Oceanologia No. 55 (2) / 13





Sea salt in aerosols over the southern Baltic. Part 1. The generation and transportation of marine particles
Oceanologia 2013, 55(2), 279-298

Anita Urszula Lewandowska*, Lucyna Mirosława Falkowska
Institute of Oceanography, University of Gdańsk,
al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland;
e-mail: a.lewandowska@ug.edu.pl
*corresponding author

keywords: aerosols, sea salt, wind conditions, air mass influence, coastal zone

Received 28 September 2012, revised 30 January 2013, accepted 12 March 2013.

Parts of this paper were originally published in Polish: Lewandowska A., 2011,Chemizmaerozoli w rejonie Zatoki Gdańskiej, Wyd. UG, Gdańsk, 184 pp.


During five campaigns at sea and 11 on land in 2001-2007, aerosols were measured in the coastal zone and over the open sea in the Gdańsk Basin (southern Baltic). Sea salt concentrations were high both over Gdynia (2.0-12.2 µg m-3) and at sea (1.3-14.5 µg m-3). The intensity of the generation and transport of marine aerosols increased exponentially with wind speeds > 5 m s-1 over land and > 3 m s-1 over the Gulf of Gdańsk, this being most noticeable with Baltic and oceanic advection.Sea breezes were conducive to the transport of marine aerosols over land areas.The sea was also the origin of both sea salt and non-sea salt sulphate aerosols. An interesting increase in the proportion of non-sea salt-related sulphates (86.7%) was observed in spring, when the biological processes in the sea were more intense.

  References ref

Bełdowska M., Falkowska L., Lewandowska A., 2006, Airborne trace metals (Hg, Cd, Pb, Zn) of the coastal region, Gulf of Gdańsk, Ocean. Hydrobiol. Stud., 35(2), 159-169.

Chalbot M.-C., McElroy B., Kavouras I.G., 2013, Sources, trends and regional impacts of fine particulate matter in southern Mississippi Valley: significance of emissions from sources in the Gulf of Mexico coast, Atmos. Chem. Phys. Discuss., 13(1), 827-862, http://dx.doi.org/10.5194/acpd-13-827-2013

Draxler R.R., Rolph G.D., 2003, HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model , access via NOAA ARL Website, NOAA Air Res. Lab., Silver Spring, MD, http://www.arl.noaa.gov/ready/hysplit4.html

Falkowska L., Lewandowska A., 2004, Sulphates in different size particles in the marine boundary layer over the southern Baltic Sea, Oceanologia, 46(2), 201-215.

Falkowska L., Lewandowska A., 2009, Gases and aerosols in the Earth Atmosphere - global changes, Univ. Gdańsk, 505 pp., (in Polish).

Garbalewski C., 1999, Physics of aerosol sea activity , Diss. and monogr. No. 12, Inst. Oceanol. PAS, Sopot, 208 pp., (in Polish).

Gustafsson M.E.R., Franzén L.G., 2000, Inland transport of marine aerosols in southern Sweden, Atmos. Environ., 34(2), 313-325, http://dx.doi.org/10.1016/S1352-2310(99)00198-3

Hara K., Osada K., Nishita C., Yamagata S., Yamanocuhi T., Herber A., Matsunaga K., Iwasaka Y., Nagatani M., Nakata H., 2002, Vertical variations of sea-salt modification in the boundary layer of spring Arctic during the ASTAR 2000 campaign, Tellus B, 54(4), 361-376, http://dx.doi.org/10.1034/j.1600-0889.2002.201253.x

Huebert B.J., 1996, Sorting out chemistry and dynamics: the ASTEX/MAGE experiment, IGACtivities Newsletter No. 4, IGAC Project Office, Cambridge, 3-6.

Huebert B.J., Bates T.S., Tindale N. W., 1994, Marine aerosol and gas exchange and global atmospheric effects, [in:] Global atmospheric-biospheric chemistry, R.G. Prinn (ed.), Plenum Press, New York, London, 39-55.

Kloster S., Feichter J., Maier-Reimer E., Six K.D., Stier P., Wetzel P., 2006, DMS cycle in the marine ocean-atmosphere system - a global model study, Biogeosciences, 3(1), 29-51, http://dx.doi.org/10.5194/bg-3-29-2006

Ledyard K.M., Dacey J.W.H., 1994, Dimethylsulfide production from dimethylsulfoniopropionate by a marine bacterium, Mar. Ecol.-Prog. Ser., 110, 95-103, http://dx.doi.org/10.3354/meps110095

Lewandowska A., 2011, Chemizm aerozoli w rejonie Zatoki Gdańskiej, Wyd. UG, Gdańsk, 184 pp.

Lewandowska A., Falkowska L., 2013, Sea salt in aerosols over the southern Baltic. Part 2. The neutralizing properties of sea salt and ammonium, Oceanologia, 55(2), (this volume).

Lewandowska A., Falkowska L., Murawiec D., Pryputniewicz D., Burska D., Bełdowska M., 2010, Elemental and organic carbon in aerosols over urbanized coastal region (southern Baltic Sea, Gdynia), Sci. Tot. Environ., 408(20), 4761-4769, http://dx.doi.org/10.1016/j.scitotenv.2010.06.017

Łysiak-Pastuszak E., 2000, An assessment of nutrient conditions in the southern Baltic Sea between 1994 and 1998, Oceanologia, 42(4), 425-448.

Markaki Z., Oikonomou K., Kocak M., Kouvarakis G., Chaniota ki A., Kubilay N., Mihalopoulos N., 2003, Atmospheric deposition of inorganic phosphorus in the Levantine Basin, eastern Mediterranean. Spatial and temporal variability and its role in seawater productivity, Limnol. Oceanogr., 48(4), 1557-1568, http://dx.doi.org/10.4319/lo.2003.48.4.1557

McKay W.A., Garland J.A., Livesley D., Halliwell C.M., Walker M.I., 1994, The characteristics of the shore-line sea spray aerosol and the landward transfer of radionuclides discharged to coastal sea water, Atmos. Environ., 28(30), 3299-3309, http://dx.doi.org/10.1016/1352-2310(94)00156-F

Meira G.R., Andrade C., Alonso C., Padaratz I.J., Borba J.C. Jr., 2007, Salinity of marine aerosols in a Brazilian coastal area - influence of wind regime, Atmos. Environ., 41(38), 8431-8441, http://dx.doi.org/10.1016/j.atmosenv.2007.07.004

Meira G.R., Andrade C., Alonso C., Padaratz I.J., Borba J.C. Jr., 2008, Modelling sea-salt transport and deposition in marine atmosphere zone - a tool for corrosion studies, Corros. Sci., 50(9), 2724-2731, http://dx.doi.org/10.1016/j.corsci.2008.06.028

Meira G.R., Andrade M.C., Padaratz I.J., Alonso M.C., Borba J.C. Jr., 2006, Measurements and modelling of marine salt transportation a nd deposition in a tropical region in Brazil, Atmos. Environ., 40(29), 5596-5607, http://dx.doi.org/10.1016/j.atmosenv.2006.04.053

Nair P.R., Parameswarana K., Annamma A., Salu J., 2005, Wind-dependence of sea-salt and non-sea-salt aerosols over the oceanic environment, J. Atmos. Sol.-Terr. Phys., 67(10), 884-898, http://dx.doi.org/10.1016/j.jastp.2005.02.008

Nguyen B.C., Beloriso S., Mihalopoulos N., Gostan J., Nival P., 1988, Dimethyl sulfide production during natural phytoplanktonic blooms, Mar. Chem., 24(2), 133-141, http://dx.doi.org/10.1016/0304-4203(88)90044-8

O’Dowd C.D., Hoffmann T., 2005, Coastal new particle formation: a review of the current state of the art, Environ. Chem., 2(4), 245-255, http://dx.doi.org/10.1071/EN05077

O’Dowd C.D., Smith M.H., Consterdine I.A., Lowe J.A., 1997, Marine aerosol, sea-salt, and the marine sulfur cycle: a short review, Atmos. Environ., 31(1), 73-80, http://dx.doi.org/10.1016/S1352-2310(96)00106-9

Petelski T., Chomka M., 2000, Sea salt emission from the coastal zone, Oceanologia, 42(4), 399-410.

Piazzola J., Despiau S., 1997, Contribution of marine aerosols in the particle size distributions observed in Mediterranean coastal zone, Atmos. Environ., 31(18), 2991-3009, http://dx.doi.org/10.1016/S1352-2310(97)00088-5

PN (Polish Standard), 1995, Determination of dissolved fluoride, chloride, nitrite, orthophosphate, bromide, nitrate and sulphate using ion chromatography, Polish Committee for Standardization; stand. no. BS EN ISO, 10304-1.

Quinn P.K., Coffman D.J., Bates T.S., Miller T.L., Johnson J. E., Welton E.J., Neususs C., Miller M.P., Sheridan J., 2002, Aerosol optical properties during INDOEX 1999: means, variability, and controlling factors, J. Geophys. Res., 107(D19), 1-19, http://dx.doi.org/10.1029/2000JD000037

Rastogi N., Sarin M.M., 2005, Long-term characterization of ionic species in aerosols from urban and high-altitude sites in western India: role of mineral dust and anthropogenic sources, Atmos. Environ., 39(30), 5541-5554, http://dx.doi.org/10.1016/j.atmosenv.2005.06.011

Rodríguez S., Cuevas E., González Y., Ramos R., Romero P.M., Pérez N., Querol X., Alastuey A., 2008, Influence of sea breeze circulation and road traffic emissions on the relationship between particle number, black carbon, PM1, PM2,5 and PM2,5-10 concentrations in a coastal city, Atmos. Environ., 42(26), 6523-6534, http://dx.doi.org/10.1016/j.atmosenv.2008.04.022

Rolph G.D., 2003, Real-time Environmental Applications and Display sYstem (READY) website, NOAA Air Res. Lab., Silver Spring, MD, http://www.arl.noaa.gov/ready/hysplit4.html

Schwarzenbach R.P., Gschwend P.M., Imboden D. M., 1993, Environmental organic chemistry , John Wiley & Sons, New York, 681 pp.

Seinfeld J.H., Pandis S.N., 1998, Atmospheric chemistry and physics from air pollution to climate change, Wiley Intersci. Publ., 1326 pp.

Spiel D. E., De Leeuw G., 1996, Formation and production of sea spray aerosols, J. Aer. Sci., 27(1), S65-S66, http://dx.doi.org/10.1016/0021-8502(96)00105-X

Spokes L.J., Jickells T.D., 2005, Is the atmosphere really an important source of reactive nitrogen to coastal waters?, Cont. Shelf Res., 25(18), 2022-2035, http://dx.doi.org/10.1016/j.csr.2005.07.004

Spokes L., Jickells T., Weston K., Gustafsson B.G., Johnsson M., Liljebladh B., Conley D., Ambelas-Skjødth C., Brandt J., Carstensen J., Christiansen T., Frohn L., Geernaert G., Hertel O., Jensen B., Lundsgaard C., Markager S., Martinsen W., Møller B., Pedersen B., Sauerberg K., Sørensen L.L., Hasager C.C., Sempreviva A. M., Pryor S.C., Lund S.W., Larsen S., Tjernström M., Svensson G., Žagar M., 2006, MEAD: An interdisciplinary study of the marine effects of atmospheric deposition in the Kattegat, Environ. Pollut., 140(3), 453-462, http://dx.doi.org/10.1016/j.envpol.2005.08.010

Staniszewska M., Bełdowska M., Murawiec D., Porożyńska J., 2009, Benzo(a)pyrene in aerosols in Gdynia , [in]: 2nd Pomeranian conference in the series of Air Quality, J. Namieśnik, W. Wardencki & J. Gromadzka (eds.)., Conf. mat., 174-183, (in Polish).

Tüurküm A., Pekey B., Pekey H., Tuncel G., 2008, Comparison of sources affecting chemical compositions of aerosol and rainwater at different locations in Turkey, Atmos. Res., 89(4), 306-314, http://dx.doi.org/10.1016/j.atmosres.2008.03.011

Yeatman S.G., Spokes L.J., Jickells T.D., 2001, Comparisons of coarse-mode aerosol nitrate and ammonium at two polluted coastal sites, Atmos. Environ., 35(7), 1321-1335, http://dx.doi.org/10.1016/S1352-2310(00)00452-0

full, complete article (PDF - compatibile with Acrobat 4.0), 641 KB

Sea salt in aerosols over the southern Baltic. Part 2. The neutralizing properties of sea salt and ammonia
Oceanologia 2013, 55(2), 299-318

Anita Urszula Lewandowska*, Lucyna Mirosława Falkowska
Institute of Oceanography, University of Gdańsk,
al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland;
e-mail: a.lewandowska@ug.edu.pl
*corresponding author

keywords: sea salt, acid aerosols, neutralization, coastal zone

Received 28 September 2012, revised 30 January 2013, accepted 12 March 2013.

Parts of this paper were originally published in Polish: Lewandowska A., 2011,Chemizmaerozoli w rejonie Zatoki Gdańskiej, Wyd. UG, Gdańsk, 184 pp.


In 2001-2007 aerosols were measured in the coastal zone (11 campaigns) and over the open waters of the Gdańsk Basin (southern Baltic) (5 campaigns). The marine aerosols contained nitrogen and sulphur compounds, which increased their acidity. This situation intensified during the cool months of the year, when fossil fuel emissions were higher, proportionate to energy and heat requirements. Irrespective of the season, these acidic aerosols were neutralized in the reaction with sea salt. The likelihood of sodium nitrate being formed increased at air humidities > 80% and nitrate concentrations >30 nmol m-3. Sodium sulphate was present in aerosols mostly in autumn and winter, with northerly advection, and at the highest wind speeds. The excess of free ammonia resulted in the formation of ammonium sulphate and ammonium nitrate in aerosols over the southern Baltic.

  References ref

Andreae M.O., Crutzen P.J., 1997, Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry, Science, 276(5315), 1052-1058, http://dx.doi.org/10.1126/science.276.5315.1052

Asman W. A.H., Harrison R.M., Ottley C.J., 1994, Estimation of the net air-sea flux of ammonia over the Southern Bight of the North Sea, Atmos. Environ., 28(22), 3647-3654, http://dx.doi.org/10.1016/1352-2310(94)00192-N

Chalbot M.-C., McElroy B., Kavouras I.G., 2013, Sources, trends and regional impacts of fine particulate matter in southern Mississippi Valley: significance of emissions from sources in the Gulf of Mexico coast, Atmos. Chem. Phys. Discuss., 13(1), 827-862, http://dx.doi.org/10.5194/acpd-13-827-2013

Dougle P.G., Veefkind J.P., ten Brink H.M., 1998, Crystallization of mixtures of ammonium nitrate, ammonium sulphate and soot, J. Aerosol Sci., 29(3), 375-386, http://dx.doi.org/10.1016/S0021-8502(97)10003-9

Erisman J.W., 2004, Acid deposition and energy use , Enc. Energy Vol. 1., 1-15, http://dx.doi.org/10.1016/B0-12-176480-X/00389-2

Erisman J.W., Vermeulen A., Hensen A., Flechard C., Dämmgen U., Fowler D., Sutton M., Grünhage L., Tuovinen J.P., 2005, Monitoring and modeling of biosphere/atmosphere exchange of gases and aerosols in Europe, Environ. Pollut., 133(3), 403-413, http://dx.doi.org/10.1016/j.envpol.2004.07.004

Fridlind A.M., Jacobson M.Z., 2000, A study of gas-aerosol equilibrium and aerosol pH in the remote marine boundary layer during the Fir st Aerosol Characterization Experiment (ACE 1), J. Geophys. Res. - Atmos., 105(D13), 17325-17340, http://dx.doi.org/10.1029/2000JD900209

Grasshoff K., Ehrhardt M., Kremling K., 1983, Methods of seawater analysis, 2nd edn., Verlag Chemie, Weinheim, 419 pp.

Hara K., Osada K., Nishita C., Yamagata S., Yamanocuhi T., Herber A., Matsunaga K., Iwasaka Y., Nagatani M., Nakata H., 2002, Vertical variations of sea-salt modification in the boundary layer of spring Arctic during the ASTAR 2000 campaign, Tellus B, 54(4), 361-376, http://dx.doi.org/10.1034/j.1600-0889.2002.201253.x

Jenkin M.E., 2006, Atmospheric chemical processing of nitrogen species , ACCENT - Access to Laboratory Data, Understanding and Quantifying the Atmospheric Nitrogen Cycle, An ACCENT Barnsdale Expert Meeting, ACCENT sec., Urbino, 189 pp.

Jickells T., 2006, The role of air-sea exchange in the marine nitrogen cycle, Biogeosciences Discuss., 3(1), 183-210, http://dx.doi.org/10.5194/bgd-3-183-2006

Jickells T.D., Dorling S., Deuser W.G., Church T.M., Arimoto R., Prospero J.M., 1998, Air-borne dust fluxes to a deep water sediment trap in the Sargasso Sea, Global Biogeochem. Cy., 12(2), 311-320, http://dx.doi.org/10.1029/97GB03368

Katoshevski D., Nenes A., Seinfeld J.D., 1999, A study of processes that govern the maintenance of aerosols in the marine boundary layer, J. Aerosol Sci., 30(4), 503-532, http://dx.doi.org/10.1016/S0021-8502(98)00740-X

Kerminen V.-M., Pakkanen T.A., Hillamo R.E., 1997, Interactions between inorganic trace gases and supermicrometer particles at a coastal site, Atmos. Environ., 31(17), 2753-2765, http://dx.doi.org/10.1016/S1352-2310(97)00092-7

Kerminen V.-M., Teinilä K., Hillamo R., 2000, Chemistry of sea-salt particles in the summer Antarctic atmosphere, Atmos. Environ., 34(17), 2817-2825, http://dx.doi.org/10.1016/S1352-2310(00)00089-3

Koçak M., Nimmo M., Kubilay N., Herut B., 2004, Spatio-temporal aerosol trace metal concentrations and sources in the Levantine Bas in of the Eastern Mediterranean, Atmos. Environ., 38(14), 2133-2144, http://dx.doi.org/10.1016/j.atmosenv.2004.01.020

Lewandowska A., Falkowska L., 2004, Ammonia and ammonium over the southern Baltic Sea. 1. Preparation of aerosol and air samples for the determination of ammonia by the indophenol method, Oceanologia, 46(2), 175-184.

Lewandowska A., 2011, Chemizm aerozoli w rejonie Zatoki Gdańskiej, Wyd. UG, 184 pp.

Lewandowska A., Falkowska L., 2005, Anthropogenic aerosols over the coastal zone of the Gdańsk Basin, Arch. Ochr. Środ., 31(3), 13-21.

Lewandowska A., Falkowska L., 2013, Sea salt in aerosols over the southern Baltic. Part 1. The generation and transportation of marine particles, Oceanologia, 55(2), (this volume).

Matsumoto K., Tanaka H., 1996, Formation and dissociation of atmospheric particulate nitrate and chloride: an approach based on phase equilibrium, Atmos. Environ., 30(4), 639-648, http://dx.doi.org/10.1016/1352-2310(95)00290-1

Myhre G., Grini A., 2006, Modelling of nitrate particles: importance of sea salt, Atmos. Chem. Phys. Discuss., 6(1), 1455-1480, http://dx.doi.org/10.5194/acpd-6-1455-2006

Nadstazik A., Falkowska L., 2001, Selected ionic components of the marine aerosol over the Gulf of Gdańsk, Oceanologia, 43(1), 23-37.

Nadstazik A., Marks R., Schulz M., 2000, Nitrogen species and macroelements in aerosols over the southern Baltic Sea, Oceanologia, 42(4), 411-424.

Ottley C.J., Harrison R.M., 1992, The spatial-distribution and particle-size of some inorganic nitrogen, sulphur and chlorine species over the North Sea, Atmos. Environ. A-Gen., 26(9), 1689-1699, http://dx.doi.org/10.1016/0960-1686(92)90067-U

PN (Polish Standard), 1995, Determination of dissolved fluoride, chloride, nitrite, orthophosphate, bromide, nitrate and sulphate using ion chromatography, Polish Committee for Standardization; stand. no. BS EN ISO,10304-1.

Pszenny A., Keene W., O’Dowd C., Smith M., Quinn P., 1998, Sea salt aerosols, tropospheric sulphur cycling, and climate forcing, IGBP Newsletter, 33, 13-18.

Quinn P.K., Charlson R.J., Bates T.S., 1988, Simultaneous observation of ammonia in the atmosphere and oceans, Nature, 335, 120-121, http://dx.doi.org/10.1038/335336a0

Raes F., Van Dingenen R., Vignati E., Wilson J., Putaud J.P., Seinfeld J.H., Adams P., 2000, Formation and cycling of aerosols in the global troposphere, Atmos. Environ., 34(25), 4215-4240, http://dx.doi.org/10.1016/S1352-2310(00)00239-9

Rastogi N., Sarin M.M., 2005, Long-term characterization of ionic species in aerosols from urban and high-altitude sites in western India: role of mineral dust and anthropogenic sources, Atmos. Environ., 39(30), 5541-5554, http://dx.doi.org/10.1016/j.atmosenv.2005.06.011

Seinfeld J.H., Pandis S.N., 1998, Atmospheric chemistry and physics from air pollution to climate change, Wiley Intersci., 1326 pp.

Sievering H., Ennis G., Gorman E., 1990, Size distributions and statistical analysis of nitrate, excess sulphate, and chloride deficit in the marine boundary layer during GCE/CASE/WATOX, Global Biogeochem. Cy., 4(4), 395-405, http://dx.doi.org/10.1029/GB004i004p00395

Spokes L.J., Yeatman S.G., Cornell S.E., Jickells T.D., 2000, Nitrogen deposition to the eastern Atlantic Ocean. The importance of south-easterly flow, Tellus B, 52(1), 37-49, http://dx.doi.org/10.1034/j.1600-0889.2000.00062.x

Yao X.H., Lau A.P.S., Fang M., Chan C.K., Hu M., 2003, Size distributions and formation of ionic species in atmospheric particulate poll utants in Beijing, China: 1-inorganic ions, Atmos. Environ., 37(21), 2991-3000, http://dx.doi.org/10.1016/S1352-2310(03)00255-3

Yeatman S.G., Spokes L.J., Jickells T.D., 2001, Comparisons of coarse-mode aerosol nitrate and ammonium at two polluted coastal sites, Atmos. Environ., 35(7), 1321-1335, http://dx.doi.org/10.1016/S1352-2310(00)00452-0

Zhuang H., Chan C.K., Fang M., Wexler A.S., 1999, Formation of nitrate and non-sea-salt sulphate on coarse particles, Atmos. Environ., 33(26), 4223-4233, http://dx.doi.org/10.1016/S1352-2310(99)00186-7

full, complete article (PDF - compatibile with Acrobat 4.0), 314 KB

Recent multiyear trends in the Baltic Sea level
Oceanologia 2013, 55(2), 319-337

Małgorzata Stramska1,*, Natalia Chudziak2
1 Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55,81-712 Sopot, Poland;
e-mail: mstramska@iopan.gda.pl
*corresponding author
2 Department of Earth Sciences, Szczecin University,
Mickiewicza 16, 70-383 Szczecin, Poland

keywords: Baltic Sea, regional oceanography, marginal and semi-enclosed seas, sea level: variations and mean

Received 13 February 2013, revised 3 April 2013, accepted 5 April 2013.

This work was supported through the SatBałtyk project funded by the European Union through the European Regional Development Fund, (contract No. POIG.01.01.02-22-011/09 entitled "The Satellite Monitoring of the Baltic Sea Environment").


Sea level rise is one of the most direct consequences of climate change. It has been documented that sea level rise is globally subject to considerable spatial heterogeneity. There is an increased awareness of the need to create regional data records and projections of sea level trends, because specific regional processes can cause regional trends to diverge significantly from global averages. In this paper available multimission satellite altimetry data were used to estimate the multiyear trend in the Baltic Sea level. The estimated trend is about 0.33 cm yr-1, similar to the globally averaged sea level trend, but significantly larger than the regional trends estimated in the North Sea and North Atlantic. The decadal scale variability in the sea level trend in the Baltic Sea does not indicate a significant acceleration of the trend in recent years. Our analysis confirmsthat the interannual variability of sea level in the Baltic in winter is significantly correlated with the North Atlantic Oscillation index.

  References ref

Andersson H.C., 2002, Influence of long-term regional and large-scale atmospheric circulation on the Baltic sea level, Tellus A, 54(1), 76-88, http://dx.doi.org/10.1034/j.1600-0870.2002.00288.x

Ayoub N., Le Traon P.Y., De Mey P., 1998, A description of the Mediterranean surface variable circulation from combined ERS-1 and TOPEX/Poseidon altimeter data, J. Mar. Syst., 18(1), 3-40, http://dx.doi.org/10.1016/S0924-7963(98)80004-3

Bouffard J., Roblou L., Birol F., Pascual A., Fenoglio-Marc L., Cancet M., Morrow R., Ménard Y., 2011, Introduction and assessment of improvedcoastal altimetry strategies: case study over the North Western Mediterranean Sea, [in:] Coastal altimetry, S. Vignudelli, A.G. Kostianoy, P. Cipollini & J. Benveniste (eds.), Springer Publ., 1st edn., 297-330.

Bouffard J., Vignudelli S., Cipollini P., Ménard Y., 2008a, Exploiting the potential of an improved multimission altimetric dataset over the coastal ocean, Geophys. Res. Lett., 35, L10601, http://dx.doi.org/10.1029/2008GL033488

Bouffard J., Vignudelli S., Hermann M., Lyard F., Marsaleix P., Ménard Y., Cipollini P., 2008b, Comparison of ocean dynamics with a regional circulation model and improved altimetry in the Northwestern Mediterranean, Terr. Atmos. Ocean. Sci., 19(1-2), 117-133, http://dx.doi.org/10.3319/TAO.2008.19.1-2.117(SA)

Church J.A., White N.J., 2006, A 20th century acceleration in global sea level rise, Geophys. Res. Lett., 33, L01602, http://dx.doi.org/10.1029/2005GL024826

Church J.A., Woodworth P.L., Aarup T., Wilson W. S. (eds.), 2010, Understanding sea-level rise and variability, Wiley-Blackwell, Chichester, Oxford, Hoboken, 456 pp.

Cotton D., Allan T., Menard Y., le Traon P.Y., Cavaleri L., Doombos E., Challenor P., 2004, Global altimeter measurements by leading Europeans, requirements for future satellite altimetry, Tech. Rep. European Project EVR1-CT2001-20009, Brussels, 47 pp.

Ekman M., 2009, The changing level of the Baltic Sea during 300 years: a clue to understanding the Earth, Summer Inst. Hist. Geophys., Åland Islands, 168 pp.

Ekman M., Mäkinen J., 1996, Mean sea surface topography in the Baltic Sea and its transition area to the North Sea: a geodetic solution and comparisons with oceanographic models, J. Geophys. Res.-Oceans, 101(C5), 11993-11999, http://dx.doi.org/10.1029/96JC00318

Eremeev V.N., Korotaev G.K., Radaikina L.N., 2004, Monitoring of the Black Sea dynamics based on satellite technologies, Phys. Oceanogr., 14(2), 114-126, http://dx.doi.org/10.1023/B:POCE.0000037874.11966.dc

Ginzburg A.I., Kostianoy A. G., Sheremet N.A., 2003, Mesoscale variability of the Black Sea as revealed from TOPEX/POSEIDON and ERS-2 altimeter data, Issled. Zemli iz Kosmosa, 3, 34-46, (in Russian).

Gustafsson B.G., Andersson H.C., 2001, Modeling the exchange of the Baltic Sea from the meridional atmospheric pressure difference across the North Sea, JGR, 106(69), 19731-19744, http://dx.doi.org/10.1029/2000JC000593

HELCOM, 2009, Eutrophication in the Baltic Sea - an integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region, Balt. Sea Environ. Proc., No. 115B, 148 pp.

Horton R., Herweijer C., Rosenzweig C., Liu J., Gornitz V., Ruane A.C., 2008, Sea level rise projections for current generation CGCMs based on the semi-empirical method, Geophys. Res. Lett., 35(2), http://dx.doi.org/10.1029/2007GL032486

Hurrell J.W., Deser C., 2009, North Atlantic climate variability: the role of the North Atlantic Oscillation, J. Mar. Syst., 78(1), 28-41, http://dx.doi.org/10.1016/j.jmarsys.2008.11.026

Hurrell J.W., Kushnir Y., Ottersen G., Visbeck M. (eds.), 2003, The North Atlantic oscillation: climate significance and environmental impact, 2003, Geophys. Monogr. Ser., 134, 279 pp., http://dx.doi.org/10.1029/GM134

Hünicke B., Luterbacher J., Pauling A., Zorita E., 2008, Regional differences in winter sea-level variations in the Baltic Sea for the past 200 years, Tellus A, 60(2), 384-393, http://dx.doi.org/10.1111/j.1600-0870.2007.00298.x

Hünicke B., Zorita E., 2006, Influence of temperature and precipitation on decadal Baltic Sea level variations in the 20th century, Tellus A, 58(1), 141-153, http://dx.doi.org/0.1111/j.1600-0870.2006.00157.x

Hünicke B., Zorita E., 2008, Trends in the amplitude of Baltic Sea level annual cycle, Tellus A, 60(1), 154-164, http://dx.doi.org/10.1111/j.1600-0870.2007.00277.x

IPCC, 2007, Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change, [in:] Intergovernmental Panel on Climate Change S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, Tignor & H.L. Miller (eds.), Cambridge Univ. Press, Cambridge, New York, 996 pp.

Jevrejeva S., Moore J.C., Woodworth P.L., Grinsted A., 2005, Influence of large-scale atmospheric circulation on European sea level: results based on the wavelet transform method, Tellus A, 57(2), 183-193, http://dx.doi.org/10.1111/j.1600-0870.2005.00090.x

Larnicol G., Le Traon P.Y., Ayoub N., De Mey P., 1995, Mean sea level and surface circulation variability of the Mediterranean Sea from 2 years of TOPEX/POSEIDON altimetry, J. Geophys. Res.-Oceans, 100(C12), 25163-25177, http://dx.doi.org/10.1029/95JC01961

Lebedev S.A., Kostianoy A.G., 2005, Satellite altimetry of the Caspian Sea, Sea Publ., Moscow, 366 pp., (in Russian).

Lebedev S.A., Tikhonova O.V., 2002, Application of satellite altimetry for investigation of sea level variation of the southeastern Barents Sea, [in:] Proc. 4th Int. Sci. Tech. Conf. ‘Modern methods and technology of oceanological research’, Moscow, Russia, 15-17 November 2002, Vol. 2, 58-64, (in Russian).

Lebedev S.A., Zilberstein O.I., Popov S.K., Tikhonova O.V., 2003, Analysis of temporal sea level variation in the Barents and the White Seas from altimetry, tide gauges and hydrodynamic simulation, [in:] International workshop on satellite altimetry, C. Hwang, C.K. Shum, J.C. Li (eds.), IAG Symposia, Vol. 126, Springer Verlag, Berlin, Heidelberg, 243-250.

Leppäranta M., Myrberg K., 2009, Physical oceanography of the Baltic Sea, Springer-Praxis Book Ser. Geophys. Sci., Springer, Chichester, 378 pp., http://dx.doi.org/10.1007/978-3-540-79703-6

Leuliette E., Nerem S.R., Mitchum T., 2004, Calibration of TOPEX/Poseidon and Jason altimeter data to construct a continuous record of mean sea level change, Mar. Geod., 27(1-2), 79-94, http://dx.doi.org/10.1080/01490410490465193

Madsen K.S., Høyer J.L., Tscherning C.C., 2007, Near-coastal satellite altimetry: sea surface height variability in the North Sea-Baltic Sea a rea, Geophys. Res. Lett., 34, L14601, http://dx.doi.org/10.1029/2007GL029965

Meehl G.A., Stocker T.F., Collins W.D., Friedlingstein P., Gaye A.T., Gregory J.M., Kitoh A., Knutti R., Murphy J.M., Noda A., Raper S.C.B., Watterson I.G., Weaver A.J., Zhao Z.-C., 2007, Global climate projections, [in:] Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, Tignor & H.L. Miller (eds.), Cambridge Univ. Press, Cambridge, New York, 996 pp.

Nardelli B., Santoleri R., Marullo S., Iudicone D., Zoffoli S., 1999, Altimetric sea level anomalies and three-dimensional structure of the sea in the Channel of Sicily, J. Geophys. Res.-Oceans, 104(C9), 20585-20603, http://dx.doi.org/10.1029/1999JC900103

Nerem R.S., Chambers D.P., Choe C., Mitchum G.T., 2010, Estimating mean sea level change from the TOPEX and Jason altimeter missions, Mar. Geod., 33(1), 435-446, http://dx.doi.org/10.1080/01490419.2010.491031

Omstedt A., Elken J., Lehmann A., Piechura J., 2004, Knowledge of the Baltic Sea physics gained during the BALTEX and related programmes, Progr. Oceanogr., 63(1-2), 1-28, http://dx.doi.org/10.1016/j.pocean.2004.09.001

Peltier W.R., 1998, Postglacial variations in the level of the Sea: implications for climate dynamics and solid-earth geophysics, Rev. Geophys., 36(4), 603-689, http://dx.doi.org/10.1029/98RG02638

Peltier W.R., 2004, Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G(VM2) model and GRACE , Ann. Rev. Earth. Planet Sci., 32, 111-149, http://dx.doi.org/10.1146/annurev.earth.32.082503.144359

Poutanen M., Stipa T., 2001, Temporal and spatial variation of the sea surface topography of the Baltic Sea, [in:] Gravity, geoid and geodynamics 2000, M.G. Sideris (ed.), IAG International Symposia Vol. 123, Springer-Verlag, Berlin, Heidelberg, New York, 398 pp.

Rahmstorf S., 2007, A semi-empirical approach to projecting future sea level rise, Science, 315(5810), 368-370, http://dx.doi.org/10.1126/science.1135456

Samuelsson M., Stigebrandt A., 1996, Main characteristics of the long-term sea level variability in the Baltic Sea, Tellus A, 48(5), 672-683, http://dx.doi.org/10.1034/j.1600-0870.1996.t01-4-00006.x

Sølvsteen C., Hansen C., 2006, Validation of the operational wave models WAVEWATCH-III and Mike21-OSW against satellite altimetry and coastal buoys, Royal Danish Administr. Navig. Hydrogr., Copenhagen, 53 pp.

Tamisiea M.E., Hill E.M., Ponte R.M., Davis J.L., Velicogna I., Vinogradova N.T., 2010, Impact of self-attraction and loading on the annual cycle in sea level , J. Geophys. Res.-Oceans, 115, C07004, http://dx.doi.org/10.1029/2009JC005687

Vignudelli S., 1997, Analysis of ERS-1 altimeter collinear passes in the Mediterranean Sea during 1992-1993, Int. J. Remote Sens., 18(3), 573-601, http://dx.doi.org/10.1080/014311697218953

Vignudelli S., Cipollini P., Astraldi M., Gasparini G. P., Manzella G.M.R., 2000, Integrated use of altimeter and in situ data for understanding the water exchanges between the Tyrrhenian and Ligurian Seas, J. Geophys. Res., 105(C8), 19649-19663, http://dx.doi.org/10.1029/2000JC900083

Vignudelli S., Cipollini P., Reseghetti F., Fusco G., Gasparini G.P., Manzella G.M.R., 2003, Comparison between XBT data and TOPEX/Poseidon satellite altimetry in the Ligurian-Tyrrhenian area, Ann. Geophys., 21(1), 123-135, http://dx.doi.org/10.5194/angeo-21-123-2003

Vignudelli S., Cipollini P., Roblou L., Lyard F., Gasparini G.P., Manzella G.M.R., Astraldi M., 2005, Improved satellite altimetry in coastal systems: case study of the Corsica Channel (Mediterranean Sea), Geophys. Res. Lett., 32, L07608, http://dx.doi.org/10.1029/2005GL022602

Vignudelli S., Kostianoy A.G., Cipollini P., Benveniste J. (eds.), Coastal altimetry, Springer-Verlag, Berlin, Heidelberg, 578 pp., http://dx.doi.org/10.1007/978-3-642-12796-0

Woodworth P.L., Player R., 2003, The permanent service for mean sea level: an update to the 21st century, J. Coast. Res., 19(2), 287-295.

full, complete article (PDF - compatibile with Acrobat 4.0), 263 KB

Herbivory on macro-algae affects colonization of beach-cast algal wrack by detritivores but not its decomposition
Oceanologia 2013, 55(2), 339-358

Philip Eereveld1, Lena Hübner1, Gesa Schaefer1, Martin Zimmer1,2,*
1 Institute of Zoology, Christian-Albrechts University,
Am Botanischen Garten 9, 24118 Kiel, Germany
2 Paris-Lodron University, (FB Organismische Biologie),
Hellbrunnerstr. 34, 5020 Salzburg, Austria;
e-mail: martin.zimmer@sbg.ac.at
*corresponding author

keywords: induced anti-herbivore defence, macro-algal wrack, marine-terrestrial ecotone,spatial subsidy, trophic link

Received 4 October 2012, revised 20 February 2013, accepted 26 February 2013.


Spatial subsidies have increasingly been considered significant sources of matter and energy to unproductive ecosystems. However, subsidy quality may both differ between subsidizing sources and vary over time. In our studies, sub-littoral herbivory by snails or isopods on red or brown macro-algae induced changes in algal tissues that affected colonization of beach-cast algal wrack by supra-littoral detritivores (amphipods). However, microbial decay and decomposition through the joint action of detritivores and microbes of algal wrack in the supra-littoral remained unaffected by whether or not red or brown algae had been fed upon by snails or isopods. Thus, herbivory on marine macro-algae affects the cross-system connection of sub-littoral and supra-littoral food webs transiently, but these effects diminish upon ageing of macro-algal wrack in the supra-littoral zone.

  References ref
Amsler C.D., 2001, Induced defenses in macroalgae: the herbivore makes a difference, J. Phycol., 37(3), 353-356, http://dx.doi.org/10.1046/j.1529-8817.2001.037003353.x

Adin R., Riera P., 2003, Preferential food source utilization among stranded macroalgae by Talitrus saltator (Amphipod, Talitridae): stable isotopes study in the northern coast of Brittany (France), Estuar. Coast. Shelf Sci., 56(1), 91-98, http://dx.doi.org/10.1016/S0272-7714(02)00124-5

Bardgett R.D., Wardle D.A., Yeates G.W., 1998, Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms, Soil Biol. Biochem., 30(14), 1867-1878, http://dx.doi.org/10.1016/S0038-0717(98)00069-8

Ben-David M., Hanley T.A., Schell D.M., 1998, Fertilization of terrestrial vegetation by spawning Pacific salmon: the role of flooding and predator activity, Oikos, 83(1), 47-55, http://dx.doi.org/10.2307/3546545

Bonte D., Lens L., Maelfait J.P., 2003, Sand dynamics in coastal dune landscapes constrain diversity and life-history characteristics of spiders, J. Appl. Ecol., 43(4), 735-747, http://dx.doi.org/10.1111/j.1365-2664.2006.01175.x

Cederholm C.J., Kunze M.D., Murota T., Sibatani A., 1999, Pacific salmon carcasses: essential contributions of nutrients and energy for aquatic and terrestrial ecosystems, Fisheries, 24(10), 6-15, http://dx.doi.org/10.1577/1548-8446(1999)024%3C0006:PSC%3E2.0.CO;2

Ceh J., Molis M., Dzeha T.M., Wahl M., 2005, Induction and reduction of anti-herbivore defenses in brown and red macroalgae off the Kenyan coast, J. Phycol., 41(4), 726-731, http://dx.doi.org/10.1111/j.1529-8817.2005.00093.x

Chapman S.K., Hart S.C., Cobb N.S, Whitham T.G., Koch G.W., 2003, Insect herbivory increases litter quality and decomposition: an extension of the acceleration hypothesis, Ecology, 84(11), 2867-2876, http://dx.doi.org/10.1890/02-0046

Chown S.L., 1996, Kelp degradation by Paractora trichosterna (Thomson) (Diptera: Helcomyzidae) at sub-Antarctic South Georgia , Polar Biol., 16(3), 171-178, http://dx.doi.org/10.1007/s003000050042

Colombini I., Aloia A., Fallaci M., Pezzoli G., Chelazzi L., 2000, Temporal and spatial use of stranded wrack by the macrofauna of a tropical sandy beach, Mar. Biol., 136(3), 531-541, http://dx.doi.org/10.1007/s002270050713

Cornelissen J.H.C., Pérez-Harguindeguy N., Díaz S., Grime J.P., Marzano B., Cabido M., Vendramini F., Cerabolini B., 1999, Leaf structure and defence control litter decomposition rate across species and life forms in regional floras of two continents, New Phytol., 143(1), 191-200, http://dx.doi.org/10.1046/j.1469-8137.1999.00430.x

Cortez J., Garnier E., Pérez-Harguindeguy N., Debussche M., Gillon D., 2007, Plant traits, litter quality and decomposition in a Mediter ranean old-field succession, Plant Soil, 296(1-2), 19-34, http://dx.doi.org/10.1007/s11104-007-9285-6

Crawley K.R., Hyndes G.A., 2007, The role of different types of detached macrophytes in the food and habitat choice of a surfzone inhabiting amphipod, Mar. Biol., 151(4), 1433-1443, http://dx.doi.org/10.1007/s00227-006-0581-0

Cronin G., Hay M.E., 1996, Induction of seaweed chemical defenses by amphipod grazing, Ecology, 77(8), 2287-2301, http://dx.doi.org/10.2307/2265731

Deal M., Hay M.E., Wilson D., Fenical W., 2003, Galactolipids rather than phlorotannins as herbivore deterrents in the brown seaweed Fucus vesiculosus, Oecologia, 136(1), 107-114, http://dx.doi.org/10.1007/s00442-003-1242-3

Ewers C., Beiersdorf A., Wieski K., Pennings S.C., Zimmer M., 2012, Predator/prey-interactions promote decomposition of low-quality detritus, Wetlands, 32(5), 931-938, http://dx.doi.org/10.1007/s13157-012-0326-4

Fariña J.M., Salazar S., Wallem K.P., Witmnan J.D., Ellis J.C., 2003, Nutrient exchanges between marine and terrestrial ecosystems: the case of the Galapagos sea lion Zalophus wollebaecki, J. Animal Ecol., 72(5), 873-887, http://dx.doi.org/10.1046/j.1365-2656.2003.00760.x

Feike M., 2004, Die Bedeutung des Strandanwurfes für das Ökosystem Sandstrand, Ph.D. thesis, Univ. Rostock.

Fonte S.J., Schowalter T.D., 2005, The influence of a neotropical herbivore (Lamponius portoricensis) on nutrient cycling and soil processes, Oecologia, 146(3), 423-431, http://dx.doi.org/10.1007/s00442-005-0203-4

Ford R.B., Thrush S.F., Probert P.K., 1999, Macrobenthic colonisation of disturbances on an intertidal sandflat: the influence of seas on and buried algae, Mar. Ecol.-Prog. Ser., 191, 163-174, http://dx.doi.org/10.3354/meps191163

Griffiths C.L., Stenton-Dozey J.M., 1981, The fauna and rate of degradation of stranded kelp, Estuar. Coast. Shelf Sci., 12(6), 645-653, http://dx.doi.org/10.1016/S0302-3524(81)80062-X

Griffiths C.L., Stenton-Dozey J.M.E., Koop K., 1983, Kelp wrack and the flow of energy through a sandy beach ecosystem, [in:] Sandy beaches as ecosystems, A. McLachlan & T. Erasmus (eds.), Junk Publ., The Hague, 547-556.

Grime J.P., Cornelissen J.H.C., Thompson K., Hodgson J.G., 1996, Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves, Oikos, 77(3), 489-494, http://dx.doi.org/10.2307/3545938

Hanisak M.D., 1993, Nitrogen release from decomposing seaweeds: species and temperature effects, J. Appl. Phycol., 5(2), 175-181, http://dx.doi.org/10.1007/BF00004014

Huxel G.R., McCann K.S., 1998, Food web stability: the influence of trophic flows across habitats, Am. Nat., 152(3), 460-469, http://dx.doi.org/10.1086/286182

Inglis G., 1989, The colonisation and degradation of stranded Macrocystis pyrifera (L.) C. Ag. by the macrofauna of a New Zealand sandy beach, J. Exp. Mar. Biol. Ecol., 125(3), 203-217, http://dx.doi.org/10.1016/0022-0981(89)90097-X

Jędrzejczak M.F., 2002, Stranded Zostera marina L. vs wrack fauna community interactions on a Baltic sandy beach (Hel, Poland): a short-term pilot study. Part I. Driftline effects of fragmented detritivory, leaching and decay rates, Oceanologia, 44(2), 273-286.

Jormalainen V., Honkanen T., Koivikko R., Eränen J., 2003, Induction of phlorotannin production in a brown alga: defense or resource dynamics?, Oikos, 103(3), 640-650, http://dx.doi.org/10.1034/j.1600-0706.2003.12635.x

Kawaguchi Y., Nakano S., 2001, Contribution of terrestrial invertebrates to the annual resource budget for salmonids in forest and grassland reaches of a headwater stream, Freshwater Biol., 46(3), 303-316, http://dx.doi.org/10.1046/j.1365-2427.2001.00667.x

Kay A.D., Mankowski J., Hobbie S.E., 2008, Long-term burning interacts with herbivory to slow decomposition, Ecology, 89(5), 1188-94, http://dx.doi.org/10.1890/07-1622.1

Kubanek J., Lester S.E., Fenical W., Hay M.E., 2004, Ambiguous role of phlorotannins as chemical defenses in the brown alga Fucus vesiculosus, Mar. Ecol.-Prog. Ser., 277, 79-93, http://dx.doi.org/10.3354/meps277079

Lewis T.L., Mews M., Jelinski D.E., Zimmer M., 2007, Detrital subsidy to the supratidal zone provides feeding habitat for intertidal crabs, Estuar. Coast., 30(3), 451-458.

Macaya E., Rothäusler E., Thiel M., Molis M., Wahl M., 2005, Induction of defenses and within-alga variation of palatability in two brown algae from the northern,central coast of Chile: Effects of mesograzers and UV radiation, J. Exp. Mar. Biol. Ecol., 325(2), 214-227, http://dx.doi.org/10.1016/j.jembe.2005.05.004

Mafongoya P.L., Nair P.K.R., Dzowela B.H., 1998, Mineralization of nitrogen from decomposing leaves of multipurpose trees as affected by their chemical composition, Biol. Fert. Soils, 27(2), 143-148, http://dx.doi.org/10.1007/s003740050412

Manly B., 1993, Comments on design and analysis of multiple-choice feeding - preference experiments, Oecologia, 93, 149-152.

Mews M., Zimmer M., Jelinski D. E., 2006, Species-specific decomposition rates of beach-cast wrack in Barkley Sound, British Columbia, Canada, Mar. Ecol.-Prog. Ser., 328, 155-160, http://dx.doi.org/10.3354/meps328155

Naiman R.J., Bilby R.E., Schindler D.E., Helfield J.M., 2002, Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems, Ecosystems, 5(4), 399-417, http://dx.doi.org/10.1007/s10021-001-0083-3

Nejrup L.B., Pedersen M.F., Vinzent J., 2012, Grazer avoidance may explain the invasiveness of the red alga Gracilaria vermiculophylla in Scandinavian waters, Mar. Biol., 159(8), 1703-1712, http://dx.doi.org/10.1007/s00227-012-1959-9

Norderhaug K.M., Fredriksen S., Nygaard K., 2003, Trophic importance of Laminaria hyperborea to kelp forest consumers and the importance of bacterial degradation to food quality, Mar. Ecol.-Prog. Ser., 255, 135-144, http://dx.doi.org/10.3354/meps255135

Northrup R., Dahlgren R.A., McColl J.G., 1998, Polyphenols as regulators of plant-litter-soil interactions in northern California’s pygmy forest: a positive feedback?, Biogeochemistry, 42(1-2), 189-220, http://dx.doi.org/10.1023/A:1005991908504

Nylund G.M., Weinberger F., Rempt M., Pohnert G., 2011, Metabolomic assessment of induced and activated chemical defence in the invasive red alga Gracilaria vermiculophylla, PloS One, 6, e29359, http://dx.doi.org/10.1371/journal.pone.0029359

Olabarria C., Lastra M., Garrido J., 2007, Succession of macrofauna on macroalgal wrack of an exposed sandy beach: effects of patch size and site, Mar. Environ. Res., 63(1), 19-40, http://dx.doi.org/10.1016/j.marenvres.2006.06.001

Orr M., Zimmer M., Jelinski D.E., Mews M., 2005, Wrack deposition on different beach types: spatial and temporal variation in the pattern of subsidy, Ecology, 86(6), 1496-1507, http://dx.doi.org/10.1890/04-1486

Palm C., Sanchez P., 1991, Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolic content, Soil Biol. Bioch., 23(1), 83-88, http://dx.doi.org/10.1016/0038-0717(91)90166-H

Pavia H., Cervin G., Lindgren A., Åberg P., 1997, Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum, Mar. Ecol.-Prog. Ser., 157, 139-146, http://dx.doi.org/10.3354/meps157139

Pavia H., Toth G., 2000, Inducible chemical resistance to herbivory in the brown seaweed Ascophyllum nodosum, Ecology, 81(11), 3212-3225, http://dx.doi.org/10.1890/0012-9658(2000)081[3212:ICRTHI]2.0.CO;2

Pelletier A., Jelinski D. E., Treplin M., Zimmer M., 2011, Colonisation of Beach-Cast macrophyte wrack patches by Talitrid Amphipods: a primer, Estuar. Coast., 34(4), 863-871.

Pennings S.C., Carefoot T.H., Zimmer M., Danko J.P., Ziegler A., 2000, Feeding preferences of supralittoral isopods and amphipods, Can. J. Zool., 78(11), 1918-1929, http://dx.doi.org/10.1139/z00-143

Polis G.A., Anderson W. B., Holt R.D., 1997, Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs, Ann. Rev. Ecol. Syst., 28, 289-316, http://dx.doi.org/10.1146/annurev.ecolsys.28.1.289

Polis G.A., Hurd S.D., 1995, Extraordinarily high spider densities on islands: flow of energy from marine to terrestrial food webs and the absence of predation, Proc. Nat. Acad. Sci. (USA), 92(10), 4382-4386.


Polis G.A., Hurd S.D., 1996, Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities, Am. Nat., 147(3), 396-423, http://dx.doi.org/10.1086/285858

Rempt M., Weinberger F., Grosser K., Pohnert G., 2012, Conserved and species-specific oxylipin pathways in the wound-activated chemical defense of the noninvasive red alga Gracilaria chilensis and the invasive Gracilaria vermiculophylla, Beilstein J. Org. Chem., 8, 283-289, http://dx.doi.org/10.3762/bjoc.8.30

Roa R., 1992, Design and analysis of multiple-choice feeding-preference experiments, Oecologia, 89, 509-515. Rodil I.F., Olabarria C., Lastra M., López J., 2008, Differential effects of native and invasive algal wrack on macrofaunal assemblages inhabiting exposed sandy beaches, J. Exp. Mar. Biol. Ecol., 358(1), 1-13, http://dx.doi.org/10.1016/j.jembe.2007.12.030

Rohde S., Molis M., Wahl M., 2004, Regulation of anti-herbivore defence by Fucus vesiculosus in response to various cues, J. Ecol., 92(2), 1011-1018, http://dx.doi.org/10.1111/j.0022-0477.2004.00936.x

Rohde S., Wahl M., 2008, Temporal dynamics of induced resistance in a marine macroalga: time lag of induction and reduction in Fucus vesiculosus, J. Exp. Mar. Biol. Ecol., 367(2), 227-229, http://dx.doi.org/10.1016/j.jembe.2008.10.003

Rose M.D., Polis G.A., 1998, The distribution and abundance of coyotes: the effects of allochthonous food subsidies from the sea, Ecology, 79(3), 998-1007, http://dx.doi.org/10.1890/0012-9658(1998)079[0998:TDAAOC]2.0.CO;2

Rossi F., Underwood A.J., 2002, Small-scale disturbance and increased nutrients as influences on intertidal macrobenthic assemblages: experimental burial of wrack in different intertidal environments, Mar. Ecol.-Prog. Ser., 241, 29-39, http://dx.doi.org/10.3354/meps241029

Roth J.D., 2003, Variability in marine resources affects arctic fox populati on dynamics, J. Animal Ecol., 72(4), 668-676, http://dx.doi.org/10.1046/j.1365-2656.2003.00739.x

Rothäusler E., Macaya E., Molis M., Wahl M., Thiel M., 2005, Laboratory experiments examining inducible defense show variable responses of temperate brown and red macroalgae, Rev. Chil. Hist. Nat., 78(4), 603-614, http://dx.doi.org/10.4067/S0716-078X2005000400001

Schweitzer J.A., Bailey J.K., Hart S.C., Whitham T.G., 2005, Nonadditive effects of mixing cottonwood genotypes on litter decomposition and nutrient dynamics, Ecology, 86(10), 2834-2840, http://dx.doi.org/10.1890/04-1955

Storry K.A., Weldrick C.K., Mews M., Zimmer M., Jelinski D. E., 2006, Intertidal coarse woody debris: a spatial subsidy as shelter or feeding habitat for gastropods?, Estuar. Coast. Shelf Sci., 66(1-2), 197-203, http://dx.doi.org/10.1016/j.ecss.2005.08.005

Van Alstyne K.L., 1988, Herbivore grazing increases polyphenolic defenses in the brown alga Fucus distichus, Ecology, 69(3), 655-663, http://dx.doi.org/10.2307/1941014

Van Alstyne K.L., McCarthy J.J., Hustead C.L., Duggins D.O., 1999, Geographic variation in polyphenolic levels of Northeastern Pacific kelps and rockweeds, Mar. Biol., 133(2), 371-379, http://dx.doi.org/10.1007/s002270050476

Wardle D.A., Bonner K.I., Barker G.M., 2002, Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivory, Funct. Ecol., 16(5), 585-595, http://dx.doi.org/10.1046/j.1365-2435.2002.00659.x

Weinberger F., Buchholz B., Karez R., Wahl M., 2008, The invasive red alga Gracilaria vermiculophylla in the Baltic Sea: adaptation to brackish water may compensate for light limitation, Aquat. Bot., 3(3), 251-264, http://dx.doi.org/10.3354/ab00083

Wlliams S.L., 1984, Decomposition of the tropical macroalga Caulerpa cupresso ides (West) C. Agardh: field and laboratory studies, J. Exp. Mar. Biol. Ecol., 80(2), 109-124, http://dx.doi.org/10.1016/0022-0981(84)90007-8

Willson M.F., Gende S.M., Marston B.H., 1998, Fishes and the forest, BioScience, 48(6), 455-462, http://dx.doi.org/10.2307/1313243

Yates J.L., Peckol P., 1993, Effects of nutrient availability and herbivory on polyphenolics in the seaweed Fucus vesiculosus, Ecology, 74(6), 1757-1766, http://dx.doi.org/10.2307/1939934

Zimmer M., Pennings S.C., Buck T.L., Carefoot T.H., 2004, Salt marsh litter and detritivores: a closer look at redundancy, Estuaries, 27(5), 753-769, http://dx.doi.org/10.1007/BF02912038.

full, complete article (PDF - compatibile with Acrobat 4.0), 194 KB

Annual spatio-temporal variation of the euphotic depth in the SW-Finnish archipelago, Baltic Sea
Oceanologia 2013, 55(2), 359-373

Hanna Luhtala*, Harri Tolvanen, Risto Kalliola
Department of Geography and Geology, University of Turku,
FI-20014 Turku, Finland;
e-mail: hanna.luhtala@utu.fi, harri.tolvanen@utu.fi, risto.kalliola@utu.fi
*corresponding author

keywords: light attenuation, euphotic zone, spatio-temporal variation, coastal waters, Baltic Sea

Received 28 May 2012, revised 14 February 2013, accepted 25 February 2013.

The study was financially supported by Kone Foundation, EU Life+ (FINMARINET project), and the Academy of Finland (project 251806).


We measured depth profiles of underwater PAR (photosynthetically active radiation) together with optically derived turbidity and chlorophyll fluorescence values at 11 sampling stations in the South-West Finnish archipelago of the Baltic Sea. The data were collected eight times during the spring, summer and early autumn of 2010. The results illustrate complex and multidimensional variations in the euphotic depth, which was subject to fourfold and twofold differences in the geographical and seasonal dimensions respectively. The spatio-temporal inconsistency and non-linearity of the seasonal euphotic depth variation calls for further studies at different spatial and temporal scales.

  References ref

Alvarez-Cobelas M., Baltanás A., Velasco J.L., Rojo C., 2002, Daily variations in the optical properties of a small lake, Freshwater Biol., 47(6), 1051-1063, http://dx.doi.org/10.1046/j.1365-2427.2002.00825.x.

Asmala E., Stedmon C.A., Thomas D.N., 2012, Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries, Estuar. Coast. Shelf Sci., 111, 107-117, http://dx.doi.org/10.1016/j.ecss.2012.06.015.

Boss E., Pegau W.S., Zaneveld J.R.V., Barnard A. H., 2001, Spatial and temporal variability of absorption by dissolved material at a continental shelf, J. Geophys. Res., 106(C5), 9499-9507, http://dx.doi.org/10.1029/2000JC900008.

Darecki M., Stramski D., 2004, An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea, Remote Sens. Environ., 89(3), 326-350, http://dx.doi.org/10.1016/j.rse.2003.10.012.

Dera J., Woźniak B., 2010, Solar radiation in the Baltic Sea, Oceanologia, 52(4), 533-582, http://dx.doi.org/10.5697/oc.52-4.533.

Erkkilä; A., Kalliola R., 2004, Patterns and dynamics of coastal waters in multi-temporal satellite images: support to water quality monitoring in the Archipelago Sea, Finland, Estuar. Coast. Shelf Sci., 60(2), 165-177, http://dx.doi.org/10.1016/j.ecss.2003.11.024.

FMI (Finnish Meteorological Institute), 2010, Climate review January-December 2010, Finnish Meteorol. Inst., Helsinki, (in Finnish).

Giardino C., Bresciani M., Pilkaityte R., Bartoli M., Razinkovas A., 2010, In situ measurements and satellite remote sensing of case 2 waters: first results from the Curonian Lagoon, Oceanologia, 52(2), 197-210, http://dx.doi.org/10.5697/oc.52-2.197.

Kirk J.T.O., 2011, Light and photosynthesis in aquatic ecosystems, 3rd edn., Cambridge Univ. Press, Cambridge, 649 pp.

Kirkkala T., 1998, How are you doing, Archipelago Sea?, Southwest Fin. Region. Environ. Centre, Turku, 70 pp., (in Finnish).

Kirkkala T., Helminen H., Erkkilä A., 1998, Variability of nutrient limitation in the Archipelago Sea, SW Finland, Hydrobiologia, 363(1-3), 117-126.

Kowalczuk P., Olszewski J., Darecki M., Kaczmarek S., 2005, Empirical relationships between coloured dissolved organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters, Int. J. Remote Sens., 26(2), 345-370, http://dx.doi.org/10.1080/01431160410001720270.

Kowalczuk P., Zabłocka M., Sagan S., Kuliński K., 2010, Fluorescence measured in situ as a proxy of CDOM absorption and DOC concentration in the Baltic Sea, Oceanologia, 52(3), 431-471, http://dx.doi.org/10.5697/oc.52-3.431.

Kratzer S., Häkansson B., Sahlin C., 2003, Assessing Secchi and photic zone depth in the Baltic Sea from satellite data, Ambio, 32(8), 577-585, http://dx.doi.org/10.1579/0044-7447-32.8.577.

Lee Z., 2009, KPAR: an optical property associated with ambiguous values, J. Lake Sci., 21(2), 159-164.

Lee Z., Weidemann A., Kindle J., Arnone R., Carder K.L., Davis C., 2007, Euphotic zone depth: its derivation and implication to ocean-color remote sensing, J. Geophys. Res., 112, C03009, http://dx.doi.org/10.1029/2006JC003802.

Leppäranta M., Myrberg K., 2009, Physical oceanography of the Baltic Sea, Springer, Berlin, 378 pp., http://dx.doi.org/10.1007/978-3-540-79703-6.

Lund-Hansen L.C., 2004, Diffuse attenuation coefficients Kd(PAR) at the estuarine North Sea-Baltic Sea transition: time-series, partitioning, absorption, and scattering, Estuar. Coast. Shelf Sci., 61(2), 251-259, http://dx.doi.org/10.1016/j.ecss.2004.05.004.

Minella J.P.G., Merten G.H., Reichert J.M., Clarke R.T., 2008, Estimating suspended sediment concentrations from turbidity measure ments and the calibration problem, Hydrol. Process., 22(12), 1819-1830, http://dx.doi.org/10.1002/hyp.6763.

Pierson D.C., Kratzer S., StrÖmbeck N., Häkansson B., 2008, Relationship between the attenuation of downwelling irradiance at 490 nm with the attenuation of PAR (400 nm-700 nm) in the Baltic Sea, Remote Sens. Environ., 112(3), 668-680, http://dx.doi.org/10.1016/j.rse.2007.06.009.

Reinart A., Arst H., Nõges P., Nõges T., 2000, Comparison of euphotic layer criteria in lakes, Geophysica, 36(1-2), 141-159.

Sathyendranath S., Platt T., 1990, The light field in the ocean: its modification and exploitation by the pelagic biota, [in:] Light and life in the sea, P.J. Herring, A.K. Campbell, M. Whitfield & L. Maddock (eds.), Cambridge Univ. Press, Cambridge, 3-18.

Stramska M., Frye D., 1997, Dependence of apparent optical properties on solar altitude: experimental results based on mooring data collected in the Sargasso Sea, J. Geophys. Res., 102(C7), 15679-15691, http://dx.doi.org/10.1029/97JC00886.

Suominen T., Tolvanen H., Kalliola R., 2010, Geographical persistence of surface-layer water properties in the Archipelago Sea, SW Finland, Fennia, 188(2), 179-196.

Sverdrup H.U., 1953, On conditions for the vernal blooming of phytoplankton, J. Cons. Int. Explor. Mer., 18(3), 287-295, http://dx.doi.org/10.1093/icesjms/18.3.287.

Tett P., 1990, The photic zone, [in:] Light and life in the sea, P.J. Herring, A.K. Campbell, M. Whitfield & L. Maddock (eds.), Cambridge Univ. Press, Cambridge, 59-87.

The Baltic Sea Portal, 2010, Summary of the algal summer: average conditions on the sea, Fin. Environ. Inst., Fin. Meteorol. Inst., Fin. Minist. Environ., (in Finnish), http://www.itameriportaali.fi/fi/ajankohtaista/itameri-tiedotteet/2010/fiFI/yhteenveto/.

Woźniak S.B., Meler J., Lednicka B., Zdun A., Stoń-Egiert J., 2011, Inherent optical properties of suspended particulate matter in the southern Baltic Sea, Oceanologia, 53(3), 691-729, http://dx.doi.org/10.5697/oc.53-3.691

YSI, 2009, 6-series multiparameter water quality sondes, User Manual, YSI Inc., 377 pp.

full, complete article (PDF - compatibile with Acrobat 4.0), 2980 KB

Seasonal proximate and fatty acid variations of some seaweeds from the northeastern Mediterranean coast
Oceanologia 2013, 55(2), 375-391

Sevim Polat1, Yesim Ozogul2,*
1Department of Basic Sciences, Faculty of Fisheries, University of Çukurova
Adana, Turkey
2Department of Seafood Processing Technology, Faculty of Fisheries, University of Çukurova
Adana, Turkey;
e-mail: yozogul@cu.edu.tr
*corresponding author

keywords: seasonal fatty acids, GC, seaweeds, EPA, DHA

Received 20 September 2012, revised 8 February 2013, accepted 21 February 2013.


The seasonal nutritional value of red (Jania rubens, Laurencia papillosa, Spyridia filamentosa and Dasya rigidula) and brown macroalgae (Padina pavonia and Stypopodium schimperi) was evaluated as a dietary supplement for human and animal nutrition based on proximate and fatty acid profiles. The protein content varied from 0.80% (L. papillosa) to 3.41% (J. rubens) of wet weight with the highest values in winter. The highest lipid levels were recorded in S. schimperi (2.03% in spring, 2.16% in summer), the lowest in S. filamentosa (0.08% in spring). The ash content of J. rubens (46.11-51.63%) was significantly higher than that of the other species (2.28-16.57%). Analysis of the fatty acid composition showed that these seaweed species are very rich in n-3 fatty acids.

  References ref

AOAC (Association of Official Agricultural Chemists), 1990, Official methods of analysis, 15th edn., AOAC, Washington.

AOAC, 1998a, Official method 955.04. Nitrogen (total) in seafood. Fish and other marine products, [in:] Official methods of analysis of AOAC International, Arlington, VA, 6 pp.

AOAC, 1998b, Official method 938.08. Ash of seafood. Fish and other marine products, Official methods of analysis of AOAC International, Gaithersburg, Maryland, 6 pp.

Abdallah A.M., Abdallah M.A., Beltagy A., Siam E., 2006, Contents of heavy metals in marine algae from Egyptian Red Sea coast, Toxic. Environ. Chem., 88(1), 9-22, http://dx.doi.org/10.1080/02772240500414911

Al-Masri M.S., Mamish S., Budier Y., 2003, Radionuclides and trace metals in eastern Mediterranean Sea algae, J. Environ. Radio., 67(2), 157-168, http://dx.doi.org/10.1016/S0265-931X(02)00177-7

Banerjee K., Ghosh R., Homechaudhuri S., Mitra A., 2009, Seasonal variation in the biochemical composition of red seaweed (Catenella repens) from Gangetic Delta, northeast coast of India, J. Earth Syst. Sci., 118(5), 497-505, http://dx.doi.org/10.1007/s12040-009-0045-2

Bárbara I., Cremades J., 1993, Guía de las algas del litoral gallego, a Coruña: Concello da Coruña - Casa das Ciencias.

Bligh E.C., Dyer W. J., 1959, a rapid method of total lipid extraction and purification , Can. J. Biochem. Physiol., 37(8) 913-917.

Burtin P., 2003, Nutritional value of seaweed, Electr. J. Environ. Agr. Food Chem., 2, 498-503.

Dawczynski C., Schubert R., Jahreis G., 2007, Amino acids, fatty acids, and dietary fibre in edible seaweed products, Food Chem., 103(3), 891-899, http://dx.doi.org/10.1016/j.foodchem.2006.09.041

Fleurence J., 1999, Seaweed proteins: biochemical nutritional aspects and potential uses, Trends Food Sci. Tech., 10(1), 25-28.

Herbreteau F., Coiffard L.J.M., Derrien A., De Roeck-Holtzhauer Y., 1997, The fatty acid composition of five species of macroalgae , Bot. Mar., 40(1-6), 25-27, http://dx.doi.org/10.1515/botm.1997.40.1-6.25

HMSO, 1994, Nutritional aspects of cardiovascular disease, Rep. Health Soc. Subj. No. 46, HMSO, London.

Indegaard M., Ostgaard K., 1991, Polysaccharides for food and pharmaceutical uses, [in:] Seaweed resources in Europe: uses and potential, M.D. Guiry & G. Blunden (eds.), John Wiley & Sons Ltd., Chichester, 169-183.

Kaehler S., Kennish R., 1996, Summer and winter comparisons in the nutritional value of marine macroalgae from Hong Kong, Bot. Mar., 39, 11-17, http://dx.doi.org/10.1515/botm.1996.39.1-6.11

Kamenarska Z., Gasic M.J., Zlatovic M., Rasovic A., Sladic D., Kljajic Z., Stefanov K., Seizova K., Najdenski H., Kujumgiev A., Tsvetkova I., Popov S., 2002, Chemical composition of the brown alga Padina pavonia (L.) Gaill. from the Adriatic Sea, Bot. Mar., 45(4), 33-345, http://dx.doi.org/10.1515/BOT.2002.034

Khotimchenko S.V., Vaskovsky V.E., Titlyanova T.V., 2005, Fatty acids of marine algae from the Pacific Coast of North California , Bot. Mar., 45(1), 17-22.

Kostetsky E.Y., Goncharova S.N., Sanina N. M., Shnyrov V.L., 2004, Season influence on lipid composition of marine macrophytes, Bot. Mar., 47, 134-139, http://dx.doi.org/10.1515/BOT.2004.013

Kolb N., Vallorani L., Stocchi V., 1999, Chemical composition and evaluation of protein quality by amino acid score method of edible brown marine algae Arame (Eisenia bicyclis) and Hijiki (Hijikia fusiforme), Acta Aliment., 28(3), 213-222, http://dx.doi.org/10.1556/AAlim.28.1999.3.1

Mabeau S., Fleurence J., 1993, Seaweed in food products: Biochemical and nutritional aspects, Trends Food Sci. Tech., 4, 103-107.

Manivannan K., Thirumaran G., Karthikai Devi G., Anantharaman P., Balasubramanian T., 2009, Proximate composition of different groups of seaweeds from Vedalai coastal waters (Gulf of Mannar): sout heast coast of India, Middle-East, J. Sci. Res., 4(2), 72-77.

Matanjun P., Mohamed S., Mustapha N.M., Muhammad K., 2009, Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum, J. Appl. Phycol., 21(1), 1-6, http://dx.doi.org/10.1007/s10811-008-9326-4

Marinho-Soriano E., Fonseca P.C., Carneiro M.A.A., Moreira W.S.C., 2006, Seasonal variation in the chemical composition of two tropical seaweeds, Bioresource Technol., 97(18), 2402-2406, http://dx.doi.org/10.1016/j.biortech.2005.10.014

Mishra V. K., Temelli F., Ooraikul B., Shacklock P.F., Craigie J.S., 1993, Lipids of the red alga, Palmaria palmata, Bot. Mar., 36(2), 169-174, http://dx.doi.org/10.1515/botm.1993.36.2.169

Mohamed S., Hashim S.N., Rahman H.A., 2012, Seaweeds: a sustainable functional food for complementary and alternative therapy, Trends Food Sci. Tech., 23, 83-96.

Nelson M.M., Phleger C.F., Nichols P.D., 2002, Seasonal lipid composition in macroalgae of the Northeastern Pacific Ocean, Bot. Mar., 45, 58-65, http://dx.doi.org/10.1515/BOT.2002.007

Nisizawa K., Noda H., Kikuchi R., Watanabe T., 1987, The main seaweeds in Japan, Hydrobiologia, 151/152, 5-29, http://dx.doi.org/10.1007/BF00046102

Norziah M.H., Ching C.Y., 2000, Nutritional composition of edible seaweed Gracilaria changgi, Food Chem., 68, 69-76, http://dx.doi.org/10.1016/S0308-8146(99)00161-2

Polat S., Ozogul Y., 2008, Biochemical composition of some red and brown macroalgae from the Northeastern Mediterranean Sea, Int. J. Food Sci. Nutr., 59(7-8), 566-572, http://dx.doi.org/10.1080/09637480701446524

Polat S., Ozogul Y., 2009, Fatty acid, mineral and proximate composition of some seaweeds from the northeastern Mediterranean coast, Ital. J. Food Sci., 21, 317-324.

Renaud S.M., Luong-Van J.T., 2006, Seasonal variation in the chemical composition of tropical Australian marine macroalgae, J. Appl. Phys., 18, 381-387.

Rupérez P., Saura-Calixto F., 2001, Dietary fibre and physicochemical properties of edible Spanish seaweeds, Eur. Food Res. Tech., 212(3), 349-354, http://dx.doi.org/10.1007/s002170000264

Rupérez P., 2002, Mineral content of edible marine seaweeds , Food Chem., 79(1), 23-26, http://dx.doi.org/10.1016/S0308-8146(02)00171-1

Sánchez-Machado D. I., López -Cervantes J., López-Herná ndez J., Paseiro-Losada P., 2004, Fatty acids, total lipid, protein and ash contents of processed edible seaweeds, Food Chem., 85, 439-444, http://dx.doi.org/10.1016/j.foodchem.2003.08.001

Sánchez-Machado D.I., López-Hernández J., Paseiro-Losada P., 2002, High-performance liquid chromatographic determination of α-tocopherol in macroalgae, J. Chrom., 976, 277-284, http://dx.doi.org/10.1016/S0021-9673(02)00934-2

Shanmugam A., Palpandi C., 2008, Biochemical composition and fatty acid profile of the green alga Ulva reticulata, Asian J. Biochem., 3(1), 26-31, http://dx.doi.org/10.3923/ajb.2008.26.31

full, complete article (PDF - compatibile with Acrobat 4.0), 201 KB

Seven years of macroinfauna monitoring at Ladeira beach (Corrubedo Bay, NW Spain) after the Prestige oil spill
Oceanologia 2013, 55(2), 393-407

Juan Junoy1,2,*, Carolina Castellanos2, José Manuel Viéitez1,2, Rodrigo Riera3,4
1EU-US Marine Biodiversity Research Group, Instituto Franklin, Universidad de Alcalá,
E-28871 Alcalá de Henares, Spain
2Departamento de Ciencias de la Vida, Universidad de Alcalá,
E-28871 Alcalá de Henares, Spain;
e-mail: juan.junoy@uah.es
*corresponding author
Centro de Investigaciones Medioambientales del Atlántico (CIMA SL),
Arzobispo Elías Yanes, 44, E-38206 Canary Islands, Spain
4Department of Biodiversity, Qatar Environment and Energy Research Institute (QEERI),
5825 Doha, Qatar

keywords: beach, seasonality, Prestige, oil spill, macroinfauna, supralittoral, intertidal, Galicia, Atlantic Ocean

Received 19 November 2012, revised 10 April 2013, accepted 16 April 2013.

This research was supported in part by the Project VEM2004-08544, funded by the Spanish Ministry of Education and Science and the Project ‘Biodiversidad marina en el Atlántico’,Instituto Franklin-Universidad de Alcalá.


The exposed sandy beach of Ladeira (Corrubedo Bay, NW Spain) was sampled during seven years (2003-2009) after the Prestige oil spill (winter 2002-03), to determine interannual variations in the macroinfaunal community in two ways: (i) through ecological indices (species richness and abundances, Shannon's diversity and Pielou's evenness) and (ii) through the density of the most representative species. A clear zonation pattern was found, consisting of two zones: (i) the supralittoral, occupied by talitrid amphipods, isopods and insects, and (ii) the intertidal, where marine crustaceans and polychaetes prevailed. The amphipods Talitrus saltator and Talorchestia deshayesii dominated from the drift line upwards, and isopods (Eurydice spp.), polychaetes (Scolelepis spp.) and the amphipod Pontocrates arenarius dominated the intertidal. Univariate indices remained constant throughout the study period in the supralittoral, but they varied widely in the intertidal zone. Multivariate analysis showed that the Prestige oil spill scarcely affected the macroinfaunal community structure during the study period (2003-2009) and its effect was limited just to the first campaign (2003), six months after the Prestige accident.

  References ref

Borzone C.A., Rosa L.C., 2009, Impact of oil spill and posterior clean-up activities on wrack-living talitrid amphipods on estuarine beaches, Braz. J. Oceanogr., 57(4), 315-323, http://dx.doi.org/10.1590/S1679-87592009000400006

Brown A.C., McLachlan A., 1990, Ecology of sandy shores , Elsevier, Amsterdam, 328 pp.

Clarke K.R., Warwick R.M., 2001, Changes in marine communities: an approach to statistical analysis and interpretation, 2nd edn., PRIMER-E Ltd., Plymouth, 176 pp.

Dahl E., 1952, Some aspects of the ecology and zonation of the fauna of sandy beaches, Oikos, 4(1), 1-27, http://dx.doi.org/10.2307/3565072

Dauvin J.C., 1998, The fine sand Abra alba community of the Bay of Morlaix twenty years after the Amoco Cadiz oil spill, Mar. Pollut. Bull., 36(9), 669-676, http://dx.doi.org/10.1016/S0025-326X(98)00058-7

De la Huz R., Lastra M., Junoy J., Castellanos C., Viéitez J. M., 2005, Biological impacts of oil pollution and cleaning in the intertidal zone of exposed sandy beaches: preliminary study of the it Prestige oil spill, Est. Coast. Shelf Sci., 65(1-2), 19-29, http://dx.doi.org/10.1016/j.ecss.2005.03.024

Defeo O., McLachlan A., 2005, Patterns, processes and regulatory mechanisms in sandy beach macrofauna: a multi-scale analysis, Mar. Ecol.-Prog. Ser., 295, 1-20, http://dx.doi.org/10.3354/meps295001

Defeo O., McLachlan A., Schoeman D. S., Schlacher T.A., Dugan J., Jones A., Lastra M., Scapini F., 2009, Threats to sandy beach ecosystems: a review, Est. Coast. Shelf Sci., 81(1), 1-12, http://dx.doi.org/10.1016/j.ecss.2008.09.022

Dexter D.M., 1988, The sandy beach fauna of Portugal, Arquiv. Mus. Boc., 1, 101-110.

Dexter D.M., 1990, The effect of exposure and seasonality on sandy beach community structure in Portugal, Cienc. Biol. Ecol. Syst., 10, 31-50.

Díez S., Jover E., Bayona J.M., Albaiges J., 2007, Prestige oil spill. III. Fate of a heavy oil in the marine environment, Environ. Sci. Technol., 41(9), 3075-3082, http://dx.doi.org/10.1021/es0629559

Elmgren R., Hansson S., Larsson U., Sundelin B., Boehm P.D., 1983, The ‘Tsesis’ oil spill: acute and long-term impact on the benthos, Mar. Biol., 73(1), 51-65, http://dx.doi.org/10.1007/BF00396285

Fanini L., Martin Cantarino C., Scapini F., 2005, Relationships between the dynamics of two Talitrus saltator populations and the impacts of activities linked to tourism, Oceanologia, 47(1), 93-112.

Fernández Méijome I., Fernández S., Beiras R., 2006, Assessing the toxicity of sandy sediments six months after the Prestige oil spill by means of the sea-urchin embryo-larval bioassay, Thalassas, 22(2), 45-50.

Gómez Gesteira J.C., Dauvin J.C., 2000, Amphipods are good bioindicators of the impact of oil-spills on soft-bottom macrobenthic communities, Mar. Pollut. Bull., 40(11), 1017-1027, http://dx.doi.org/10.1016/S0025-326X(00)00046-1

Gómez Gesteira J.L., Dauvin J.C., 2005, Impact of the Aegean Sea oil spill on the subtidal fine sand macrobenthic community of the Ares-Betanzos Ría (Northwest Spain), Mar. Environ. Res., 60(3), 289-316, http://dx.doi.org/10.1016/j.marenvres.2004.11.001

Gómez Gesteira J.L., Dauvin J.C., Salvande Fraga M., 2003, Taxonomic level for assessing oil-spill effects on soft-bottom sublittoral benthic communities, Mar. Pollut. Bull., 46(5), 562-572, http://dx.doi.org/10.1016/S0025-326X(03)00034-1

Irvine G.V., Mann D.H., Short J.W., 2006, Persistence of 10-year old Exxon Valdez oil on Gulf of Alaska beaches: the importance of boulder-armoring, Mar. Pollut. Bull., 52(9), 1011-1022, http://dx.doi.org/10.1016/j.marpolbul.2006.01.005

Jaramillo E., McLachlan A., 1993, Community and population response of the macroinfauna to physical factors over a range of exposed sandy beaches in south-central Chile, Estuar. Coast. Shelf Sci., 37(6), 615-624, http://dx.doi.org/10.1006/ecss.1993.1077

Junoy J., Castellanos C., Viéitez J.M., de la Huz R., Lastra M., 2005, The macroinfauna of the Galician sandy beaches (NW Spain) affected by the Prestige oil-spill, Mar. Pollut. Bull., 50(5), 526-536, http://dx.doi.org/10.1016/j.marpolbul.2004.11.044

Kingston P.F., 2002, Long-term environmental impact of oil spills, Spill Sci. Tech. Bull., 7(1-2), 53-61, http://dx.doi.org/10.1016/S1353-2561(02)00051-8

Kingston P.F., Dixon I.M.T., Hamilton S., Moore D. C., 1995, The impact of the Brauer oil-spill on the macrobenthic infauna of the sediments off the Shetland Islands, Mar. Pollut. Bull., 30(7), 445-459, http://dx.doi.org/10.1016/0025-326X(95)00052-O

Lastra M., de la Huz R., Sánchez-Mata A.G., Rodil I.F., Aerts K., Beloso S., López J., 2006, Ecology of exposed sandy beaches in northern Spain: environmental factors controlling macrofauna communities, J. Sea Res., 55(2), 128-140, http://dx.doi.org/10.1016/j.seares.2005.09.001

McLachlan A., De Ruyck A., Hacking N., 1996, Community structure on sandy beaches: patterns of richness and zonation in relation to tide range and latitude, Rev. Chil. Hist. Nat., 69, 451-467.

Owens E.H., Taylor E., Humphrey B., 2008, The persistence and character of stranded oil on coarse-sediment beaches, Mar. Pollut. Bull., 56(1), 14-26, http://dx.doi.org/10.1016/j.marpolbul.2007.08.020

Pérez-Domingo S., Castellanos C., Junoy J., 2008, The sandy beach macrofauna of Gulf of Gabès (Tunisia), Mar. Ecol., 29(S1), 51-59, http://dx.doi.org/10.1111/j.1439-0485.2007.00201.x

Peterson C.H., 2001, The ‘Exxon Valdez’ oil spill in Alaska: acute, indirect and chronic effects on the ecosystem, Adv. Mar. Biol., 39, 1-103, http://dx.doi.org/10.1016/S0065-2881(01)39008-9

Peterson C.H., Rice S.D., Short J.W., Elser D., Bodkin J.L., Ballachey B.E., Irons D.B., 2003, Long-term ecosystem response to the Exxon Valdez oil spill, Science, 302(5653), 2082-2086, http://dx.doi.org/10.1126/science.1084282

Pollock L.W., Hummon W.D., 1971, Cyclic changes in interstitial water content, atmospheric exposure and temperature in a marine beach, Limnol. Oceanogr., 16, 522-535, http://dx.doi.org/10.4319/lo.1971.16.3.0522

Puente A., Juanes J.A., Calderón G., Echavarri-Erasun B., García A., García-Castrillo G., 2009, Medium-term assessment of the effects of the Prestige oil spill on estuarine benthic communities in Cantabria (Northern Spain, Bay of Biscay), Mar. Pollut. Bull., 58(4), 487-495, http://dx.doi.org/10.1016/j.marpolbul.2008.12.010

Raffaelli D., Karakassis I., Galloway A., 1991, Zonation schemes on sandy shores: a multivariate approach, J. Exp. Mar. Biol. Ecol., 148(2), 241-253, http://dx.doi.org/10.1016/0022-0981(91)90085-B

Rey D., Rubio B., Bernabeu A.M., Vilas F., 2004, Formation, exposure, and evolution of a high latitude beachrock in the intertidal zone of the Corrubedo complex (Ria de Arousa, Galicia, NW Spain), Sediment. Geol., 169(1-2), 93-105, http://dx.doi.org/10.1016/j.sedgeo.2004.05.001

Rodil I.F., Lastra M., 2004, Environmental factors affecting benthic macrofauna along a gradient of intermediate sandy beaches in northern Spain, Estuar. Coast. Shelf Sci., 61(1), 37-44, http://dx.doi.org/10.1016/j.ecss.2004.03.016

Rodil I.F., Lastra M., Sánchez-Mata A.G., 2006, Community structure and intertidal zonation of the macroinfauna in intermediate sandy beaches in temperate latitudes: north coast of Spain, Estuar. Coast. Shelf Sci., 67(1-2), 267-279, http://dx.doi.org/10.1016/j.ecss.2005.11.018

Rodríguez J.G., Incera M., de la Huz R., López J., Lastra M., 2007, Polycyclic aromatic hydrocarbons (PAHs), organic matter quality and meiofauna in Galician sandy beaches, 6 months after the Prestige oil-spill, Mar. Pollut. Bull., 54(7), 1031-1071, http://dx.doi.org/10.1016/j.marpolbul.2007.03.016

Salvat B., 1964, Les conditions hydrodynamiques intersticielles des sédiments meubles intertidaux et la repartition verticale de la faune endogée, Cah. Rech. Acad. Sci. Paris, 259, 1576-1579.

Salvat B., 1967, La macrofaune carcinologique endogée des sédiments meubles intertidaux (Tanaidacés, Isopodes et Amphipodes), ethologie, bionomie et cycle biologique, Mem. Mus. Nat. Hist. Nat. Ser. Zool., 16, 1-275.

Sanders H.L., Grassell J.F., Hampson G.R., Morse S., Garner -Price S., Jones C.C., 1980, Anatomy of an oil-spill. Long-term effects from the grounding of the barge Florida off West Flamount, Massachusetts, J. Mar. Res., 38(2), 265-380.

Scapini F., Fallaci M., Mezzetti M.C., 1996, Orientation and migration in Talitrus saltator, Rev. Chil. Hist. Nat., 69(4), 553-563.

Underwood A., 1991, Beyond BACI: experiment designs for detecting human impacts on temporal variations in natural populations, Aust. J. Mar. Freshw. Res., 42(5), 569-587, http://dx.doi.org/10.1071/MF9910569

Veiga P., Rubal M., Besteiro C., 2009, Shallow sublittoral meiofauna communities and sediment polycyclic aromatic hydrocarbons (PAHs) content on the Galician coast (NW Spain), six months after the Prestige oil spill, Mar. Pollut. Bull., 58(4), 581-588, http://dx.doi.org/10.1016/j.marpolbul.2008.11.002

Viéitez J.M., 2007, La marea negra del Prestige, [in:] Biología marina, P. Castro & M. Huber (eds.), McGraw-Hill, 452-457.

Vilas F., Sopeña A., Rey L., Ramos A., Nombela M.A., Arche A., 1991, The Corrubedo beach-lagoon complex, Galicia, Spain: Dynamics, sediments and recent evolution of a mesotidal coastal embayment, Mar. Geol., 97(3-4), 391-404, http://dx.doi.org/10.1016/0025-3227(91)90128-Q

Xunta de Galicia, 2003, El 98% de las playas de la costa gallega están limpias, Oficina informativa de la Comisión de Seguimiento del Prestige, 226.

full, complete article (PDF - compatibile with Acrobat 4.0), 336 KB

Interannual variability in the population dynamics of the main mesozooplankton species in the Gulf of Gdańsk (southern Baltic Sea): Seasonal and spatial distribution
Oceanologia 2013, 55(2), 409-434

Lidia Dzierzbicka-Głowacka1,*, Marcin Kalarus2, Maria Iwona Żmijewska2
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55,81-712 Sopot, Poland;
e-mail: dzierzb@iopan.gda.pl
*corresponding author
2Institute of Oceanography, University of Gdańsk,
al. Marszałka J. Piłsudskiego 46,81-378 Gdynia, Poland

keywords: Acartia spp. Temora longicornis, Pseudocalanus sp., Gulf of Gdańsk,

Received 7 November 2012, revised 30 January 2013, accepted 11 March 2013.

This research was carried out with the support of a grant from the Polish State Committee for Scientific Research (No. NN306 353239).


The paper characterizes the population dynamics of the major Baltic calanoid copepod species (Acartia spp., Temora longicornis and Pseudocalanus sp.) in the Gulf of Gdańsk (southern Baltic Sea) from January 2006 to December 2007. The data were collected at six stations (M2, S1, S2, S3, S4, J23) located in the western part of the Gulf of Gdańsk. The objective of this research was to describe and compare the seasonal and spatial distributions of these three major copepod species. Their distributions in the study area are largely similar, although there are some exceptions regarding Pseudocalanus sp. Copepoda development in the Gulf was at its most intense from May to September, peaking in July. The abundance of these species was the least at the shallowest stations. Based on these results, the weighted mean depth WMD per developmental stage was calculated for Pseudocalanus sp., Acartia spp. and T. longicornis. The paper also compares the abundance (in indiv. m-2) of the copepodite stages of these species in two regions of the Baltic Sea (the Gulf of Gdańsk and the Gotland Basin). Except for Pseudocalanus sp., the abundance of these copepodite stages (∑CII-CVI) in the Gulf of Gdańsk in 2006 was similar to that in the Gotland Basin in the mid-1990s; in spring/summer 2007, however, their abundances were significantly higher (ca 2-4 times) in the former region.

  References ref

Babin M., Sadoudi N., Lazzara L., Gostan J., Partensky F., Bricaud A., Veldhuis M., Morel A., Falkowski P. G., 1996, Photoacclimation strategy of Prochlorococcus sp. and consequences on large scale variations of photosynthetic parameters, Ocean Opt. XIII, Proc. SPIE, 2963, 314-319, http://dx.doi.org/10.1117/12.266462. http://dx.doi.org/10.1117/12.266462 Bollens S.M., Frost B.W., 1989, Predator-induced diel vertical migration in a planktonic copepod, J. Plankton Res., 11(5), 1047-1065, http://dx.doi.org/10.1093/plankt/11.5.1047

Cushing D.H., 1995, The long-term relationship between zooplankton and fish, ICES J. Mar. Sci., 52(3-4), 611-626, http://dx.doi.org/10.1016/1054-3139(95)80076-X

Davidyuk A., Fetter M., Hoziosky S., 1992, Feeding and growth of Baltic herring (Clupea harengus m. membras L.), ICES CM 1992/J:27, 8 pp.

Dzierzbicka-Głowacka L., 2004a, Growth and development of copepodite stages of Pseudocalanus spp., J. Plankton Res., 26(1), 49-60, http://dx.doi.org/10.1093/plankt/fbh002

Dzierzbicka-Głowacka L., 2004b, The dependence of body weight in copepodite stages of Pseudocalanus spp. on variations of ambient temperature and food concentration, Oceanologia, 46(1), 45-63.

Dzierzbicka-Głowacka L., 2005a, A numerical investigation of phytoplankton and Pseudocalanus elongatus dynamics in the spring bloom time in the Gdańsk Gulf, J. Marine Syst., 53(1-4), 19-36, http://dx.doi.org/10.1016/j.jmarsys.2004.05.001

Dzierzbicka-Głowacka L., 2005b, Modelling the seasonal dynamics of marine plankton in southern Baltic Sea. Part 1. A Coupled Ecosystem Model, Oceanologia, 47(4), 591-619.

Dzierzbicka-Głowacka L., 2006, Modelling the seasonal dynamics of marine plankton in southern Baltic Sea. Part 1. Numerical simulations, Oceanologia, 48(1), 41-71.

Dzierzbicka-Głowacka L., Bielecka L., Mudrak S., 2006, Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdańsk Deep) - numerical simulations , Biogeosciences, 3(4), 635-650, http://dx.doi.org/10.5194/bg-3-635-2006

Dzierzbicka-Głowacka L., Kalarus M., Janecki M., Musialik M., Mudrak S., Żmijewska M.I., 2013, Population dynamics of Pseudocalanus minutus elongatus in the Gulf of Gdańsk (southern Baltic Sea) - experimental and numerical results, J. Nat. Hist., 47(5-12), 715-738, http://dx.doi.org/10.1080/00222933.2012.722698

Dzierzbicka-Głowacka L., Lemieszek A., Żmijewska M.I., 2009a, Parameterisation of a population model for Acartia spp. in the southern Baltic Sea. Part 1. Development time, Oceanologia, 51(2), 185-201, http://dx.doi.org/10.5697/oc.51-2.185

Dzierzbicka-Głowacka L., Lemieszek A., Żmijewska M.I., 2009b, Parameterisation of a population model for Acartia spp. in the southern Baltic Sea. Part 2. Egg production, Oceanologia, 51(2), 165-184, http://dx.doi.org/10.5697/oc.51-2.165

Dzierzbicka-Głowacka L., Lemieszek A., Żmijewska M.I., 2011, Development and growth of Temora longicornis: numerical simulations using laboratory culture data, Oceanologia, 53(1), 137-161, http://dx.doi.org/10.5697/oc.53-1.137

Dzierzbicka-Głowacka L., Piskozub J., Jakacki J., Mudrak S., Żmijewska M., 2012, Spatiotemporal distribution of copepod populations in the Gulf of Gdańsk (southern Baltic Sea), J. Oceanogr., 68(6), 887-904, http://dx.doi.org/10.1007/s10872-012-0142-8

Dzierzbicka-Głowacka L., Żmijewska M.I., Mudrak S., Jakacki J., Lemieszek A., 2010, Population modelling of Acartia spp. in a water column ecosystem model for the South-Eastern Baltic Sea, Biogeosciences, 7(7), 2247-2259, http://dx.doi.org/10.5194/bg-7-2247-2010

Gaj M., 1999, Krótkookresowa zmienność zooplanktonu strefy przybrzeżnej Zatoki Gdańskiej, M.Sc. thesis, Inst. Oceanogr. UG, Gdańsk, 1-66.

Guzera E.M., 2002, Krótkookresowa zmienność zooplanktonu przybrzeżnej strefy Zatoki Gdańskiej w roku 2001 (stacja Sopot), M.Sc. thesis, Inst. Oceanogr. UG, Sopot, 1-71.

Heerkloss R., Schnese W., 1999, A long-term series of zooplankton monitoring of shallow coastal water of the southern Baltic, Limnologica, 29, 317-321, http://dx.doi.org/10.1016/S0075-9511(99)80021-8

Hernroth L., Ackefors H., 1979, The Zooplankton of the Baltic Proper, Rep. Fish. Board Swed., 2, Inst. Marine Res., 1-60.

Hernroth L., 1985, Recommendations on methods for marine biological studies in the Baltic Sea, mesozooplankton biomass assessment, Balt. Mar. Biol., 10, Inst. Marine Res., Lysekil, 32 pp.

Holmborn T., Goetze E., Põllupüü M., Põllumäe A., 2011, Genetic species identification and low genetic diversity in Pseudocalanus acuspes of the Baltic Sea, J. Plankton Res., 33(3), 507-315, http://dx.doi.org/10.1093/plankt/fbq113

Ikauniece A., 2001, Long-term abundance dynamics of coastal zooplankton in the Gulf of Riga, Environ. Int., 26(3), 175-181, http://dx.doci.org/10.1016/S0160-4120(00)00094-5

Mudrak S., 2004, Krótko- i długoterminowa zmienność zooplanktonu wód przybrzeżnych Bałtyku na przykładzie Zatoki Gdańskiej, Ph.D. thesis, Inst. Oceanogr. UG, Gdynia, 1-323 (+ annex).

Mõllmann C., Kõster F. W., 2002, Population dynamics of Calanoid copepods and the implications of their predation by clupeid fish in the Central Baltic Sea, J. Plankton Res., 24, 959-978, http://dx.doi.org/10.1093/plankt/24.10.959

Mõllmann C., Kõster F.W., Kornilovs G., Sidrevics L., 2003, Interannual variability in population dynamics of calanoid copepods in the Central Baltic Sea, ICES Mar. Sci. Symp., 219, 294-306.

Nowicki J., Matciak M., Szymelfenig M., Kowalewski M., 2009, Upwelling characteristics in the Puck Bay (the Baltic Sea), Oceanol. Hydrobiol. St., 38(2), 3-16.

Rakowski M., 1997, Sezonowe zmiany składu i liczebności Copepoda w przybrzeżnych wodach Zatoki Gdańskiej w 1991 roku, M.Sc. thesis, Inst. Oceanogr. UG, Gdynia.

Renz J., Hirche H.J., 2006, Life cycle of Pseudocalanus acuspes Giesbrecht (Copepoda, Calanoida) in the Central Baltic Sea: I. Seasonal and spatial distribution, Mar. Biol., 148(3), 467-580, http://dx.doi.org/10.1007/s00227-005-0103-5

Renz J., Peters J., Hirche H.J., 2007, Life cycle of Pseudocalanus acuspes Giesbrecht (Copepoda, Calanoida) in the Central Baltic Sea: II. Reproduction, growth and secondary production, Mar. Biol., 151(2), 515-527, http://dx.doi.org/10.1007/s00227-006-0510-2

Siudziński K., 1977, Zooplankton Zatoki Gdańskiej, Stud. Mater., MIR, Gdynia, 18A, 1-111.

Sparholt H., 1994, Fish species interactions in the Baltic Sea, Dana, 10, 131-162.

Szaniawska A., 1977, Skład i sezonowe zmiany zooplanktonu Zatoki Puckiej Właściwej w 1973 i 1974 roku, Zesz. Nauk. Wydz. BiNOZ UG, 5, 79-93.

Szulz J., Peck M.A., Barz K., Schmidt J.O., Hansen F.C., Peters J., Renz J., Dickmann M., Mohrholz V., Dutz J., Hirche H.J., 2012, Spatial and temporal habitat partitioning by zooplankton in the Bornholm Basin (central Baltic Sea), Prog. Oceanogr., 107, 3-30, http://dx.doi.org/10.1016/j.pocean.2012.07.002

Telesh I.V., 2004, Plankton of the Baltic estuarine ecosystems with emphasis on Neva Estuary: a review of present knowledge and research perspectives, Mar. Pollut. Bull., 49(3), 206-219, http://dx.doi.org/10.1016/j.marpolbul.2004.02.009

Wiktor K., Żmijewska M.I., 1985, Skład i rozmieszczenie zooplanktonu przybrzeżnych wód Zatoki Gdańskiej Właściwej, Biologia Morza 7, SIMO 46, KBM PAN, 70-111.

Wiktor K., 1990, Zooplankton, [in:] Zatoka Gdańska, A. Majewski (ed.), Wyd. Geologiczne, Warszawa, 100-105.

Wiktor K., Cylkowska U., Ostrowska K., 1982, Zooplankton przybrzeżnych wód Zatoki Gdańskiej, Biologia Morza 6, SIMO 39, KBM PAN, 81-133.

Winkler H., 2002, Effects of eutrophication on fish stocks in Baltic lagoons, [in:] Baltic coastal ecosystems, structure, function and coastal zone management, G. Schernewski & U. Schiewer (eds.), Ser. Central Eastern European Dev. Stud., Springer Verlag, Berlin, 65-74.

Witek Z., 1995, Biological production and its utilization within a marine ecosystem in the western Gdańsk basin, Sea Fisheries Inst., Gdynia, 1-145, (in Polish).

full, complete article (PDF - compatibile with Acrobat 4.0), 590 KB

Seasonal variations in the biochemical composition of some common seaweed species from the coast of Abu Qir Bay, Alexandria, Egypt
Oceanologia 2013, 55(2), 435-451

Hanan M. Khairy1,*, Shimaa M. El-Shafay2
1National Institute of Oceanography and Fisheries,
Alexandria, Egypt;
e-mail: hanan_khairy@yahoo.com
*corresponding author
2Faculty of science, Botany Department,
Tanta University, Egypt;
e-mail: sh.shfa3y@yahoo.com

keywords: seaweed, protein, carbohydrate, lipid, fatty, amino acids

Received 23 November 2012, revised 26 March 2013, accepted 28 March 2013.


Variations in protein, carbohydrate, lipid, ash, moisture, fatty acid and amino acid contents of the seaweeds Ulva lactuca Linnaeus (Chlorophyta), Jania rubens (Linnaeus) J.V. Lamouroux and Pterocladia capillacea (S.G. Gmelin) Bornet (Rhodophyta) were studied seasonally from spring to autumn 2010. The seaweeds were collectedfrom a rocky site near Boughaz El-Maadya on the coast of Abu Qir Bay east of Alexandria, Egypt. Remarkable seasonal variations were recorded in the levels of the studied parameters in the three species. Pterocladia capillacea was characterized by the highest protein and carbohydrate content throughout the different seasons, whereas Ulva lactuca contained more lipids (4.09 ± 0.2%) than J. rubens and P. capillacea. The highest total fatty acids were recorded in J. rubens during the three seasons, while saturated fatty acids were predominant in P. capillacea during spring. This is due mainly to the presence ofpalmitic acid (C16:0), which made up 74.3% of the saturated fatty acids. The highest level of polyunsaturated fatty acids (PUFA) in these algae was measured in J. rubens; DHA (22:6ω3) was the main acid, making up 26.4% of the total fatty acids especially during summer. Proline was the major component of the amino acids in the three algal species, with maximum amounts in U. lactuca.

  References ref

Ackman W.E.M., 1982, Fatty acid composition of fish oils, [in:] Nutritional evaluation of long chain fatty acids in fish oil, S. M. Barlow & M.E. Stansby (eds.), Acad. Press, London, 25-88.

Aleem A.A., 1993, The marine algae of Alexandria, Egypt, Univ. Alexandria, Alexandria, 139 pp.

AOAC, 1995, Official methods of analysis of AOAC International, 16th edn., AOAC Int., Washington.

AOAC, 2000, Official methods of analysis of AOAC International, 17th edn., AOAC Int., Washington.

Ashraf M., Foolad M.R., 2007, Roles of glycine, betaine and proline in improving plant abiotic stress resistance, Environ. Exp. Bot., 59(2), 206-216, http://dx.doi.org/10.1016/j.envexpbot.2005.12.006

Blackburn S., 1978, Sample preparation and hydrolytic methods, [in:] Amino acid determination methods and techniques, S. Blackburn (ed.), Marcel Dekker Inc., New York, 7-37.

Castro-Gonzalez M.I., Carrillo-Dominguez S., Perez G.F., 1994, Chemical composition of Macrocystis pyrifera (giant sargazo) collected in summer and winter and it possible use in animal feeding, Cienc. Mar., 20(1), 33-40.

Darcy-Vrillon B., 1993, Nutritional aspects of the developing use of marine macroalgae for the human food industry, Int. J. Food Sci. Nutr., 44, S23-S35.

Dave M.J., Parekh R.G., 1978, Amino acids of green alga Ulva, Bot. Mar., 21(5), 323-326, http://dx.doi.org/10.1515/botm.1978.21.5.323

Dawczynski C., Schubert R., Jahreis G., 2007, Amino acids, fatty acids, and dietary fiber in edible seaweed products, Food Chem., 103(3), 891-899, http://dx.doi.org/10.1016/j.foodchem.2006.09.041

Dubois M., Giles K.A., Hamilton J.K., Rebers P.A., Smith F., 1956, Calorimetric method for determination of sugars and related substances, Anal. Chem., 28(3), 350-356, http://dx.doi.org/10.1021/ac60111a017

El-Shoubaky G.A., Moustafa A.M.Y., Salem E.A.E., 2008, Comparative phytochemical investigation of beneficial essential fatty acids on a variety of marine seaweeds algae, Res. J. Phytochem., 2(1), 18-26, http://dx.doi.org/10.3923/rjphyto.2008.18.26

Estevez A., McEvoy L.A., Bell J.G., Sargent J.R., 1999, Growth, survival, lipid composition and pigmentation of turbot (Scophthalmus maximus) larvae fed live-prey enriched in arachidonic and eicosapentaenoic acids, Aquaculture, 180(3-4), 321-343, http://dx.doi.org/10.1016/S0044-8486(99)00209-4

Evans R.P., Zhu P., Parrish C.C., Brown J.A., 2000, Lipid and amino acid metabolism during the early development of marine fish, [in:] Seafood in health and nutrition - transformation in fisheries and aquaculture: global perspectives, F. Shahidi (ed.), Sci. Tech Publ. Co., St. John’s, Newfoundland, 477-493.

FAO, 1981, Amino acid scoring patterns, FAO/WHO/UNU EPR/81/31, Rome, 20 pp.

Fleurence J., 1999, Seaweed proteins: biochemical, nutritional aspects and potential uses, Trends Food Sci. Technol., 10(1), 25-28, http://dx.doi.org/10.1016/S0924-2244(99)00015-1

Fleurence J., Le Coeur C., Mabeau S., Maurice M., Landrein A., 1995, Comparison of different extractive procedures from the edible seaweeds Ulva rigida and Ulva rotundata, J. Appl. Phycol., 7(6), 577-582, http://dx.doi.org/10.1007/BF00003945

Floreto E.A.T., Hirata H., Ando S., Yamasaki S., 1993, Fatty acid composition of Ulva pertusa Kjellman (Chlorophyta) and Gracilaria incurvata. Okamura (Rhodophyta) in Japanese coastal waters, Bot. Mar., 36(3), 217-222, http://dx.doi.org/10.1515/botm.1993.36.3.217

Fujiwara-Arasaki T., Mino N., Kuroda M., 1984, The protein value in human nutrition of edible marine algae in Japan, Hydrobiologia, 116-117(1), 513-516, http://dx.doi.org/10.1007/BF00027735

Hamdy A. E.A., Dawes C.J., 1998, Proximate constituents and lipid chemistry in two species of Sargassum from the west coast of Florida, Bot. Mar., 31(1), 79-81, http://dx.doi.org/10.1515/botm.1988.31.1.79

Haroon A.M., 2000, The biochemical composition of Enteromorpha spp. from the Gulf of Gdańsk coast on the southern Baltic Sea, Oceanologia, 42(1), 19-28.

Herbreteau F., Coiffard L.J.M., Derrien A., De Roeck Holtazahuer Y., 1997, The fatty acid composition of five species of macro algae, Bot. Mar., 40(1-6), 25-27, http://dx.doi.org/10.1515/botm.1997.40.1-6.25

Honya M., Kinoshita T., Ishikawa M., Mori H., Nisizawa K., 1994, Seasonal variation in the lipid content of culture Laminaria japonica: fatty acids, sterols, β-carotene and tocopherol, J. Appl. Phycol., 6(1), 25-29, http://dx.doi.org/10.1007/BF02185900

Hossain Z., Kurihara H., Takahashi K., 2003, Biochemical composition and lipid compositional properties of the brown alga Sargassum horneri, Pak. J. Biol. Sci., 6(17), 1497-1500, http://dx.doi.org/10.3923/pjbs.2003.1497.1500

John R.P., Anisha G. S., 2011, Macroalgae and their potential for biofuel, Environ. Impact, 6, 1-15.

Kaehler S., Kennish R., 1996, Summer and winter comparisons in the nutritional value of marine macroalgae from Hong Kong, Bot. Mar., 39(1-6), 11-17, http://dx.doi.org/10.1515/botm.1996.39.1-6.11

Khatkar D., Kuhad M.S., 2000, Short-term salinity induced changes in two wheat cultivars at different growth stages, Biol. Plant., 43(4), 629-632, http://dx.doi.org/10.1023/A:1002868519779

Khotimchenko S.V., 1991, Fatty acid composition of seven Sargassum species, Phytochemistry, 30(8), 2639-2641, http://dx.doi.org/10.1016/0031-9422(91)85113-E

Kumar V., Kaladharan P., 2007, Amino acids in the seaweeds as an alternate source of protein for animal feed, J. Mar. Biol. Ass., 49(1), 35-40.

Lie Ken Jie M.S.F., 1989, Fatty acids and glycerides, Nat. Prod. Rep., 6(3), 231-261, http://dx.doi.org/10.1039/np9890600231

McKee J.W.A., Kvalieris L., Brasch D.J., Brown M.T., Melton L.D., 1992, Alginate content and composition of Macrocystis pyrifera from New Zealand, J. Appl. Phycol., 4(4), 357-369, http://dx.doi.org/10.1007/BF02185794

Mercer J.P., Mai K.S., Donlon J., 1993, Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata Linnaeus and Haliotis discus hannai Ino. I. Effects of algal diet on growth and biochemical composition, Invert. Reprod. Develop., 23(2-3), 75-88, http://dx.doi.org/10.1080/07924259.1993.9672298

Miller J.D.A., 1962, Fats and steroids, [in:] Physiology and biochemistry of algae, R.A. Lewin (ed.), Acad. Press, New York, 929 pp.

Mishra V. K., Temelli F., Ooraikul B., Shacklock P.F., Craigie J.S., 1993, Lipids of the red alga, Palmaria palmata, Bot. Mar., 36(2), 169-174, http://dx.doi.org/10.1515/botm.1993.36.2.169

Morgan K.C., Wright J.L.C., Simpson F.J., 1980, Review of chemical constituents of the red algae Palmaria palmata, Econ. Bot., 34(1), 27-50, http://dx.doi.org/10.1007/BF02859553

Nelson M.M., Phlegrer C.F., Nichols P.D., 2002, Seasonal lipid composition in macroalgae of the Northeastern Pacific Ocean, Bot. Mar., 45(1), 58-65, http://dx.doi.org/10.1515/BOT.2002.007

Nichols P.D., Virtue P., Mooney B.D., Elliott N.G., Yearsley G.K., 1998, Seafood the good food: the oil (fat) content and composition of Australian commercial fishes, shellfishes and crustaceans, CSIRO Div. Mar. Res., Hobart, 100 pp.

Nisizawa K., Noda H., Kikuchi R., Watanabe T., 1987, The main seaweed foods in Japan, Hydrobiologia, 151-152(1), 5-29, http://dx.doi.org/10.1007/BF00046102

Nordøy A., 1989, Fish oils in clinical medicine, J. Int. Med., 225(3), 145-147.

Norziah M.H., Ching C.Y., 2002, Nutritional composition of edible seaweeds Gracilaria changgi, Food Chem., 68(1), 69-76, http://dx.doi.org/10.1016/S0308-8146(99)00161-2

Ochiai Y., Katsuragi T., Hashimoto K., 1987, Proteins in three seaweeds: ‘Aosa’ U. lactuca, ‘Arame’ Eisenia bicyclis, and ‘Makusa’ Gelidium amansii, Bull. Jap. Soc. Sci. Fish., 53(6), 1051-1055, http://dx.doi.org/10.2331/suisan.53.1051

Orr M.L., Watt B.K., 1968, Amino acid content of foods , Home Econ. Res. Rep, ARS-USDA, U.S. Gov. Print. Off., Washington, 82 pp.

Phleger C.F., 1991, Biochemical aspects of buoyancy in fishes, [in:] Biochemistry and molecular biology of fishes. Vol. I. Phylogenetic and biochemical perspectives, P.W. Hochachka & T.P. Mommsen (eds.), Elsevier Sci., 209-247.

Qasim R., 1991, Amino acid composition of some common seaweeds, Pak. J. Pharm. Sci., 4(1), 49-54.

Ratana-arporn P., Chirapart A., 2006, Nutritional evaluation of tropical green seaweeds Caulerpa lentillifera and Ulva reticulata, Kasetsart J. (Nat. Sci.), 40(Suppl.), 75-83.

Reeta J., 1993, Seasonal variation in biochemical constituents of Sargassum weightii (Grevillie) with reference to yield in alginic acid content, Seaweed Res. Util., 16(1-2), 13-16.

Reeta J., Kulandaivelu G., 1999, Seasonal variation in biochemical constituents of Gracilaria spp. with reference to growth, Ind. J. Mar. Sci., 28, 464-466.

Robledo D., Pelegrín Y.F., 1997, Chemical and mineral composition of six potentially edible seaweed species of Yucatán, Bot. Mar., 40(1-6), 301-306, http://dx.doi.org/10.1515/botm.1997.40.1-6.301

Rosell K.G., Srivastava L.M., 1985, Seasonal variation in total nitrogen, carbon and amino acids in Macrocystis integrifolia and Nereocystis luetkeana, J. Phycol., 21(2), 304-309, http://dx.doi.org/10.1111/j.0022-3646.1985.00304.x

Sánchez-Machado D.I., López-Cervantes J., López-Hernández J., Paseiro-Losada P., 2004, Fatty acids, total lipid, protein and ash contents of processed edible seaweeds, Food Chem., 85(3), 439-444, http://dx.doi.org/10.1016/j.foodchem.2003.08.001

Sasikumar K., 2000, Studies on biochemical composition and heavy metal accumulation in seaweeds in the Vellar and Uppanar estuaries, southeast coast of India, M. Phil. thesis, Annamalai Univ., India.

Shanmugam A., Palpandi C., 2008, Biochemical composition and fatty acid profile of the green algae Ulva reticulata, Asian J. Biochem., 3(1), 26-31, http://dx.doi.org/10.3923/ajb.2008.26.31

Smith M.M., Gayler K.R., 1979, Free amino acids in the marine green algae Caulerpa simplicius, Bot. Mar., 22(6), 361-365, http://dx.doi.org/10.1515/botm.1979.22.6.361

Takagi T., Asahi M., Itabashi Y., 1985, Fatty acid composition of twelve algae from Japanese waters, Yukagaky, 34(12), 1008-1012.

Van Ginneken V.J.T., Helsper J.P.F.G., de Visser W., van Keulen H., Brandenburg W.A., 2011, Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas, Lipids Health Dis., 10, 1-8, http://dx.doi.org/10.1186/1476-511X-10-104

Venkatesalu V., Sundaramoorthy P., Anantharaj M., Gopalakrishnan M., Chandrasekaran M., 2004, Studies on the fatty acid composition of marine algae of Rameswaram coast, Seaweed Res. Util., 26(1-2), 83-86.

Vogel A.J., 1975, A textbook of practical organic chemistry, 3rd edn., Longman Group Ltd., London, 1200 pp.

Walker J.M., 1996, The protein protocol handbook, Humana Press, Totowa, 967 pp.

Wong K.H., Cheung P.C.K., 2000, Nutritional evaluation of some subtropical red and green seaweeds. Part I. Proximate composition, amino acid profiles and some physico-chemical properties, Food Chem., 71(4), 475-482, http://dx.doi.org/10.1016/S0308-8146(00)00175-8

Wood B.J.B., 1988, Lipids of algae and protozoa, [in:] Microbial lipids, C. Ratledge & S.G. Wilkinson (eds.), Acad. Press, London, 807-867.

full, complete article (PDF - compatibile with Acrobat 4.0), 172 KB

Spatial distribution of biological and physical sediment parameters in the western Gulf of Gdańsk
Oceanologia 2013, 55(2), 453-470

Katarzyna Huzarska
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland;
e-mail: keyla28@gmail.com

keywords: sediment, properties, spatial, differentiation, Gulf of Gdańsk

Received 4 March 2013, revised 25 March 2013, accepted 28 March 2013.

This project was funded by the Ministry of Science and Higher Education through a supervisor research grant, project No. N304 031 32/1614.


The ongoing processes of surface sediments and their biological activity are highly dynamic. Sediment samples for the current study were collected at 48 stations in the Gulf of Gdańsk in May 2006, and the following sediment parameters were analysed: grain size distribution, water volume, permeability, organic matter content, chlorophyll a and EPS carbohydrate concentrations. The spatial distributions of the different parameters varied distinctly, which suggested a strongly diversified bottom environment. The results obtained were used to create spatial distribution maps, and statistical analyses of the results showed that the Gulf's bottom can be divided into four areas impacted by different parameters: (1) the inner Puck Bay; (2) the outer Puck Bay; (3) the outer Gulf of Gdańsk; (4) the open sea. Distinct correlations between microbenthic activity, expressed as carbohydrate and chlorophyll concentrations, and sediment physical parameters were noted. The bottom of the Gulf of Gdańsk appeared to be strongly influenced by wave motion. This led to the conclusion that the most dynamic areas are the shallow coastal zones, which play important roles in water purification processes and in the proper functioning of the Gulf of Gdańsk ecosystem. This study of the spatial distribution of sediment parameters is the first of its kind, and the widest-ranging study of sediments ever to be conducted in this region.

  References ref

Aller R.C., Aller J.Y., 1998, The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sediments, J. Mar. Res., 56(4), 905-936, http://dx.doi.org/10.1357/002224098321667413

Baveye P., Vandevivere P., Hoyle B.L., Deleo P.C., Sanchez de Lozada D., 1998, Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials, Crit. Rev. Env. Sci. Tec., 28(2), 123-191, http://dx.doi.org/10.1080/10643389891254197

Borsje B.W., de Vries M.B., Hulscher S.J.M.H., de Boer G.J., 2008, Modeling large-scale cohesive sediment transport affected by small-scale biological activity, Estuar. Coast. Shelf Sci., 78(3), 468-480, http://dx.doi.org/10.1016/j.bbr.2011.03.031

Cyberski J., Szefler K., 1993, Climate of the bay and its drainage basin, [in:] Puck Bay, K. Korzeniewski (ed.), Inst. Oceanogr. UG, Gdańsk, 532 pp., (in Polish).

Dauwe B., Middelburg J.J., Herman P.M.J., 2001, Effect of oxygen on the degradability of organic matter in subtidal and intertidal sediments of the North Sea area, Mar. Ecol.-Prog. Ser., 215, 13-22, http://dx.doi.org/10.3354/meps215013

De Brouwer J.F. K., Wolfstein K., Ruddy G.K., Jones T.E.R., Stal L.J., 2005, Biogenic stabilization of intertidal sediments: the importance of extracellular polymeric substances produced by benthic diatoms, Microb. Ecol., 49(4), 501-512, http://dx.doi.org/10.1007/s00248-004-0020-z

Decho A.W., 1990, Microbial exopolymer secretions in ocean environments: Their role(s) in food webs and marine processes, Oceanogr. Mar. Biol. Ann. Rev., 28, 73-123.

Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F., 1956, Colorimetric method for determination of sugars and related substances, Anal. Chem., 28, 350-356, http://dx.doi.org/10.1021/ac60111a017

Garrigue C., 1998, Distribution and biomass of microphytes measured by benthic chlorophyll a in a tropical lagoon, Hydrobiologia, 385(1-3), 1-10, http://dx.doi.org/10.1023/A:1003480712763

Håkanson L., Jansson M., 1983, Principles of lake sedimentology, Springer, Berlin, 316 pp., http://dx.doi.org/10.1007/978-3-642-69274-1

Hulthe G., Hulth S., Hall P.O.J., 1998, Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments, Geochim. Cosmochim. Acta, 62(8), 1319-1328, http://dx.doi.org/10.1016/S0016-7037(98)00044-1

Huzarska K., 2011, EPS-extracellular polymeric substances as a biological factor affecting the physical properties of the marine sediments in the Gulf of Gdańsk, Ph.D. thesis, Inst. Oceanol. PAS, Sopot, (in Polish).

Kępińska U., Wypych K., 1990, Bottom sediments, [in:] Gulf of Gdańsk, A. Majewski (ed.), Geolog. Publ., Warsaw, 502 pp., (in Polish).

Kristensen E., Ahmed S.I., Devol A.H., 1995, Aerobic and anaerobic decomposition of organic matter in marine sediment: Which is fastest?, Limnol. Oceanogr., 40(8), 1430-1437, http://dx.doi.org/10.4319/lo.1995.40.8.1430

Kowalik Z., 1990, Currents, [in:] Gulf of Gdańsk, A. Majewski (ed.), Geolog. Publ., Warsaw, 502 pp., (in Polish).

Lebo M.E., Reuter J.E., 1995, Spatial variability in sediment composition and evidence for resuspension in a large, deep lake, Mar. Freshwater Res., 46(1), 321-326.

Le Hir P., Monbet Y., Orvain F., 2007, Sediment erodability in sediment transport modeling: can we account for biota effects?, Cont. Shelf Res., 27(8), 1116-1142, http://dx.doi.org/10.1016/j.csr.2005.11.016

Madsen K., Nilsson P., Sundbaeck K., 1993, The influence of benthic microalgae on the stability of a subtidal sediment, J. Exp. Mar. Biol. Ecol., 170(2), 159-177, http://dx.doi.org/10.1016/0022-0981(93)90150-M

Majewski A., 1990, Morphometry and hydrography, [in:] Gulf of Gdańsk, A. Majewski (ed.), Geolog. Publ., Warsaw, 502 pp., (in Polish).

Meadows A., Meadows P.S., Wood D.M., Murray J.M.H., 1994, Microbiological effects on slope stability: an experimental analysis, Sedimentology, 41(3), 423-43, http://dx.doi.org/10.1111/j.1365-3091.1994.tb02004.x

Menden-Deuer S., Lessard E.J., 2000, Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton, Limnol. Oceanogr., 45(3), 569-579, http://dx.doi.org/10.4319/lo.2000.45.3.0569

Nowacki J., 1993, Thermal, salinity and water density, [in:] Puck Bay, K. Korzeniewski (ed.), Inst. Oceanogr. UG, Gdańsk, 532 pp., (in Polish).

Paterson D. M., Black K.S., 1999, Water flow sediment dynamics and benthic biology, Adv. Ecol. Res., 29, 155-193, http://dx.doi.org/10.1016/S0065-2504(08)60193-2

Paszkiewicz C., 1990, Wave motions, [in:] Gulf of Gdańsk, A. Majewski (ed.), Geolog. Publ., Warsaw, 502 pp., (in Polish).

Perkins R.G., Paterson D.M., Sun H., Watson J., Player M.A., 2004, Extracellular polymeric substances: quantification and use in erosion experiment, Cont. Shelf Res., 24(15), 1623-1635, http://dx.doi.org/10.1016/j.csr.2004.06.001

Pieczka F., 1980, Geomorphology and bottom deposits of the Gdańsk Basin, Peribalticum - Res. Probl. Baltic Region, 1, 79-118, (in Polish).

Robakiewicz M., 2009, Hydrodynamics in the Gulf of Gdańsk (part II), MACHU Fin. Rep., 3, Rotterdam, 75-79.

Szymczak-Żyła M., 2006, Influence of selected environmental factors in sea waters on the chlorophyll a decomposition process, Ph.D. thesis, Inst. Oceanol. PAS, Sopot, (in Polish).

Szymczak-Żyła M., Kowalewska G., 2007, Chloropigments a in the Gulf of Gdańsk (Baltic Sea) as markers of the state of this environment, Mar. Pollut. Bull., 55(10-12), 512-528, http://dx.doi.org/10.1016/j.marpolbul.2007.09.013

Underwood G.J.C., Paterson D. M., 1993, Seasonal changes in diatom biomass, sediment stability and biogenic stabilization in the Severn estuary, J. Mar. Biol. Assoc. UK, 73(4), 871-887, http://dx.doi.org/10.1017/S0025315400034780

Uścinowicz S., Zachowicz J., 1992, Geological map of the Baltic bottom 6 - Gdańsk, Pol. Geolog. Inst., Warsaw, (in Polish).

Urbański J., Grusza G., Chlebus N., 2007, Physical typology of the bottom of the Gulf of Gdańsk, Rep. Res. Project, Inst. Oceanogr. UG, Gdańsk, 40 pp., (in Polish).

Wetzel R.G., 1983, Limnology, 2nd edn., Saunders College Publ., Philadelphia, 860 pp.

Węsławski J.M., Szymelfenig M., Urbański J. (eds.), 2005, The beach - a user’s handbook, CESSS & Inst. Oceanol. PAS, Sopot, 112 pp., (in Polish).

Wingender J., Neu T.R., Flemming H.-C., 1999, Microbial extracellular polymeric substances: characterization, structure and function, Springer-Verlag, New York, 258 pp., http://dx.doi.org/10.1007/978-3-642-60147-7

Wotton R.S., 2002, Water purification using sand, Hydrobiologia, 469(1-3), 193-201, http://dx.doi.org/10.1023/A:1015503005899

Ziervogel K., 2003, Aggregation and transport behaviour of sediment surface particles in Mecklenburg Bight, south-western Baltic Sea, affected by biogenic stickiness, Ph.D. thesis, Mathemat.-Naturwissenschaftl. Fakult. Univ. Rostock., 94 pp.

Ziervogel K., Forster S., 2005, Do benthic diatoms influence erosion thresholds of coastal subtidal sediments?, J. Sea Res., 55(1), 43-53, http://dx.doi.org/10.1016/j.seares.2005.08.002

full, complete article (PDF - compatibile with Acrobat 4.0), 2356 KB


Optical water types of the Nordic Seas and adjacent areas
Oceanologia 2013, 55(2), 471-482

Eyvind Aas1,*, Niels Kristian Højerslev2, Jo Høkedal3, Kai Sørensen4
1Department of Geosciences, University of Oslo,
Gaustadalleen 21, N-0349 Oslo, Norway;
e-mail: eyvind.aas@geo.uio.no
*corresponding author
2Niels Bohr Institute, University of Copenhagen,
Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark
3Narvik University College,
Lodve Langesgt. 2, N-8505 Narvik, Norway
4Norwegian Institute for Water Research (NIVA),
Gaustadalleen 21, N-349 Oslo, Norway

keywords: Arctic Sea, Baltic Sea, Barents Sea, Nordic Seas, optical classification

Received 11 February 2013, revised 26 March 2013, accepted 8 April 2013.


A new map of Jerlov's optical water types in the Nordic Seas and adjacent waters at 139 locations, as well as a table with statistical and geographical properties of the vertical attenuation coefficient of downward irradiance at 475 nm, are presented. The data analysis is based on 715 recordings at different stations, at latitudes between 54° and 82°N, and longitudes between 31°W and 49°E, obtained by different authors from May 1954 to August 2003. The results show that the Atlantic and Polar waters are typically of oceanic type II-III, although during algal blooms the optical conditions may change to coastal types 1, 3 and 5, which are also the most frequent types found in coastal areas.

  References ref

Aarup T., Holt N., Højerslev N.K., 1996a, Optical measurements in the North Sea - Baltic Sea transition zone. II. Water mass classification a long the Jutland west coast from salinity and spectral irradiance measurements, Cont. Shelf Res., 16(10), 1343-1353, http://dx.doi.org/10.1016/0278-4343(95)00076-3

Aarup T., Holt N., Højerslev N.K., 1996b, Optical measurements in the North Sea - Baltic Sea transition zone. III. Statistical analysis of bio-optical data from the Eastern North Sea, the Skagerrak and the Kattegat, Cont. Shelf Res., 16(10), 1355-1377, http://dx.doi.org/10.1016/0278-4343(95)00077-1

Aas E., 1969, On submarine irradiance measurements, Rep. Dept. Phys. Oceanogr. 6, Univ. Copenhagen, 51 pp.

Aas E., Berge G., 1976, Irradiance observations in the Norwegian and Barents seas, Rep. Dept. Geophys. 23, Univ. Oslo, 42 pp.

Aas E., Højerslev N.K., 2001, Attenuation of ultraviolet irradiance in North European coastal waters, Oceanologia, 43(1), 139-168.

Aas E., Høkedal J., 1996, Penetration of ultraviolet B, blue and quanta irradiance into Svalbard waters, Polar Res., 15(2), 127-138, http://dx.doi.org/10.1111/j.1751-8369.1996.tb00464.x

Aas E., Høkedal J., Højerslev N.K., Sandvik R., Sakshaug E., 2002, Spectral properties and UV-attenuation in Arctic marine waters, [in:] UV radiation and Arctic ecosystems, D.O. Hessen (ed.), Springer-Verlag, Heidelberg, 23-56.

Antoine D., Morel A., Gentili B., Gordon H.R., Barzon V. F., Evans R.H., Brown J.W., Walsh S., Baringer W., Li A., 2003, In search of long-term trends in ocean color, Eos, 84(32), 301, 308-309.

Antoine D., Morel A., Gordon H.R., Banzon V. F., Evans R.H., 2005, Bridging ocean color observations of the 1980’s and 2000’s in search of long-term trends, J. Geophys. Res., 110, C06009, http://dx.doi.org/10.1029/2004JC002620

Austin R.W., Petzold T.J., 1981, The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner, [in:] Oceanography from space, J.F.R. Gower (ed.), Plenum Press, New York, 239-256.

Austin R.W., Petzold T.J., 1986, Spectral dependence of the diffuse attenuation coefficient of light in ocean waters, Opt. Eng., 25(3), 471-479, http://dx.doi.org/10.1117/12.7973845

Austin R.W., Petzold T.J., 1990, Spectral dependence of the diffuse attenuation coefficient of light in ocean waters: A re-examination using new data, Proc. SPIE, P. Soc. Photo-Opt. Ins., 1302, 79-93, http://dx.doi.org/10.1117/12.21436

Burenkov V.I., Ershova S.V., Kopelevich O.V., Sheberstov S.V., Shevchenko V.P., 2001b, An estimate of the distribution of suspended matter in the Barents Sea waters on the basis of the SeaWIFS satellite ocean color scanner, Oceanology, 41(5), 653-659.

Burenkov V.I., Vedernikov V.I., Ershova S.V., Kopelevich O.V., Sheberstov S.V., 2001a, Application of the ocean color data gathered by the SeaWIFS satellite scanner for estimating the bio-optical characteristics of waters in the Barents Sea, Oceanology, 41(4), 461-468.

Calkins J., Thordardottir T., 1982, Penetration of UV-B into waters off Iceland, [in:] The role of solar ultraviolet radiation in marine ecosystems, J. Calkins (ed.), Plenum Press, New York, 309-319.

Dalløkken R., Sandvik R., Sakshaug E., 1994, Variations in bio-optical properties in the Greenland/Iceland/Norwegian Seas, Proc. SPIE, P. Soc. Photo-Opt. Ins., 2258, 226-276.

Dalløkken R., Sandvik R., Sakshaug E., 1995, Seasonal variations in the Greenland Sea: Effect of phytoplankton light absorptions, [in:] Ecology of fjords and coastal waters, H.R. Skjoldal, C. Hopkins, K.E. Erikstad & H.P. Leinaas (eds.), Elsevier, Amsterdam, 33-43.

Endresen Ø., 1995, Observations of spectral irradiance, quantum irradiance and Secchi disk depth during KAREX-95, Norw. Polar Inst., Internal Rep., 18 pp.

Ershova S.V., Kopelevich O.V., Sheberstov S.V., Burenkov V. I., Khrapko A. N., 2001, A method for estimating the penetration of solar visual and ultraviolet radiation into the waters of the Arctic seas using satellite data: The case of a cloudless atmosphere, Oceanology, 41(3), 335-343.

Højerslev N.K., 1974a, Daylight measurements for photosynthetic studies in the Western Mediterranean, Rep. Dept. Phys. Oceanogr. 26, Univ. Copenhagen, 38 pp.

Højerslev N.K., 1974b, Inherent and apparent optical properties of the Baltic, Rep. Dept. Phys. Oceanogr. 23, Univ. Copenhagen, 89 pp.

Højerslev N.K., 1977, Inherent and apparent optical properties of the North Sea. Fladen Ground Experiment. FLEX 75, Rep. Dept. Phys. Oceanogr. 32, Univ. Copenhagen, 97 pp.

Højerslev N.K., 1978, Solar middle ultraviolet (UV-B) measurement in coastal waters rich in yellow substance, Limnol. Oceanogr., 23(5), 1076-1079.

Højerslev N.K., 1982, Bio-optical properties of the Fladen Ground: ‘Meteor’ - FLEX-75 and FLEX-76, J. Cons. Int. Explor. Mer, 40, 272-290.

Højerslev N.K., 1986, Optical properties of sea water, [in:] Landolt-Börnstein numerical data and functional relationships in science and technology, J. Südermann (ed.), Springer Verlag, Berlin, 383-462.

Hhttp://dx.doi.org/10.1029/91JC01822jerslev N. K., Aas E., 1991, A relationship for the penetration of ultraviolet Bradiation into the Norwegian Sea, J. Geophys. Res., 96(C9), 17003-17005, http://dx.doi.org/10.1029/91JC01822

Højerslev N., Jerlov N.G., 1977, The use of the colour index for determining quanta irradiance in the sea, Rep. Dept. Phys. Oceanogr. 12, Univ. Copenhagen, 12 pp.

Højerslev N., Lundgren B., 1977, Inherent and apparent optical properties of Icelandic waters. ‘Bjarni S?mundsson Overflow 73’, Rep. Dept. Phys. Oceanogr. 33, Univ. Copenhagen, 63 pp.

Høkedal J., 1993, Attenuation of downward UVB irradiance in the waters around King Charles Land and in the Greenland Sea. Calibration of a UVB irradiance meter, (in Norwegian), M.Sc. thesis, Dept. Geophys., Univ. Oslo, 75 pp.

Høkedal J., 1995, Observations of Secchi disk depth, spectral irradiance and quantum irradiance during KAREX-94, Norw. Polar Inst., 101, 30 pp.

Jerlov N.G., 1951, Optical studies of ocean waters, Rep. Swed. Deep-Sea Exp., Vol. III, Phys. Chem. No. 3, 59 pp.

Jerlov N.G., 1964, Optical classification of ocean water, [in:] Physical aspects of light in the sea, Univ. Hawaii Press, Honolulu, 45-49.

Jerlov N. G., 1968, Optical oceanography, Elsevier, Amsterdam, 194 pp.

Jerlov N. G., 1974a, A simple method for measuring quanta irradiance in the ocean, Rep. Dept. Phys. Oceanogr. 24, Univ. Copenhagen, 10 pp.

Jerlov N.G., 1974b, Significant relationships between optical properties of the sea, [in:] Optical aspects of oceanography, N.G. Jerlov & E. Steemann Nielsen (eds.), Acad. Press, London, 77-94.

Jerlov N. G., 1976, Marine optics, Elsevier, Amsterdam, 231 pp.

Jerlov N.G., 1978, The optical classification of sea water in the euphotic zone, Rep. Dept. Phys. Oceanogr. 36, Univ. Copenhagen, 46 pp.

Koprova L.I., Konovalov B.V., Pelevin V.V., Khlebnikov D. V., 2010, Variations in a set of optical and hydrologic parameters of the Atlantic surface waters, Izv. Atmos. Ocean. Phys.+, 46(2), 212-227.

Kratzer S., Høkansson B., Sahlin C., 2003, Assessing Secchi and photic zone depth in the Baltic Sea from satellite data, Ambio, 32(8), 577-585, http://dx.doi.org/10.1579/0044-7447-32.8.577

Morel A., Højerslev N. K., 1979, Conversion of quasi-monochromatic downward irradiance into downward quanta irradiance (370-700 nm), IAPSO, IUGG Canberra, 77 pp.

Nilsen J., Aas E., 1977, Relation between solar elevation and the vertical attenuation coefficient of irradiance in Oslofjorden, Rep. Dept. Geophys. 31, Univ. Oslo, 42 pp.

Paulson C.A., Simpson J.J., 1977, Irradiance measurements in the upper ocean, J. Phys. Oceanogr., 7(6), 952-956, http://dx.doi.org/10.1175/1520-0485(1977)007<0952:IMITUO>2.0.CO;2

Pelevin V.N., Rostovtseva V. V., 2001, Modelling of bio-optical parameters of open ocean waters, Oceanologia, 43(4), 469-477.

Pelevin V.N., Rutkovskaya V.A., 1977, On the optical classification of ocean waters from the spectral attenuation of solar radiation, Oceanology, 17(1), 28-32.

Pierson D. C., Kratzer S., Ströbeck N., Häkansson B., 2008, Relationship between the attenuation of downwelling irradiance at 490 nm with the attenuation of PAR (400-700 nm) in the Baltic Sea, Rem. Sens. Environ., 112(5), 668-680, http://dx.doi.org/10.1016/j.rse.2007.06.009

Rutkovskaya V. A., Pelevin V.N., Voytov V.I., 1982, Penetration of photosynthetically-active solar radiation into Atlantic ocean waters, Oceanology, 22(3), 293-297.

Simonot J.-Y., Le Treut H., 1986, A climatological field of mean optical properties of the world ocean, J. Geophys. Res., 91(C5), 6642-6646, http://dx.doi.org/10.1029/JC091iC05p06642

full, complete article (PDF - compatibile with Acrobat 4.0), 219 KB