Sea basin - the BACC project, BALTEX Secr. Publ., 35, 26 pp.

Brachet S., Le Traon P.Y., Le Provost C., 2004, Mesoscale variability from a high-resolution model and from altimeter data in the North Atlantic Ocean, J. Geophys. Res., 109, C12025, http://dx.doi.org/10.1029/2004JC002360.

Bryan K.A., 1969, Numerical method for the study of the circulation of the world ocean, J. Comput. Phys., 4 (3), 347-376, http://dx.doi.org/10.1016/0021-9991(69)90004-7.

Bryan F.O., Danabasoglu G., Gent P.R., Lindsay K., 2006, Changes in ocean ventilation during the 21st Century in the CCSM3, Ocean Model., 15 (3-4), 141-156, http://dx.doi.org/10.1016/j.ocemod.2006.01.002.

Dzierzbicka-Głowacka L., 2000, Mathematical modelling of the biological processes in the upper layer of the sea, Diss. and Monogr., 13, Inst. Oceanol. PAS, Sopot, 124 pp.

Dzierzbicka-Głowacka L., 2005, Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 1. A Coupled Ecosystem Model, Oceanologia, 47 (4), 591-619.

Dzierzbicka-Głowacka L., 2006, Modelling the seasonal dynamics of marine plankotn in the southern Baltic Sea. Part 2. Numerical simulations, Oceanologia, 48 (1), 41-71.

Dzierzbicka-Głowacka L., Bielecka L., Mudrak S., 2006, Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdańsk Deep) - numerical simulations, Biogeosciences, 3 (4), 635-650, http://dx.doi.org/10.5194/bg-3-635-2006.

Dzierzbicka-Głowacka L., Jakacki J., Janecki M., Nowicki A., 2011b, Variability in the distribution of phytoplankton as affected by changes to the main physical parameters in the Baltic Sea, Oceanologia, 53 (1-TI), 449-470, http://dx.doi.org/10.5697/oc.53-1-TI.449.

Dzierzbicka-Głowacka L., Kulinski K., Maciejewska A., Jakacki J., Pempkowiak J., 2011a, Numerical modelling of POC dynamics in the southern Baltic under possible future conditions determined by nutrients, light and temperature, Oceanologia, 53 (4), 971-992, http://dx.doi.org/10.5697/oc.53-4.971.

Dzierzbicka-Głowacka, L., Żmijewska I.M., Mudrak S., Jakacki J., Lemieszek A., 2010, Population modelling of Acartia spp. in a water column ecosystem model for the South-Eastern Baltic Sea, Biogeosciences, 7 (6), 2247.2259, http://dx.doi.org/10.5194/bg-7-2247-2010.

Hunke E.C., Dukowicz J. K., 1997, An elastic-viscous-plastic model for sea ice dynamics, J. Phys. Oceanogr., 27 (9), 1849.1867, http://dx.doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.

Janecki M., Jakacki J., Nowicki A., Dzierzbicka-G.owacka L., 2011, Marine ecosysten model for the Baltic Sea, 8th Baltic Sea Science Congress, St. Petersburg, Russia,, Book of Abstracts, 293 pp.

Jansen F., Schrum C., Backhaus J. O., 1999, A climatological data set of temperature and salinity for the Baltic Sea and the North Sea, Dt. Hydrogr. Z., 9 (Suppl.), 245 pp.

Jones P.W., Worley P.H., Yoshida Y., White J. B., Levesque J., 2003, Practical performance portability in the Parallel Ocean Program (POP), Concurr. Comp. Pract. E., 1, 1-15.

Killworth P.D., Stainforth D., Webb D. J., Paterson S.M., 1991, The development of a free-surface Bryan-Cox-Semtner ocean model, J. Phys. Oceanogr., 21 (9), 1333.1348, http://dx.doi.org/10.1175/1520-0485(1991)021<1333:TDOAFS>2.0.CO;2.

Large W.G., McWilliams J. C., Doney S. C., Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32 (4), 363-403, http://dx.doi.org/10.1029/94RG01872.

Lass H. U., Mohrholz V., On dynamics and mixing of inflowing saltwater in the Arkona Sea, J. Geophys. Res., 108 (C2), 3042, http://dx.doi.org/10.1029/2002JC001465.

Lass H.U., Mohrholz V., Seifert T., 2001, On the dynamics of the Pomeranian Bight, Cont. Shelf Res., 21 (11-12), 1237-1261, http://dx.doi.org/10.1016/S0278-4343(01)00003-6.

Lee M.M., Coward A., 2003, Eddy mass transport for the Southern Ocean in an eddy-permitting global ocean model, Ocean Model., 5 (3), 249-266, http://dx.doi.org/10.1016/S1463-5003(02)00044-6.

Lehmann A., Lorenz P., Jacob D., 2004, Modelling the exceptional Baltic Sea inflow events in 2002.2003, Geophys. Res. Lett., 31, L21308, http://dx.doi.org/10.1029/2004GL020830.

Li X., Yi C., McWilliams J. C., Fu L.-L., 2001, A comparison of two vertical-mixing schemes in a Pacific Ocean general circulation model, J. Climate, 14 (7), 1377-1398, http://dx.doi.org/10.1175/1520-0442(2001)014<1377:ACOTVM>2.0.CO;2.

Lipscomb W.H., Hunke E.C., 2004, Modeling sea ice transport using incremental remapping, Mon. Wea. Rev., 132 (6), 1341-1354, http://dx.doi.org/10.1175/1520-0493(2004)132<1341:MSITUI>2.0.CO;2.

Maltrud M.E., McClean J. L., 2005, An eddy resolving global 1/10. ocean simulation, Ocean Model., 8 (1.2), 31-54, http://dx.doi.org/10.1016/j.ocemod.2003.12.001.

Masłowski W., Marble D., Walczowski W., Schauer U., Clement J. L., Semtner A. J., 2004, On climatological mass, heat, and salt transports through the Barents Sea and Fram Strait from a pan-Arctic coupled ice-ocean model simulation, J. Geophys. Res., 109, C03032, http://dx.doi.org/10.1029/2001JC001039.

McDougall T. J., Jackett D.R., Wright D. G., Feistel R., 2003, Accurate and computationally efficient algorithms for potential temperature and density of seawater, J. Atmos. Ocean. Tech., 20 (5), 730-741, http://dx.doi.org/10.1175/1520-0426(2003)20<730:AACEAF>2.0.CO;2.

Meier H.E.M., 2002, Regional ocean climate simulations with a 3D ice-ocean model for Baltic Sea. Part 1: model experiments and results for temperature and salinity, Clim. Dynam., 19 (3-4), 237-253, http://dx.doi.org/10.1007/s00382-001-0224-6.

Meier H.E.M., 2005, Modeling the age of Baltic Seawater masses: quantification and steady state sensitivity experiments, J. Geophys. Res., 110, C02006, http://dx.doi.org/10.1029/2004JC002607.

Nadiga B.T., Taylor M., Lorenzc J., 2006, Ocean modelling for climate studies: eliminating short time scales in long-term, high-resolution studies of ocean circulation, Math. Comput. Model., 44 (9-10), 870-886, http://dx.doi.org/10.1016/j.mcm.2006.02.021.

Omstedt A., Chen Y., Wesslander K., 2005, A comparison between the ERA40 and the SMHI gridded meteorological databases as applied to Baltic Sea modeling, Nord. Hydrol., 36 (4), 369-380.

Osiński R., 2007, Symulacja procesów dynamicznych w Morzu Bałtyckim zintegrowanym modelem ocean-lód, Ph. D. thesis, Inst. Oceanol. PAS, Sopot, 112 pp.

Peters H., Gregg M.C., Toole J.M., 1988, On the paramterization of equatorial turbulence, J. Geophys. Res., 93, 1199-1211, http://dx.doi.org/10.1029/JC093iC02p01199.

Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., 2001, Numerical recipes in Fortran 77: The art of scientific computing, Cambrige Univ. Press, 921 pp.

Rudolph C., Lehmann A., 2006, A model-measurements comparison of atmospheric forcing and surface fluxes of the Baltic Sea, Oceanologia, 48 (3), 333-360.

Semtner A. J., 1974, A general circulation model for the World Ocean, UCLADept. Meteor. Tech. Rep., 8, 99 pp.

SMHI & FIMR, 1982, Climatological Ice Atlas for the Baltic Sea, Kattegat, Skagerrak and Lake Vjänern (1963-1979), Sjöfartsverket, Njörrkoping, 220 pp.

Smith R., Gent P., 2004, Reference manual for the Parallel Ocean Program (POP), Los Alamos Nat. Lab., New Mexico, 75 pp.

Uppala S. M., Kållberg P.W., Simmons A. J., Andrae U., da Costa Bechtold V., Fiorino M., Gibson J.K., Haseler J., Hernandez A., Kelly G. A., Li X., Onogi K., Saarinen S., Sokka N., Allan R.P., Andersson E., Arpe K., Balmaseda M. A., Beljaars A. C. M., van de Berg L., Bidlot J., Bormann N., Caires S., Chevallier F., Dethof A., Dragosavac M., Fisher M., Fuentes M., Hagemann S., Hólm E., Hoskins B. J., Isaksen L., Janssen P. A. E. M., Jenne R., McNally A. P., Mahfouf J.-F., Morcrette J.-J., Rayner N. A., Saunders R. W., Simon P., Sterl A., Trenberth K. E., Untch A., Vasiljevic D., Viterbo P., Woollen J., 2006, The ERA-40 re-analysis, Quart. J. Roy. Meteor. Soc., 131 (612), 2961-3012, http://dx.doi.org/10.1256/qj.04.176.

Woźniak B., Bradtke K., Darecki M., Dera J., Dudzińska-Nowak J., Dzierzbicka- Głowacka L., 2011a, SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 1: Assumptions, scope and operating range, Oceanologia, 53 (4), 897-924, http://dx.doi.org/10.5697/oc.53-4.897.

Woźniak B., Bradtke K., Darecki M., Dera J., Dudzińska-Nowak J., Dzierzbicka- Głowacka L., 2011b, SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 2: Practical applicability and preliminary results, Oceanologia, 53 (4), 925-958, http://dx.doi.org/10.5697/oc.53-4.925.

full, complete article (PDF - compatibile with Acrobat 4.0), 5776 KB

Activation of the operational ecohydrodynamic model (3D CEMBS) - the ecosystem module
Oceanologia 2013, no. 55(3), pp. 543-572

Lidia Dzierzbicka-Głowacka*, Maciej Janecki, Artur Nowicki, Jaromir Jakacki
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland;
e-mail: dzierzb@iopan.gda.pl
*corresponding author

keywords: Baltic Sea, 3D CEMBS model, ecosystem model, chlorophyll a, phytoplankton, nutrients, zooplankton, oxygen

Received 16 January 2013, revised 16 April 2013, accepted 5 May 2013.

The study was supported by the Polish State Committee of Scientific Research (grants: N N305 111636, N N306 353239). Partial support was also provided by the Satellite Monitoring of the Baltic Sea Environment - the SatBałtyk project funded by the European Union through the European Regional Development Fund contract No. POIG 01.01.02-22-011/09.


The paper describes the ecohydrodynamic predictive model - the ecosystem module - for assessing the state of the Baltic marine environment and the Baltic ecosystem. The Baltic Sea model 3D CEMBS (the Coupled Ecosystem Model of the Baltic Sea) is based on the Community Earth System Model, which was adopted for the Baltic Sea as a coupled sea-ice-ecosystem model. The 3D CEMBS model uses: (i) hydrodynamic equations describing water movement, (ii) thermodynamic equations, (iii) equations describing the concentration distribution of chemical variables in the sea, and (iv) equations describing the exchange of matter between individual groups of organisms and their environment that make allowance for the kinetics of biochemical processes.
  The ecosystem model consists of 11 main components: three classes of phytoplankton (small phytoplankton, large phytoplankton represented mainly by diatoms and summer species, mostly cyanobacteria) expressed in units of carbon and chlorophyll a as separate variables, zooplankton, pelagic detritus, dissolved oxygen and nutrients (nitrate, ammonium, phosphate and silicate). In operational mode, 48-hour atmospheric forecasts provided by the UM model from the Interdisciplinary Centre for Mathematical and Computational Modelling of Warsaw University (ICM) are used. All model forecasts are available on the website http://deep.iopan.gda.pl/CEMBaltic/new_lay/index.php. The results presented in this paper show that the 3D CEMBS model is operating correctly.

  References ref

Andrulewicz E., Szymelfenig M., Urbański J., Węsławski J. M., Węsławski S., 2008, Morze Bałtyckie - o tym warto wiedzieć, Polski Klub Ekologiczny, Okręg Wschodnio-Pomorski, 115 pp.

Dzierzbicka-Głowacka L., 2000, Mathematical modelling of the biological processes in the upper layer of the sea, Diss. Monogr. vol. 13, Inst. Oceanol. PAS, Sopot, 124 pp., (in Polish).

Dzierzbicka-Głowacka L., 2005, Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 1. A Coupled Ecosystem Model, Oceanologia, 47 (4), 591-619.

Dzierzbicka-Głowacka L., 2006, Modelling the seasonal dynamics of marine plankotn in the southern Baltic Sea. Part 2. Numerical simulations, Oceanologia, 48 (1), 41-71.

Dzierzbicka-Głowacka L., Bielecka L., Mudrak S., 2006, Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdańsk Deep) - numerical simulations, Biogeosciences, 3 (4), 635-650, http://dx.doi.org/10.5194/bg-3-635-2006.

Dzierzbicka-Głowacka L., Jakacki J., Janecki M., Nowicki A., 2011c, Modelling of Baltic Sea ecosystem using POP model, Proc. 4th Chaotic Modeling and Simulation International Conference 2011, 105-113.

Dzierzbicka-Głowacka L., Jakacki J., Janecki M., Nowicki A., 2011b, Variability in the distribution of phytoplankton as affected by changes to the main physical parameters in the Baltic Sea, Oceanologia, 53 (1-TI), 449-470, http://dx.doi.org/10.5697/oc.53-1-TI.449.

Dzierzbicka-Głowacka L., Jakacki J., Janecki M., Nowicki A., 2012a, The Baltic Sea coupled ice-ocean model, Chaot. Model. Simul. (CMSIM), 4, 679-686.

Dzierzbicka-Głowacka L., Jakacki J., Janecki M., Nowicki A., 2013, Activation of the operational ecohydrodynamic model (3D CEMBS) - the hydrodynamic part, Oceanologia, (this issue).

Dzierzbicka-Głowacka L., Janecki M., Nowicki A., Jakacki J., 2012d, A new marine ecosystem 3D CEMBS model (version 2) for the Baltic Sea. IEEE Conf. Publ., Complex Systems (ICCS), Article number 6458601.

Dzierzbicka-Głowacka L., Kuliński K., Maciejewska A., Jakacki J., Pempkowiak J., 2011a, Numerical modelling of POC dynamics in the southern Baltic under possible future conditions determined by nutrients, light and temperature, Oceanologia, 53 (4), 971-992, http://dx.doi.org/10.5697/oc.53-4.971.

Dzierzbicka-Głowacka L., Kuliński K., Maciejewska A., Jakacki J., Pempkowiak J., 2010b, Particulate organic carbon in the southern Baltic Sea: numerical simulations and experimental data, Oceanologia, 52 (4), 621-648, http://dx.doi.org/10.5697/oc.52-4.621.

Dzierzbicka-Głowacka L., Piskozub J., Jakacki J., Janecki M., Nowicki A., 2012b, Influence of climate parameters on long-term variations of the distribution of phytoplankton biomass and nutrient concentration in the Baltic Sea simulated by a 3D model, Pol. J. Ecol., 60 (4), 651-666.

Dzierzbicka-Głowacka L., Piskozub J., Jakacki J., Mudrak S., Żmijewska M., 2012c, Spatiotemporal distribution of copepod populations in the Gulf of Gdańsk (southern Baltic Sea), J. Oceanogr., 68 (6), 887-904, http://dx.doi.org/10.1007/s10872-012-0142-8.

Dzierzbicka-Głowacka L., Żmijewska I.M., Mudrak S., Jakacki J., Lemieszek A., 2010a, Population modelling of Acartia spp. in a water column ecosystem model for the South-Eastern Baltic Sea, Biogeosciences, 7 (4), 2247-2259, http://dx.doi.org/10.5194/bg-7-2247-2010.

Geider R. J., MacIntyre H. L., Kana T.M., 1998, A dynamic regulatory model of phytoplankton acclimation to light, nutrients, and temperature, Limnol. Oceanogr., 43 (4), 679-694, http://dx.doi.org/10.4319/lo.1998.43.4.0679.

Moore J.K., Doney S.C., Kleypas J.A., Glover D.M., Fung I.Y., 2002, An intermediate complexity marine ecosystem model for the global domain, Deep- Sea Res. Pt. II, 49 (1-3), 403-462, http://dx.doi.org/10.1016/S0967-0645(01)00108-4.

Woźniak B., Bradtke K., Darecki M., Dera J., Dudzińska-Nowak J., Dzierzbicka- Głowacka L., 2011a, SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 1: Assumptions, scope and operating range, Oceanologia, 53 (4), 897-924, http://dx.doi.org/10.5697/oc.53-4.897.

Woźniak B., Bradtke K., Darecki M., Dera J., Dudzińska-Nowak J., Dzierzbicka- Głowacka L., 2011b, SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 2: Practical applicability and preliminary results, Oceanologia, 53 (4), 925-958, http://dx.doi.org/10.5697/oc.53-4.925

full, complete article (PDF - compatibile with Acrobat 4.0), 6743 KB

Observations of the aerosol particle number concentration in the marine boundary layer over the south-eastern Baltic Sea
Oceanologia 2013, no. 55(3), pp. 573-598

Steigvile Byčenkiene, Vidmantas Ulevicius*, Nina Prokopčiuk, Dalia Jasinevičiene
Centre for Physical Sciences and Technology,
Savanoriu pr. 231, LT-02300 Vilnius, Lithuania;
e-mail: ulevicv@ktl.mii.lt
*corresponding author

keywords: aerosol number concentration, principal component analysisc, wavelet transform, coastal site, source apportionment

Received 28 January 2013, revised 29 March 2013, accepted 23 April 2013.

This work was partially supported by the Lithuanian-Swiss cooperation programme ‘Research and development project AEROLIT’ (No. CH-3-SMM-01/08).


Continuous measurements of the aerosol particle number concentration (PNC) in the size range from 4.5 nm to 2 µm were performed at the Preila marine background site during 2008–2009. The concentration maxima in summer was twice the average (2650±50 cm-3). A trajectory-based approach was applied for source identification. Potential Source Contribution Function (PSCF) analysis was performed to estimate the possible contribution of long-range and local PNC transport to PNC concentrations recorded at the marine background site. The PSCF results showed that the marine boundary layer was not seriously affected by long-range transport, but that local transport of air pollution was recognized as an important factor. North Atlantic and Sea-Marine type clusters respectively represented 32.1% and 17.9% of the total PNC spectra and were characterized by the lowest PNCs (1080±1340 and 1210±1040 cm-3 respectively) among all clusters.
  Wavelet transformation analysis of 1-h aerosol PNC indicated that while the 16-h scale was a constant feature of aerosol PNC evolution in spring, the longer (∼60-h) scales appeared mainly over the whole year (except June). Principal component analysis (PCA) revealed a strong correlation between PNC and NaCl, highlighting the influence of sea-salt aerosols. In addition, PCA also showed that PNC depended on optical and meteorological parameters such as UVR and temperature.

  References ref

Andriejauskienė J., Ulevicius V., Bizjak M., Špirkauskaitė N., Byčenkienė S., 2008, Black carbon aerosol at the background site in the coastal zone of the Baltic Sea, Lith. J. Phys., 48(2), 183-194, http://dx.doi.org/10.3952/lithjphys.48210.

Asmi A., Wiedensohler A., La j P., Fjaeraa A.-M., Sellegri K., Birmili W., Weingartner E., Baltensperger U., Zdimal V., Zikova N., Putaud J.-P., Marinoni A., Tunved P., Hansson H.-C., Fiebig M., Kivekas N., Lihavainen H., Asmi E., Ulevicius V., Aalto P. P., Swietlicki E., Kristensson A., Mihalopoulos N., Kalivitis N., Kalapov I., Kiss G., de Leeuw G., Henzing B., Harrison R. M., Beddows D., O’Dowd C., Jennings S. G., Flentje H., Weinhold K., Meinhardt F., Ries L., Kulmala M., 2011, Number size distributions and seasonality of submicron particles in Europe 2008-2009, Atmos. Chem. Phys., 11 (11), 5505-5538, http://dx.doi.org/10.5194/acp-11-5505-2011.

Beddows D. C. S., Dall’Osto M., Harrison R. M., 2009, Cluster analysis of rural, urban and curbside atmospheric particle size data, Environ. Sci. Technol., 43 (13), 4694-4700, http://dx.doi.org/10.1021/es803121t.

Birmili W., Wiedensohler A., Plass-Dulmer C., Berresheim H., 2000, Evolution of newly formed aerosol particles in the continental boundary layer: a case study including OH and H2SO4 measurements, Geophys. Res. Lett., 27, 2205-2208, http://dx.doi.org/10.1029/1999GL011334.

Boy M., Kulmala M., 2002, Nucleation events on the continental boundary layer: influence of physical and meteorological parameters, Atmos. Chem. Phys., 2, 1-16, http://dx.doi.org/10.5194/acp-2-1-2002.

Bukowiecki N., Dommen J., Prevot A. S. H., Richter R., Weingartner E., Baltensperger U., 2002, A mobile pollutant measurement laboratory-measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution, Atmos. Environ., 36, 5569-5579, http://dx.doi.org/10.1016/S1352-2310(02)00694-5.

Byčenkiene S., Ulevicius V., Kecorius S., 2011, Characteristics of black carbon aerosol mass concentration over the East Baltic region from two-year measurements, J. Environ. Monitor., 13, 1027-1038, http://dx.doi.org/10.1039/c0em00480d.

Clarke A. D., Owens S. R., Zhou J. C., 2006, An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere, J. Geophys. Res., 111, D06202, http://dx.doi.org/10.1029/2005JD006565.

Dall’Osto M., Monahan C., Greaney R., Beddows D. C. S., Harrison R. M., Ceburnis D., O’Dowd C. D., 2011, A statistical analysis of North East Atlantic (submicron) aerosol size distributions, Atmos. Chem. Phys., 11 (24), 12567-12578, http://dx.doi.org/10.5194/acp-11-12567-2011.

Delfino R. J., Staimer N., Tjoa T., Gillen D. L., Polidori A., Arhami M., Kleinman M. T., Vaziri N. D., Longhurst J., Sioutas C., 2009, Air pollution exposures and circulating biomarkers of effect in a susceptible population: clues to potential causal component mixtures and mechanisms, Environ. Health Persp., 117 (8), 1232-1238, http://dx.doi.org/10.1289/journla.ehp.0800194.

Dongarrá G., Manno E., Varrica D., Lombardo M., Vultaggio M., 2010, Study on ambient concentrations of PM10, PM10-2.5, PM2.5 and gaseous pollutants. Trace elements and chemical speciation of atmospheric particulates, Atmos. Environ., 44 (39), 5244-5257, http://dx.doi.org/10.1016/j.atmosenv.2010.08.041.

Einax J. W., Zwanziger H. W., Geiss S., 1997, Chemometrics in environmental analysis, VCH Verlagsgesellschaft mbH, Weinheim, 384 pp.

Englert N., 2004, Fine particles and human health a review of epidemiological studies, Toxicol. Lett., 149 (1-3), 235-242, http://dx.doi.org/10.1016/j.toxlet.2003.12.035.

Eskridge R., Ku J. Y., Rao S. T., Porter P. S., Zurbenko I. G., 1997, Separating different time scales of motion in time series of meteorological variables, B. Am. Meteorol. Soc., 78 (7), 1473-1483, http://dx.doi.org/10.1175/1520-0477(1997)078<1473:SDSOMI>2.0.CO;2.

Eskridge R., Ku J. Y., Rao S. T., Porter P. S., Zurbenko I. G., 1997, Separating different time scales of motion in time series of meteorological variables, B. Am. Meteorol. Soc., 78 (7), 1473-1483, http://dx.doi.org/10.1175/1520-0477(1997)078<1473:SDSOMI>2.0.CO;2.

Fahrmeir L., Hamerle A., Tutz G., 1996, Multivariate statistische Verfahren, 2nd edn., de Gruyter, Berlin, 902 pp., (in Berlin).

Farge M., 2000, Wavelet transform and their application to turbulence, Ann. Rev. Fluid. Mech., 24, 395-457, http://dx.doi.org/10.1146/annurev.fl.24.010192.002143.

Foufoula-Georgiou E., Kumar P., 1995, Wavelets in geophysics, Elsevier, New York, 373 pp.

Gong K. W., Zhao W., Li N., Bara jas B., Kleinman M. T., Sioutas C., Horvath S., Lusis A. J., Nel A. E., Araujo J. A., 2007, Air-pollutant chemicals and oxidized lipids exhibit genome-wide synergistic effects on endothelial cells, Genome Biol., 8 (7), R149, http://dx.doi.org/10.1186/gb-2007-8-7-r149.

Hies T., Treffeisen R., Sebald L., Reimer E., 2000, Spectral analysis of air pollutants. Part 1: elemental carbon time series, Atmos. Environ., 34 (21), 3495-3502, http://dx.doi.org/10.1016/S1352-2310(00)00146-1.

Hinds W. C., 1999, Aerosol technology: properties, behavior and measurements of airborne particles, 2nd edn., New York, Wiley Interscience, 509 pp.

Ho K. F., Lee S. C., Cao J. J., Li Y. S., Chow J. C., Watson J. G., Fung K., 2006, Variability of organic and elemental carbon, water soluble organic carbon, and isotopes in Hong Kong, Atmos. Chem. Phys., 6, 4569-4576, http://dx.doi.org/10.5194/acp-6-4569-2006.

Jaenicke R., 1993, Tropospheric aerosols, [in:] Aerosol-clouds-climate interaction, P.V. Hobbs (ed.), Academic Press, San Diego, 1-31.

Jayaratne E. R., Verna T. S., 2001, The impact of biomass burning on the environmental aerosol concentration in Gaborone, Botswana, Atmos. Environ., 35 (10), 1821-1828, http://dx.doi.org/10.1016/S1352-2310(00)00561-6.

Juozaitis A., Trakumas S., GirgždienĖ R., Girgždys A., ŠopauskienĖ D., Ulevicius V., 1996, Investigations of gas-to-particle conversion in the atmosphere, Atmos. Res., 41, 183-201, http://dx.doi.org/10.1016/0169-8095(96)00008-7.

Kaplinsky A. E., Khutorova O. G., 2010, The wavelet analysis of aerosol characteristics at the Lake Baikal coast, Polzunovskij vestnik, 1, 160-164 (in Russian).

Karaca F., Alagha O., Erturk F., 2005, Statistical characterization of atmospheric PM10 and PM2.5 concentrations at a nonimpacted suburban site of Istanbul, Turkey, Chemosphere, 59, 1183-1190, http://dx.doi.org/10.1016/j. chemosphere.2004.11.062.

Knutson T. R., Weickman K. M., 1987, 30-60 day atmospheric oscil- lations: composites of Convection and circulation anomalies, Mon. Weather Rev., 115, 1407-1436, http://dx.doi.org/10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO;2.

Kulmala M., Rannik U., Pirjola L., Dal Maso M., Karimaki J., Asmi A., Jappinen A., Karhu V., Korhonen H., Malvikko S. P., Puustinen A., Raittila J., Romakkaniemi S., Suni T., Yli-Koivisto S., 2000, Characterization of atmospheric trace gas and aerosol concentrations at forest sites in southern and northern Finland using back trajectories, Boreal Environ. Res., 5 (4), 315-336.

Kulmala M., Vehkamaki H., Peta ja T., Dal Maso M., Lauri A., Kerminen V. M., Birmili W., McMurry P. H., 2004, Formation and growth rates of ultrafine atmospheric particles: a review of observations, J. Air Waste Manage., 35 (2), 143-176.

Laakso L., Hussein T., Aarnio P., Komppula M., Hiltunen V., Viisanen Y., Kulmala M., 2003, Diurnal and annual characteristics of particle mass and number concentrations in urban, rural and Arctic environments in Finland, Atmos. Environ., 37 (19), 2629-2641, http://dx.doi.org/10.1016/S1352-2310(03)00206-1.

Lohmann U., Feichter J., 2005, Global indirect aerosol affects. A review, Atmos. Chem. Phys., 5 (3), 715-737, http://dx.doi.org/10.5194/acp-5-715-2005.

Marr L. C., Harley R. A., 2002, Spectral analysis of weekday-weekend differences in ambient ozone, nitrogen oxide, and non-methane hydrocarbon time series in California, Atmos. Environ., 36 (14), 2327-2335, http://dx.doi.org/10.1016/ S1352-2310(02)00188-7.

Moloi K., Chimidza S., Selin Lindgren E., Viksna A., Standzenieks P., 2002, Black carbon mass and elemental measurements of airborne particles in the village of Serowe, Botswana, Atmos. Environ., 36 (14), 2447-2457, http://dx.doi.org/10.1016/S1352-2310(02)00085-7.

Mordas G., Kulmala M., Petäjä T., Aalto P. P., Matulevicius V., Grigoraitis, V., Ulevicius V., Grauslys V., Ukkonen A., Hämeri K., 2005, Design and performance characteristics of a condensation particle counter UF-02proto, Boreal Environ. Res., 10 (6), 543-552.

Percival D. P., Walden A. T., 1998, Spectral analysis for physical applications, Cambridge Univ. Press, Cambridge, 612 pp.

Plaučkaitė K., Ulevicius V., Špirkauskaitė N., Byčenkiene S., Zieliński T., Petelski T., Ponczkowska A., 2010, Observations of new particle formation events in the south-eastern Baltic Sea, Oceanologia, 52 (1), 53-75, http://dx.doi.org/10.5697/oc.52-1.053.

Putaud J.-P., Raes F., Van Dingenen R., Baltensperger J. P. U., Brüggemann E., Facchini M. C., Decesari S., Fuzzi S., Gehrig R., Hansson H. C., Hüglin C., La j P., Lorbeer G., Maenhaut W., Mihalopoulos N., Müller K., Querol X., Rodriguez S., Schneider J., Spindler G., ten Brink H., Torseth K., Wehner B., Wiedensohler A., 2004, European aerosol phenomenology - 2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ., 38 (16), 2579-2595, http://dx.doi.org/10.1016/j.atmosenv.2004.01.041.

Rodriguez S., Van Dingenen R., Putaud J. P., Martins-Dos Santos S., Roselli D., 2005, Nucleation and growth of new particles in the rural atmosphere of Northern Italy - relationship to air quality monitoring, Atmos. Environ., 39 (36), 6734-6746, http://dx.doi.org/10.1016/j.atmosenv.2005.07.036.

Saliba N. A., El Jam F., El Tayar G., Obeid W., Roumie M., 2010, Origin and variability of particulate matter (PM10 and PM2.5) mass concentrations over an Eastern Mediterranean city, Atmos. Res., 97 (1-2), 106-114, http://dx.doi.org/10.1016/j.atmosres.2010.03.011.

Sardar S. B., Fine P. M., Yoon H., Sioutas C., 2004, Associations between particle number and gaseous co-pollutant concentrations in the Los Angeles basin, J. Air Waste Manage., 54 (8), 992-1005, http://dx.doi.org/10.1080/10473289.2004.10470970.

Torrence C., Compo G. P., 1998, A practical guide to wavelet analysis, B. Am. Meteorol. Soc., 79 (1), 61-78, http://dx.doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

Ulevicius V., Byčenkienė S., Remeikis V., Garbaras A., Kecorius S., Andriejauskiene J., Jasinevičienė D., Mocnik G., 2010, Characterization of pollution events in the East Baltic region affected by regional biomass fire emissions, Atmos. Res., 98(2-4), 190-200, http://dx.doi.org/10.1016/j.atmosres.2010.03.021.

Ulevicius V., Byčenkienė S., Špirkauskaitė N., Kecorius S., 2010, Biomass burning impact on black carbon aerosol mass concentration at a coastal site: case studies, Lith. J. Phys., 50 (3), 335-344, http://dx.doi.org/10.3952/lithjphys.50304.

Ulevicius V., Zeromskiene K., Mordas G., 2001, On the production of new particles in the Lithuanian coastal boundary layer, J. Aerosol Sci., 32 (1), 605-606.

Verma V., Ning Z., Cho A. K., Schauer J. J., Shafer M. M., Sioutas C., 2009, Redox activity of urban quasi-ultrafine particles from primary and secondary sources, Atmos. Environ., 43, 6360-6368, http://dx.doi.org/10.1016/j.atmosenv.2009.09.019.

Vukovich F. M., 1997, Time scales of surface ozone variations in the regional, non- urban environment, Atmos. Environ., 31 (10), 1513-1530, http://dx.doi.org/10.1016/S1352-2310(96)00279-8.

Wilson J. G., Zawar-Reza P., 2006, Intraurban-scale dispersion modeling of particulate matter concentrations: applications for exposure estimates in cohort studies, Atmos. Environ., 40 (6), 1053-1063, http://dx.doi.org/10.1016/j.atmosenv.2005.11.026.

Xia T., Kovochich M. J., Brant J., Hotze M., Sempf J., Oberley T., Yeh J., Sioutas C., Wiesner M. R., Nel A. E., 2006, Comparisons of the abilities of ambient and commercial nanoparticles to induce cellular toxicity according to an oxidative stress paradigm, Nano Lett., 6 (8), 1794-1807, http://dx.doi.org/10.1021/nl061025k.

full, complete article (PDF - compatibile with Acrobat 4.0), 1798 KB

UV absorption reveals mycosporine-like amino acids (MAAs) in Tatra mountain lake phytoplankton
Oceanologia 2013, no. 55(3), pp. 599-609

Dariusz Ficek1,*, Jerzy Dera2, Bogdan Woźniak1,2
1Institute of Physics, Pomeranian University in Słupsk,
Arciszewskiego 22B, Słupsk 76-200, Poland;
e-mail: ficek@apsl.edu.pl
*corresponding author
2Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland

keywords: phytoplankton absorption spectra, UV absorption, mycosporine-like amino acids, Tatra mountain lakes

Received 12 March 2013, revised 20 May 2013, accepted 24 May 2013.

This paper was carried out within the framework of the SatBałtyk project funded by the European Union through European Regional Development Fund, (contract No. POIG.01.01.02-22-011/09 entitled ‘The Satellite Monitoring of the Baltic Sea Environment’). Partial support for this study was also provided by the MNiSW (Ministry of Science and Higher Education) as research project N N306 066434 in 2008-2011 and also as part of the statutory Research of the Pomeranian University and IO PAN.


Enhanced absorption of UV radiation, an effect characteristic of mycosporine-like amino acids (MAAs), is reported in samples of phytoplankton from six lakes in the Tatra Mountains National Park (Poland). It was demonstrated that the mass-specific UV absorption coefficients for the phytoplankton in these lakes increased with altitude above sea level. Based on a comparison with the phytoplankton of Alpine lakes, investigated earlier by other authors (cited in this paper), it may be inferred that the phytoplankton of Tatra mountain lakes produce MAAs, which protect plant cells from UV light, the intensity of which increases with altitude.

  References ref

Banaszak A. T., 2003, Photoprotective physiological and biochemical responses of aquatic organisms, [in:] UV effects in aquatic organisms and ecosystems, E. W. Helbling & H. Zagarese (eds.), R. Soc. Chem., 329-356.

Blumthaler M., Ambach W., Ellinger R., 1997, Increase in solar UV radiation with altitude, J. Photoch. Photobio. B, 39, 130-134. http://dx.doi.org/10.1016/S1011-1344(96)00018-8.

Cabrera S., Lopez M., Tartarotti B., 1997, Phytoplankton and zooplankton response to ultraviolet radiation in a high altitude Andean lake: Short- versus long-term effects, J. Plankton Res., 19, 1565-1582. http://dx.doi.org/10.1093/plankt/19.11.1565.

Choiński A., 2006, Catalogue of Polish lakes, Wyd. UAM, Poznań, 600 pp., (in Polish).

Ficek D., 2013, The bio-optical properties of waters in Pomeranian lakes (Poland) and their comparison with the properties of waters in other lakes and the Baltic Sea, Diss. Monogr. No. 23, 351 pp., (in Polish).

Ficek D., Meler J., Zapadka T., Woźniak B., Dera J., 2012, Inherent optical properties and remote sensing reflectance of Pomeranian lakes (Poland), Oceanologia, 54 (4), 611-630; doi:10.5697/oc.54-4.611.

Häder D. P., Kumar H. D., Smith R. C., Worrest R. C., 1998, Effects on aquatic ecosystems, J. Photoch. Photobio. B, 46, 53-68. http://dx.doi.org/10.1016/S1011-1344(98)00185-7.

Halac S., Felip M., Camarero L., Sommaruga-Wögrath S., Psenner R., Catalan J., Sommaruga R., 1997, An in situ enclosure experiment to test the solar UV-B impact on plankton in a high-altitude mountain lake, I. Lack of effect on phytoplankton species composition and growth, J. Plankton Res., 19, 1671-1686. http://dx.doi.org/10.1093/plankt/19.11.1671.

Jeffrey S., Humphrey G., 1975, New spectrophotometric equation for determining chlorophyll a, b, c1 and c2, Biochem. Physiol. Pflanz., 167, 194-204.

Karentz D., 2001, Chemical defenses of marine organisms against solar radiation exposure: UV-absorbing mycosporine-like amino acids and scytonemin, [in:] Marine chemical ecology, J. B. McClintock & B. J. Baker (eds.), CRC Press, Boca Raton, FL, 481-519.

Laurion I., Lami A., Sommaruga R., 2002, Distribution of mycosporine-like amino acids and photoprotective carotenoids among freshwater phytoplankton assemblages, Aquat. Microb. Ecol. Vol. 26, 283-294. http://dx.doi.org/10.3354/ame026283.

Laurion I., Ventura M., Catalan J., Psenner R., Sommaruga R., 2000, Attenuation of ultraviolet radiation in mountain lakes: Factors controlling the among- and within-lake variability, Limnol. Oceanogr., 45 (6), 1274-1288. http://dx.doi.org/10.4319/lo.2000.45.6.1274.

Moisan T. A., Goes J., Neale P. J., 2009, Mycosporine-like amino acids in phytoplankton: biochemistry, physiology and optics, [in:] Marine phytoplankton, W. T. Kersey & S. P. Munger, Hauppauge, N. Y.: Nova Sci. Publ., 119-143.

Moisan T. A., Mitchell B. G., 2001, UV absorption by mycosporine-like amino acids in Phaeocystis antarctica Karsten induced by photosynthetically available radiation, Mar. Biol., 138, 217-227. http://dx.doi.org/10.1007/s002270000424.

Sinha R. P., Häder D. P., 2002, Life under solar UV radiation in aquatic organisms, Adv. Space Res., 30 (6), 1547-1556. http://dx.doi.org/10.1016/S0273-1177(02)00370-8.

Sinha R. P., Klisch M., Helbling E. W., Häder D.-P., 2001, Induction of mycosporine-like amino acids (MAAs) in cyanobacteria by solar ultraviolet- B radiation, J. Photoch. Photobio. B, 60 (2-3), 129-135. http://dx.doi.org/10.1016/S1011-1344(01)00137-3.

Sommaruga R., 2001, The role of solar UV radiation in the ecology of alpine lakes, J. Photoch. Bio. B, 62, 35-42. http://dx.doi.org/10.1016/S1011-1344(01)00154-3.

Sommaruga R., Garcia-Pichel F. G., 1999, UV-absorbing mycosporine-like compounds in planktonic and benthic organisms from a high-mountain lake, Arch. Hydrobiol., 144 (3), 255-269.

Tartarotti B., Baffico G., Temporetti P., Zagarese H. E., 2004, Mycosporine- like amino acids in planktonic organisms living under different UV exposure conditions in Patagonian lakes, J. Plankton Res., 26 (7), 753-762. http://dx.doi.org/10.1093/plankt/fbh073.

Tartarotti B., Sommaruga R., 2006, Seasonal and ontogenetic changes of mycosporine-like amino acids in planktonic organisms from an alpine lake, Limnol. Oceanogr., 51, 1530-1541. http://dx.doi.org/10.4319/lo.2006.51.3.1530.

Vinebrooke R. D., Leavitt P. R., 1999, Phytobenthos and phytoplankton as potential indicators of climate change in mountain lakes and ponds: a HPLC-based pigment approach, J. N. Am. Benthol. Soc., 18, 14-33. http://dx.doi.org/10.2307/1468006.

Whitehead K., Vernet M., 2000, Influence of mycosporine-like amino acids (MAAs) on UV absorption by particulate and dissolved organic matter in La Jolla Bay, Limnol. Oceanogr., 45 (8), 2000, 1788-1796.

Woźniak B., Dera J., 2007, Light absorption in sea water, Springer, New York, 452 pp.

Woźniak S. B., Meler J., Lednicka B., Zdun A., Stoń-Egiert J., 2011, Inherent optical properties of suspended particulate matter in the southern Baltic Sea, Oceanologia, 53 (3), 691-729, http://dx.doi.org/10.5697/oc.53-3.691. http://dx.doi.org/10.5697/oc.53-3.691.

full, complete article (PDF - compatibile with Acrobat 4.0), 389 KB

Vulnerability assessment of southern coastal areas of Iran to sea level rise: evaluation of climate change impact
Oceanologia 2013, no. 55(3), pp. 611-637

Hamid Goharnejad*, Abolfazl Shamsai, Seyed Abbas Hosseini
Department of Civil Engineering, Science and Research Branch,
Islamic Azad University, Tehran, Iran;
e-mail: Hgn1982@gmail.com
e-mail: shamsai@sharif.edu
*corresponding author

keywords: climate change impacts, sea-level rise, DWNN, DWANFIS

Received 29 January 2013, revised 20 May 2013, accepted 10 June 2013.


Recent investigations have demonstrated global sea level rise as being due to climate change impact. Probable changes in sea level rise need to be evaluated so that appropriate adaptive strategies can be implemented. This study evaluates the impact of climate change on sea level rise along the Iranian south coast. Climatic data simulated by a GCM (General Circulation Model) named CGCM3 under two-climate change scenarios A1b and A2 are used to investigate the impact of climate change. Among the different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves are selected for predicting sea level rise by using stepwise regression. Two Discrete Wavelet artificial Neural Network (DWNN) models and a Discrete Wavelet Adaptive Neuro-Fuzzy Inference system (DWANFIS) are developed to explore the relationship between selected climatic variables and sea level changes. In these models, wavelets are used to disaggregate the time series of input and output data into different components. ANFIS/ANN are then used to relate the disaggregated components of predictors and predictand (sea level) to each other. The results show a significant rise in sea level in the study region under climate change impact, which should be incorporated into coastal area management.

  References ref

Adamowski J., 2008a, Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis, J. Hydrol., 353 (3-4), 247-266, http://dx.doi.org/10.1016/j.jhydrol.2008.02.013.

Adamowski J., 2008b, River flow forecasting using wavelet and cross-wavelet transform models, Hydrol. Proc., 22 (25), 4877-4891, http://dx.doi.org/10.1002/hyp.7107.

Anctil F., Tape G.D., 2004, An exploration of artificial neural network rainfall runoff forecasting combined with wavelet decomposition, J. Environ. Eng. Sci., 3 (S), 121-128, http://dx.doi.org/10.1139/s03-071.

Barford L.A., Fazzio R. S., Smith D.R., 1992, An introduction to wavelets, Hewlett- Packard Lab., HPL-92-124, 27 pp.

Bindoff N. L., Willebrand J., Artale, V., Cazenave A., Gregory J., Gulev S., Hanawa K., Le Quere C., Levitus S., Nojiri Y., Shum C.K., Talley L.D., Unnikrishnan A. S., 2007, Observations: oceanic climate change and sea level, [in:] Climate change 2007: the physical science basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K. B., Tignor M. & Miller H. L. (eds.), Cambridge Univ. Press, Cambridge, New York, 387-429.

Burn D.H., Cunderlik J. M., 2004, Hydrological trends and variability in the Laird River basin, Hydrol. Sci. J., 49 (1), 53-67, http://dx.doi.org/10.1623/hysj.

Cannas B., Fanni A., See L., Sias G., 2006, Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning, Phys. Chem. Earth, 31 (18), 1164-1171, http://dx.doi.org/10.1016/j.pce.2006.03.020.

Chiu S. L., 1994, Fuzzy model identification based on cluster estimation, J. Int. Fuzzy Syst., 2, 267-278.

Coulibaly P., Burn D.H., 2005, Spatial and temporal variability of Canadian seasonal streamflows, J. Climate, 18 (1), 191-210, http://dx.doi.org/10.1175/JCLI-3258.1.

Drago A. F., Boxall S.R., 2002, Use of the wavelet transform on hydrometeorological data, Phys. Chem. Earth, 27 (32-34), 1387-1399, http://dx.doi.org/10.1016/S1474-7065(02)00076-1.

Gilbert R.O., 1987, Statistical methods for environmental pollution monitoring, Van Nostrand Reinhold, New York, 320 pp.

Haykin S., 1998, Neural networks - a comprehensive foundation, 2nd edn., Prentice- Hall, Upper Saddle River, NJ, 26-32.

Houghton J.T., Ding Y., Griggs D. J., Noguer M., van der Linden P. J., Xiaosu D., (eds.), 2001, Climate change 2001: The scientific basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, New York, 639-693.

Intergovernmental Panel on Climate Change (IPCC), 2007, Climate change 2007: impact, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC, Cambridge Univ. Press, Cambridge, 976 pp.

Jang J. S.R., 1993, ANFIS: adaptive network-based fuzzy inference system, IEEE T. Syst. Man Cyb., 23 (3), 665-685, http://dx.doi.org/10.1109/21.256541.

Kendall M.G., 1975, Rank correlation methods, Charles Griffin, London, 202 pp. Kim T.W., ValdÉs J. B., 2003, Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks, J. Hydrol. Engin., 8 (6), 319-328, http://dx.doi.org/10.1061/(ASCE)1084-0699(2003)8:6(319).

Kleinow T., 2002, Testing continuous time models in financial markets, Ph.D. thesis, Buchhändler-Vereinigung, Berlin, 244 pp.

Küçük M., 2004, Modeling river flow series using wavelet transform, Ph.D. thesis, Istanbul Tech. Univ., Istanbul, (in Turkish).

Labat D., 2005, Recent advances in wavelet analyses: Part 1. A review of concepts, J. Hydrol., 314 (1-4), 275-288, http://dx.doi.org/10.1016/j.jhydrol.2005.04.003.

Liang S.X., Li M.C., Sun Z.C., 2008, Prediction models for tidal level including strong meteorologic effects using a neural network, Ocean Eng., 35 (7), 666- 675, http://dx.doi.org/10.1016/j.oceaneng.2007.12.006.

Long C. J., Datta S., 1996, Wavelet based feature extraction for phoneme recognition, Proc. 4th Int. Conf. Spoken Lang. Process., 1, 264-267.

Lu R.Y., 2002, Decomposition of interdecadal and interannual components for North China rainfall in rainy season, Chinese J. Atmos., 26, 611-624, (in Chinese).

Maguire L.P., Roche B., McGinnity T.T., McDaid L. J., 1998, Predicting a chaotic time series using a fuzzy neural network, Inform. Sci., 112 (1-4), 125-136, http://dx.doi.org/10.1016/S0020-0255(98)10026-9.

Makarynskyy O., Makarynska D., Kuhn M., Featherstone W.E., 2004, Predicting sea level variations with artificial neural networks at Hillarys Boat Harbour, Western Australia, Estuar. Coast. Shelf Sci., 61 (2), 351-360, http://dx.doi.org/10.1016/j.ecss.2004.06.004.

Mallat S., 1998, A wavelet tour of signal processing, Acad. Press, San Diego, 577 pp. Masters T., 1993, Practical Neural Network Recipes in C++, Acad. Press, San Diego, 493 pp.

Meyer Y., 1993, Wavelets: algorithms and applications, Soc. Ind. Appl. Math., Philadelphia.

Mittal A., Aadaleesan P., 2010, A new Hammerstein model for non-linear system identification, Int. J. Comm. Netw. Secur. (IJCNS), 1 (3), 1-12.

Nourani V., Alami M.T., Aminfar M.H., 2009, A combined neural-wavelet model for prediction of watershed precipitation, Lighvanchai, Iran, Eng. Appl. Artif. Intelligence, 22 (3), 466-472.

Nourani V., Kisi O., KomasiM., 2011, Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process, J. Hydrol., 402 (1-2), 41-59, http://dx.doi.org/10.1016/j.jhydrol.2011.03.002.

Partal T., Cigizoglu H.K., 2008, Estimation and forecasting of daily suspended sediment data using wavelet-neural networks, J. Hydrol., 358 (3-4), 317-331, http://dx.doi.org/10.1016/j.jhydrol.2008.06.013.

Partal T., Kişi O., 2007, Wavelet and neuro-fuzzy conjunction model for precipitation forecasting, J. Hydrol., 342 (1-2), 199-212, http://dx.doi.org/10.1016/j.jhydrol.2007.05.026.

Partal T., Küçük M., 2006, Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region (Turkey), Phys. Chem. Earth, 31 (18), 1189-1200, http://dx.doi.org/10.1016/j.pce.2006.04.043.

Pfeffer W.T., Harper J.T., O’Neel S., 2008, Kinematic constraints on glacier contributions to 21st-century sea-level rise, Science, 321 (5894), 1340-1343, http://dx.doi.org/10.1126/science.1159099.

Rajaee T., Mirbagheri S.A., Zounemat-Kermani M., Nourani V., 2009, Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models, Sci. Total Environ., 407 (17), 4916-4927, http://dx.doi.org/10.1016/j.scitotenv.2009.05.016.

Rumelhart D.E., Hinton G. E., Williams R. J., 1986, Learning representations by back-propagating errors, Nature, 323, 533-536, http://dx.doi.org/10.1038/323533a0.

Salahshoor K., Kordestani M., Khoshro S., 2010, Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers, Energy, 35 (12), 5472-5482, http://dx.doi.org/10.1016/j.energy.2010.06.001.

Wang D., Ding J., 2003, Wavelet network model and its application to the prediction of hydrology, Nature Sci., 1 (1), 67-71.

Xingang D., Ping W., Jifan C., 2003, Multi-scale characteristics of the rainy season rainfall and interdecadal decaying of summer monsoon in North China, Chinese Science Bulletin, 48 (24), 2730-2734.

Zwiers F. W., Storch H. V., 2003, Statistical analysis in climate research, Cambridge Univ. Press, Cambridge, 495 pp.

full, complete article (PDF - compatibile with Acrobat 4.0), 1992 KB

Short-term changes in specific conductivity in Polish coastal lakes (Baltic Sea basin)
Oceanologia 2013, no. 55(3), pp. 639-661

Roman Cieśliński
Department of Hydrology, Institute of Geography, University of Gdańsk,
Bażyńskiego 4, 80-952 Gdańsk, Poland;
e-mail: georc@univ.gda.pl
*corresponding author

keywords: specific conductivity, short-term changes, increase, decrease, intrusion

Received 5 November 2012, revised 8 January 2013, accepted 29 April 2013.


The paper discusses hourly changes in specific conductivity in two lakes and compares them to changes over longer time intervals. The short time intervals between measurements are designed to help assess the course of seawater intrusions. Two lakes on the Polish coast were selected for research purposes - Lakes Gardno and Łebsko. Specific conductivity was measured using an automatic YSI Sontek 6920V2 probe. It was shown that Lake /Lebsko has a permanently elevated specific conductivity, whereas Lake Gardno experiences episodes of fluvial influence. The specific conductivity was shown to change constantly in both lakes, as evidenced by multi-day, daily and hourly data.

  References ref

Balicki H., 1977, Wpływ Morza Bałtyckiego na stosunki hydrologiczne jeziora Gardno, Bibl. IMiGW, Słupsk, 223 pp.

BIPM, 2006, The International System of Units (SI), 8th edn., Bureau Int. Poids Mes., Organis. Intergouvern. Convent. Mètre, Sèvres, http://www.bipm.fr/utils/common/pdf/si_brochure_8_en.pdf?.

Chlost I., Cieśliński R., 2005, Change of level of waters in Lake Łebsko, Limnol. Rev., 5, Univ. Silesia, Sosnowiec, 17-26.

Choiński A., 1981, Związek wód gruntowych mierzei jeziora Jamno z wodami morskimi i jeziornymi, Bad. Fizjogr. Pol. Zach., 34, Seria A-Geogr. Fiz., 47-67.

Cieśliński R., 2009, Hydrological assessment of the Baltic Sea impact on the Polish coastline, Geologija, 51 (3-4), 146-152.

Cieśliński R., 2011, Geograficzne uwarunkowania zmienności hydrochemicznej jezior wybrzeża południowego Bałtyku, Wyd. UG, Gdańsk, 225 pp.

Cieśliński R., Drwal J., 2005, Quasi-estuary processes and consequences for human activity, South Baltic, Estuar. Coast. Shelf Sci., 62 (3), 477-485, http://dx.doi.org/10.1016/j.ecss.2004.09.011.

Cyberski J., Jędrasik J., 1992, Wymiana i cyrkulacja wód w jeziorze Gardno, [in:] Zlewnia przymorskiej rzeki Łupawy i jej jeziora, K. Korzeniewski (ed.), Wyd. WSP, Słupsk, 199-220.

Drwal J., Cie.li.ski R., 2007, Coastal lakes and marine intrusions on the southern Baltic coast, Oceanol. Hydrobiol. Stud., 36 (2), 61-75, http://dx.doi.org/10.2478/v10009-007-0016-3.

Gamo T., Kato Y., Hasumoto H., Kakiuchi H., Momoshima N., Takahata N., Sano Y., 2007, Geochemical implications for the mechanism of deep convection in a semi-closed tropical marginal basin: Sulu Sea, Deep-Sea Res. Pt. II, 54 (1-2), 4-13.

Hall J., Andersen M., 2002, Handling uncertainty in extreme or unrepeatable hydrological processes . the need for an alternative paradigm, Hydrol. Process., 16 (9), John Wiley & Sons, 1867-1870.

Jankowski A., 2000, Wind-induced variability of hydrological parameters in the coastal zone of the southern Baltic Sea - a numerical study, Oceanol. Stud., 29 (3), 5-34.

Jasińska E., 1990, Napływ wod morskich w rejon ujścia rzeki Łupawy, Inż. Morsk., 5, Gdańsk, 212-219.

Jasińska E., 1997, Hydrodynamics and dynamics of salt water in the Martwa Vistula, Hydrotech. Trans., 61, PAS, Gdańsk, 31.41.

Kozerski B., 1981, Salt water intrusions into coastal aquifers of Gdańsk region, 7th Salt Water Intrusion Meeting Proc., Bari, 83-87.

Kozerski B., Kwaterkiewicz A., 1984, Strefowość zasolenia wód podziemnych i ich dynamika na obszarze delty Wisły, Arch. Hydrotech., 31, 231-255.

Lewis E. L., Perkin R.G., 1978, Salinity: its definition and calculation, J. Geophys. Res., 83 (C1), 466-478, http://dx.doi.org/10.1029/JC083iC01p00466

Millero F. J., Feistel R., Wright D.G., McDougall T. J., 2008, The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale, Deep-Sea Res. Pt. I, 65 (1), 50-72, http://dx.doi.org/10.1016/j.dsr.2007.10.001.

Piekarek-Jankowska H., 1996, Rodzaje drenażu wod podziemnych na wybrzeżu Zatoki Gdańskiej, Przeg. Geofiz., 16 (3), 177-191.

Pietrucień C., 1983, Regionalne zro.nicowanie warunkow dynamicznych i hydrochemicznych wod podziemnych w strefie brzegowej południowego i wschodniego Bałtyku, Wyd. UMK, Toru., 269 pp.

Pitkänen H., 2001, Internal nutrient fluxes counteract decreases in external load: the case of the estuarial eastern Gulf of Finland, Baltic Sea, J. Human Environ., 30 (4), 195-201.

Pizarro H., Rodríguez P., Bonaventura S.M., OfFarrell I., Izaguirre I., 2007, The sudestadas: a hydro-meteorological phenomenon that affects river pollution (River LujLan, South America), Hydrol. Sci. J., 52 (4), 702-712, http://dx.doi.org/10.1623/hysj.52.4.702.

Szmidt K., 1967, Rola morza Bałtyckiego w kształtowaniu stosunkow hydrograficznych jezior przybrzeżnych ze szczegolnym uwzgl.dnieniem jeziora Jamno, Zeszyty Geograficzne WSP w Gdańsku, R IX, 47.76.

Szopowski Z., 1962, Wybrane zagadnienia związane z wymianą wód pomiędzy jeziorem Łebsko a morzem, Materiały do monografii polskiego brzegu morskiego, 3, IBW PAN, PWN, Gdańsk, Poznań, 122 pp.

Tarkhov S.A., Treivish A. I., 2007, Geographical location and diffusion of basic innovations, GeoJournal, 26 (3), 341-348, http://dx.doi.org/10.1007/BF02629813.

Thulin J., Andrushaitis A., 2003, The Baltic Sea: its past, present and future. Religion, science and the environment, Proc. Relig. Sci. Environ. Symp. V Baltic Sea, ICES, CIEM, 11 pp.

Van den Brink H.W., K¨onnen G.P., Opsteegh J.D., Van Oldenborgh G.J., Burgers G., 2005, Estimating return periods of extreme events from seasonal forecast ensembles, Int. J. Climatol., 25 (10), 1345-1354, http://dx.doi.org/10.1002/joc.1155.

Weber M., 1973, Próba obliczenia bilansu wodnego jeziora Łebsko, Wiad. Sł. Hydrol. Meteorol., 4 (96), 69-73.

Ziętkowiak Z., 1983, Zmienność stanów i chemizmu wód podziemnych Mierzei Łebskiej, Kosz. Stud. Mater., Koszalin, 3, 5-23.

full, complete article (PDF - compatibile with Acrobat 4.0), 1512 KB

Comparison of the impacts of climate change and anthropogenic disturbances on the El Arish coast and seaweed vegetation after ten years in 2010, North Sinai, Egypt
Oceanologia 2013, no. 55(3), pp. 663-685

Gihan Ahmed El Shoubaky
Botany Department, Faculty of Science, Suez Canal University,
Ismailia, Egypt;
e-mail: dr_gehan_elshoubaky@yahoo.com

keywords: anthropogenic disturbances, climate change, El Arish coast, El Arish Harbour, El Arish Power Plant, erosion, satellite remote sensing, seaweed vegetation

Received 16 January 2013, revised 3 April 2013, accepted 12 April 2013.


Human activities on coasts and climate changes during the past ten years have given rise to considerable shoreline changes along the El Arish coast (the northern coast of the Sinai Peninsula). In the El Arish Power Plant, sediment accretion has reached the tip of the breakwater of the cooling water intake basin, necessitating extensive dredging inside the basin. To the east of El Arish Harbour, the shoreline has been in continuous retreat. The differences between the year 2000 and 2010 in the shoreline along the El Arish coast were determined by analysing satellite images from NOAA-AVHRR images. The analyses revealed erosion and accretion patterns along the coast. The physical parameters showed that the minimum water temperature of 18°C was recorded at site I in winter and that the maximum was 40°C at site II in summer. The latter temperature can be attributed to the effluent discharge of cooling water from the El Arish power plant. Spatial and temporal patterns in the distribution and abundance of macroalgae were measured at four sites (I, II, III and IV) along the El Arish coast. The percentage cover of the successional macroalgae exhibited environmental fluctuations. After ten years, the phytocommunity showed that red and green algae were dominant at the study sites. Significant differences between past and current flora were observed. 39 taxa recorded in 2000 were absent in 2010, while 9 taxa not previously reported were present in 2010. These changes are discussed in the context of possible global warming effects. PERMANOVA showed significant changes (p < 0.001) between sites, seasons, species abundance and macroalgal groups along the El Arish coast in 2000 and 2010. The similarity matrix showed a significant difference between the flora in 2010 and that recorded in 2000, indicating poor similarity and changes in species composition among the seasons at the different sites. Most of the algae belonged to the filamentous, coarsely branched and sheet functional form groups.

  References ref

Abdel Rahman S. I., Ahmed M. H., Essa M. M., 2001, Drought monitoring in the Southeastern Mediteranean basin using satellite data, Proc. Int. Geogr. Remote Sens. Symp., IGARSS 2001, July 19-23, Sydney, Australia.

Aitken S. N., Yeaman S., Holliday J. A., Wang T. L., Curtis-McLane S., 2008, Adaptation, migration or extirpation: climate change outcomes for tree populations, Evol. Appl., 1 (1), 95-111, http://dx.doi.org/10.1111/j.1752-4571.2007.00013.x.

Aleem A.A., 1993, The marine algae of Alexandria, Priv. Public., Alexandria, 135 pp.

Anderson M. J., 2001, A new method for non-parametric multivariate analysis of variance, Austral Ecol., 26 (1), 32-46, http://dx.doi.org/10.1111/j.1442-9993.2001.01070.pp.x.

Bates C. R., DeWreede R. E., 2007, Do changes in seaweed biodiversity influence associated invertebrate epifauna?, J. Exp. Mar. Biol. Ecol., 344 (2), 206-214, http://dx.doi.org/10.1016/j.jembe.2007.01.002.

Boo S. M., Lee I. K., 1986, Studies on benthic algal community in the East coast of Korea. 1. Floristic composition and periodicity of a Sokcho rocky shore, Korean J. Phycol., 1, 107-116.

Choi C. G., 2007, Algal flora and Ecklonia stolonifera Okamura (Laminariaceae) population of Youngdo in Busan, Korea, Algae, 22 (4), 313-318, (in Korean), http://dx.doi.org/10.4490/ALGAE.2007.22.4.313.

Citadini-Zanette V., Veiga Neto A. J., Veiga S. G., 1979, Algas bentônicas de Imbituba, Santa Catarina, Brasil, Iheringia, Sér. Botân., 25, 111-121.

Coles S. L., 2003, Coral species diversity in the Arabian Gulf and the Gulf of Oman: a comparison to the Indo-Pacific region, Smithsonian Atoll Res. Bull., 507, 19 pp.

Connell S. D., 2007, Water quality and loss of coral reefs and kelp forests: alternative states and the influence of fishing, [in:] Marine ecology, S. D. Connell & B. M. Gillanders (eds.), Oxford Univ. Press, Melbourne, 556-568.

Connell S. D., Russell B. D., Turner D. J., Shepherd S. A., Kildea T., Miller D., Airoldi L., Cheshire A., 2008, Recovering a lost baseline: missing kelp forests from a metropolitan coast, Mar. Ecol.-Prog. Ser., 360, 63-72, http://dx.doi.org/10.3354/meps07526.

Cribb A. B., 1983, Marine algae of the southern Great Barrier Reef. Part I. Rhodophyta, Handbook - Aust. Coral Reef Soc., Brisbane, 246 pp. Cullen L., Valladares-Padua C., Rudran R., 2003, Métodos de estudos em biologia da conservaçao e manejo da vida Silvestre, Curitiba, PR: UFPR, Fundação O Boticário, 663 p.

Dijkstra J., Westerman E., Harris L., 2010, The effects of climate change on species composition, succession and phenology: a case study, Glob. Change Biol., 17, 2360-2369, http://dx.doi.org/10.1111/j.1365-2486.2010.02371.x.

Dukes J. S., Mooney H., 1999, Does global change increase the success of biological invaders?, Trend. Ecol. Evol., 14 (1), 135-139, http://dx.doi.org/10.1016/ S0169-5347(98)01554-7.

El Banna M. M., Hereher M. E., 2009, Detecting temporal shoreline changes and erosion/accretion rates, using remote sensing, and their associated sediment characteristics along the coast of North Sinai, Egypt, Environ. Geol., 58 (7), 1419-1427, http://dx.doi.org/10.1007/s00254-008-1644-y.

El Shoubaky G. A., 2005, Seasonal variations of seaweeds at El Arish coast of Mediterranean Sea (Egypt), Egypt. J. Phycol., 6, 39-55.

Emanuelsson D., Mirchi A., 2007, Impact of coastal erosion and sedimentation along the northern coast of Sinai Peninsula, M. Sc. thesis, Lund University.

Faveri C., Scherner F., Farias J., Oliveira E. C. De., Horta P. A., 2010, Temporal changes in the seaweed flora in Southern Brazil and its potential causes, Pan- Am. J. Aquat. Sci., 5 (2), 350-357.

Frihy O. E., Badr A. A., Selim M. A., El Sayed W. R., 2002, Environmental Impacts of El Arish Power Plant on the Mediterranean Coast of Sinai, Egypt, Environ. Geol., 42 (6), 604-611, http://dx.doi.org/10.1007/s00254-002-0563-6.

Garrabou J., Pérez T., Sartoretto S., Harmelin J. G., 2001, Mass mortality event in red coral (Corallium rubrum, Cnidaria, Anthozoa, Octocorallia) population in the Provence region (France, NW Mediterranean), Mar. Ecol.-Prog Ser., 217, 263-272, http://dx.doi.org/10.3354/meps217263.

Halpern B. S., Walbridge S., Kappel C. V., Micheli F., D’Agrosa C., Bruno J. F., Casey K. S., Ebert C., Fox H. E., Fujita R., Heinemann D., Lenihan H. S., Madin E. M. P., Perry M. T., Selig E. R., Spalding M., Steneck R., Watson R., 2008, A global map of human impact on marine ecosystems, Science, 319 (5865), 948-952, http://dx.doi.org/10.1126/science.1149345.

Harley C. D. G., 2011, Climate change, keystone predation, and biodiversity loss, Science, 334 (6059), 1124-7, http://dx.doi.org/10.1126/science.1210199.

Harley C. D. G., Hughes A. R., Hultgren K. M., Miner B. G., Sorte C. J. B., Thornber C. S., Rodriguez L. F., Tomanek L., Williams S. L., 2006, The impacts of climate change in coastal marine systems, Ecol. Lett., 9 (2), 228-241, http://dx.doi.org/10.1111/j.1461-0248.2005.00871.x.

Hoegh-Guldberg O., Mumby P. J., Hooten A. J., Steneck R. S., Greenfield P., Gomez E., Harvell C. D., 2007, Coral reefs under rapid climate change and ocean acidification, Science, 318 (5857), 1737-42, http://dx.doi.org/10.1126/science.1152509.

IPCC, 2007, Climate change 2007: The physical science basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (eds.), Cambridge Univ. Press, Cambridge, 996 pp.

Jeftic L., 1993, Implications of expected climate change in the Mediterranean region, 278-302, [in:] Regional implications of future climate change, M. Graber, A. Cohen & M. Magaritz (eds.), Proc. Int. Workshop, Weizmann Inst. Sci., Rehovot Israel, April 28-May 2 1991, Israeli Acad. Sci. Human., State of Israel, Minist. Environ. Kaiser M. F., Geriesh M. H., 2007, Water resources assessment at El-Arish area, using remote sensing and GIS, North Sinai, Egypt, Geosci. Remote Sens. Symp., IGARSS 2007, 5323-5326, http://dx.doi.org/10.1109/IGARSS.2007.4424064.

Langford T. E. L., 1990, Ecological effects of thermal discharges, Appl. Sci., Elsevier, London, 468 pp.

Laubier L., 2001, Climatic changes and trends in marine invertebrates: a need for relevant observing networks and experimental ecophysiology, Atti Assoc. It. Oceanol. Limnol., 14, 15-24.

Li X., Pichel W. G., Clement-Colon P., Krasnopolsky V., Sapper J., 2001, Validation of coastal sea and lake surface temperature measurements derived from NOAA/AVHRR data, Int. J. Remote Sens., 22, 1285-1303, http://dx.doi.org/10.1080/01431160151144350.

Littler M. M., Arnold K. E., 1982, Primary productivity of marine macroalgal functional-form group from southwestern North America, J. Phycol., 18 (3), 307-311, http://dx.doi.org/10.1111/j.1529-8817.1982.tb03188.x.

Littler M. M., Littler D. S., 1980, The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model, Am. Nat., 116 (1), 25-44, http://dx.doi.org/10.1086/283610.

Littler M. M., Littler D. S., 1981, Intertidal macrophyte communities from Pacific Baja California and the upper Gulf of California: relatively constant vs. environmentally fluctuating systems, Mar. Ecol.-Prog. Ser., 4, 145-158, http://dx.doi.org/10.3354/meps004145.

Littler M. M., Littler D. S., 1984, Relationships between macroalgal functional form groups and substrata stability in a subtropical rocky intertidal system, J. Exp. Mar. Biol. Ecol., 74, 13-34, http://dx.doi.org/10.1016/0022-0981(84)90035-2.

Lobban C. S., Harrison P. J., Duncan M. J., 1985, The physiological ecology of seaweed, Cambridge Univ. Press, New York, 35-47.

McCormick P. V., Cairns J., 1994, Algae as indicators of climate change, J. Appl. Phycol., 6 (5-6), 509-526, http://dx.doi.org/10.1007/BF02182405.

Menge B. A., 2000, Top-down and bottom-up community regulation in marine rocky intertidal habitats, J. Exp. Mar. Biol. Ecol., 250 (1-2), 257-289, http://dx.doi.org/10.1016/S0022-0981(00)00200-8.

Nardelli B., Marullo S., Santoleri R., 2005, Diurnal variations in AVHRR SST fields: a strategy for removing warm layer effects from daily images, Remote Sens. Environ., 95 (1), 47-56, http://dx.doi.org/10.1016/j.rse.2004.12.005.

Occhipinti-Ambrogi A., 2007, Global change and marine communities: alien species and climate change, Mar. Pollut. Bull., 55 (7-9), 342-52, http://dx.doi.org/10.1016/j.marpolbul.2006.11.014.

Occhipinti-Ambrogi A., Ambrogi R., 2009, Global change and loss of biodiversity in the world’s oceans, Studi Trent. Sci. Nat., 86, 91-97.

Olsvig-Whittaker L., 2010, Global climate change and marine conservation, [in:] Seaweeds and their role in globally changing environments, A. Israel et al. (eds.), Cell. Origin Life Ext., 15, 21-28.

Orfanidis S., 1992, Light requirements for growth of six shade-acclimated Mediterranean macroalgae, Mar. Biol., 112 (3), 511-515, http://dx.doi.org/10.1007/BF00356298.

Papenfuss G. F., 1968, A history, catalogue and bibliography of Red Sea benthic algae, Israel, J. Bot., 17, 1-118.

Parmesan C., 2006, Ecological and evolutionary responses to recent climate change, Annu. Rev. Ecol. Evol. Syst., 37, 637-669, http://dx.doi.org/10.1146/annurev.ecolsys.37.091305.110100.

Parmesan C., Yohe G., 2003, A globally coherent fingerprint of climate change impacts across natural systems, Nature, 421 (6918), 37-42, http://dx.doi.org/10.1038/nature01286.

Pérez T., Garrabou J., Sartoretto S., Harmelin J.-G., Francour P., Vacelet J., 2000, Mortalité massive d’invertébrés marins : un événement sans précédent en Méditerranée nord-occidentale, Compte Rendu Acad. Sci. Paris, Sér. III, 323, 853-865, http://dx.doi.org/10.1016/S0764-4469(00)01237-3.

Russell B. D., Thompson J. I., Falkenberg L. J., Connell S. D., 2009, Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats, Glob. Change Biol., 15 (9), 2153-2162, http://dx.doi.org/10.1111/j.1365-2486.2009.01886.x.

Salat J., Pascual J., 2002, The oceanographic and meteorological station at L’Estartit (NW Mediterranean), Tracking long-term hydrological change in the Mediterranean Sea, CIESM Workshop Series, 16, 29-32.

Schils T., Wilson S. C., 2006, Temperature threshold as a biogeographic barrier in northern Indian ocean macroalgae, J. Phycol., 42, 749-756, http://dx.doi.org/10.1111/j.1529-8817.2006.00242.x.

Shams El Din N. G., El Moselhy K. H. M., Amer A., 2004, Distribution of some macroalgae in the intertidal zone of the Suez Bay in relation to environmental conditions, Egypt. J. Aquat. Res., 30 (A), 171-188.

Shannon C. E., Weaver W., 1949, The mathematical theory of communication, Univ. Illinois Press, Urbana.

Stachowicz J. J., Terwin J. R., Whitlatch R. B., Osman R. W., 2002, Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions, P. Natnl. Acad. Sci. USA, 99 (24), 15497-15500.

Strickland J. D. H., Parsons T. R., 1972, A practical handbook of seawater analysis, The Alger Press Ltd. Ottawa, 310 pp.

Vitousek P. M., D’Antonio C. M., Loope L. L., Rejmanek M., Westbrooks R., 1997, Introduced species: a significant component of human-caused global change, New Zeal. J. Ecol., 21 (1), 116. Walther G. R., Post E., Convey P., Menzel A., Parmesan C., Beebee T. J. C., Fromentin J. M., Hoegh-Guldberg O., Bairlein F., 2002, Ecological responses to recent climate change, Nature, 416, 3893959, http://dx.doi.org/10.1038/416389a.

Wernberg T., Smale D. A., Thomsen M. S., 2012, A decade of climate change experiments on marine organisms: procedures, patterns and problems, Glob. Change Biol., 18 (5), 1491-8, http://dx.doi.org/10.1111/j.1365-2486.2012.02656.x.

Womersley H. B. S., 1984, The marine benthic flora of southern Australia, part I, Handbook Committ. S. Aust. Govt., Adelaide, 329 pp.

Womersley H. B. S., 1987, The marine benthic flora of southern Australia, Part II Handbook Committ. S. Aust. Govt., Adelaide, 484 pp.

Wood E. J. F., Zieman J. C., 1969, The effects of temperature on estuarine plant communities, Chesapeake Sci., 10 (3-4), 172-174, http://dx.doi.org/10.2307/1350454.

Wootton J. T., Pfister C. A., Forester J. D., 2008, Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset, Proc. Natnl. Acad. Sci. U.S.A., 105 (48), 18848-53, http://dx.doi.org/10.1073/pnas.0810079105.

full, complete article (PDF - compatibile with Acrobat 4.0), 1166 KB

Upwelling dynamics in the Baltic Sea studied by a combined SAR/infrared satellite data and circulation model analysis
Oceanologia 2013, no. 55(3), pp. 687-707

Evgenia Gurova1,*, Andreas Lehmann2, Andrei Ivanov3
1Atlantic Branch of the P. P. Shirshov Institute of Oceanology of the Russian Academy of Sciences (IO RAS),
Pr. Mira 1, 236000 Kaliningrad, Russia;
e-mail: evguruna@gmail.com
*corresponding author
2GEOMAR Helmholtz Centre for Ocean Research,
Kiel, Germany;
e-mail: alehmann@geomar.de
3P. P. Shirshov Institute of Oceanology
Moscow, Russia;
e-mail: ivanoff@ocean.ru

keywords: Baltic Sea, coastal upwelling, MODIS and SAR, images, circulation model

Received 21 February 2013, revised 6 May 2013, accepted 11 June 2013.

The Envisat ASAR images used in this study were provided by ESA within the framework of the Envisat AO project C1P.3424, and C1P.8116. This work was supported by 1) the Russian Foundation for Basic Research, grant 12-05-90807 mol_rf_nr, and 2) the Russian Government (grant No. 11.G34.31.0078) for research under the supervision of leading scientists at the Russian State Hydrometeorological University.


Data from the space-borne synthetic aperture radar (SAR) aboard the Envisat satellite and MODIS spectroradiometers on board the Terra/Aqua satellites, and the high resolution Sea Ice-Ocean Model of the Baltic Sea (BSIOM) have been used to investigate two upwelling events in the SE Baltic Sea. The combined analysis was applied to the upwelling events in July 2006 along the coasts of the Baltic States, and in June 2008 along the Polish coast and Hel Peninsula. Comparisons indicated good agreement between the sea surface temperatures and roughness signatures detected in satellite imagery and model results. It is shown that BSIOM can simulate upwelling events realistically. The utilization of modelled hydrodynamics and wind stress data together with SAR and SST information provides an extended analysis and deeper understanding of the upwelling processes in the Baltic Sea.
  During the active phase of upwelling when the wind is strong, the resulting coastal jet is controlled by vorticity dynamics related to depth variations in the direction of the flow. Typical upwelling patterns are related to the meandering coastal jet and thus associated with topographic features. The longshore transport of the coastal jet is of the order of 104 m3 s-1, and the offshore transport at the surface is of the order of 103 m3 s-1, which respectively correspond to the total and largest river runoff to the Baltic Sea.

  References ref

Brown O. B., Minnett P. J., 1999, MODIS infrared sea surface temperature algorithm theoretical basis document, Ver. 2.0, http://modis.gsfc.nasa.gov/data/atbd/atbd_mod25.pdf.

Bumke K., Karger U., Hasse L., Niekamp K., 1998, Evaporation over the Baltic Sea as an example of a semi-enclosed sea, Contr. Atmos. Phys., 71 (2), 249-261.

Bychkova I., Viktorov S., Shumakher D., 1988, A relationship between the large- scale atmospheric circulation and the origin of coastal upwelling in the Baltic, Metorol. Gidrol., 10, 91-98, (in Russian).

Clemente-Colón P., Yan X. H., 1999, Observations of east coast upwelling conditions in synthetic aperture radar imagery, IEEE T. Geosci. Remote, 37 (5), 2239-2248, http://dx.doi.org/10.1109/36.789620.

Clemente-Colón P., Yan X.-H., 2000, Low backscatter features in SAR imagery, JHU APL Tech. Digest, 21 (1), 116-121.

Csanady G. T., 1982, Circulation in the coastal ocean, D. Reidel Publ. Company, Dordrecht, 279 pp., http://dx.doi.org/10.1007/978-94-017-1041-1.

Fennel W., Seifert T., 1995, Kelvin wave controlled upwelling in the western Baltic, J. Marine Syst., 6 (4), 289-300, http://dx.doi.org/10.1016/0924-7963(94)00038-D.

Fennel W., Sturm M., 1992, Dynamics of the western Baltic, J. Marine Syst., 3 (1-2), 183-205, http://dx.doi.org/10.1016/0924-7963(92)90038-A.

Gelimbauskaite L.-Z. (ed.), 1998, Bathymetric map of the Central Baltic Sea, scale 1:500 000, LGT Ser. Marine Geol. Maps, No. 1 / SGU Ser. Ba No. 54., Geol. Survey Sweden, Lith. Inst. Geol., Vilnius/Uppsala.

Gurova E. S., Ivanov A. Yu., 2011, Appearance of sea surface signatures and current features in the South-East Baltic Sea on the MODIS and SAR images, Issled. Zemli Kosm., 4, 41-54, (in Russian).

Hsu M. K., Mitnik L. M., Liu C. T., 1995, Upwelling area northeast of Taiwan on ERS-1 SAR images, Acta Oceanogr. Taiwan., 34 (3), 27-38.

Kowalewski M., Ostrowski M., 2005, Coastal up- and downwelling in the southern Baltic, Oceanologia, 47 (4), 454-475.

Kozlov I. E., Kudryavtsev V. N., Johannessen J. A., Chapron B., Dailidiene I., Myasoedov A. G., 2011, ASAR imaging for coastal upwelling in the Baltic Sea, Adv. Space Res., 50 (8), 1125-1137, http://dx.doi.org/10.1016/j.asr.2011.08.017.

Krauss W., Brúgge B., 1991, Wind produced water exchange between the deep basins of the Baltic Sea, J. Phys. Oceanogr., 21, 373-384, http://dx.doi.org/10.1175/1520-0485(1991)021<0373:WPWEBT>2.0.CO;2.

Kronsell J., Andersson P., 2012, Total regional runoff to the Baltic Sea, HELCOM Indicator Fact Sheets 2011.

Laanemets J., Váli G., Zhurbas V., Elken J., Lips I., Lips U., 2011, Simulation of mesoscale structures and nutrient transport during summer upwelling events in the Gulf of Finland in 2006, Boreal Environ. Res., 16 (Suppl. A), 15-26.

Large W. G., Pond S., 1981, Open ocean flux measurements in moderate to strong winds, J. Phys. Oceanogr., 11, 324-336, http://dx.doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

Lehmann A., 1995, A three-dimensional baroclinic eddy-resolving model of the Baltic Sea, Tellus A, 47 (5), 1013-1031, http://dx.doi.org/10.1034/j.1600-0870.1995.00206.x.

Lehmann A., Hinrichsen H.-H., 2000, On the thermohaline variability of the Baltic Sea, J. Marine Syst., 25, 333-357, http://dx.doi.org/10.1016/S0924-7963(00)00026-9.

Lehmann A., Krauss W., Hinrichsen H.-H., 2002, Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea, Tellus A, 54 (3), 299-316.

Lehmann A., Myrberg K., 2008, Upwelling in the Baltic Sea - A review, J. Marine Syst., 74 (Suppl.), S3-S12, http://dx.doi.org/10.1016/j.jmarsys.2008.02.010.

Lehmann A., Myrberg K., Höflich K., 2012, A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990-2009, Oceanologia, 54 (3), 369-393, http://dx.doi.org/10.5697/oc.54-3.369.

Li X. M., Li X. F., He M. X., 2009, Coastal upwelling observed by multi-satellite sensors, Science in China, Sci. China Ser. D, 52 (7), 1030-1038, http://dx.doi.org/10.1007/s11430-009-0088-x.

Lin I.-I., Wen L.-S., Liu K.-K., Tsai W.-T., Liu A.-K., 2002, Evidence and quantiffcation of the correlation between radar backscatter and ocean colour supported by simultaneously acquired in situ sea truth, Geophys. Res. Lett., 29 (10), http://dx.doi.org/10.1029/2001GL014039.

Mitnik L. M., Lobanov V. B., 1991, Reflection of the oceanic fronts on the satellite radar images, [in:] Oceanography of Asian marginal seas, K. Takano (ed.), Elsevier Oceanogr. Ser., 54, Elsevier, Amsterdam, 85-101.

Myrberg K., Andrejev O., Lehmann A., 2010, Dynamics of successive upwelling events in the Baltic Sea - a numerical case study, Oceanologia, 52 (1), 77-99.

Novotny K., Liebsch G., Lehmann A., Dietrich R., 2006, Variability of sea surface heights in the Baltic Sea: An intercomparison of observations and model simulations, Mar. Geod., 29 (2), 113-134, http://dx.doi.org/10.1080/01490410600738054.

Ruddick K. G., Ovidio F., Rijkeboer M., 2000, Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters, Appl. Optics, 39 (6), 897-912.

Rudolph C., Lehmann A., 2006, A model-measurements comparison of atmospheric forcing and surface fluxes of the Baltic Sea, Oceanologia, 48 (3), 333-380.

Smith S. D., 1988, Coeffcients for the sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature, J. Geophys. Res., 93 (C12), 15467-15472, http://dx.doi.org/10.1029/JC093iC12p15467.

Stoffelen A., Anderson D., 1997, Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4, J. Geophys. Res., 102 (C3), 5767-5780, http://dx.doi.org/10.1029/96JC02860.

Valenzuela G. R., 1978, Theories for the interaction of electromagnetic and oceanic waves: A review, Bound.-Lay. Meteorol., 13, 61-85.

Zhurbas V. M., Stipa T., Mälkki P., Paka V. T., Kuz’mina N. P., Sklyarov E. V., 2004, Mesoscale variability of the upwelling in the southeastern Baltic Sea: IR images and numerical modeling, Oceanology, 44 (5), 619-628.

Zhurbas V., Lannemets J., Vahtera E., 2008, Modeling of the mesoscale structure of coupled upwelling/downwelling events and the related input to the upper mixed layer in the Gulf of Finland, Baltic Sea, J. Geophys. Res., 113, C05004, http://dx.doi.org/10.1029/2007JC004280.

full, complete article (PDF - compatibile with Acrobat 4.0), 8341 KB

Red tides of the dinoflagellate Noctiluca scintillans associated with eutrophication in the Sea of Marmara (the Dardanelles, Turkey)
Oceanologia 2013, no. 55(3), pp. 709-732

Muhammet Turkoglu
Marine Biology Section, Fisheries Engineering Department, Marine Sciences and Technology Faculty, Çanakkale Onsekiz Mart University,
Terzioglu Campus 17100 Çanakkale, Turkey;
e-mail: mturkoglu@comu.edu.tr

keywords: Sea of Marmara, Dardanelles, Noctiluca scintillans, red-tide, eutrophication

Received 16 August 2012, revised 26 November 2012, accepted 4 April 2013.

This study contains the findings of various project such as ‘Turkish Scientific and Technical Research Council (TUBITAK, YDABAG, Project No: 101Y081)’ and Çanakkale Onsekiz Mart University Scientific Research Projects (COMU, BAP, Project No: 2000//22)’. This study was presented as an oral presentation at a Workshop on Algal and Jellyfish Blooms in the Mediterranean and Black Sea organized by the General Fisheries Commission for the Mediterranean (GFCM) on 6-8 October 2010, Istanbul, Turkey. This study was also published as an abstract in the List of Documents and Abstracts of the Workshop.


This investigation focused on weekly variations in cell density and volume of the dinoflagellate Noctiluca scintillans between March 2001 and January 2004 in the Dardanelles. March-June and October-December periods were excessive bloom periods. During the bloom periods the density of N. scintillans reached 2.20 × 105 cells L-1 with a volume of 1.32 × 1012 µm3 L-1. In addition to the high surface density, there was an increase in subsurface waters during the blooms. The bloom of N. scintillans, like that of diatom and other dinoflagellate blooms, was associated not only with eutrophication, but also with stable temperatures and salinities.

  References ref

Aiyar R. R., 1936, Mortality of fish of the Madras coast in June 1935, Curr. Sci., 4 (7), 488-489.

Baba A., Deniz O., Turkoglu M., Ozcan H., 2007, Investigation of discharge of fresh water in the Canakkale Strait (Dardanelles-Turkey), [in:] Environmental security in harbors and coastal areas, Springer-Verlag, Dordrecht, 421-427, http://dx.doi.org/10.1007/978-1-4020-5802-8_30.

Basturk O., Tugrul S., Yilmaz A., Saydam A. C., 1990, Oceanography of the Turkish Straits. Third Annual Report, Vol. II, Inst. Mar. Sci., Middle East Tech. Univ., Erdemli, 69 pp.

Bhimichar B. S., George P. C., 1950, Abrupt setbacks in the fisheries of the Malabar and Kanaro coasts and ‘red water phenomenon’ as their probable cause, Proc. Indi. Acad. Sci., 31, 339-350.

Chang F. H., 2000, Pink blooms in the springs in Wellington Harbour, Aquacult. Update, 24, 10-12.

Dela-Cruz J., Ajani P., Lee R., Pritchard T., Suthers I., 2002, Temporal abundance patterns of the red tide dinoflagellate, Noctiluca scintillans, along the south- east coast of Australia, Mar. Ecol. Prog. Ser., 236, 75-88, http://dx.doi.org/10.3354/meps236075.

Dodge J. D., 1982, Marine Dinoflagellates of the British Isles, 2nd edn., HM Stat. Office, London, 303 pp.

Eckert R., Reynolds G. T., 1967, The subcellular origin of bioluminescence in Noctiluca miliaris, J. Gen. Physiol. 50 (5), 1429-58, http://dx.doi.org/10.1085/jgp.50.5.1429.

Elbrächter M., Qi Y. Z., 1998, Aspects of Noctiluca (Dinophyceae) population dynamics, [in:] Physiological ecology of harmful algal blooms, D. M. Anderson, A. D. Cembella & G. M. Hallegrae? (eds.), Springer-Verlag, Berlin, 315-335.

Fukuyo Y., Takano H., Chihara M., Matsuoka K., 1990, Red tide organisms in Japan. An illustrated taxonomic guide, Uchida Rokakuho Publ. Press, Tokyo, 430 pp.

Guillard R. R. L., 1978, Counting slides, [in:] Phytoplankton manual, Unesco, Paris, 182-189.

Hallegraeff G. M., 1991, Aquaculturists guide to harmful Australian microalgae, 1st edn., Fish. Ind. Train. Board, Tasmania/CSIRO Div. Fisher., Hobart, 111 pp. Hallegrae? G. M., Bolch C. J., 1991, Transport of toxic dinoflagellate cysts via ships’ ballast water, Mar. Pol. Bull., 22, 27-30, http://dx.doi.org/10.1016/0025-326X(91)90441-T.

Harrison P. J., Furuya K., Glibert P. M., Xu J., Liu H. B., Yin K., Lee J. H. W., Anderson D. M., Gowen R., Al-Azri A. R., Ho A. Y. T., 2011, Geographical distribution of red and green Noctiluca scintillans, Chinese J. Oceanol. Limnol., 29 (4), 80-831, http://dx.doi.org/10.1007/s00343-011-0510-z.

Hasle G. R., 1978, Using the inverted microscope, [in:] Phytoplankton manual, A. Sournia (ed.), Unesco, Paris, 191-196.

Hausmann K., Hulsmann N., Radek R., 2003, Protistology, 3rd edn., Schweizerbart Sci. Publ., Stuttgart, 379 pp.

Huang C., Qi H., 1997, The abundance cycle and influence factors on red tide phenomena of Noctiluca scintillans (Dinophyceae) in Dapeng Bay, the South China Sea, J. Plankton Res., 19 (3), 303-318, http://dx.doi.org/10.1093/plankt/19.3.303.

Ignatiades L., Gotsis-Skretas O., 2010, A review on toxic and harmful algae in Greek coastal waters (E. Mediterranean Sea), Toxins, 2 (5), 1019-1037, http://dx.doi.org/10.3390/toxins2051019.

Koray T., Buyukisik B., Parlak H., Gokpinar S., 1996, Eutrophication processes and algal blooms (red-tides) in Izmir Bay, [in:] Final eports on research projects dealing with eutrophication and heavy metal accumulation, UNEP/FAO (eds), UNEP, MAP Tech. Rep. Ser. 104, Athens, 1-26.

Miyaguchi H., Fujiki T., Kikuchi T., Kuwahara V. S., Toda T., 2006, Relationship between the bloom of Noctiluca scintillans and environmental factors in the coastal waters of Sagami Bay, Japan, J. Plank. Res., 28 (3), 313-324, http://dx.doi.org/10.1093/plankt/fbi127.

Nikolaidis G., Koukaras K., Aligizaki K., Heracleous A., Kalopesa E., Moschandreou K., Tsolaki E., Mantoudis A., 2005, Harmful microalgal episodes in Greek coastal waters, J. Biol. Res.-Thessal., 3, 77-85.

Okaichi T., Nishio S., 1976, Identification of ammonia as the toxic principle of red tide of Noctiluca miliaris, Bull. Plank. Societ. Jpn., 23, 75-80.

Pithakpol S., Tada K., Montani S., 2000, Nutrient regeneration during Noctiluca scintillans red tide in Harima Nada, the Seto Inland Sea, Japan, Kaiyo Kogaku Shinpo jiumu, 15, 127-134.

Polat C., Tugrul S., 1995, Nutrient and organic carbon exchanges between the Black and Marmara seas through the Bosphorus Strait, Cont. Shelf Res., 15 (9), 1115-1132, http://dx.doi.org/10.1016/0278-4343(94)00064-T.

Polat C., Tugrul S., Coban Y., Basturk O., Salihoglu I., 1998, Elemental composition of seston and nutrient dynamics in the Sea of Marmara, Hydrobiol., 363, 157-167, http://dx.doi.org/10.1023/A:1003117504005.

Porumb F., 1992, On the development of Noctiluca scintillans under eutrophication of Romanian Black sea waters, Sci. Tot. Environ., 126 (Suppl.), 907-920.

Redden A. M., Kobayashi T., Suthers I., Bowling L., Rissik D., Newton G., 2009, Plankton processes and the environment, [in:] Plankton. A guide to their ecology and monitoring for water quality, I. M. Suthers & D. Rissik (eds.), CSIRO Pub., Collingwood, 15-38.

Rissik D., Suthers I., 2009, The importance of plankton, [in:] Plankton. A guide to their ecology and monitoring for water quality, I. M. Suthers & D. Rissik (eds.), CSIRO Pub., Collingwood, 1-14.

Steidinger K. A., Tangen K., 1996, Dinoflagellates, [in:] Identifying marine diatoms and dinoflagellates, C. R. Tomas (ed.), Acad. Press, New York, 387-598, http://dx.doi.org/10.1016/B978-012693015-3/50006-1.

Strickland J. D. H., Parsons T. R., 1972, A practical handbook of seawater analysis, 2nd edn., Fisher. Res. Board Canad., Ottawa, 310 pp.

Sweeney B. M., 1978, Ultrastructure of Noctiluca miliaris (Pyrrophyta) with green symbionts, J. Phycol., 14, 116-120, http://dx.doi.org/10.1111/j.1529-8817.1978.tb00643.x.

Tada K., Pithakpol S., Montani S., 2004, Seasonal variation in the abundance of Noctiluca scintillans in the Seto Inland Sea, Japan, Plank. Biol. Ecol., 51, 7-14.

Taylor F. J. R., 1993, The species problem and its impact on harmful phytoplankton studies, with emphasis on dinoflagellate morphology, [in:] Toxic phytoplankton blooms in the sea, T. J. Smayda & Y. Shimizu (eds.), Elsevier-Verlag, Amsterdam, 81-86.

Taylor F. J. R., Fukuyo Y., Larzen J., 1995, Taxonomy of harmful Dinoflagellates, [in:] Manual on harmful marine microalgae, G. M. Hallegrae?, D. M. Anderson & A. D. Cembella (eds.), Monogr. Oceanogr. Methodol., UNESCO, Paris, 283-317.

Thomas K., Titelman J., 1998, Feeding, prey selection and prey encounter mechanisms in the heterotrophic dinoflagellate Noctiluca scintillans, J. Plank. Res., 20 (8), 1615-1636, http://dx.doi.org/10.1093/plankt/20.8.1615.

Tugrul S., Polat C., 1995, Quantitative comparison of the influxes of nutrients and organic carbon into the Sea of Marmara both from anthropogenic sources and from the Black Sea, Water Sci. Techn., 32 (2), 115-121, http://dx.doi.org/10.1016/0273-1223(95)00576-9.

Tugrul S., Be¸siktepe S¸ ., Salihoglu I., 2002, Nutrient exchange fluxes between the Aegean and Black Seas through the Marmara Sea, Mediterr. Mar. Sci., 3 (1), 33-42.

Turkoglu M., 2005, Succession of picoplankton (coccoid cyanobacteria) in the Southern Black Sea (Sinop Bay, Turkey), Pak. J. Biol. Sci., 8 (9), 1318-1326, http://dx.doi.org/10.3923/pjbs.2005.1318.1326.

Turkoglu M., 2008, Synchronous blooms of the coccolithophore Emiliania huxleyi (Lohmann) Hay & Mohler and three dinoflagellates in the Dardanelles (Turkish Straits System), J. Mar. Bio. Assoc. UK, 88 (3), 433-441, http://dx.doi.org/10.1017/S0025315408000866.

Turkoglu M., 2010a, Temporal variations of surface phytoplankton, nutrients and chlorophyll-a in the Dardanelles (Turkish Straits System): A coastal station sample in weekly time intervals, Turk. J. Biol., 34 (3), 319-333.

Turkoglu M., 2010b, Winter bloom and ecological behaviors of coccolithophore Emiliania huxleyi (Lohmann) Hay & Mohler, 1967 in the Dardanelles (Turkish Straits System), Hydrol. Res., 41 (2), 104-114, http://dx.doi.org/10.2166/nh.2010.124.

Turkoglu M., 2010c, Short time variations of chlorohyll a and nutrients in the Dardanelles, Turkey, Rapp. Comm. Int. Mer M´edit., 39, 411 pp.

Turkoglu M., Baba A., Ozcan H., 2006, Determination and evaluation of some physicochemical parameters in the Dardanelles (Canakkale Strait - Turkey) using multiple probe system and geographic information system, Hydrol. Res. (Formerly Nord. Hydrol.), 37 (3), 293-301.

Turkoglu M., Buyukates Y., 2005, Short time variations in density and bio-volume of Noctiluca scintillans (Dinophyceae) in Dardanelles, XIII. Natnl. Fish. Symp., 01-04 Semptember 2005, Çanakkale, Turkey, Abstr. Book (Abstracts), 59, (in Turkish).

Turkoglu M., Erdogan Y., 2010, Diurnal variations of summer phytoplankton and interactions with some physicochemical characteristics under eutrophication of surface water in the Dardanelles (Çanakkale Strait, Turkey), Turk. J. Biol., 34 (2), 211-225.

Turkoglu M., Koray T., 2002, Phytoplankton species succession and nutrients in Southern Black Sea (Bay of Sinop), Turk. J. Bot., 26, 235-252.

Turkoglu M., Koray T., 2004, Algal blooms in surface waters of the Sinop Bay in the Black Sea, Turkey, Pak. J. Biol. Sci., 7 (9), 1577-1585, http://dx.doi.org/10.3923/pjbs.2004.1577.1585.

Turkoglu M., Oner C., 2010, Short time variations of winter phytoplankton, nutrient and chlorophyll a of Kepez Harbor in the Dardanelles (Çanakkale Strait, Turkey), Turk. J. Fish. Aquat. Sci., 10 (4), 537-548.

Turkoglu M., Unsal M., Ismen A., Mavili S., Sever T. M., Yenici E., Kaya S., Coker T., 2004a, Dynamics of lower and high food chain of the Dardanelles and Saros Bay (North Aegean Sea), TUBITAKYDABAG Tech. Fin. Rep., 101Y081, Çanakkale, 314 pp., (in Turkish).

Turkoglu M., Yenici E., Ismen A., Kaya S., 2004b, Variations of nutrient and chlorophyll-a in the Canakkale Strait (Dardanelles), EU J. Fish. Aqua. Sci., 21, 93-98, (in Turkish).

Uhlig G., Sahling G., 1990, Long-term studies on Noctiluca scintillans. German Bight population dynamics and red tide phenomena 1968-88, Neth. J. Sea Res., 25 (1-2), 101-112, http://dx.doi.org/10.1016/0077-7579(90)90012-6.

Unsal M., Turkoglu M., Yenici E., 2003, Biological and physicochemical researches in the Dardanelles, TUBITAK-YDABAG Tech. Fin. Rep., 101Y075, Canakkale, 92 pp., (in Turkish).

Van Moll B., Ruddick K., Astoreca R., Park Y., Nechad B., 2007, Optical detection of a Noctiluca scintillans bloom, EARSeL eProc., 6 (2), 130-137.

Venrick E. L., 1978, How many cells to count?, [in:] Phytoplankton manual, A. Sournia (ed.), Unesco, Paris, 167-180.

full, complete article (PDF - compatibile with Acrobat 4.0), 985 KB

Protozoa in a stressed area of the Egyptian Mediterranean coast of Damietta, Egypt
Oceanologia 2013, no. 55(3), pp. 733-750

Mohamed Moussa Dorgham1,*, Wael Salah El-Tohamy2, Nagwa Elsayed Abdel Aziz3, Ahmed El-Ghobashi2, Jian G. Qin4
1Department of Oceanography, Faculty of Science, Alexandria University,
Alexandria, 21511, Egypt;
e-mail: mdorgham1947@yahoo.com
*corresponding author
2Department of Zoology, Faculty of Science, Mansoura University,
Damietta, Egypt
3National Institute of Oceanography and Fisheries,
Alexandria, Egypt
4School of Biological Sciences, Flinders University,
Adelaide SA, Australia

keywords: environmental conditions, pollution indicators, coastal protozoa, tintinnids, non-tintinnid ciliates

Received 5 July 2012, revised 21 March 2013, accepted 16 April 2013.


The Damietta coast is part of the Egyptian Mediterranean coast off the Nile Delta and has recently been polluted as a result of intensive human activities. The environmental parameters and protozoan community in the area were studied biweekly from January to December 2007. The results of the environmental parameters indicated low salinity, oxic and anoxic conditions, high nutrient levels and intensive phytoplankton growth. A total of 69 protozoan species were identified, belonging to Amoebozoa (8 species), Foraminifera (12 species), non-tintinnid ciliates (22 species) and tintinnids (27 species). The numerical density of protozoans was high over the whole area, with annual averages between 8.2 × 103 cells m-3 and 51.4 × 103 cells m-3. Spring was the most productive season for protozoans, but several distinct peaks were observed during the year at the sampling sites. The protozoan groups showed clearly different spatial patterns in both composition and abundance: whereas amoebozoans and non-tintinnid ciliates were dominant in the more polluted areas (sites IV and V), tintinnids dominated in the less polluted areas (sites, I, II and III). Several pollution indicators were recorded: amoebozoans - Centropyxis aculeata, Centropyxis sp., Cochliopodium sp., Difflugia sp.; non-tintinnids - Bursaridium sp., Frontonia atra, Holophrya sp., Paramecium sp., Paramecium bursaria, Vasicola ciliata, Vorticella sp., Strombidium sp.; tintinnids - Favella ehrenbergii, Helicostomella subulata, Leprotintinnus nordgvisti, Tintinnopsis beroidea, Stenosemella ventricosa, Tintinnopsis campanula, T. cylindrica, T. lobiancoi, Eutintinnus lusus-undae.

  References ref

Abdel-Aziz N. E., 2001, Zooplankton in beach waters of the southeastern Abu Qir Bay, J. Egypt. Acad. Soc. Environ. Dev., 2 (4), 31-53.

Abdel-Aziz N. E., 2002, Impact of water circulation and discharged wastes on zooplankton dynamics in the Western Harbour of Alexandria, Egypt, Egypt. J. Aquat. Biol. Fish., 6 (1), 1-21.

Abdel-Aziz N. E., 2004, The changes of zooplankton community in a chronic eutrophic bay on Alexandria coast, Egypt, Egypt. Bull. Fac. Sci. Alex. Univ., 43 (1-2), 203-220.

Abdel-Aziz N. E., 2005, Short term variations of zooplankton community in the West Naubaria Canal, Egypt, Egypt. J. Aquat. Res. (A.R.E.), 31 (1), 119-132.

Abdel-Aziz N. E., Aboul-Ezz S.M., 2003, Zooplankton community of the Egyptian Mediterranean Coast, Egypt. J. Aquat. Biol. Fish., 7 (4), 91-108.

Abdel-Aziz N. E., Dorgham M.M., 2004, Short-term variations of zooplankton diversity in a mixing area between sea and lake, Alexandria, Egypt, Egypt. J. Aquat. Biol. Fish., 8 (2), 19-36.

Anon., 2007, Final project report; distribution biological and rearing aspect of marine fish fries from Mediterranean Sea between Alexandria and Damietta, NIOS, Acad. Sci. Res., Alexandria.

Balloch D., Davies C.E., Jones F.H., 1976, Biological assessment of water quality in three British rivers: the North Esk (Scotland), the Ivel (England) and the Taff (Wales), Water Pollut. Control, 75 (1), 92-114.

Bloem J., Albert C., Bär-Gillissen M. J.B., Berman T., Cappenberg E.T., 1989, Nutrient cycling through phytoplankton, bacteria and protozoa, in selectively filtered Lake Vechten water, J. Plankton Res., 11 (1), 119-131, http://dx.doi.org/10.1093/plankt/11.1.119.

Boyle T.P., Smillie G. M., Anderson J. C., Beeson D. R., 1990, A sensitivity analysis of nine diversity and seven similarity indexes, Res. J. Water Pollut. C., 62 (6), 749-762.

Charubhun B., Charubhun N., 2000, Biodiversity of freshwater Protozoa in Thailand, Kasetsart J. (Nat. Sci.), 34, 486-494.

Corliss J.O., 1979, The ciliated protozoa: characterization, classification, and guide to the literature, Pergamon Press, Oxford, New York, 455 pp.

Cosper T.C., 1972, The identification of tintinnids (protozoa: Ciliata: Tintinnida) of the St. Andrew Bay system, Florida, Bull. Mar. Sci., 22 (2), 391-418.

Curds C., 1982, Pelagic protists and pollution. A review of the past decade, Annal. Inst. Oceanogr., 58 (S), 117-136.

Dopheide A., Lear G., Stott R., Lewis G., 2009, Relative diversity and community structure of ciliates in stream biofilms according to molecular and microscopy methods, Appl. Environ. Microb., 75 (16), 5261-5272, http://dx.doi.org/10.1128/AEM.00412-09.

DorghamM.M., 1987, Occurrence of Tintinnids in two polluted areas of Alexandria Coast, FAO/UNEP Meeting on the Effects of Pollution on Marine Ecosystems, Blanes (Spain), 7-11 October 1985, FAO Fish. Rep., 352 (Suppl.), 76-83.

Dorgham M.M., Abdel-Aziz N. E., El-Ghobashy A. E., El-Tohamy S.W., 2009, Preliminary study on Protozoan community in Damietta Harbor, Egypt, Global Veterinaria, 3 (6), 495-502.

El-Bassat R.A., Taylor W.D., 2007, The zooplankton community of Lake Abo Zaabal, a newly-formed mining lake in Cairo, Egypt, Afr. J. Aquat. Sci., 32(2), 185-192.

El-Ghobashy A., 2009, Natural fish fry food of seven commercial species in the Egyptian Mediterranean water, World Appl. Sci. J., 7 (3), 320-331.

Ibrahim S., Abdullahi B.A., 2008, Effect of lead on zooplankton dynamics in Challawa River, Kano state, Nigeria, Bayero J. Pure Appl. Sci. (Bajopas), 1 (1), 88-94.

Ignatiades L., Karydis M., Vounatsou P., 1992, A possible method for evaluating oligotrophy and eutrophication based on nutrient concentrations, Mar. Pollut. Bull., 24 (5), 238-243, http://dx.doi.org/10.1016/0025-326X(92)90561-J.

Ismael A.A., Dorgham M.M., 2003, Ecological indices as a tool for assessing pollution in El-Dekhaila Harbour (Alexandria, Egypt), Oceanologia, 45 (1), 121-131.

Kneitel J.M., Chase J.M., 2004, Disturbance, predator, and resource interactions alter container community composition, Ecology, 85 (8), 2088-2093, http://dx.doi.org/10.1890/03-3172.

Lepš J., Šmilauer P., 2003, Multivariate analysis of ecological data using CANOCO, Cambridge Univ. Press., Cambridge, 269 pp., http://dx.doi.org/10.1017/CBO9780511615146.

Marchetti R., 1984, Quadro analitico complessivo del risultati delle indagini condotte negli anni 1977-1980. II. Problema dell’eutrofizzazione delle acque costiere dell’Emilia Romagna: situazione ipotesi di intervento, Regione Emilia Romagna, Bologna, 308 pp.

Margalef D.R., 1978, Life forms of phytoplankton as survival alternatives in an unstable environment, Oceanologica Acta, 1 (4), 493-509.

Marshall S.M., 1969, Protozoa order Tintinnida, Cons. Int. Explor. Mer Zooplankton Sheet, 117-127.

Newell G. E., Newell R.C., 1963, Marine plankton, a practical guide, Hutchinson Edu. Ltd., London, 221 pp.

Newell G. E., Newell R.C., 1979, Marine plankton, a practical guide, Hutchinson Edu. Ltd, London, 244 pp.

Odum H.T., Cantlon J. E., Kornicker L. S., 1960, An organizational hierarchy postulate for the interpolation of species individual distribution, species entropy and ecosystem evolution and the meaning of a species-variety index, Ecology, 41 (2), 395-399, http://dx.doi.org/10.2307/1930248.

Salvado H., Gracia M.P., Amigo J.M., 1995, Capability of ciliated protozoa as indicators of effluent quality in activated-sludge plants, Water Research, 29 (4), 1041-1050, http://dx.doi.org/10.1016/0043-1354(94)00258-9.

Shannon C.E., Weaver W., 1949, The mathematical theory of communication, Univ. Illinois Press, Urbana, 117 pp.

SousaW., Attayde J. L., Rocha E.D., Eskinazi-Sant’anna E.M., 2008, The response of zooplankton assemblages to variations in the water quality of four manmade lakes in semi-arid northeastern Brazil, J. Plankton Res., 30 (6), 699-708, http://dx.doi.org/10.1093/plankt/fbn032.

Strickland J.D.H., Parsons T.R., 1972, A practical handbook of seawater analysis, 2nd edn., Bull. 167, Fish. Res. Board Canada, Ottawa, 310 pp.

Ter Braak C. J. F., Prentice I.C., 1988, A theory of gradient analysis, Adv. Ecol. Res., 18, 271-317, http://dx.doi.org/10.1016/S0065-2504(08)60183-X.

Tregouboff G., Rose M., 1957, Manuel de planctologie méediterranéeenne, Tom I (texte), C.N.R.S, Paris, 587 pp.

Tsirtsis G., Karydis M., 1998, Evaluation of phytoplankton community indices for detecting eutrophic trends in the marine environment, Environ. Monit. Assess., 50 (3), 255-269, http://dx.doi.org/10.1023/A:1005883015373.

UNEP/UNESCO/FAO, 1988, Eutrophication in the Mediterranean sea: receiving capacity and monitoring of long term effects, MAP Tech. Rep. Ser. Vol. 21, UNEP, Athens, 200 pp.

Vickerman K., 1992, The diversity and ecological significance of protozoa, Biodivers. Conserv., 1 (4), 334-341, http://dx.doi.org/10.1007/BF00693769.

Vucak Z. A. S., Stirn J., 1982, Basic physical, chemical and biological data reports, R.V.A Mohorov ICIC Adriatic cruises 1974-76, Hydrogr. Inst. Yugoslav Navy, Split, 175 pp.

full, complete article (PDF - compatibile with Acrobat 4.0), 1066 KB

Biocontamination of the western Vistula Lagoon (south-eastern Baltic Sea, Poland)
Oceanologia 2013, no. 55(3), pp. 751-763

Izabela Jabłońska-Barna1,*, Agata Rychter2, Marek Kruk1
1University of Warmia & Mazury, Faculty of Environmental Sciences,
M. Oczapowskiego 5, 10-719 Olsztyn, Poland;
e-mail: ijpb@uwm.edu.pl
*corresponding author
2The State School of Higher Professional Education in Elbląg, Institute of Technology,
Wojska Polskiego 1, 82-300 Elbląg, Poland

keywords: Vistula Lagoon, zoobenthos, biocontamination, alien species

Received 28 January 2013, revised 27 March 2013, accepted 22 May 2013.

This work was supported by Norway grant PNRF82AI.


Non-native species exert considerable pressure on aquatic ecosystems; accordingly, they are treated as biopollutants. The Vistula Lagoon, one of the largest brackish water bodies in the Baltic, has become a part of the central corridor for hydrobionts migrating in the direction of western Europe and species expanding in inshore waters. Ten non-indigenous species of benthic invertebrates from five different biogeographical regions have been found in the western part of the Lagoon. Their considerable abundance relative to the numbers and abundance of native species testifies to the high level of biopollution there. The integrated biological contamination index (IBC) calculated for the macrobenthos in the western Vistula Lagoon was 4 and corresponds to the Lagoon's poor ecological status.

  References ref

Arbačiauskas K., Semenchenko V., Grabowski M., Leuven R. S. E. W., Paunović M., Son M. O., Csányi B., GumuliauskaitĖ S., Konopacka A., Nehring S., Van der Velde G., Vezhnovetz V., Panov V. E., 2008, Assessment of biocontamination of benthic macroinvertebrate communities in European inland waterways, Aquat. Invasions, 3 (2), 211-230, http://dx.doi.org/10.3391/ai.2008.3.2.12.

Aristova G. I., 1965, Benthos of the Vistula Bay, Proc. Atlantic Res. Inst. Fishery Oceanogr., Kaliningrad, 40-49.

Aristova G. I., 1973, The benthos of the Vistula and Curonian lagoons of the Baltic Sea and its significance for fish diets, Diss., GosNIIORH, Leningrad. Chubarenko B., 2008, The Vistula Lagoon, [in:] Transboundary waters and basins in the South-East Baltic, Kaliningrad, B. Chubarenko (ed.) Terra Baltica, 37-57.

Cywińska A., Różańska Z ., 1978, Zoobenthos of the Vistula Lagoon, Stud. Mater. Oceanol., (4) 21, 145-160, (in Polish).

Dauvin J. C., 2007, Paradox of estuarine quality: Benthic indicators and indices, consensus or debate for the future, Mar. Pollut. Bull., 55 (1-6), 271-281, http://dx.doi.org/10.1016/j.marpolbul.2006.08.017..

Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, European Commission PE-CONS 3639/1/00 REV 1, Luxemburg 2000.

Dobrzycka-Krahel A., Tarała A., Chabowska A., 2012, Expansion of alien gammarids in the Vistula Lagoon and the Vistula Delta (Poland), Environ. Monit. Assess., 185 (6), 5165-5175, http://dx.doi.org/10.1007/s10661-012-2933-1..

Ezhova E. E., 2000, A recent newcomer to the Vistula Lagoon - Marenzelleria viridis (Polychaeta, Spionidae) and its role in the ecosystem, [in:] Alien species in the European Seas in Russia, Apatity, 184-193.

Ezhova E. E., 2002, Zoobenthos of the Vistula Lagoon, [in:] Geology of the Gdańsk basin Baltic Sea, E. M. Emelyanov (ed.) Izd. Jantarny Skaz., Kaliningrad, 366-371.

Ezhova E. E., Pavlenko M. V., 2001, New data on the macrobenthos of the Vistula Lagoon (Baltic Sea). Composition and structure of marine bottom biota, Izd. VNIRO, Moscow, 40-45.

Ezhova E. E., Polunina J. J., 2011, Invasions of alien invertebrate species in the Baltic Lagoons - The Curonian Lagoon and The Vistula Lagoon, Problemy izuchenia i okhrany prirodnogo i kulturnogo nasledya natsyonalnogo parka ‘Kurskaya kosa’, Kaliningrad, Izd-vo. BFU im. I. Kanta, Wyp. 7, 25-37, (in Russian).

Ezhova E. E., Rudinskaja L. V., Pavlenko-Lyatun M. V., 2004, Vistula Bay. Macrozoobenthos. Regularities of hydrobiological regime in water bodies of different types, Scientific World, Moscow, 146-164.

Ezhova E. E., Żmudziński L., Maciejewska K., 2005, Long-term trends in the macrozoobenthos of the Vistula Lagoon, southeastern Baltic Sea. Species composition and biomass distribution, Bull. Sea Fish. Inst., 1 (164), 55-73.

Grabowski M., Konopacka A., Jażdżewski K., Janowska E., 2006, Invasions of alien gammarid species and retreat of natives in the Vistula Lagoon (Baltic Sea, Poland), Helgol. Mar. Res., 60 (2), 90-97, http://dx.doi.org/10.1007/s10152-006-0025-8.

Kotta J., Kotta I., 1998, Distribution and invasion ecology of Marenzelleria viridis in the Estonian coastal waters, Proc. Estonian Acad Sci. Biol. Ecol., 47 (3), 212-220.

Kruk M., Rychter A., Mróz M., 2012, The Vistula Lagoon. Environment and its research in the VISLA project, Wydawnictwo PWSZ, Elbląg, 178 pp.

Krylova O. I., Ten V. V., 1992, Long-term dynamics and modern state of zoobenthos in the Vistula Bay, [in:] Ecological and fishery research in the Baltic Sea, Tr. AtlantNIRO, Kaliningrad, 52-64, (in Russian).

Lazarenko N. N., Majewski A., 1971, Hydrometeorological regime of the Vistula Lagoon, Gidrometeoizdat, Leningrad.

Nawrocka L., Kobos J., 2011, The trophic state of the Vistula Lagoon: an assessment based on selected biotic and abiotic parameters according to the Water Framework Directive, Oceanologia, 53 (3), 881-894, http://dx.doi.org/10.5697/oc.53-3.881..

Nowak E., 1971, The range expansion of animals and its cause (as demonstrated by 28 species presently spreading from Europe), Zesz. Nauk. BINOZ UG, 3, 1-255, Transl. Smithsonian Inst. and National. Sci. Foundation.

Panov V. E., Alexandrov B., Arbačiauskas K., Binimelis R., Copp G. H., Grabowski M., Lucy F., Leuven R. S. E. W., Nehring S., Paunović M., Semenchenko V., Son M. O., 2009, Assessing the risks of aquatic species invasions via European inland waterways: from concepts to environment al indicators, Integr. Environ. Assess. Manag., 5 (1), 110-126, http://dx.doi.org/10.1897/IEAM_2008-034.1..

Paturej E., Kruk M., 2011, The impact of environmental factors on zooplankton communities in the Vistula Lagoon, Oceanol. Hydrobiol. St., 40 (2), 37-48, http://dx.doi.org/10.2478/s13545-011-0015-6..

Paturej E., Gutkowska A., Mierzejewska J., 2012, A review of biological research in the Vistula Lagoon, Oceanol. Hydrobiol. St., 41 (4), 81-88, http://dx.doi.org/10.2478/s13545-012-0042-y..

Pliński M., 2005, The hydrobiological characteristics of the Polish part of the Vistula Lagoon: a review, Oceanol. Hydrobiol. St., 34 (Suppl. 3), 287-294.

Renk H., Ochocki S., Zalewski M., Chmielowski H., 2001, Environmental factors controling primary production in the Polish part of the Vistula Lagoon, Bull. Sea Fish. Inst. Gdynia, 1 (152), 77-95.

Report on the state of the environment of Warmia and Mazury in 2010, 2011, Bibl. Monit. Środow., Olsztyn, 45-49, (in Polish).

Riech F., 1926, Beiträge zur Kenntnis der litoralen Lebensgemeinschaften in der poly- und mesohalinen Regionen des Frischen Haffes, Schr. d. Phys.-Ökonom. Ges., 65 (1), 32-47.

Różańska Z., Cywińska A., 1983, The characteristic of abundance and biomass of the Vistula Lagoon benthic fauna, Oceanologia, 14, 188-200.

Rudinska ja L. V., 1999, Water salinity impact upon bottom investigation on the Vistula Lagoon. Freshwater fish and the herring populations in the coastal lagoons, Proc. Symposium Sea Fish. Inst. Gdynia, 202-219.

Senin Y. M., Smyslov V. A., Khlopnikov M. M., 2004, Obschaya Kharakteristika Vislinskogo Zaliva, Alimov A.F., Ivanova M.B., (Ed) Zakonomenosti Gidrobiologicheskogo Rezhima Vodoemov Raznogo Tipa., Nauchny mir Moskva, 18-19.

Vanhöffen E., 1917, Die niedere Tierwelt des Frischen Haffs, Sitzung Ber. Gesellsch. Naturforschender Freunde, 2, Berlin, 113-147.

Willer A., 1925, Studien Über das Frische Haff, Z. Fisch., 23, 317-349. Zettler M. L., Daunys D., 2007, Long-term macrozoobenthos changes in a shallow boreal lagoon: Comparison of a recent biodiversity inventory with historical data, Limnologica, 37, 170-185, http://dx.doi.org/10.1016/j.limno.2006.12.004..

Żmudziński L., 1957, Zoobenthos of the Vistula Lagoon, Pr. Mor. Inst. Ryb. (Gdynia), 9, 453-491, (in Polish).

Żmudziński L., 1996, The effect of the introduction of the American species Marenzelleria viridis (Polychaeta: Spionidae) on the benthic ecosystem of the Vistula Lagoon, Mar. Ecol., 19 (1-3), 221-226, http://dx.doi.org/10.1111/j.1439-0485.1996.tb00503.x..

Żmudziński L., Chubarova-Solovjeva S., Dobrowolski Z., Gruszka P., Olenin S., Wolnomiejski N., 1996, Expansion of the spionid polychaete Marenzelleria viridis in the southern part of the Baltic Sea, Proc. 13th Baltic Mar. Biol. Symp., Jurmala, Latvia, 127-129.

full, complete article (PDF - compatibile with Acrobat 4.0), 263 KB