Oceanologia No. 55 (1) / 13


Contents


Obituary


Acknowledgements


Papers


Communications


Papers



Relationships between inherent optical properties in the Baltic Sea for application to the underwater imaging problem
Oceanologia 2013, no. 55(1), pp. 11-26
doi:10.5697/oc.55-1.011

Iosif Levin2, Mirosław Darecki1, Sławomir Sagan1, Tamara Radomyslskaya2
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: darecki@iopan.gda.pl
2St. Petersburg Branch of the P.P. Shirshov Institute of Oceanology of the Russian Academy of Sciences (IO RAS),
1 Linia 30, 199053, St. Petersburg, Russia;
e-mail: ocopt@yandex.ru

keywords: Baltic Sea, underwater visibility, light attenuation, optical properties

Received 2 August 2012, revised 18 September 2012, accepted 19 November 2012.

This work was supported by the Russian Foundation for Basic Research project No. 10-05-00311. Partial support for this study was also provided by the Satellite Monitoring of the Baltic Sea Environment - SatBaltyk project, funded by the European Union through European Regional Development Fund contract No. POIG 01.01.02-22-011/09 and statutory research funds from the Institute of Oceanology PAS, Sopot.

Abstract

Statistical relationships between coefficients of light attenuation, scattering and backscattering at wavelength 550 nm derived from series of optical measurements performed in Baltic Sea waters are presented. The relationships were derived primarily to support data analysis from underwater imaging systems. Comparison of these relations with analogous empirical data from the Atlantic and Pacific Oceans shows that the two sets of relationships are similar, despite the different water types and the various experimental procedures and instrumentation applied. The apparently universal character of the relationships enables an approximate calculation of other optical properties and subsequently of the contrast, signal/noise ratio, visibility range and spatial resolution of underwater imaging systems based on attenuation coefficients at wavelength 550 nm only.

  References ref

Aas E., Hokedal J., Sorensen K., 2005, Spectral backscattering coeffcient in coastal waters, Int. J. Remote Sens., 26 (2), 331-343, http://dx.doi.org/10.1080/01431160410001720324

Barnard A. H., Pegau W. S., Zaneveld J. R. V., 1998, Global relationships of the inherent optical properties of the oceans, J. Geophys. Res., 103 (C11), 24955-24968, http://dx.doi.org/10.1029/98JC01851

Dera J., 1992, Marine physics, Elsevier-PWN, Amsterdam, 516 pp.

Dolin L., Gilbert G., Levin I., Luchinin A., 2006, Theory of imaging through wavy sea surface, Inst. Appl. Phys. (RAS), Nizhniy Novgorod, 171 pp.

Dolin L. S., Levin I. M., 1991, Reference book on the underwater vision theory, Gidrometeoizdat Press, Leningrad, 230 pp., (in Russian).

Dolin L. S., Levin I. M., 2004, Underwater optics, The Optics Encyclopedia, Vol. 5, Wiley-VCH Publ., Weinheim, 3237-3271, http://dx.doi.org/10.1002/3527600434.eap300.pub2

Eilola K., 1997, Development of a spring thermocline at temperatures below the temperature of maximum density with application to the Baltic Sea, J. Geophys. Res., 102 (C4), 8657-8662, http://dx.doi.org/10.1029/97JC00295

Fournier G. R., Bonnier D., Forand J. L., Pace P. W., 1993, Range-gated underwater laser imaging system, Opt. Eng., 32 (9), 2185-2190, http://dx.doi.org/10.1117/12.143954

Gordon H. R., 1989, Dependence of the diffuse reflectance of natural waters on the sun angle, Limnol. Oceanogr., 34 (8), 1484-1489, http://dx.doi.org/10.4319/lo.1989.34.8.1484

Johnson K. S., Berelson W. M., Boss E. S., Chase Z., Claustre H., Emerson S. R., Gruber N., Körtzinger A., Perry M. J., Riser S. C., 2009, Observing biogeochemical cycles at global scales with profiling floats and gliders: prospects for a global array, Oceanography, 22 (3), 216-225, http://dx.doi.org/10.5670/oceanog.2009.81

Kirk J. T. O., 1984, Dependence of relationship between inherent and apparent optical properties of water on solar altitude, Limnol. Oceanogr., 29 (2), 350-356, http://dx.doi.org/10.4319/lo.1984.29.2.0350

Kirk J. T. O., 1992, Monte Carlo modeling of the performance of the reflective tube absorption meter, Appl. Optics, 31 (30), 6463-6468, http://dx.doi.org/10.1364/AO.31.006463

Kopelevich O. V., 1983, Experimental data on the optical properties of seawater, Ocean Opt., 1, Nauka, Moskva, 166-207, (in Russian).

Kopelevich O. V., Mashtakov Y. L., Rusanov S. Y., 1974, Apparatura i metodika issledovaniya opticheskikh svoistv morskoi vody, gidrozicheskie i gidrooptich- eskie issledovaniya v Atlanticheskom i Tikhom okeanakh, Nauka, Moskva, 97–107.

Kowalczuk P., 1999, Seasonal variability of yellow substance absorption in the surface layer of the Baltic Sea, J. Geophys. Res., 104 (C12), 30047-30058, http://dx.doi.org/10.1029/1999JC900198

Kowalczuk P., Zabłocka M., Sagan S., Kuliński K., 2010, Fluorescence measured in situ as a proxy of CDOM absorption and DOC concentration in the Baltic Sea, Oceanologia, 52 (3), 431-471, http://dx.doi.org/10.5697/oc.52-3.431

Lee Z., Carder K. L., Mobley C. D., Steward R. G., Patch J. S., 1999, Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization, Appl. Opt., 38 (18), 3831-3843, http://dx.doi.org/10.1117/12.740464

Levin I., Desa Eh., Desa El., Suresh T., Radomyslskaya T., 2001, Can the Secchi depth measurements be used for determination of water inherent optical properties?, Proc. 1st Int. Conf. Current Problems in Optics of Natural Waters (ONW-2001), 360-366, I. M. Levin & G. D. Gilbert (eds.), D. S. Rozhdestvensky Opt. Soc., St. Petersburg.

Levin I., Frantsuzov O., Osadchy V., Radomyslskaya T., Savtchenko V., 2003, The instrument for in situ measurement of attenuation coefficient in coastal waters, Proc. 2nd Int. Conf. ’Current Problems in Optics of Natural Waters (ONW-2003), I. M. Levin & G. D. Gilbert (eds.), D. S. Rozhdestvensky Opt. Soc., St. Petersburg, 284-288.

Levin I. M., Kopelevich O. V., 2007, Correlations between the inherent hydrooptical characteristics in the spectral range close to 550 nm, Okeanologiya, 47, (3), 374-379, (in Russian).

Levin I. M., Radomyslskaya T M., 2007, Secchi disk theory: a reexamination, Proc. SPIE, 6615, Current research on remote sensing, laser probing, and imagery in natural waters, 66150O, 11 pp., http://dx.doi.org/10.1117/12.740464

Lundgren B., 1976, Spectral transmittance measurements in the Baltic, Rep. Inst. Phys. Oceanogr., 30, Univ. Copenhagen, 38 pp.

Mayer L., Li Y., Melvin G., 2002, 3D visualization for pelagic fisheries research and assessment, ICES J. Mar. Sci., 59 (1), http://dx.doi.org/10.1006/jmsc.2001.1125

McKee D., Chami M., Brown I., Sanjuan Calzado V., Doxaran D., Cunningham A., 2009, Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters, Appl. Opt., 48 (24), 4663-4675, http://dx.doi.org/10.1364/AO.48.004663

Mobley C. D., Gentili B., Gordon H. R., Jin Z., Kattawar G. W., Morel A., Reinersman P., Stamnes K., Stavn R. H., 1993, Comparison of numerical models for computing underwater light fields, Appl. Opt., 32 (36), 7884-7504, http://dx.doi.org/10.1364/AO.32.007484

Morel A., 1988, Optical modeling of the upper ocean in relation to its biogenous matter content (Case 1 water), J. Geophys. Res., 93 (C9), 10749-10768, http://dx.doi.org/10.1029/JC093iC09p10749

Morel A., Prieur L., 1977, Analysis of variations in ocean color, Limnol. Oceanogr., 22 (4), 709-722, http://dx.doi.org/10.4319/lo.1977.22.4.0709

Petzold T. J., 1972, Volume scattering function for selected ocean waters, Scripps Inst. Oceanogr., San Diego, 79 pp.

Pope R. M., Fry E. S., 1997, Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements, Appl. Opt., 36 (33), 8710-8723, http://dx.doi.org/10.1364/AO.36.008710

Prokudina T. M., Pelevin V. N., 1972, Determination of the value of the life parameter of a light quantum from the characteristics of light fields in the sea, Optics Ocean Atmos., Nauka, Leningrad, 157-167, (in Russian).

Sagan S., 2008, The inherent water optical properties of Baltic waters, Diss. and monogr., 21, Inst. Oceanol. PAS, Sopot, 244 pp., (in Polish).

Sathyendranath S., Platt T., 1997, Analytic model of ocean color, Appl. Opt., 36 (12), 2620-2629, http://dx.doi.org/10.1364/AO.36.002620

Shoonmaker J. S., Hammond R. R., Heath A. L., Cleveland J. S., 1994, Numerical model for prediction of sublittoral optical visibility, Proc. SPIE 2258, Ocean Optics XII, 695, 685-702, http://dx.doi.org/10.1117/12.190116

Smith R. C., Baker K. S., 1981, Optical properties of the clearest natural waters (200-800 nm), Appl. Opt., 20 (2), 177-184, http://dx.doi.org/10.1364/AO.20.000177

Stemmann L., Picheral M., Gorsky G., 2000, Diel variation in the vertical distribution of particulate matter (> 0.15 mm) in the NW Mediterranean Sea investigated with the Underwater Video Profiler, Deep-Sea Res., Pt. I,. 47 (3), 505-531, http://dx.doi.org/10.1016/S0967-0637(99)00100-4

Tang X. O., Stewart W. K., Huang H., Gallager S. M., Davis C. S., Vincent L., Marra M., 1998, Automatic plankton image recognition, Artif. Intell. Rev., 12 (1-3), 177-199, http://dx.doi.org/10.1023/A:1006517211724

Voipio A. (ed.), 1981, The Baltic Sea, Elsevier, Amsterdam, 418 pp.

Voss K. J., 1992, A spectral model of the beam attenuation coefficient in the ocean and coastal areas, Limnol. Oceanogr., 37 (3), 501-509, http://dx.doi.org/10.4319/lo.1992.37.3.0501

Whitmire A. L., Boss E., Cowles T. J., Pegau W. S., 2007, Spectral variability of the particulate backscattering ratio, Opt. Exp., 15 (11), 7019-7031, http://dx.doi.org/10.1364/OE.15.007019

Zaneveld J. R. V., Kitchen J. C., Moore C., 1994, The scattering error correction of reflecting-tube absorption meters, Proc. SPIE 2258, Ocean Optics XII, 44, 44-55, http://dx.doi.org/10.1117/12.190095

Zaneveld J. R. V., Pegau W., 2003, Robust underwater visibility parameter, Opt.Exp., 11 (23), 2997-3009, http://dx.doi.org/10.1364/OE.11.002997

Zege E. P., Ivanov A. P., Katsev I. L., 1991, Image transfer through a scattering medium, Springer, New York.

full, complete article (PDF - compatibile with Acrobat 4.0), 804 KB


Validation of SeaWiFS and MODIS Aqua/Terra aerosol products in coastal regions of European marginal seas
Oceanologia 2013, no. 55(1), pp. 27-51
doi:10.5697/oc.55-1.027

Frédéric Mélin1, Giuseppe Zibordi1, Thomas Carlund2, Brent N. Holben3, Sabina Stefan4
1European Commission - Joint Research Centre, Institute for Environment and Sustainability
TP272, Ispra, 21027, Italy
2Swedish Meteorological and Hydrological Institute,
SE-601 76, Norrköping, Sweden
3Goddard Space Flight Center, National Aeronautics and Space Administration,
Greenbelt, Maryland 20771, USA
4University of Bucharest, Faculty of Physics,
077125 Magurele, P.O. BOX MG-11, Bucharest, Romania

keywords: aerosols, ocean colour, AERONET, validation, European seas

Received 5 September 2012, revised 26 November 2012, accepted 18 December 2012.

Abstract

The aerosol products associated with the ocean colour missions SeaWiFS and MODIS (both Aqua and Terra) are assessed with AERONET field measurements collected in four European marginal seas for which fairly large uncertainties in ocean colour in-water products have been documented: the northern Adriatic, the Baltic, Black and North Seas. On average, more than 500 match-ups are found for each basin and satellite mission, showing an overall consistency of validation statistics across the three missions. The median absolute relative difference between satellite and field values of aerosol optical thickness τa at 443 nm varies from 12% to 15% for the three missions at the northern Adriatic and Black Sea sites, and from 13% to 26% for the Baltic and North Sea sites. It is in the interval 16-31% for the near-infrared band. The spectral shape of τais well reproduced with a median bias of the Ängström exponent varying between -15% and +14%, which represents a clear improvement with respect to previous versions of the atmospheric correction scheme. These results show that the uncertainty associated with τa in the considered coastal waters of the European marginal seas is comparable to global validation statistics.

  References ref

Ahmad Z., Franz B.A., McClain C.R., Kwiatkowska E. J., Werdell P. J., Shettle E.P., Holben B.N., 2010, New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans, Appl. Opt., 49 (9), 5545–5560, http://dx.doi.org/10.1364/AO.49.005545

Ansmann A., Bösenberg J., Chaikovsky A., Comerón A., Eckhardt S., Eixmann R., Freudenthaler V., Ginoux P., Komguem L., Linné H., López Márquez M. A., Matthias V., Mattis I., Mitev V., Müller D., Music S., Nickovic S., Pelon J., Sauvage L., Sobolewsky P., Srivastava M. K., Stohl A., Torres O., Vaughan G., Wandinger U., Wiegner M., 2003, Long-range transport of Saharan dust to northern Europe: The 11-16 October 2001 outbreak observed with EARLINET, J. Geophys. Res., 108 (D24), 4783, http://dx.doi.org/10.1029/2003JD003757

Bailey S.W., Franz B.A., Werdell P. J., 2010, Estimation of near-infrared waterleaving reflectance for satellite ocean color data processing, Opt. Exp., 18 (7), 7521-7527, http://dx.doi.org/10.1364/OE.18.007521

Bailey S.W., Werdell P. J., 2006, A multi-sensor approach for the on-orbit validation of ocean color satellite data products, Remote Sens. Environ., 102 (1-2), 12-23, http://dx.doi.org/10.1016/j.rse.2006.01.015

Blondeau-Patissier D., Tilstone G.H., Martinez-Vicente V., Moore G. F., 2004, Comparison of bio-physical marine products from SeaWiFS, MODIS and a bio-optical model with in situ measurements from Northern European waters, J. Opt. A.Pure Appl. Op., 6 (9), 875-889, http://dx.doi.org/10.1088/1464-4258/6/9/010

Bréon F.-M., Vermeulen A., Descloitres J., 2011, An evaluation of satellite aerosol products against sunphotometer measurements, Remote Sens. Environ., 115 (12), 3102-3111, http://dx.doi.org/10.1016/j.rse.2011.06.017

Bulgarelli B., Mélin F., Zibordi G., 2003, SeaWiFS-derived products in the Baltic Sea: performance analysis of a simple atmospheric correction algorithm, Oceanologia, 45 (4), 655-677.

Carlund T., Håkansson B., Land P., 2005, Aerosol optical depth over the Baltic Sea derived from AERONET and SeaWiFS measurements, Int. J. Remote Sens., 26 (2), 233-245, http://dx.doi.org/10.1080/01431160410001720306

Clerici M., Mélin F., 2008, Aerosol direct radiative effect in the Po Valley region derived from AERONET measurements, Atmos. Chem. Phys., 8 (16), 4925-4946, http://dx.doi.org/10.5194/acp-8-4925-2008

Darecki M., Stramski D., 2004, An evaluation of MODIS and SeaWiFS biooptical algorithms in the Baltic Sea, Remote Sens. Environ., 89 (3), 326-350, http://dx.doi.org/10.1029/2011JD016815

Derimian Y., Dubovik O., Tanré D., Goloub P., Lapyonok T., Mortier A., 2012, Optical properties and radiative forcing of the Eyjafjallajökull volcanic ash layer observed over Lille, France, in 2010, J. Geophys. Res., 117 (D9), D00U25, http://dx.doi.org/10.1029/2011JD016815

Ebert M., Weinbruch S., Hoffmann P., Ortner H.M., 2000, Chemical characterization of North Sea aerosol particles, J. Aerosol Sci., 31 (5), 613-632, http://dx.doi.org/10.1016/S0021-8502(99)00549-2

Eck T. F., Holben B. N., Reid J. S., Dubovik O., Smirnov A., O'Neill N. T., Slutsker I., Kinne S., 1999, The wavelength dependence of the optical depth of biomass burning, urban and desert dust aerosols, J. Geophys. Res., 104 (D24), 31333-31350, http://dx.doi.org/10.1029/1999JD900923

Esaias W. E., Abbott M.R., Barton I., Brown O. B., Campbell J.W., Carder K.L., Clark D.K., Evans R.H., Hoge F.E., Gordon H.R., Balch W.M., Letelier R., Minnett P. J., 1998, An overview of MODIS capabilities for ocean science observations, IEEE Trans. Geosci. Remote Sens., 36 (4), 1250–1265, http://dx.doi.org/10.1109/36.701076

Franz B.A., Bailey S.W., Werdell P. J., McClain C.R., 2007, Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry, Appl. Opt., 46 (22), 5068–5082, http://dx.doi.org/10.1364/AO.46.005068

Fu G., Baith K. S., McClain C.R., 1998, SeaDAS: The SeaWiFS data analysis system, Proc. 4th Pacific Ocean Remote Sens. Conf., Qingdao, China, July 28–31, 1998, 73–79.

Gordon H.R., Wang M., 1994, Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm, Appl. Opt., 33 (3), 443–452, http://dx.doi.org/10.1364/AO.33.000443

Holben B. N., Eck T. F., Slutsker I., Tanré D., Buis J.P., Setzer A., Vermote E., Reagan J.A., Kaufman Y. J., Nakajima T., Lavenu F., Jankowiak I., Smirnov A., 1998, AERONET – a federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66 (1), 1–16, http://dx.doi.org/10.1016/S0034-4257(98)00031-5

Kahn R.A., Gaitley B. J., Garay M. J., Diner D. J., Eck T. F., Smirnov A., Holben B.N., 2010, Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network, J. Geophys. Res., 115, D23209, http://dx.doi.org/10.1029/2010JD014601

Koelemeijer R.B.A., Homan C.D., Matthijsen J., 2006, Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe, Atmos. Environ., 40 (27), 5304–5315, http://dx.doi.org/10.1016/j.atmosenv.2006.04.044

Kuśmierczyk-Michulec J., de Leeuw G., Moerman M.M., 2007, Physical and optical aerosol at the Dutch North Sea coast based on AERONET observations, Atmos. Chem. Phys., 7 (13), 3481–3495, http://dx.doi.org/10.5194/acp-7-3481-2007

Lavender S. J., Pinkerton M.H., Froidefond J.-M., Morales J., Aiken J., Moore G. F., 2004, SeaWiFS validation in European coastal waters using optical and bio-geochemical measurements, Int. J. Remote Sens., 25 (7–8), 1481–1488, http://dx.doi.org/10.1080/01431160310001592481

Marmer E., Langmann B., Fagerli H., Vestreng V., 2007, Direct shortwave radiative forcing of sulfate aerosol over Europe from 1900 to 2000, J. Geophys. Res., 112, D23S17, http://dx.doi.org/10.1029/2006JD008037

Mattis I., Ansmann A., Wandinger U., Müller D., 2003, Unexpectedly high aerosol load in the free troposphere over central Europe in spring/summer 2003, Geophys. Res. Lett., 30 (22), 2178, http://dx.doi.org/10.1029/2003GL018442

McArthur L. J. B., Halliwell D.H., Niebergall O. J., O’Neill N. T., Slusser J.R., Wehrli C., 2003, Field comparison of network Sun photometers, J. Geophys. Res., 108 (D19), 4596, http://dx.doi.org/10.1029/2002JD002964

McClain C.R., Cleave M. L., Feldman G. C., Gregg W. W., Hooker S.B., Kuring N., 1998, Science quality SeaWiFS data for global biosphere research, Sea Tech., 39, 10–16.

Mélin F., Clerici M., Zibordi G., Bulgarelli B., 2006, Aerosol variability in the Adriatic Sea from automated optical field measurements and SeaWiFS, J. Geophys. Res., 111, D22201, http://dx.doi.org/10.1029/2006JD007226

Mélin F., Clerici M., Zibordi G., Holben B.N., Smirnov A., 2010, Validation of SeaWiFS and MODIS aerosol products with globally distributed AERONET data, Remote Sens. Environ., 114 (2), 230-250, http://dx.doi.org/10.1016/j.rse.2009.09.003

Mélin F., Zibordi G., 2005, Aerosol variability in the Po Valley analyzed from automated optical measurements, Geophys. Res. Lett., 32 (3), L03810, http://dx.doi.org/10.1029/2004GL021787

Mélin F., Zibordi G., Berthon J.-F., 2007a, Assessment of satellite ocean color products at a coastal site, Remote Sens. Environ., 110 (2), 192-215, http://dx.doi.org/10.1016/j.rse.2007.02.026

Mélin F., Zibordi G., Berthon J.-F., 2012, Uncertainties in remote sensing reflectance from MODIS-Terra, IEEE Geosci. Remote Sens. Lett., 9 (3), 432-436, http://dx.doi.org/10.1109/LGRS.2011.2170659

Mélin F., Zibordi G., Berthon J.-F., Bailey S.W., Franz B.A., Voss K. J., Flora S., Grant M., 2011, Assessment of MERIS reflectance data as processed with SeaDAS over the European seas, Opt. Exp., 19 (25), 25657-25671, http://dx.doi.org/10.1364/OE.19.025657

Mélin F., Zibordi G., Djavidnia S., 2007b, Development and validation of a technique for merging satellite derived aerosol optical depth from SeaWiFS and MODIS, Remote Sens. Environ., 108 (4), 436-450, http://dx.doi.org/10.1016/j.rse.2006.11.026

Mélin F., Zibordi G., Holben B.N., 2013, Assessment of the aerosol products from the SeaWiFS and MODIS ocean color missions, IEEE Geosci. Remote Sens. Lett., (in press).

O'Neill N.T., Eck T. F., Holben B.N., Smirnov A., Dubovik O., Royer A., 2001, Bimodal size distribution influences on the variation of Ångströ m derivatives in spectral and optical depth space, J. Geophys. Res., 106 (D9), 9787-9806, http://dx.doi.org/10.1029/2000JD900245

Remer L.A., Kleidman R. G., Levy R.C., Kaufman Y. J., Tanré D., Mattoo S., Martins J.V., Ichoku C., Koren I., Yu H., Holben B.N., 2008, Global aerosol climatology from the MODIS satellite sensors, J. Geophys. Res., 113, D14S07, http://dx.doi.org/10.1029/2007JD009661

Sancak S., Besiktepe S.T., Yilmaz A., Lee M., Frouin R., 2005, Evaluation of SeaWiFS chlorophyll-a in the Black and Mediterranean Seas, Int. J. Remote Sens., 26 (10), 2045-2060, http://dx.doi.org/10.1080/01431160512331337853

Schmid B., Michalsky J., Halthore R., Beauharnois M., Harrison L., Livingston J., Russell P., Holben B.N., Eck T. F., Smirnov A., 1999, Comparison of aerosol optical depth from four solar radiometers during the Fall 1997 ARM intensive observation period, Geophys. Res. Lett., 26 (17), 2725-2728, http://dx.doi.org/10.1029/1999GL900513

Sciare J., Oikonomou K., Favez O., Liakakou E., Markaki Z., Cachier H., Mihalopoulos N., 2008, Long-term measurements of carbonaceous aerosols in the Eastern Mediterranean: evidence of long-range transport of biomass burning, Atmos. Chem. Phys., 8 (14), 5551-5563, http://dx.doi.org/10.5194/acp-8-5551-2008

Shettle E.P., Fenn R.W., 1979, Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties, Environ. Res. Paper, 676, AFGL-TR-79-0214 (U.S. Air Force Geophys. Lab., Hanscom A.F.B., MA), 1-94.

Smirnov A., Holben B.N., Eck T. F., Dubovik O., Slutsker I., 2000, Cloud-screening and quality control algorithms for the AERONET database, Remote Sens. Environ., 73 (3), 337-349, http://dx.doi.org/10.1016/S0034-4257(00)00109-7

Smirnov A., Holben B.N., Lyapustin A., Slutsker I., Eck T. F., 2004, AERONET processing algorithm refinement, AERONET Workshop, El Arenosillo, Spain, May 10-14, 2004.

Toledano C., Cachorro V. E., Gausa M., Stebel K., Aaltonen V., Berjon A., Ortiz de Galisteo J.P., de Frutos A. M., Bennouna Y., Blindheim S., Myhre C. L., Zibordi G., Wehrli C., Kratzer S., Håkansson B., Carlund T., de Leeuw G., Herber A., Torres B., 2012, Overview of sun photometer measurements of aerosol properties in Scandinavia and Svalbard, Atmos. Environ., 52, 18-28, http://dx.doi.org/10.1016/j.atmosenv.2011.10.022

Zdun A., Rozwadowska A., Kratzer S., 2011, Seasonal variability in the optical properties of Baltic aerosols, Oceanologia, 53 (1), 7-34, http://dx.doi.org/10.5697/oc.53-1.007

Zibordi G., Berthon J.-F., Mélin F., D'limonte D., 2011, Cross-site consistent in situ measurements for satellite ocean color applications: the BiOMaP radiometric dataset, Remote Sens. Environ., 115 (8), 2104-2115, http://dx.doi.org/10.1016/j.rse.2011.04.013

Zibordi G., Berthon J.-F., Mélin F., D'limonte D., Kaitala S., 2009, Validation of satellite ocean color primary products at optically complex coastal sites: northern Adriatic Sea, northern Baltic Proper and Gulf of Finland, Remote Sens. Environ., 113 (12), 2574-2591, http://dx.doi.org/10.1016/j.rse.2009.07.013

Zibordi G., Mélin F., Berthon J.-F., 2012, Trends in the bias of primary satellite ocean color products at a coastal site, IEEE Geosci. Remote Sens. Lett., 9 (6), 1056-1060, http://dx.doi.org/10.1109/LGRS.2012.2189753

-->
full, complete article (PDF - compatibile with Acrobat 4.0), 2.93 MB


Influence of the parametrization of water optical properties on the modelled sea surface temperature in the Baltic Sea
Oceanologia 2013, no. 55(1), pp. 53-76
doi:10.5697/oc.55-1.053

Małgorzata Stramska1,2,*, Agata Zuzewicz1,2
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: mstramska@iopan.gda.pl
*corresponding author
2Department of Earth Sciences, Szczecin University,
Mickiewicza 16, Szczecin 70-383, Poland

keywords: Baltic Sea, sea surface temperature, biological-physical interactions, ocean models

Received 18 July 2012, revised 6 November 2012, accepted 26 November 2012.

This work was supported by the SatBałtyk project funded by the European Union through the European Regional Development Fund (contract No. POIG.01.01.02-22-011/09 entitled "The Satellite Monitoring of the Baltic Sea Environment").

Abstract

Treatment of light propagation in the water column requires further improvements in the biogeochemical models of the Baltic Sea. Regional models of the Baltic Sea usually assume a simple exponential vertical distribution of the total downward irradiance in the visible spectral range (PAR, photosynthetically available radiation). This is in spite of the fact that modelling studies for open ocean regions have stressed the importance of more detailed optical parameterization for the quality prediction of sea surface temperature and thermal structure of surface waters. In recent years extensive regional in situ bio-optical data sets have become available for the Baltic Sea, which can be used to develop a better understanding of the feedbacks between optics and other processes simulated by the models. In this paper we compare four optical parameterizations used in numerical ocean models and their effects on modelled SSTs. This has been achieved using a one-dimensional ocean model coupled with the bio-optical models. Our results indicate that the differences between the various modelled SSTs using three optical parameterization schemes designed specifically for the Baltic Sea can give differences of up to 4°C in the modelled SSTs. This result warrants further research into the subject.

  References ref
Baker K. S., Smith R. C., 1982, Bio-optical classiffication and model of natural waters, Limnol. Oceanogr., 27 (3), 500-509.

Bird R. E., 1984, A simple, solar spectral model for direct-normal and diffuse horizontal irradiance, Solar Energy, 32 (4), 461-471, http://dx.doi.org/10.1016/0038-092X(84)90260-3

Bird R. E., Hulstrom R. L., Lewis L. J., 1983, Terrestrial solar spectral data sets, Sol. Energy, 30 (6), 563-573, http://dx.doi.org/10.1016/0038-092X(83)90068-3

Belkin I., 2009, Rapid warming of large marine ecosystems, Prog. Oceanogr., 81, 207-213.

Blumberg A. F., Mellor G. L., 1983, Diagnostic and prognostic numerical circulation studies of the South California Bight, J. Geophys. Res., 88 (8), 4579-4592, http://dx.doi.org/10.1029/JC088iC08p04579

Bradtke K., Herman A., Urbański J. A., 2010, Spatial and interannual variations of seasonal sea surface temperature patterns in the Baltic Sea, Oceanologia, 52 (3), 345-362, http://dx.doi.org/10.5697/oc.52-3.345

Darecki M., Ficek D., Krężel A., Ostrowska M., Majchrowski R., Woźniak S. B., Bradtke K., Dera J., Woźniak B., 2008, Algorithms for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 2: Empirical validation, Oceanologia, 50 (4), 509-538.

Fasham M. J. R., Ducklow H. W., McKelvie S. M., 1990, A nitrogen-based model of plankton dynamics in the oceanic mixed layer, J. Mar. Res., 48 (3), 591-639.

Feldman G. C., McClain C. R., 2012, Ocean Color Web. SeaWiFS and MODISA Reprocessing 2010, N. Kuring & S. W. Bailey (eds.), NASA Goddard Space Flight Center, http://oceancolor.gsfc.nasa.gov/, (access date January 2012).

HELCOM 2009, Eutrophication in the Baltic Sea - An integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region, Balt. Sea Environ. Proc. No. 115B, 148 pp.

Kahru M., Leppänen J. M., Rud O., 1993, Cyanobacterial blooms cause heating of the sea surface, Mar. Ecol.-Prog. Ser., 101, 1-7.

Kirk J. T. O., 2011, Light and photosynthesis in aquatic ecosystems, Cambridge Univ. Press, 3rd edn., Cambridge, 662 pp.

Kishino M., Okami N., Takahashi M., Ichimura S. E., 1986, Light utilization effciency and quantum yield of phytoplankton in a thermally stratified sea, Limnol. Oceanogr., 31 (3), 557-566.

Lee Z.-P., Darecki M., Carder K. L., Davis C. O., Stramski D., Rhea W. J., 2005, Diffuse attenuation coeffcient of downwelling irradiance: An evaluation of remote sensing methods, J. Geophys. Res., 110, C02017, http://dx.doi.org/10.1029/2004JC002573

Leppäranta M., Myrberg K., 2009, Physical oceanography of the Baltic Sea, Springer, Berlin, [ISBN: 978-3-540-79702-9], 378 pp.

Lewis M. R., Carr M. E., Feldman G. C., Esaias W., McClain C., 1990, Inffluence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean, Nature, 347 (6293), 543-545, http://dx.doi.org/10.1038/347543a0

Lewis M. R., Cullen J. J., Platt T., 1983, Phytoplankton and thermal structure in the upper ocean: consequences of nonuniformity in the chlorophyll profile, J. Geophys. Res., 88 (C4), 2565-2570, http://dx.doi.org/10.1029/JC088iC04p02565

Löptien U., Meier H. E. M., 2011, The influence of increasing water turbidity on the sea surface temperature in the Baltic Sea: A model sensitivity study, J. Marine Syst., 88 (2), 323-331.

McClain C. R., Feldman G. C., Hooker S. B., 2004, An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series, Deep Sea Res. Pt. II, 51 (1-3), 5-42, http://dx.doi.org/10.1016/j.dsr2.2003.11.001

Mellor G. L., 2004, Users guide for a three-dimensional, primitive equation numerical ocean model, available on the Princeton Ocean Model (POM) website, rev.2004, http://www.aos.princetion.edu/WWPUBLIC/htdocs.pom/

Mellor G. L., Durbin P. A., 1975, The structure and dynamics of the ocean surface mixed layer, J. Phys. Oceanogr., 5 (4), 718-728, http://dx.doi.org/10.1175/1520-0485(1975)005<0718:TSADOT>2.0.CO;2

Mellor G. L., Yamada T., 1974, A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci., 31 (7), 1791-1806, http://dx.doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2

Mellor G. L., Yamada T., 1982, Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys. Space Phys., 20 (4), 851-857, http://dx.doi.org/10.1029/RG020i004p00851

Mobley C. D., 1994, Light and water: Radiative transfer in natural waters, Acad. Press, New York, 592 pp.

Moore J. K., Doney S. C., Glover D. M., Fung I. Y., 2002a, Iron cycling and nutrient limitation patterns in surface waters of the world ocean, Deep Sea Res. Part II, 49 (1-3), 463-508, http://dx.doi.org/10.1016/S0967-0645(01)00109-6

Moore J. K., Doney S. C., Kleypas J. C., Glover D. M., Fung I. Y., 2002b, An intermediate complexity marine ecosystem model for the global domain, Deep Sea Res. Part II, 49 (1-3), 403-462, http://dx.doi.org/10.1016/S0967-0645(01)00108-4

Moore J. K., Doney S. C., Lindsay K., 2004, Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model, Global Biogeochem. Cy., 18 (4), GB4028, http://dx.doi.org/10.1029/JC093iC09p10749

Morel A., 1988, Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters), J. Geophys. Res., 93 (C9), 10749-10768.

Neumann T., 2000, Towards a 3D-ecosystem model of the Baltic Sea, J. Marine Syst., 25 (3-4), 405-419, http://dx.doi.org/10.1016/S0924-7963(00)00030-0

Neumann T., Fennel W., Kremp C., 2002, Experimental simulations with an ecosystem model of the Baltic Sea: A nutrient load reduction experiment, Global Biogeochem. Cy., 16, 1033, http://dx.doi.org/10.1029/2001GB001450

Neumann T., Schernewski G., 2005, An ecological model evaluation of two nutrient abatement strategies for the Baltic Sea, J. Marine Syst., 56 (1-2), 195-206, http://dx.doi.org/10.1016/j.jmarsys.2004.10.002

Neumann T., Schernewski G., 2008, Eutrophication in the Baltic Sea and shifts in nitrogen fixation analyzed with a 3D ecosystem model, J. Marine Syst.,74 (1-2), 592-602, http://dx.doi.org/10.1016/j.jmarsys.2008.05.003

Ołdakowski B., Kowalewski M., Jędrasik J., Szymelfenig M., 2005, Ecohydrodynamic model of the Baltic Sea. Part 1. Description of the ProDeMo model, Oceanologia, 47 (4), 477-516.

Palmer K. F., Williams D., 1974, Optical properties of water in the near infrared, J. Opt. Soc. Am., 64 (8), 1107-l110, http://dx.doi.org/10.1364/JOSA.64.001107

Payne R. E., 1972, Albedo of the sea surface, J. Atmos. Sci., 29 (5), 959-970, http://dx.doi.org/10.1175/1520-0469(1972)029<0959:AOTSS<2.0.CO;2

Pierson D., Kratzer S., Strömbeck N., Hakånsson B., 2008, Relationship between the attenuation of downwelling irradiance at 490 nm with the attenuation of PAR (400 nm-700 nm) in the Baltic Sea, Remote Sens. Environ., 112 (3), 668-680, http://dx.doi.org/10.1016/j.rse.2007.06.009

Savchuk P. O., Wulff F., 1999, Modeling regional and large-scale response of Baltic Sea ecosystems to nutrient load reductions, Hydrobiologia, 393 (1), 35-43.

Savchuk P. O., Wulff F., 2007, Modeling the Baltic Sea eutrophication in a decision support system, AMBIO 36 (2), 141-148, http://dx.doi.org/10.1579/0044-7447(2007)36[141:MTBSEI]2.0.CO;2

Sathyendranath S., Gouveia A. D., Shetye S. R., Ravindran P., Platt T., 1991, Biological control of surface temperature in the Arabian Sea, Nature, 349 (6304), 54-56, http://dx.doi.org/10.1038/349054a0

Sathyendranath S., Platt T., 1988, The spectral irradiance field at the surface and in the interior of the ocean: A model for applications in oceanography and remote sensing, J. Geophys. Res., 93 (C8), 9270-9280, http://dx.doi.org/10.1029/JC093iC08p09270

Siegel H., Gerth M., Tschersich G., 2006, Sea surface temperature development of the Baltic Sea in the period 1990-2004, Oceanologia, 48 (S), 119-131.

Simonot J.-Y., Dollinger E., Le Treut H., 1988, Thermodynamic-biological-optical coupling in the oceanic mixed layer, J. Geophys. Res., 93 (C7), 8193-8202, http://dx.doi.org/10.1029/JC093iC07p08193

Smith R. C., Baker K. S., 1981, Optical properties of the clearest natural waters (200-800 nm), Appl. Opt., 20 (2), 177-184, http://dx.doi.org/10.1364/AO.20.000177

Smith R. C., Baker K. S., 1986, Analysis of ocean optical data, II. Proc. Sot. Photo-Opt. Eng., 637, 95-107.

Stramska M., Dickey T., 1993, Phytoplankton bloom and the vertical thermal structure of the upper ocean, J. Mar. Res., 51 (4), 819-842.

Woods J. D., Barkmann W., 1986, The response of the upper ocean to solar heating. I. The mixed layer, Q. J. Roy. Meteor. Soc., 112 (471), 1-27, http://dx.doi.org/10.1002/qj.49711247102

Woźniak B., Krężel A., Darecki M., Woźniak S. B., Majchrowski R., Ostrowska M., Kozłowski Ł., Ficek D., Olszewski J., Dera J., 2008, Algorithms for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 1: Mathematical apparatus, Oceanologia, 50 (4), 451-508.

Zaneveld J. R., Kitchen J. C., Pak H., 1981, The influence of optical water type on the heating rate of a constant depth mixed layer, J. Geophys. Res., 86 (C7), 6426-6428, http://dx.doi.org/10.1029/JC086iC07p06426


full, complete article (PDF - compatibile with Acrobat 4.0), 392 KB


Comparison of primary productivity estimates in the Baltic Sea based on the DESAMBEM algorithm with estimates based on other similar algorithms
Oceanologia 2013, no. 55(1), pp. 77-100
doi:10.5697/oc.55-1.077

Małgorzata Stramska1,2,*, Agata Zuzewicz1,2
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: mstramska@iopan.gda.pl
*corresponding author
2Department of Earth Sciences, Szczecin University,
Mickiewicza 16, Szczecin 70-383, Poland

keywords: ocean colour, satellite remote sensing, primary productivity, Baltic Sea

Received 12 July 2012, revised 26 October 2012, accepted 4 January 2013.

This work was supported through the SatBałtyk project funded by the European Union through the European Regional Development Fund, (contract No. POIG.01.01.02-22-011/09 entitled "The Satellite Monitoring of the Baltic Sea Environment").

Abstract

The quasi-synoptic view available from satellites has been broadly used in recent years to observe in near-real time the large-scale dynamics of marine ecosystems and to estimate primary productivity in the world ocean. However, the standard global NASA ocean colour algorithms generally do not produce good results in the Baltic Sea. In this paper, we compare the ability of seven algorithms to estimate depth-integrated daily primary production (PP, mg C m-2) in the Baltic Sea. All the algorithms use surface chlorophyll concentration, sea surface temperature, photosynthetic available radiation, latitude, longitude and day of the year as input data. Algorithm-derived PP is then compared with PP estimates obtained from 14C uptake measurements. The results indicate that the best agreement between the modelled and measured PP in the Baltic Sea is obtained with the DESAMBEM algorithm. This result supports the notion that a regional approach should be used in the interpretation of ocean colour satellite data in the Baltic Sea.

  References ref
Antoine D., André J. M., Morel A., 1996, Oceanic primary production: 2. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll, Global Biogeochem. Cy., 10 (1), 56-69.

Balch W. M., Evans R., Brown J., Feldman G., McClain C., Esaias W., 1992, The remote sensing of ocean primary productivity: Use of a new data compilation to test satellite algorithms, J. Geophys. Res., 97 (C2), 2279-2293, http://dx.doi.org/10.1029/91JC02843

Behrenfeld M. J., Falkowski P. G., 1997, Photosynthetic rates derived from satellite- based chlorophyll concentration, Limnol. Oceanogr., 42 (1), 1-20.

Behrenfeld M. J., O’Malley R. T., Siegel A. D., McClain C.-R., Jorge L., Sarmiento J., Feldman G. C., Milligan A. J., Falkowski P. G., Letelier R., Boss E. S., 2006, Climate-driven trends in contemporary ocean productivity, Nature, 444 (7120), 752-755, http://dx.doi.org/10.1038/nature05317

Bianchi A., Bianucci L., Piola A., Ruiz-Pino D., Schloss I., Poisson A., Balestrini C., 2005, Vertical stratification and air-sea CO2 fluxes in the Patagonian shelf, J. Geophys. Res., 110, C07003, http://dx.doi.org/10.1029/2004JC002488

Boyd P. W., Trull T. W., 2007, Understanding the export of biogenic particles in oceanic waters: Is there consensus?, Prog. Oceanogr., 72 (4), 276-312, [ISSN 0079-6611], http://dx.doi.org/10.1016/j.pocean.2006.10.007

Broekhuizen N., Heath M. R., Hay S. J., Gurney W. S. C., 1995, Modelling the dynamics of the North Sea’s mesozooplankton, Neth. J. Sea Res., 33 (3/4), 381-406, http://dx.doi.org/10.1016/0077-7579(95)90054-3

Brush M. J., Brawley J. W., Nixon S. W., Kremer J. N., 2002, Modeling phytoplankton production: problems with the Eppley curve and an empirical alternative, Mar. Ecol.-Prog. Ser., 238, 31-45.

Campbell J., Antoine D., Armstrong R., Arrigo K., Balch W., Barber R., Behrenfeld M., Bidigare R., Bishop J., Carr M.-E., Esaias W., Falkowski P., Hoepner N., Iverson R., Keifer D., Lohrenz S., Marra J., Morel A., Ryan J., Vedemikov V., Waters K., Yentsch C., Yoder J., 2002, Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance, Global Biogeochem. Cy., 16 (3), 74-75, http://dx.doi.org/10.1029/2001GB001444

Carr M.-E., Friedrichs M. A., Schmeltz M., Aita M. N., Antoine D., Arrigo K. R., Asanuma I., Aumont O., Barber R., Behrenfeld M., Bidigare R., Buitenhuis E. T., Campbell J., Ciotti A., Dierssen H., Dowell M., Dunne J., Esaias W., Gentili B., Gregg W., Groom S., Hoepner N., Ishizaka J., Kameda T., Le Quere C., Lohrenz S., Marra J., Melin F., Moore K., Morel A., Reddy T. E., Ryan J., Scardi M., Smyth T., Turpie K., Tilstone G., Waters K., Yamanaka Y., 2006, A comparison of global estimates of marine primary production from ocean color, Deep-Sea Res. Pt. II, 53 (5-7), 741-770.

Darecki M., Ficek D., Krężel A., Ostrowska M., Majchrowski R., Woźniak S. B., Bradtke K., Dera J., Woźniak B., 2008, Algorithms for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 2: Empirical validation, Oceanologia, 50 (4), 509-538.

Darecki M., Stramski D., 2004, An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea, Remote Sens. Environ., 89 (3), 326-350, http://dx.doi.org/10.1016/j.rse.2003.10.012

Doney S. C., Fabry V. J., Feely R. A., Kleypas J. A., 2009, Ocean acidification: the other CO2 problem, Ann. Rev. Mar. Sci., 1, 169-192, http://dx.doi.org/10.1146/annurev.marine.010908.163834

Ebenhöh W., Kohlmeier C., Radford P. J., 1995, The benthic biological submodel in the European Regional Seas Ecosystem Model, Neth. J. Sea Res., 33(3/4), 423-452, http://dx.doi.org/10.1016/0077-7579(95)90056-X

Eppley R. W., 1972, Temperature and phytoplankton growth in the sea, Fish. Bull. Nat. Ocean. Atmos. Adm., 70 (37), 1063-1085.

Fitzwater S. E., Knauer G. A., Martin J. H., 1982, Metal contamination and its effect on primary production measurements, Limnol. Oceanogr., 27 (3), 544-551.

Friedrichs M. A. M., Carr M.-E., Barber R. T., Scardi M., Antoine D., Armstrong R. A., Asanuma I., Behrenfeld M. J., Buitenhuis E. T., Chai F., Christian J. R., Ciotti A. M., Doney S. C., Dowell M., Dunne J., Gentili B., Gregg W., Hoepffner N., Ishizaka J., Kameda T., Lima I., Marra J., Mélin F., Moore J. K., Morel A., O’Malley R. T., O’Reilly J., Saba V. S., Schmelt M., Smyth T. J., Tjiputra J., Waters K., Westberry T. K., Winguth A., 2009, Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean, J. Marine Syst., 76 (1-2), 113-133, http://dx.doi.org/10.1016/j.jmarsys.2008.05.010

Gregg W. W., 2008, Assimilation of SeaWiFS ocean chlorophyll data into a three- dimensional global ocean model, J. Marine. Syst., 69 (3-4), 205-225, http://dx.doi.org/10.1016/j.jmarsys.2006.02.015

Hofmann E. E., Lascara C. M., 1998, Overview of interdisciplinary modeling for marine ecosystems, [in:] The sea, Vol. 10: The global coastal ocean: processes and methods, K. H. Brink & A. R. Robinson (eds.), John Wiley & Sons, New York, 507-540.

JGOFS 1996, Protocols for the joint global ocean flux study (JGOFS) core measurements, Rep. No. 36, Intergov. Oceanogr. Commiss., Bergen, Norway, 170 pp., (available at ijgofs.whoi.edu/Publications/Report_Series/reports.html).

JGOFS, 2002, Photosynthesis and Primary Productivity in Marine Ecosystems: Practical Aspects and Application of Techniques, Rep. No. 19, Intergov. Oceanogr. Commiss., Bergen, Norway, 89 pp., (available at ijgofs.whoi.edu/Publications/Report_eries/reports.html).

Kameda T., Ishizaka J., 2005, Size-fractionated primary production estimated by a two-phytoplankton community model applicable to ocean color remote sensing, J. Oceanogr., 61 (4), 663-672.

Kiefer D. A., Rensel J. E., O’Brien F. J., Fredriksson D. W., Irish J., 2011, An Ecosystem design for marine aquaculture site selection and operation, NOAA Marine Aquaculture Initiative Program Final Report. Award Number: NA08OAR4170859, by System Science Applications, Irvine CA in association with the United States Naval Academy and Woods Hole Oceanographic Institution., 181 pp.

Larsen S. H., 2005, Solar variability, dimethyl sulphide, clouds, and climate, Glob. Biogeochem. Cy., 19, GB1014, http://dx.doi.org/10.1029/2004GB002333

Longhurst A., Sathyendranath S., Platt T., Caverhill C., 1995, it An estimate of global primary production in the ocean from satellite radiometer data, J. Plankton Res., 17, 1245-1271.

McClain C. R., 2009, A decade of satellite ocean color observations, Ann. Rev. Mar. Sci., 1, 19-42, http://dx.doi.org/10.1146/annurev.marine.010908.163650

Moisander P., Steppe T. F., Hall N. S., Kuparinen J., Paerl H. W., 2003, Variability in nitrogen and phosphorus limitation for Baltic Sea phytoplankton during nitrogen-fixing cyanobacterial blooms, Mar. Ecol.-Prog. Ser., 262, 81-95, http://dx.doi.org/doi:10.3354/meps262081

Moore J. K., Doney S. C., Glover D. M., Fung I. Y., 2002a, Iron cycling and nutrient limitation patterns in surface waters of the world ocean, Deep Sea Res. Part II, 49 (1-3), 463-508, http://dx.doi.org/10.1016/S0967-0645(01)00109-6

Moore J. K., Doney S. C., Kleypas J. C., Glover D. M., Fung I. Y., 2002b, An intermediate complexity marine ecosystem model for the global domain, Deep Sea Res. Part II, 49(1-3), 403-462, http://dx.doi.org/10.1016/S0967-0645(01)00108-4

Moore J. K., Doney S. C., Lindsay K., 2004, Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model, Global Biogeochem. Cy., 18 (4), GB4028, http://dx.doi.org/10.1029/JC093iC09p10749

Morel A., 1988, Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters), J. Geophys. Res., 93 (C9), 10749-10768.

Neumann T., 2000, Towards a 3D-ecosystem model of the Baltic Sea, J. Marine Syst., 25 (3-4), 405-419, http://dx.doi.org/10.1016/S0924-7963(00)00030-0

Neumann T., Fennel W., Kremp C., 2002, Experimental simulations with an ecosystem model of the Baltic Sea: A nutrient load reduction experiment, Global Biogeochem. Cy., 16, 1033, http://dx.doi.org/10.1029/2001GB001450

Neumann T., Schernewski G., 2005, An ecological model evaluation of two nutrient abatement strategies for the Baltic Sea, J. Marine Syst., 56 (1-2), 195-206, http://dx.doi.org/10.1016/j.jmarsys.2004.10.002

Neumann T., Schernewski G., 2008, Eutrophication in the Baltic Sea and shifts in nitrogen fixation analyzed with a 3D ecosystem model, J. Marine Syst., 74 (1-2), 592-602, http://dx.doi.org/10.1016/j.jmarsys.2008.05.003

Ołdakowski B., Kowalewski M., Jędrasik J., Szymelfenig M., 2005, Ecohydrodynamic model of the Baltic Sea. Part 1. Description of the ProDeMo model, Oceanologia, 47 (4), 477-516.

O’Reilly J. E, Maritorena S., Mitchell B. G., Siegel D. A., Carder K. L., Garver S. A., Kahru M., McClain C. R., 1998, Ocean color chlorophyll algorithms for SeaWiFS, J. Geophys. Res., 103 (C11), 24937-24953.

O’Reilly J. E., Maritorena S., Siegel D. A., O’Brien M. C., Toole D., Mitchell B. G., Kahru M., Chavez F. P., Strutton P., Cota G. F., Hooker S. B., McClain C. R., Carder K. L., Müller-Karger F., Harding L., Magnuson A., Phinney D., Moore G. F., Aiken J., Arrigo K.-R., Letelier R., Culver M., 2000, Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4, Ver. 4, NASA Tech. Memo., 2000-206892, Vol. 11, 9-27.

Peterson B. J., 1980, Aquatic primary productivity and the 14CO2 method: A history of the productivity problem, Ann. Rev. Ecol. Syst., 11, 369-385, http://dx.doi.org/10.1029/98JC02160

Richardson K., 1991, Comparison of 14 C primary production determinations made by different laboratories, Mar. Ecol.-Prog. Ser., 72, 189-201.

Saba V. S., Friedrichs M. A. M., Antoine D., Armstrong R. A., Asanuma I., Aumont O., Behrenfeld M. J., Ciotti A. M., Dowell M., Hoepffner N., Hyde K. J. W., Ishizaka J., Kameda T., Marra J., Mélin F., Moore J. K., Morel A., O’Reilly J., Scardi M., Smith Jr. W. O., Smyth T. J., Tang S., Uitz J., Waters K., Westberry T. K., 2011, An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe, Biogeosciences, 8, 489-503, http://dx.doi.org/doi:10.5194/bg-8-489-2011

Steele J., 1962, Environmental control of photosynthesis in the sea, Limnol. Oceanogr., 7 (2), 137-150.

Stigebrandt A., Wulff F., 1987, A model for the dynamics of nutrients and oxygen in the Baltic Proper, J. Mar. Res., 45 (3), 729-759, http://dx.doi.org/10.1357/002224087788326812

Woźniak B., Ficek D., Ostrowska M., Ma jchrowski R., Dera J., 2007, Quantum yield of photosynthesis in the Baltic: a new mathematical expression for remote sensing applications, Oceanologia, 49 (4), 527-542.

Woźniak B., Krężel A., Darecki M., Woźniak S. B., Ma jchrowski R., Ostrowska, M., Kozłowski Ł., Ficek D., Olszewski J., Dera J., 2008, Algorithms for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 1: Mathematical apparatus, Oceanologia, 50 (4), 451-508.

Yeager S. G., Shields C. A., Large W. G., Hack J. J., 2006, The low-resolution CC SM3, J. Climate, 19 (11), 2545-2566, http://dx.doi.org/10.1175/JCLI3744.1

full, complete article (PDF - compatibile with Acrobat 4.0), 563 KB


Surface wave generation due to glacier calving
Oceanologia 2013, no. 55(1), pp. 101-127
doi:10.5697/oc.55-1.101

Stanisław R. Massel, Anna Przyborska
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: smas@iopan.gda.pl
*corresponding author

keywords: glacier calving, surface waves, pressure impulse, integral transforms

Received 09 September 2012, revised 21 October 2012, accepted 26 November 2012.

The authors are grateful for support from the Arctic and Environment of the Nordic Seas and the Svalbard-Greenland Area (AWAKE) Grant.

Abstract

Coastal glaciers reach the ocean in a spectacular process called "calving". Immediately after calving, the impulsive surface waves are generated, sometimes of large height. These waves are particularly dangerous for vessels sailing close to the glacier fronts. The paper presents a theoretical model of surface wave generation due to glacier calving. To explain the wave generation process, four case studies of ice blocks falling into water are discussed: a cylindrical ice block of small thickness impacting on water, an ice column sliding into water without impact, a large ice block falling on to water with a pressure impulse, and an ice column becoming detached from the glacier wall and falling on to the sea surface. These case studies encompass simplified, selected modes of the glacier calving, which can be treated in a theoretical way. Example calculations illustrate the predicted time series of surface elevations for each mode of glacier calving.

  References ref
Abramowitz M., Stegun I.A., 1975, Handbook of mathematical functions, Dover Publ., New York, 1045 pp.

Amundson J. M., Truffer M., Lutki M.P., Fahnestock M., West M., Motyka R. J., 2008, Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbrae, Greenland, Geophys. Res. Lett., 35 (22), http://dx.doi.org/10.1029/2008GL035281

Amundson J. M., Fahnestock M., Truffer M., Brown J., Lutki M.P., Motyka R. J., 2010, Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbrae, Greenland, J. Geophys. Res., 115 (F1), 12 pp., http://dx.doi.org/10.1029/2009JF001405

Błaszczyk M., Jania J.A., Hagen J.O., 2009, Tidewater glacier of Svalbard: recent changes and estimates of calving fluxes, Pol. Polar Res., 30 (2), 85-142.

Brown C. S., Meier M. F., Post A., 1982, Calving speed of Alaska tidewater glaciers, with application to Columbia Glacier, U.S. Geol. Surv. Prof. Pap., 1258-C.

Cointe R., Armand J.L., 1987, Hydrodynamic impact analysis of a cylinder, J. Offshore Mech. Arctic Eng., 109 (3), 237-243, http://dx.doi.org/10.1115/1.3257015

Cooker M. J., 1996, Sudden changes in a potential flow with a free surface due to impact, Q. J. Mech. Appl. Math., 49, 581-591, http://dx.doi.org/10.1093/qjmam/49.4.581

De Backer G., Vantorre M., Beels C., De Pre J., De Rouck J., Blommaert C., Van Paepegem W., 2009, Experimental investigation of water impact of axisymmetric bodies, Appl. Ocean Res., 31 (3), 143-156, http://dx.doi.org/10.1016/j.apor.2009.07.003

De Risio H., Sammarco P., 2008, Analytical modeling of landslide-generated waves, J. Waterw. Port C. Div., 134 (1), 53-60, http://dx.doi.org/10.1061/(ASCE)0733-950X(2008)134:1(53)

Glosh N.K., 1991, A cylindrical wave-maker problem in a liquid of finite depth with an inertial surface in the presence of surface tension, J. Austral. Math. Soc., Ser. B, 111-121.

Hanson B., Hooke R. L., 2000, Glacier calving: a numerical model of forces in the calving-speed/water-depth relation, J. Glaciol., 46 (153), 188-196, http://dx.doi.org/10.3189/172756500781832792

Hughes T., 1992, Theoretical calving rates from glaciers along ice walls grounded in water of variable depths, J. Glaciol., 38 (129), 282-294.

Lamb H., 1932, Hydrodynamics, Dover Publ., London, 738 pp.

Lavrentiev M.A., Shabat B.V., 1958, Methods of theory functions of complex variables, Gos. Izd. Fiz-Math. Moscow, 678 pp., (in Russian).

Levermann A., 2011, When glacial giants roll over, Nature, 472 (7341), 43-44, http://dx.doi.org/10.1038/472043a

MacAyeal D.R., Abbot D. S., Siergienko O.V., 2011, Iceberg-capsize tsunami genesis, Ann. Glaciol., 52 (58), 51-56, http://dx.doi.org/10.3189/172756411797252103

Massel S.R., 1967, Distribution of pressure-impulse on a cylindrical vessel body during side launching, Rozpr. Hydr., 20, 37-52, (in Polish).

Massel S.R., 2012, Tsunami in coastal zone due to meteorite impact, Coast. Eng., 66, 40-49, http://dx.doi.org/10.1016/j.coastaleng.2012.03.013

Nelson R.C., 1996, Hydraulic roughness of coral reef platforms, Appl. Ocean Res., 18, 265-274, http://dx.doi.org/10.1016/S0141-1187(97)00006-0

Newman J.N., 1977, Marine hydrodynamics, The MIT Press, Cambridge, 367 pp.

Noda E., 1970, Water waves generated by landslides, J. Waterw. Port. C Div., 96 (4), 835-855.

Oerlemans J., Jania J., Kolendra L., 2011, Application of a minimal glacier model to Hansbreen, Svalbard, The Cryosphere, 5, 1-11, http://dx.doi.org/10.5194/tc-5-1-2011

Peng W., Peregrine D.H., 2000, Pressure-impulse theory for plate impact on water surface, Proc. 15 Int. Workshop on Water Waves and Floating Bodies, Caesarea, 146-149.

Piessens R., 1996, The Hankel transform, [in:] The transforms and applications handbook, A.D. Poularikas (ed.), 2nd edn., CRC Press, Boca Raton, 1336 pp.

Schlichting H., 1960, Boundary layer theory, McGraw Hill Book Co., New York, 647 pp.

Stanley S. J., Jenkins A., Guilivi C. F., Dutrieux P., 2011, Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf, Nat. Geosci., 4 (8), 519-523, http://dx.doi.org/10.1038/ngeo1188

Stoker J., 1957, Water waves, Intersci. Publ., New York, 567 pp.

full, complete article (PDF - compatibile with Acrobat 4.0), 243 KB


Modelling flow in the porous bottom of the Barents Sea shelf
Oceanologia 2013, no. 55(1), pp. 129-146
doi:10.5697/oc.55-1.129

Stanisław R. Massel
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: smas@iopan.gda.pl

keywords: porous media, surface waves, tides, Ekman layer

Received 18 October 2012, revised 21 November 2012, accepted 26 November 2012.

Abstract

In their recent paper, Węsławski et al. (2012) showed that the Svalbardbanken area of the Barents Sea is characterized by a high organic carbon settlement to the permeable sea bed, which consists of gravel and shell fragments of glacial origin. In the present paper, which can be considered as a supplement to the Węsławski et al. paper, two potential hydrodynamic mechanisms of downward pore water transport into porous media are discussed in detail. In particular, estimated statistical characteristics of the pore water flow, induced by storm surface waves, indicate that the discharge of water flow can be substantial, even at large water depths. During stormy weather (wind velocity V=15 m s-1 and wind fetch X =200 km) as much as 117.2 and 26.1 m3 hour-1 of water filter through the upper 5 m of the shell pit at water depths of 30 and 50 m respectively. For a porous layer of greater thickness, the mean flow discharge is even bigger.
    The second possible mechanism of flow penetration in the porous layer is based on the concept of geostrophic flow and spiral formation within the Ekman layer. Assuming that the current velocity in the near-bottom water layer is ū = 1 m, the resulting mean discharge through this layer becomes as large as 0.99 and 0.09 m3 s-1 for downstream and transverse flows respectively.


  References ref
Bear J., 1972, Dynamics of fluids in porous media, Elsevier, Dover, New York, 764 pp.

Cushman-Roisin B., 1994, Introduction to geophysical fluid dynamics, Prentice Hall, Englewood Cliffs, 320 pp.

Danielson S., Kowalik Z., 2005, Tidal currents in the St. Lawrence Island region, J. Geophys. Res., 110, C10004, http://dx.doi.org/10.1029/2004JC002463

Gjevik B., Nost E., Straume T., 1994, Model simulations of the tides in the Barents Sea, J. Geophys. Res., 99 (C2), 3337-3350, http://dx.doi.org/10.1029/93JC02743

Klute A., Dirksen C., 1986, Hydraulic conductivity and diffusivity: laboratory methods, [in:] Methods of soil analysis. Part 1. Physical and mineralogical methods, Agronomy Monograph No. 9, 2nd edn., Am. Soc. Agronom., Madison, WI, 687-734.

Kowalik Z., Proshutinsky A. Yu., 1995, Topographic enhancement of tidal motion in the western Barents Sea, J. Geophys. Res., 100 (C2), 2613-2637, http://dx.doi.org/10.1029/94JC02838

Massel S. R., 1999, Fluid mechanics for marine ecologists, Springer, Heidelberg, 566 pp., http://dx.doi.org/10.1007/978-3-642-60209-2

Massel S. R., Przyborska A., Przyborski M., 2004, Attenuation of wave-induced groundwater pressure in shallow water. Part 1, Oceanologia, 46 (3), 383-404.

Massel S. R., Przyborska A., Przyborski M., 2005, Attenuation of wave-induced groundwater pressure in shallow water. 2. Theory, Oceanologia, 47 (3), 281-323.

Papoulis A., 1965, Probability, random variables and stochastic processes, McGraw- Hill Book Co., New York, 583 pp.

Sanford W. E., Steenhuis T. S., Parlange J.-Y., Surface J. M., Peverly J. H, 1995, Hydraulic conductivity of gravel and sand as substrates in rock-reed filters, Ecol. Eng., 4 (4), 321-336, http://dx.doi.org/10.1016/0925-8574(95)00004-3

Węsławski J. M., Kędra M., Przytarski J., Kotwicki L., Ellingsen I., Skardhamar J., Renaud P., Goszczko I., 2012, A huge biocatalytic filter in the centre of Barents Sea shelf?, Oceanologia, 54 (2), 325-335, http://dx.doi.org/10.5697/oc.54-2.325

full, complete article (PDF - compatibile with Acrobat 4.0), 254 KB


Influence of landfast ice on the hydrography and circulation of the Baltic Sea coastal zone
Oceanologia 2013, no. 55(1), pp. 147-166
doi:10.5697/oc.55-1.147

Ioanna Merkouriadi, Matti Leppäranta
Department of Physics, University of Helsinki,
P.O. Box 48 (Erik Palménin aukio 1), Fi-00014 Helsinki, Finland;
e-mail: ioanna.merkouriadi@helsinki.fi
e-mail: matti.lepparanta@helsinki.fi

keywords: Gulf of Finland, coastal sea ice, hydrography, currents

Received 24 October 2012, revised 4 February 2013, accepted 8 February 2013.

Abstract

The influence of landfast ice on hydrography and circulation is examined in Santala Bay, adjacent to the Hanko Peninsula, Gulf of Finland. Three-dimensional electromagnetic current meters and conductivity-temperature-depth (CTD) sensors were deployed in winters 1999-2000 and 2000-2001 during the Finnish-Japanese "Hanko 9012" experiment. In each winter, data collection started one month before the initial ice formation and lasted until one month after the ice had melted completely. Temperature and salinity are compared with long-term data from the Tvärminne Zoological Station, also located on the Hanko Peninsula. The water temperature was 2°C less than the long-term average. Ice formation and melting show up in the salinity evolution of the water body, which makes salinity a good indicator of ice formation and breakup in Santala Bay. The circulation under the ice became weaker by almost 1 cm s-1.

  References ref
Alenius P., Mälkki P., 1978, Some results from the current measurement projects of Pori-Rauma region, Fin. Mar. Res., 224, 52-63.

Alestalo J., Häikiö J., 1976, Ice features and ice-thrust shore forms at Luodonselkä, Gulf of Bothnia, in winter 1972/73, Fennia, 144, 1-24.

Emery W. J., Thomson R.E., 2001, Data analysis methods in physical oceanography, 2nd edn., Elsevier, Amsterdam, 371-461.

Feistel R., Nausch G., Wasmund N. (eds.), 2008, State and evolution of the Baltic Sea, 1952-2005: a detailed 50-year survey of meteorology and climate, physics, chemistry, biology, and marine environment, John Wiley & Sons Inc., Hoboken, NJ, 703 pp., http://dx.doi.org/10.1002/9780470283134

Fonselius S., Valderrama J., 2003, One hundred years of hydrographic measurements in the Baltic Sea, J. Sea Res., 49 (4), 229-241, http://dx.doi.org/10.1016/S1385-1101(03)00035-2

Girjatowicz J.P., 2004, Ice thrusts and piles on the shores of the Southern Baltic Sea coast (Poland) lagoons, Baltic Coast. Zone, 8, 5-22.

Granqvist G., 1938, Zur Kenntnis der Temperatur und des Saltzgehaltes der Baltischen Meeres an den Küsten Finnlands, Merentutkimuslaitoksen Julkaisu, 122, 166 pp.

Granskog M.A., Leppäranta M., Kawamura T., Ehn J., Shirasawa K., 2004, Seasonal development of the properties and the composition of landfast sea ice in the Gulf of Finland, the Baltic Sea, J. Geophys. Res. - Oceans, 109 (C2), http://dx.doi.org/10.1029/2003JC001874

Huttula T., Pulkkanen M., Arkhipov B., Leppäranta M., Solbakov V., Shirasawa K., Salonen K., 2010, Modelling circulation in an ice covered lake, Est. J. Earth Sci., 59 (4), 298-309, http://dx.doi.org/10.3176/earth.2010.4.06

Jevrejeva S., Drabkin V.V., Kostjukov J., Lebedev A.A., Leppäranta M., Mironov Ye.U., Schmelzer N., SztobrynM., 2004, Baltic Sea ice seasons in the twentieth century, Clim. Res., 25, 217-227, http://dx.doi.org/10.3354/cr025217

Kawamura T., Shirasawa K., Ishikawa N., Lindfors A., Rasmus K., Ehn J., LeppärantaM., Martma T., Vaikmäe R., 2001, Time-series observations of the structure and properties of brackish ice in the Gulf of Finland, Ann. Glaciol., 33 (1), 1-4, http://dx.doi.org/10.3189/172756401781818950

Leppäranta M., 2012, Ice season in the Baltic Sea and its climatic variability, [in:] From the Earth’s core to outer space, I. Haapala (ed.), Lect. Notes Earth Syst. Sci. 137, Springer-Verlag, Berlin-Heidelberg, 139-149.

Leppäranta M., 2013, Land-ice interaction in the Baltic Sea, Est. J. Earth Sci., 62, (in press).

Leppäranta M., Myrberg K., 2009, Physical oceanography of the Baltic Sea, Springer-Praxis, Heidelberg, Germany, 219-225, http://dx.doi.org/10.1007/978-3-540-79703-6

Leppäranta M., Tikkanen M., Shemeikka P., 1998, Observations of ice and its sediments on the Baltic Sea coast, Nord. Hydrol., 29 (3), 199-220.

Lisitzin E., 1957, On the reducing influence of sea ice on the piling-up of water due to wind stress, Comment. Phys.-Math./Soc. Scient. Fennica, 20 (7), 1-12.

Lisitzin E., 1959, Uninodal seiches in the oscillation system Baltic proper - Gulf of Finland, Tellus A, 11 (4), 459-466, http://dx.doi.org/10.1111/j.2153-3490.1959.tb00056.x

Mälkki P., 1975, On the variability of currents in a coastal region of the Baltic Sea, Merentutkimuslaitoksen Julkaisu, 240, 3-56.

Merkouriadi I., Leppäranta M., Shirasawa K., 2013, Seasonal and annual heat budgets offshore Hanko Peninsula, Gulf of Finland, Boreal Environ. Res., 18, in press.

Ojaveer H., Jaanus A., Mackenzie B. R., Martin G., Olenin S., Radziejewska T., Telesh I., Zettler M. L., Zaiko A., 2010, Status of biodiversity in the Baltic Sea, PLoS ONE, 5 (9): e12467, http://dx.doi.org/10.1371/journal.pone.0012467

Palmen E., 1930, Untersuchungen über die Strömungen in den Finnland umgebenden Meeren, Soc. Sci. Fennica, 12, 1-94.

SMHI & FIMR, 1982, Climatological Ice Atlas for the Baltic Sea, Kattegat, Skagerrak and Lake Vänern (1963-1979), Sjöfartsverket, Nörrkoping, 220 pp.

Soomere T., Myrberg K., Leppäranta M., Nekrasov A., 2008, Progress in physical oceanography of the Gulf of Finland, Baltic Sea, Oceanologia, 50 (3), 287-362.

full, complete article (PDF - compatibile with Acrobat 4.0), 5.05 MB


Habitat modelling limitations - Puck Bay, Baltic Sea - a case study
Oceanologia 2013, no. 55(1), pp. 167-183
doi:10.5697/oc.55-1.167

Jan Marcin Węsławski1,*, Lucyna Kryla-Straszewska2,3, Joanna Piwowarczyk1, Jacek Urbański3,4, Jan Warzocha5, Lech Kotwicki1, Maria Włodarska-Kowalczuk1, Józef Wiktor1
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: weslaw@iopan.gda.pl
*corresponding author
2International Association of Oil and Gas Producers (OGP),
209-215 Blackfriars Road, SE1 8NL, London, United Kingdom
3Centrum GIS WOiG,
Bażyńskiego 4, 80-952 Gdańsk, Poland
4Institute of Oceanography, University of Gdańsk,
al. Marszałka Piłsudskiego 36, 81-378 Gdynia, Poland
5National Marine Fisheries Research Institute,
Kołłątaja 1, 81-332 Gdynia, Poland

keywords: species distribution, seabed, habitat modelling, spatial and temporal boundaries, ecosystem-based management

Received 18 September 2012, revised 21 January 2013, accepted 24 January 2013.

This study represents a contribution to the project "Advanced Modelling Tool for Scenarios of the Baltic Sea Ecosystem to Support Decision Making (ECOSUPPORT)", which has received funding from the EC's Seventh Framework Programme (FP/2007-2013, Grant 217246) in conjunction with BONUS, the joint Baltic Sea research and development programme, supported by the Polish Ministry of Science and Higher Education (Grant 06/BONUS/2009). It also contributes to the Habitat Mapping project ("Ecosystem approach to marine spatial planning - Polish Marine Areas and the Natura 2000 network", PL 0078), supported by a grant from Iceland, Liechtenstein and Norway through the EEA Financial Mechanism.

Abstract

The Natura 2000 sites and the Coastal Landscape Park in a shallow marine bay in the southern Baltic have been studied in detail for the distribution of benthic macroorganisms, species assemblages and seabed habitats. The relatively small Inner Puck Bay (104.8 km2) is one of the most thoroughly investigated marine areas in the Baltic: research has been carried out there continuously for over 50 years. Six physical parameters regarded as critically important for the marine benthos (depth, minimal temperature, maximum salinity, light, wave intensity and sediment type) were summarized on a GIS map showing unified patches of seabed and the near-bottom water conditions. The occurrence of uniform seabed forms is weakly correlated with the distributions of individual species or multi-species assemblages. This is partly explained by the characteristics of the local macrofauna, which is dominated by highly tolerant, eurytopic species with opportunistic strategies. The history and timing of the assemblage formation also explains this weak correlation. The distribution of assemblages formed by long-living, structural species (Zostera marina and other higher plants) shows the history of recovery following earlier disturbances. In the study area, these communities are still in the stage of recovery and recolonization, and their present distribution does not as yet match the distribution of the physical environmental conditions favourable to them. Our results show up the limitations of distribution modelling in coastal waters, where the history of anthropogenic disturbances can distort the picture of the present-day environmental control of biota distributions.

  References ref
Anderson J. A., Thompson A. A., 2004, Multivariate control charts for ecological and environmental monitoring, Ecol. Appl., 14 (6), 1921–1935, http://dx.doi.org/10.1890/03-5379

Bonsdorff E., 2006, Zoobenthic diversity-gradients in the Baltic Sea: Continuous post-glacial succession in a stressed ecosystem, J. Exp. Mar. Biol. Ecol., 330 (1), 283–391, http://dx.doi.org/10.1016/j.jembe.2005.12.041

Bonsdorff E., Pearson T. H., 1999, Variation in the sublittoral macrozoobenthos of the Baltic Sea along environmental gradients: a functional group approach, Aust. J. Ecol., 24 (4), 312–326, http://dx.doi.org/10.1046/j.1442-9993.1999.00986.x

Borja A., Dauer D. M., Diaz R., Llanso R. J., Muxika I., Rodriguez J. G., Schaffner L., 2008, Assessing estuarine benthic quality conditions in Chesapeake Bay: a comparison of three indices, Ecol. Indic., 8 (4), 395–403, http://dx.doi.org/10.1016/j.ecolind.2007.05.003

Borja A., Dauer D. M., Grémare A., 2012, The importance of setting targets and reference conditions in assessing marine ecosystem quality, Ecol. Indic., 12 (1), 1–7, http://dx.doi.org/10.1016/j.ecolind.2011.06.018

Cañadas A., Sagarminaga R., de Stephanis R., Urquiola E., Hammond P. S., 2005, Habitat preference modelling as a conservation tool: proposals for marine mammals protected areas for cetaceans in southern Spanish waters, Aquat. Conserv., 15 (5), 495–521, http://dx.doi.org/10.1002/aqc.689

Ciszewski P., Demel K., Ringer Z., Szatybełko M., 1962, Zasoby widlika w Zatoce Puckiej oznaczone metodą nurkowania, Prace MIR 11/A, 9–36.

de Smith M. J., Goodchild M. F., Longley P. A., 2007, Geospatial analysis. A comprehensive guide to principles, techniques and software tools, www.spatialanalysisonline.com

Diedrich A., Tintoré J., Navinés F., 2010, Balancing science and society through establishing indicators for integrated coastal zone management in the Balearic Islands, Mar. Policy, 34 (4), 772–781, http://dx.doi.org/10.1016/j.marpol.2010.01.017

Dobrzycka-Krahel A., Rzemykowska H., 2010, First records of Ponto-Caspian gammarids in the Gulf of Gdańsk (southern Baltic Sea), Oceanologia, 52 (4), 27–735, http://dx.doi.org/10.5697/oc.52-4.727

Douvere F., Ehler C., 2011, The importance of monitoring and evaluation in adaptive maritime spatial planning, J. Coastal Conserv., 15 (2), 305–311, http://dx.doi.org/10.1007/s11852-010-0100-9

Ferreira J. G., Hawkins A. J. S., Monteiro P., Moore H., Service M., Pascoe P. L., Ramos L., Sequeira A., 2008, Integrated assessment of ecosystem-scale carrying capacity in shellfish growing areas, Aquaculture, 275 (1–4), 138–151, http://dx.doi.org/10.1016/j.aquaculture.2007.12.018

Forst M. F., 2009, The convergence of Integrated Coastal Zone Management and the ecosystem approach, Ocean Coast. Manage., 52 (6), 294–306, http://dx.doi.org/10.1016/j.ocecoaman.2009.03.007

Gic-Grusza G., Kryla-Straszewska L., Urbański J., Warzocha J., Węsławski J. M., (eds.) 2009, Atlas of Polish marine area bottom habitats: Environmental valorization of marine habitats, Broker-Innowacji, Gdynia, 179 pp.

Grzelak K., Kuklinski P., 2010, Benthic assemblages associated with rocks in a brackish environment of the southern Baltic Sea, J. Mar. Biol. Assoc. UK, 90 (1), 115–124, http://dx.doi.org/10.1017/S0025315409991378

Halpern B. S., Kappel C. V., Selkoe K. A., Micheli F., Ebert C. M., Kontgis C., Crain C. M., Martone R. G., Shearer C., Teck S. J., 2009, Mapping cumulative human impacts to California Current marine ecosystems, Conserv. Lett., 2, 138–148, http://dx.doi.org/10.1111/j.1755-263X.2009.00058.x

Heip C., Hummel H., van Avesaath P., Appeltans W., Arvanitidis C., Aspden R., Austen M., Boero F., Bouma T. J., Boxshall G., Buchholz F., Crowe T., Delaney A., Deprez T., Emblow C., Feral J. P., Gasol J. M., Gooday A., Harder J., Ianora A., Kraberg A., Mackenzie B., Ojaveer H., Paterson D., Rumohr H., Schiedek D., Sokolowski A., Somerfield P., Sousa Pinto I., Vincx M., Węsławski J. M., Nash R., 2009, Marine biodiversity ecosystem functioning, MarBEF, 91 pp.

HELCOM, 2009a, Eutrophication in the Baltic Sea. An integrated thematic assessment of the effects of nutrient enrichment in the Baltic Sea region, Baltic Sea Environ. Proc., 115B, Helsinki Comm., Helsinki, 148 pp.

HELCOM, 2009b, Biodiversity in the Baltic Sea. An integrated thematic assessment on biodiversity and nature conservation in the Baltic Sea, Baltic Sea Environ. Proc., 116B, Helsinki Comm., Helsinki, 188 pp.

Hughes T. P., Bellwood D. R., Folke C., Steneck R. S., Wilson J., 2005, New paradigms for supporting the resilience of marine ecosystems, Trends Ecol. Evol., 20 (7), 380–386, http://dx.doi.org/10.1016/j.tree.2005.03.022

Hyland J., Balthis L., Karakassis I., Magni P., Petrov A., Shine J., Vestergaard O., Warwick R., 2005, Organic carbon content of sediments as an indicator of stress in the marine benthos, Mar. Ecol. Prog. Ser., 295, 91–103, http://dx.doi.org/10.3354/meps295091

Jażdżewski K., Konopacka A., Grabowski M., 2004, Recent drastic changes in the gammarid fauna (Crustacea, Amphipoda) of the Vistula River deltaic system in Poland caused by alien invaders, Divers. Distrib., 10, 81–87, http://dx.doi.org/10.1111/j.1366-9516.2004.00062.x

Kaufman L., Rousseeuw P. J., 1990, Finding groups in data: An introduction to cluster analysis, John Wiley & Sons, Inc., Hoboken, 368 pp, http://dx.doi.org/10.1002/9780470316801

Maechler M., Rousseeuw P., Struyf A., Hubert M., 2005, Cluster analysis basics and extensions, R Statistics Package (CRAN).

McCool S. F., Stankey G. H., 2004, Indicators of sustainability: challenges and opportunities at the interface of science and policy, Environ. Manage., 33 (3), 294–305, http://dx.doi.org/10.1007/s00267-003-0084-4

Nobre A. M., Ferreira J. G., Nunes J. P., Yan X., Bricker S., Corner R., Groom S., Gu H., Hawkins A. J. S., Hutson R., Lan D., de Silva J. D. L., Pascoe P., Telfer T., Zhang X., Zhu M., 2010, Assessment of coastal management options by means of multilayered ecosystem models, Estuar. Coast. Shelf Sci., 87 (1), 43–62, http://dx.doi.org/10.1016/j.ecss.2009.12.013

Olenin S., Ducrotoy J. P., 2006, The concept of biotope in marine ecology and coastal management, Mar. Pollut. Bull., 53 (1–4), 20–29, http://dx.doi.org/10.1016/j.marpolbul.2006.01.003

Osowiecki A., 2000, Przyrodnicza waloryzacja Zatoki Puckiej wewnętrznej. 2.3.4. Makrofauna denna, [in:] Nadmorski Park Krajobrazowy, Przyrodnicza waloryzacja morskich części obszarów chronionych HELCOM BSPA województwa pomorskiego, L. Kruk-Dowgiałło (ed.), CBM PAN, Gdynia, 50–52.

Parravicini V., Rovere A., Vassallo P., Micheli F., Montefalcone M., Morri C., Paoli C., Albertelli G., Fabiano M., Bianchi C. N., 2012, Understanding relationships between conflicting human uses and coastal status: a geospatial modeling approach, Ecol. Indic., 19, 253–263, http://dx.doi.org/10.1016/j.ecolind.2011.07.027

Pearson T. H., Rosenberg R., 1978, Macrobenthic succession in relation to organic enrichment and pollution of the marine environment, Oceanogr. Mar. Biol. Ann. Rev., 16, 229–311.

Pliński M., Florczyk I., 1984, Changes in the phytobenthos resulting from the eutrophication of Puck Bay, Limnologica, 15, 325–327.

Pomeroy R., Parks J., Watson L., 2004, How is your MPA doing? A guidebook of natural and social indicators for evaluating marine protected area management effectiveness, IUCN, Gland, 216 pp, http://dx.doi.org/10.2305/IUCN.CH.2004.PAPS.1.en

Reiss H., Cunze S., König K., Neumann H., Kröncke I., 2011, Species distribution modelling of marine benthos: a North Sea case study, Mar. Ecol. Prog Ser., 442, 71–86, http://dx.doi.org/10.3354/meps09391

Roberts D. A., Poore A. G. B., 2005, Habitat configuration affects colonization of epifauna in a marine algal bed, Biol. Conserv., 127 (1), 18–26.

Stelzenmüller V., Breen P., Stamford T., Thomsen F., Badalamenti F., Borja A., Buhl-Mortensen L., Carlstöm J., D’Anna G., Dankers N., Degraer S., Dujin M., Fiorentino F., Galparsoro I., Giakoumi S., Gristina M., Johnson K., Jones P. J. S., Katsanevakis S., Knittweism L., Kyriazi Z., Pipitone C., Piwowarczyk J., Rabaut M., Sorensen T. K., van Dalfsen J., Vassilopoulou V., Fernández T. V., Vincx M., Vöge, Weber A., Wijkmark N., Jak R., Qiu W., Hofstede R., 2012, Monitoring and evaluation of spatially managed areas: A generic framework for implementation of ecosystem based marine management and its application, Mar. Policy, 37, 149–164, http://dx.doi.org/10.1016/j.marpol.2012.04.012

Szymelfenig M., Kotwicki L., Graca B., 2006, Benthic re-colonization in post- dredging pits in the Puck Bay (Southern Baltic Sea), Estuar. Coast. Shelf Sci., 68 (3–4), 489–498, http://dx.doi.org/10.1016/j.ecss.2006.02.018

Warzocha J., 1995, Classification and structure of macrofaunal communities in the southern Baltic, Arch. Fish. Mar. Res., 42 (3), 225–237.

Węsławski J. M., Warzocha J., Wiktor J., Urbański J., Bradtke K., Kryla L., Tatarek A., Kotwicki L., Piwowarczyk J., 2009, Biological valorisation of the southern Baltic Sea (Polish Exclusive Economic Zone), Oceanologia, 51 (3), 415–435, http://dx.doi.org/10.5697/oc.51-3.415

Włodarska-Kowalczuk M., Węsławski J. M., Warzorza J., Janas U., 2010, Habitat loss and possible effects on local species richness in a species-poor system – a case study of southern Baltic Sea macrofauna, Biodivers. Conserv, 19 (14), 3991–4002, http://dx.doi.org/10.1007/s10531-010-9942-6

Yen P. P. W., Huettmann F., Cooke F., 2004, A large-scale model for the at-sea distribution of Marbled Murrelets (Brachyramphus marmoratus) during the breeding season in coastal British Columbia, Canada, Ecol. Model., 171 (4), 395–413, http://dx.doi.org/10.1016/j.ecolmodel.2003.07.006

Zschokke S., Dolt C., Rusterholz H., Oggier C., Braschler B., Thommen G. H., Ludin E., Erhardt A., Baur B., 2000, Short term responses of plants and invertebrates to experimental small-scale grassland fragmentation, Oecologia, 125 (4), 559–572, http://dx.doi.org/10.1007/s004420000483

full, complete article (PDF - compatibile with Acrobat 4.0), 680 KB


Spatio-temporal variation of microphytoplankton in the upwelling system of the south-eastern Arabian Sea during the summer monsoon of 2009
Oceanologia 2013, no. 55(1), pp. 185-204
doi:10.5697/oc.55-1.185

Lathika Cicily Thomas1,*, K. B. Padmakumar1, B. R. Smitha1, C. R. Asha Devi1, S. Bijoy Nandan2, V. N. Sanjeevan1
1Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences,
Kochi-37, Kerala, India;
e-mail: lathikacicily@gmail.com;
*corresponding author
2Department of Marine Biology, Microbiology & Biochemistry,
School of Marine Sciences, Cochin University of Science and Technology,
Kochi-16, Kerala, India

keywords: South Eastern Arabian Sea, upwelling, coastal waters, phytoplankton, chlorophyll a, diatoms

Received 14 May 2012, revised 9 November 2012, accepted 15 November 2012.

This investigation was conducted under the Marine Living Resources Programme funded by the Ministry of Earth Sciences, Government of India, New Delhi.

Abstract

The phytoplankton standing crop was assessed in detail along the South Eastern Arabian Sea (SEAS) during the different phases of coastal upwelling in 2009. During phase 1 intense upwelling was observed along the southern transects (8°N and 8.5°N). The maximum chlorophyll a concentration (22.7 mg m-3) was observed in the coastal waters off Thiruvananthapuram (8.5°N). Further north there was no signature of upwelling, with extensive Trichodesmium erythraeum blooms. Diatoms dominated in these upwelling regions with the centric diatom Chaetoceros curvisetus being the dominant species along the 8°N transect. Along the 8.5°N transect pennate diatoms like Nitzschia seriata and Pseudo-nitzschia sp. dominated. During phase 2, upwelling of varying intensity was observed throughout the study area with maximum chlorophyll a concentrations along the 9°N transect (25 mg m-3) with Chaetoceros curvisetus as the dominant phytoplankton. Along the 8.5°N transect pennate diatoms during phase 1 were replaced by centric diatoms like Chaetoceros sp. The presence of solitary pennate diatoms Amphora sp. and Navicula sp. were significant in the waters off Kochi. Upwelling was waning during phase 3 and was confined to the coastal waters of the southern transects with the highest chlorophyll a concentration of 11.2 mg m-3. Along with diatoms, dinoflagellate cell densities increased in phases 2 and 3. In the northern transects (9°N and 10°N) the proportion of dinoflagellates was comparatively higher and was represented mainly by Protoperidinium spp., Ceratium spp. and Dinophysis spp.

  References ref
Alkawri A. A. S., Ramaiah N., 2010, Spatio-temporal variability of dinoflagellate assemblages in different salinity regimes in the west coast of India, Harmful Algae, 9 (2), 153–162, http://dx.doi.org/10.1016/j.hal.2009.08.012

Anderson D., Glibert P., Burkholder J. M., 2002, Harmful algal blooms and eutrophication: nutrient sources, composition and consequences, Estuaries, 25 (4), 562–584, http://dx.doi.org/10.1007/BF02804901

Barber R. T., Dugdale R. C., MacIsaac J. J., Smith R. G., 1971, Variation in phytoplankton growth associated with source conditioning of upwelled water, Invest. Pesq., 35 (1), 171–173.

Baek S. H., Shimode S., Han M., Kikuchi T., 2008, Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: the role of nutrients, Harmful Algae, 7, 729–739, http://dx.doi.org/10.1016/j.hal.2008.02.007

Brown P. C., Field J. J., 1986, Factors limiting phytoplankton production in a near shore upwelling area, J. Plankton Res., 8 (1), 55–68, http://dx.doi.org/10.1093/plankt/8.1.55

Bhattathiri P. M. A., Pant A., Sawant S., Gauns M., Matondkar S. G. P., Mohanra ju R., 1996, Phytoplankton production and chlorophyll distribution in the eastern and central Arabian Sea, Curr. Sci. India, 71 (11), 857–862.

Blasco D., Estrada M., Jones B., 1980, Relationship between the phytoplankton distribution and composition and the hydrography in the northwest African upwelling region near Cabo Corbeiro, Deep-Sea Res. Pt. A., 27 (10), 799–821, http://dx.doi.org/10.1016/0198-0149(80)90045-X

D’Croz L., Del Rosario J. B., Gomez J. A., 1991, Upwelling and phytoplankton in the Bay of Panama, Rev. Biol. Trop., 39, 233–241.

De Sousa S. N., Sawkar K., Rao D. P., 1996, Environmental changes associated with monsoon induced upwelling off central west coast of India, Ind. J. Mar. Sci., 25, 115–119.

Estrada M., Berdalet E., 1997, Phytoplankton in a turbulent world, Sci. Mar., 61, 125–140.

Estrada M., Blasco D., 1985, Phytoplankton assemblages in coastal upwelling areas, [in:] International symposium of upwelling of W. Africa, C. Bas, R. Margalef & P. Rubias (eds.), Instituto de Investigaciones Pesqueras, Barcelona, 379–402.

Falkowski G., Woodhead A. D., 1992, Primary productivity and biogeochemical cycles in the sea, Environ. Sci. Res. Ser., 43, Plenum Press, New York, 213–237.

Goldman J. C., Mann R., 1980, Temperature influenced speciation and chemical composition of marine phytoplankton in outdoor mass cultures, J. Exp. Mar. Bio. Eco., 46 (1), 29–39, http://dx.doi.org/10.1016/0022-0981(80)90088-X

Gopalan U. K., Doyil T. V., Udayavarma P., Krishnankutty M., 1983, The shrinking backwaters of Kerala, J. Mar. Bio. Ass. India, 25, 131–141.

Grasshoff K., Ehrhardt M., Kremling K., Almgren T., 1983, Methods of seawater analysis, Verlag Chemie, Weinheim, 419 pp.

Habeebrehman H., 2009, Biological responses to upwelling and stratification in the eastern Arabian Sea, Ph.D. thesis, Cochin Univ, Sci. Technol., Kerala, India.

Habeebrehman H., Prabhakaran M. P., Jacob J., Sabu P., Jayalakshmi K. J., Achuthankutty C. T., Revichandran C., 2008, Variability in biological responses influenced by upwelling events in the eastern Arabian Sea, J. Marine Syst., 74 (1–2), 545–560, http://dx.doi.org/10.1016/j.jmarsys.2008.04.002

Hashimi N. H., Kidwai R. M., Nair R. R., 1981, Comparative study of the topography and sediments of the western and eastern continental shelf around Cape Comorin, Ind. J. Mar. Sci., 10, 45–50.

Haugen V. E., Johannessen O. M., Evensen G., 2002, Mesoscale modelling of oceanographic conditions off southwest coast of India, Proc. Indian Acad. Sci., Earth Planet. Sci., 111 (3), 321–337.

Lassiter A. M., Wilkerson F. P., Dugdale R. C., Hogue V. E., 2006, Phytoplankton assemblages in the CoOP-WEST coastal upwelling area, Deep-Sea Res. Pt. II, 53 (25–26), 3023–3048, http://dx.doi.org/10.1016/j.dsr2.2006.07.013

Madhu N. V., Jyothibabu R., Balachandran K. K., Honey U. K., Martin G. D., Vijay J. G., Shiyas C. A., Gupta G. V. M., Achuthankutty C. T., 2007, Monsoonal impact on planktonic standing stock and abundance in a tropical estuary (Cochin Backwaters – India), Est. Coast. Shelf Sci., 73, 54–64, http://dx.doi.org/10.1016/j.ecss.2006.12.009

Margalef R., 1978, Life-forms of phytoplankton as survival alternatives in an unstable environment, Oceanologica Acta, 1, 493–509.

Margalef R., Estrada M., Blasco D., 1979, Functional morphology of organisms involved in red tides, as adapted to decaying turbulence, [in:] Toxic dinoflagellate blooms, D. L. Taylor & H. H. Seliger (eds.), Elsevier, New York, 89–94.

Mendon M. R., Katti R. J., Ra jesh K. M., Gupta T. R. C., 2002, Diversity of dinoflagellates in the sea off Mangalore, Ind. J. Fish., 49, 45–50.

Menon N. N., Balchand A. N., Menon N. R., 2000, Hydrobiology of the Cochin backwater system – a review, Hydrobiologia, 430 (1–2-3), 149–183, http://dx.doi.org/10.1023/A:1004033400255

Nair K. K. C., 2002, Breathing Cochin backwaters, Proc. 1st R & D Seminar Global Ballast Water Manag., 13–14 June 2002, NIO, Goa.

Nakamura Y., Watanabe M., 1983, Growth characteristics of Chattonella antiqua (Raphidophyceae). Part I. Effects of temperature, salinity, light intensity and pH on growth, J. Oceanogr. Soc. Japan, 39 (3), 110–114, http://dx.doi.org/10.1007/BF02070796

Nielsen T. G., 1991, Contribution of zooplankton grazing to the decline of a Ceratium bloom, Limnol. Oceanogr., 36 (6), 1091–1106, http://dx.doi.org/10.4319/lo.1991.36.6.1091

Padmakumar K. B., Lathika C. T., Salini T. C., Elizabeth J., Sanjeevan V. N., 2011, Monospecific bloom of noxious raphidophyte Chattonella marina in coastal waters of south west coast of India, Int. J. Biosci., 1 (1), 57–69.

Padmakumar K. B., Smitha B. R., Lathika C. T., Fanimol C. L., SreeRenjima G., Menon N. R., Sanjeevan V. N., 2010a, Blooms of Trichodesmium erythraeum in the South Eastern Arabian Sea during the onset of 2009 Summer Monsoon, Ocean Sci. J., 45 (3), 151–157, http://dx.doi.org/10.1007/s12601-010-0013-4

Padmakumar K. B., SreeRenjima G., Fanimol C. L., Menon N. R., Sanjeevan V. N., 2010, Preponderance of heterotrophic Noctiluca scintillans during a multi- species diatom bloom along the Southwest coast of India, Int. J. Oceans Oceanogr., 4 (1), 45–53.

Parsons T. R., Maita Y., Lalli C. M., 1984, A manual of chemical and biological methods for seawater analysis, Pergamon Press, New York, 173 pp.

Parulekar A. H., 1973, Quantitative distribution of benthic fauna on the inner shelf of central west coast of India, Ind. J. Mar. Sci., 2 (2), 113–115.

Pitcher G. C., Walker D. R., Mitchell-Innes B. A., Moloney C. L., 1991, Short- term variability during an anchor station study in the southern Benguela upwelling system: phytoplankton dynamics, Prog. Oceanogr., 28 (1–2), 39–64, http://dx.doi.org/10.1016/0079-6611(91)90020-M

Prasanna Kumar S., Roshin P. R., Narvekar J., Dinesh Kumar P. K., Vivekanandan E., 2010, What drives the increased phytoplankton biomass in the Arabian Sea?, Current Sci., 99 (1), 101–106.

Qasim S. Z., 1982, Oceanography of the northern Arabian Sea, Deep-Sea Res. Pt. A, 29 (9), 1041–1068, http://dx.doi.org/10.1016/0198-0149(82)90027-9

Qasim S. Z., Reddy C. V. G., 1967, The estimation of plant pigments of Cochin Backwater during the monsoon months, Bull. Mar. Sci., 17 (1), 95–110. Radhakrishna K., 1969, Primary productivity studies in the shelf waters off Alleppey, southwest coast of India, during the postmonsoon, 1967, Mar. Biol., 4 (3), 174–181, http://dx.doi.org/10.1007/BF00393890

Rajagopalan M. S., Thomas P. A., Mathew K. J., Daniel S., Ranimary G., Mathew C. V., Naomi T. S., Kaladhara V. K., Balachandran V. K., Geetha A., 1992, Productivity of the Arabian sea along the south west coast of India, Bull. Cent. Marine Fisher. Res. Inst., 45, 9-37.

Roy R., Pratihary A., Mangesh G., Naqvi S. W. A., 2006, Spatial variation of phytoplankton pigments along the southwest coast of India, Est. Coast. Shelf Sci., 69 (1–2), 189–195, http://dx.doi.org/10.1016/j.ecss.2006.04.006

Ryther J. A., 1956, Photosynthesis in the ocean as a function of light intensity, Limnol. Oceanogr., 1 (1), 61–70, http://dx.doi.org/10.4319/lo.1956.1.1.0061

Ryther J. H., Hall J. R., Pease A. K., Bakun A., Jones M. M., 1966, Primary production in relation to the chemistry and hydrography of the western Indian Ocean, Limnol. Oceanogr., 11, 371–380, http://dx.doi.org/10.4319/lo.1966.11.3.0371

Sanders J. G., Cibik S. J., D’Elia C. F., Boynton W. R., 1987, Nutrient enrichment studies in a coastal plain estuary: changes in phytoplankton species composition, Can. J. Fish Aquat. Sci., 44 (1), 83–90, http://dx.doi.org/10.1139/f87-010

Shankar D., Shetye S. R., 1997, On the dynamics of Lakshadweep high and low in the southeastern Arabian Sea, J. Geophys. Res., 102 (C6), 12551–12562, http://dx.doi.org/10.1029/97JC00465

Silva A., Palma S., Oliveira P. B., Moita M. T., 2009, Composition and interannual variability of phytoplankton in a coastal upwelling region (Lisbon Bay, Portugal), J. Sea Res., 62 (4), 238–249, http://dx.doi.org/10.1016/j.seares.2009.05.001

Smayda T. J., Reynolds C. S., 2001, Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms, J. Plankton Res., 23 (5), 447–461, http://dx.doi.org/10.1093/plankt/23.5.447

Smitha B. R., Sanjeevan V. N., Vimalkumar K. G., Ravichandran C., 2008, On the upwelling off the southern tip and along the west coast of India, J. Coast. Res., 24 (4C), 95–102, http://dx.doi.org/10.2112/06-0779.1

Spatharis S., Tsirtsis G., Danielidis D. B., Do Chi T., Mouillot D., 2007, Effects of pulsed nutrient inputs on phytoplankton assemblage structure and blooms in an enclosed coastal area, Est. Coast. Shelf Sci., 73 (3–4), 807–815, http://dx.doi.org/10.1016/j.ecss.2007.03.016

Subrahmanyan R., 1958, Ecological studies on the marine phytoplankton on the west coast of India, Mem. Indian Bot. Soc., 1, 145–151.

Subrahmanyan R., Gopinathan C. P., Pillai C. T., 1975, Phytoplankton of the Indian Ocean: some ecological problems, J. Mar. Bio. Ass. India, 17, 608–612.

Tilstone G. H., Míguez B. M., Figueiras F. G., Fermin E. G., 2000, Diatom dynamics in a coastal ecosystem affected by upwelling: coupling between species succession, circulation and biogeochemical processes, Mar. Eco. Prog. Ser., 205, 23–41, http://dx.doi.org/10.3354/meps205023

Tomas C. R., 1997, Identifying marine phytoplankton, Acad. Press, San Diego, 858 pp.

full, complete article (PDF - compatibile with Acrobat 4.0), 364 KB


Summer mesozooplankton community of Moller Bay (Novaya Zemlya Archipelago, Barents Sea)
Oceanologia 2013, no. 55(1), pp. 205-218
doi:10.5697/oc.55-1.205

Vladimi G. Dvoretsky, Alexander G. Dvoretsky
Murmansk Marine Biological Institute (MMBI),
17 Vladimirskaya St., Murmansk 183010, Russia;
e-mail: vdvoretskiy@mmbi.info
*corresponding author

keywords: mesozooplankton, vertical distribution, Arctic shelf, Barents Sea

Received 5 September 2012, revised 26 November 2012, accepted 18 December 2012.

Abstract

Novaya Zemlya Archipelago is the eastern boundary of the Barents Sea. The plankton of this region have been less intensively studied than those of other Arctic areas. This study of the mesozooplankton assemblage of Moller Bay was conducted in August 2010. The total mesozooplankton abundance and biomass ranged from 962 to 2980 individuals m-3 (mean ± SD: 2263 ± 921 indiv. m-3) and from 12.3 to 456.6 mg dry mass m-3 (mean ± SD: 192 ± 170 DM m-3) respectively. Copepods and appendicularians were the most numerous groups with Oithona similis, Pseudocalanusspp., Acartiaspp., Calanus glacialis and Oikopleura vanhoeffenni being the most abundant and frequent. Mesozooplankton abundance tended to decrease with depth, whereas an inverse pattern was observed for the total biomass. Total mesozooplankton biomass was negatively correlated with water temperature and positively correlated with salinity and chlorophyll a concentration. Comparison with previous data showed significant interannual variations in the total zooplankton stock in this region that may be due to differences in sampling seasons, climatic conditions and the distribution of potential food sources (phytoplankton and seabird colonies).

  References ref
Auel H., Hagen W., 2002, Mesozooplankton community structure, abundance and biomass in the central Arctic Ocean, Mar. Biol., 140 (5), 1013-1021, http://dx.doi.org/10.1007/s00227-001-0775-4

Błachowiak-Samołyk K., Kwaśniewski S., Dmoch K., Hop H., Falk-Petersen S., 2007, Trophic structure of zooplankton in the Fram Strait in spring and autumn 2003, Deep-Sea Res. Pt. II, 54 (23-24), 2716-2728, http://dx.doi.org/10.1016/j.dsr2.2007.08.004

Bray J. R., Curtis J. T., 1957, An ordination of the upland forest of southern Wisconsin, Ecol. Monogr., 27, 225-349, http://dx.doi.org/10.2307/1942268

Chislenko L. L., 1968, Nomogrammes to determine weights of aquatic organisms based on the size and form of their bodies (marine mesobenthos and plankton), Nauka Press, Leningrad, 240 pp., (in Russian).

Dalpadado P., Ingvaldsen R., Hassel A., 2003, Zooplankton biomass variation in relation to climatic conditions in the Barents Sea, Polar. Biol., 26 (4), 233–241, http://dx.doi.org/10.1007/s00300-002-0470-z

Dvoretsky V. G., 2011, Distribution of Calanus species off Franz Josef Land (Arctic Barents Sea), Polar Sci., 5 (3), 361-373, http://dx.doi.org/10.1016/j.polar.2011.06.004

Dvoretsky V. G., Dvoretsky A. G., 2009a, Summer mesozooplankton distribution near Novaya Zemlya (eastern Barents Sea), Polar Biol., 32 (5), 719-731, http://dx.doi.org/10.1007/s00300-008-0576-z

Dvoretsky V. G., Dvoretsky A. G., 2009b, Summer mesozooplankton structure in the Pechora Sea (south-eastern Barents Sea), Estuar. Coast. Shelf Sci., 84 (1), 11-20, http://dx.doi.org/10.1016/j.ecss.2009.05.020

Dvoretsky V. G., Dvoretsky A. G., 2012, Crustaceans of the Barents Sea: recent studies of Murmansk Marine Biological Institute, Ber. Polarforsch., 640, 162–176.

Fetzer I., Hirche H. J., Kolosova E. G., 2002, The influence of freshwater discharge on the distribution of zooplankton in the southern Kara Sea, Polar Biol., 25 (6), 404–415, http://dx.doi.org/10.1007/s00300-001-0356-5

Gorsky G., Fenaux R., 1998, The role of Appendicularia in marine food webs, [in:] The biology of pelagic tunicates, Q. Bone (ed.), Oxford Univ. Press, Oxford, 161-169.

Loeng H., 1991, Features of the physical oceanographic conditions of the Barents Sea, Polar Res., 10 (1), 5-18, http://dx.doi.org/10.1111/j.1751-8369.1991.tb00630.x

Matishov G. G. (ed.), 1995, Environments and ecosystems of Novaya Zemlya (Archipelago and shelf ), Kola Sci. Centre RAS, Apatity, 201 pp., (in Russian).

Matishov G. G. (ed.), 1997, Plankton of the Sea of the Western Arctic, Kola Sci. Centre RAS, Apatity, 352 pp.

Matishov G. G. (ed.), 2009, Kola Bay: development and rational nature management, Nauka Press, Moscow, 381 pp.

Matishov G. G. (ed.), 2011, Integrated investigations of the Russian large marine ecosystems, Kola Sci. Centre RAS, Apatity, 516 pp.

Matishov G. G., Matishov D. G., Moiseev D. V., 2009, Inflow of Atlantic-origin waters to the Barents Sea along glacial troughs, Oceanologia, 51 (3), 321-340, http://dx.doi.org/10.5697/oc.51-3.321

Matishov G., Zuyev A., Golubev V., Adrov N., Timofeev S., Karamusko O., Pavlova L., Fadyakin O., Buzan A., Braunstein A., Moiseev D., Smolyar I., Locarnini R., Tatusko R., Boyer T., Levitus S., 2004, Climatic atlas of the Arctic Seas 2004: Part I. Database of the Barents, Kara, Laptev, and White Seas oceanography and marine biology, NOAA Atlas NESDIS 58, U.S. Gov. Print. Office, Washington D.C., 348 pp.

Mumm N., 1991, On the summer distribution of mesozooplankton in the Nansen Basin, Arctic Ocean, Ber. Polarforsch., 92, 1-173.

Richter C., 1994, Regional and seasonal variability in the vertical distribution of mesozooplankton in the Greenland Sea, Ber. Polarforsch., 154, 1–90.

Sakshaug E., Johnsen G., Kovacs K. (eds.), 2009, Ecosystem Barents Sea, Tapir Acad. Press, Trondheim, 587 pp.

Stempniewicz L., Błachowiak-Samołyk K., Węsławski J. M., 2007, Impact of climate change on zooplankton communities, seabird populations and arctic terrestrial ecosystem a scenario, Deep-Sea Res. Pt. II, 54 (23-26), 2934-2945, http://dx.doi.org/10.1016/j.dsr2.2007.08.012

Timofeev S. F., 1992, Zooplankton, [in:] International (American-Norwegian- Russian) ecological expedition in the Pechora Sea, Novaya Zemlya, Kolguev, Vaigach, and the Dolgy Islands. July 1992 (r/v Dalnie Zelentsy), G. G. Matishov (ed.), Kola Sci. Centre RAS, Apatity, 14-21.

Timofeev S. F., 2000, Ecology of the marine zooplankton, Murmansk State Pedag. Inst. Press, Murmansk, 216 pp., (in Russian).

Vinogradov M. E., Shushkina E. A., 1987, Function of plankton communities in epipelagic zone of the ocean, Nauka Press, Moscow, 240 pp., (in Russian).

Vodopyanova V. V., 2011, Spatial distribution of phytoplankton chlorophyll a in the Barents Sea in August 2010, [in:] Studies of marine ecosystems of the European Arctic, G. G. Matishov (ed.), Murmansk Mar. Biol. Inst. Press, Murmansk, 38–42.

Walkusz W., Kwaśniewski S., Falk-Petersen S., Hop H., Tverberg V., Wieczorek P., Węsławski J. M., 2009, Seasonal and spatial changes in the zooplankton community in Kongsfjorden, Svalbard, Polar Res., 28 (2), 254–281, http://dx.doi.org/10.1111/j.1751-8369.2009.00107.x

Wassmann P., Reigstad M., Haug T., Rudels B., Carroll M. L., Hop H., Gabrielsen G. W., Falk-Petersen S., Denisenko S. G., Arashkevich E., Slagstad D., Pavlova O., 2006, Food webs and carbon flux in the Barents Sea, Prog. Oceanogr., 71 (2-4), 232–287, http://dx.doi.org/10.1016/j.pocean.2006.10.003

Zelikman E. A., Golovkin A. N., 1972, Zooplankton distribution and productivity in the nesting grounds of gregarious of seabirds near the northern New Land, [in:] Peculiarities of biological productivity of waters near bird’s bazaars in the north of Novaya Zemlya, A. N. Golovkin (ed.), Nauka Press, Leningrad, 92–114.

full, complete article (PDF - compatibile with Acrobat 4.0), 453 KB


Seasonal fluxes of phosphate across the sediment-water interface in Edku Lagoon, Egypt
Oceanologia 2013, no. 55(1), pp. 219-233
doi:10.5697/oc.55-1.219

Mona Kh. Khalil, Ahmed E. Rifaat
National Institute of Oceanography, and Fisheries (NIOF),
Al Anfushi 21556, Alexandria, Egypt;
e-mail: mona_kh_kh@hotmail.com;
e-mail: aerifaat@yahoo.co.uk

keywords: phosphorus, geochemical processes, modelling, coastal lagoon, Edku Lagoon

Received 29 March 2012, revised 13 December 2012, accepted 7 January 2013.

Abstract

Edku Lagoon is a shallow, brackish, coastal wetland located in the north-western part of the Nile Delta. It suffers from a high level of eutrophication, owing to the heavy load of nutrients, especially phosphorus. The purpose of this paper was to study the flux rates of organic and inorganic phosphorus across the sediment water interface in Edku Lagoon. Both the organic and inorganic phosphorus of surface sediments, pore water and their concentrations in the water just above the sediments were used to calculate the flux rates and to derive the geochemical models. These suggest that, at present, the flux of inorganic and organic phosphorus is from water to sediments via the sedimentation of inorganic particles and organic matter. The results show that phosphorus deposition to the sediments exceeds the rate of inorganic phosphorus release from the sediments to the water column. In a steady state, the rates of organic phosphorus release more or less match the rates of deposition. These reflect the imbalance (accumulation) of phosphorus in the geochemical cycle in the lagoon and its highly eutrophic status. Efforts to control the eutrophication of Edku Lagoon have focused on reducing the phosphorus input.

  References ref
Andrieux-Loyer F., Philippon X., Bally G., Kérouel R., Youenou A., Grand J., 2008, Phosphorus dynamics and bioavailability in sediments of the Penz Estuary (NW France): in relation to annual P-fluxes and occurrences of Alexandrium minutum, Biogeochem., 88 (3), 213-231, http://dx.doi.org/10.1007/s10533-008-9199-2

Arning E.T., Birgel D., Schulz-Vogt H.N., Holmkvist L., Jørgensen B. B., Peckmann J., 2008, Lipid biomarker patterns of phosphogenic sediments from upwelling regions, Geomicrobiol. J., 25 (2), 69-82, http://dx.doi.org/10.1080/01490450801934854

Asmus R.M., Sprung M., Asmus H., 2000, Nutrient fluxes in intertidal communities of a south European lagoon (Ria Formosa) similarities and differ with a northern Wadden Sea bay (Sylt-Rømø Bay), Hydrobiologia, 436 (1-3), 217-235, http://dx.doi.org/10.1023/A:1026542621512

Aspila K. I., Agemian H., Chau A. S.Y., 1976, A semi-automated method for the determination of nitrogen, organic and total phosphorus in sediments, Analyst, 101 (1200), 187-197, http://dx.doi.org/10.1039/AN9760100187

Badr N. B. E., Hussein M.M.A., 2010, An input/output flux model of total phosphorus in Lake Edku, a northern eutrophic Nile Delta Lake, Global J. Environ. Res., 4 (2), 64-75.

Bally G., Mesnage V., Deloffre J., Clarisse O., Lafite R., Dupont J.-P., 2004, Chemical characterization of porewaters in an intertidal mudflat of the Seine estuary: relationship to erosion-deposition cycles, Mar. Pollut. Bull., 49 (3), 163-173, http://dx.doi.org/http://dx.doi.org/10.1016/j.marpolbul.2004.02.005

Baturin G.N., Dubinchuk V.G., 2003, The composition of phosphatized bones in recent sediments, Lithol. Miner. Resour., 38 (3), 313-323, http://dx.doi.org/10.1023/A:1023987820590

Berner R.A., 1980, Early diagenesis a theoretical approach, Princeton Univ. Press, New Jersey, 241 pp.

Canfield D. E., Kristensen E., Thamdrup B., 2005, The Phosphorus cycle, [in:] Advances in marine biology, A.J. Southward, P.A. Tyler, C.M. Young & L.A. Fuiman (eds.), Elsevier Acad. Press, London, 419-440.

Chapelle A., 1995, A preliminary model of nutrient cycling in sediments of a Mediterranean lagoon, Ecol. Model., 80 (2-3), 131-147, http://dx.doi.org/10.1016/0304-3800(94)00073-Q

Diaz J., Ingall E., Benitze-Nelson C., Paterson D., De Jonge M.D., McNulty I., Brandes J.A., 2008, Marine polyphosphate: a key player in geological phosphorus sequestration, Science, 320 (5876), 652-655, http://dx.doi.org/10.1126/science.1151751

Edlund G., Carman R., 2001, Distribution and diagenesis of organic and inorganic phosphorus in sediments of the Baltic proper, Chemosphere, 45 (6-7), 1053-1061, http://dx.doi.org/10.1016/S0045-6535(01)00155-2

Faul K. L., Paytan A., Delaney M. L., 2005, Phosphorus distribution in sinking oceanic particulate matter, Mar. Chem., 97 (3-4), 307-333, http://dx.doi.org/10.1016/j.marchem.2005.04.002

Folk R. L., 1974, Petrography of sedimentary rocks, Univ. Texas, Austin, 182 pp.

Gächter R., Müller B., 2003, Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface, Limnol. Oceanogr., 48 (2), 929-933, http://dx.doi.org/10.4319/lo.2003.48.2.0929

Haggard B.E., Moore P.A., DeLaune P. B., 2005, Phosphorus flux from reservoir bottom sediments in Lake Eucha, Oklahoma, J. Environ. Qual., 34 (2), 724-728, http://dx.doi.org/10.2134/jeq2005.0724

Hemeda H., 1988, The dynamics of nutrients between water and sediments in Lake Edku, M. Sc. thesis, Alex. Univ., Alexandria.

Ibrahim M.K.H., 1994, Geochemical cycle of phosphorus in Lake Edku, M. Sc. thesis, Alex. Univ., Alexandria, 143 pp.

Ingall E., Jahnke R., 1997, Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis, Mar. Geol., 139 (1-4), 219-229, http://dx.doi.org/10.1016/S0025-3227(96)00112-0

Jorcin A., Nigueira M.G., 2005, Temporal and spatial patterns based on sediment and sediment-water interface characteristics along a cascade of reservoirs (Paranapanema River, south-east Brazil), Lakes Reserv. Manage., 10 (1), 1-12, http://dx.doi.org/10.1111/j.1440-1770.2005.00254.x

Khalil M. Kh., 2007, The fractional composition of phosphorus in Edku lagoon and adjacent marine sediments, Egypt. JKAU: Mar. Sci., 19, 149-166.

Kim L.H., Choi E., Michael K. S., 2003, Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments, Chemosphere, 50 (1), 53-61, http://dx.doi.org/10.1016/S0045-6535(02)00310-7

Lerman A., 1979, Geochemical processes: water and sediment environments, John Wiley, New York, 481 pp.

Moufaddal W., El-Sayed E., Deghady E., 2008, Updating morphometric and edaphic information of lakes Edku and Burullus, Northern Egypt, with the aid of satellite remote sensing, Egypt. J. Aquat. Res., 34 (4), 291-310.

Moutin T., 1992, Létude du cycle du phosphate dans les écosystèmes lagunaires, Ph.D. thesis, Univ. Sci. Tech. Languedoc, Montpellier, 251 pp.

Okbah M.A., El-Gohary S.El., 2002, Physical and chemical characteristics of Lake Edku water, Egypt, Mediter. Mar. Sci., 3 (2), 27-39.

Paytan A., McLaughlin K., 2007, The oceanic phosphorus cycle, Chem. Rev., 107 (2), 563-576, http://dx.doi.org/10.1021/cr0503613

Prairie Y.T., de Montigny C., Del Giorgio P.A., 2001, Anaerobic phosphorus release from sediments: a paradigm revisited, Verh. Int. Ver. Limnol., 27, 4013-4020.

Rifaat A. E., Ahdy H.H.H., Saadawy M.M., 2012, Metal fluxes across sedimentwater interface in Lake Qarun, Egypt, JKAU:Earth. Sci., 23 (2), 87-100.

Rothman D.H., Forney D.C., 2007, Physical model for the decay and preservation of marine organic carbon, Science, 316 (5829), 1325-1328, http://dx.doi.org/10.1126/science.1138211

Ruttenberg K.C., 2009, Phosphorus cycle, [in:] Encyclopedia of ocean sciences, J.H. Steele, K.K. Turekian & S.A. Thorpe (eds.), 2nd edn., Acad. Press, London, 2149-2162.

Savchuk O.P., 2002, Nutrient biogeochemical cycles in the Gulf of Riga: scaling up field studies with a mathematical model, J. Marine Syst., 32 (4), 253-280, http://dx.doi.org/10.1016/S0924-7963(02)00039-8

Schulz H.D., Schulz H.N., 2005, Large sulfur bacteria and the formation of phosphorite, Science, 307 (5708), 416-418, http://dx.doi.org/10.1126/science.1103096

Shakweer L., 2006, Impacts of drainage water discharge on the water chemistry of Lake Edku, Egypt, J. Aquat. Res., 32 (1), 264-282.

Shata M.A., 2000, Lithifacies characteristics of subsurface sediments of Lake Edku, Bull. NIOF, 26, 27-42.

Sondergard M., Kristensen P., Jeppesen E., 1992, Phosphorus release from resuspended sediments in the shallow and wind-exposed Lake Arreso, Denmark, Hydrobiologia, 228 (1), 91-99, http://dx.doi.org/10.1007/BF00006480

Strickland J., Parsons T., 1972, A practical handbook of sea water analysis, Fish. Res. Board Can., 310 pp.

Van Cappellen P., Gaillard J. F., 1996, Biogeochemical dynamics in aquatic sediments, [in:] Reactive transport in porous media: general principles and application to geochemical processes, P.C. Lichtner, C. Steefel & E.H. Oelkers (eds.), Rev. Mineralogy 34, Mineral. Soc. Amer., Washington, 335-376.

Vidal M., Morguí J.A., 1995, Short-term pore water ammonium variability coupled to benthic boundary layer dynamics in Alfacs Bay, Spain (Ebro Delta, NW Mediterranean), Mar. Ecol.-Prog. Ser., 118, 229-236, http://dx.doi.org/10.3354/meps118229

Walkley A., Black T.A., 1934, An examination of the Degthareff method for determination of soil organic matter and a proposed modification of the chromic acid titration methods, Soil Sci., 37 (1), 29-38, http://dx.doi.org/10.1097/00010694-193401000-00003

Wang H., Appan A., Gulliver J. S., 2003, Modeling of phosphorus dynamics in aquatic sediments: I-model development, Water Res., 37 (16), 3928-3938, http://dx.doi.org/10.1016/S0043-1354(03)00304-X

Wang S., Jin X., Zhao H., Zhou X., Wu F., 2008, Effects of organic matter on phosphorus release kinetics in different trophic lake sediments and application of transition state theory, J. Environ. Manage., 88 (4), 845-852, http://dx.doi.org/10.1016/j.jenvman.2007.04.006

Wetzel R.G., 2001, The phosphorus cycle, [in:] Limnology: lake and river ecosystems, 3rd edn., Acad. Press, San Diego, 1006 pp.

Wilson J.G., Brennan M.T., 2004, Spatial and temporal variability in modelled nutrient fluxes from the unpolluted Shannon estuary, Ireland, and the implications for microphytobenthic productivity, Estuar. Coast. Shelf Sci., 60 (2), 193-201, http://dx.doi.org/10.1016/j.ecss.2003.12.007

Zaghloul F.A., Hussein N.R., 2000, Impact of pollution on phytoplankton community structure in Lake Edku, Egypt, Bull. NIOF, 26, 297-318.

Zhang L., Fan C.X., Qin B.Q., 2001, Phosphorus release and absorption of surface sediments in Taihu Lake under simulative disturbing conditions, J. Lake Sci., 13 (1), 35-42

full, complete article (PDF - compatibile with Acrobat 4.0), 287 KB


First records of polychaetes new to Egyptian Mediterranean waters
Oceanologia 2013, no. 55(1), pp. 235-267
doi:10.5697/oc.55-1.235

Mohamed Moussa Dorgham*, Rasha Hamdy, Hoda Hassan El-Rashidy, Manal Mohamed Atta
Department of Oceanography, Faculty of Science, Alexandria University,
Alexandria, 21511, Egypt;
e-mail: mdorgham1947@yahoo.com
*corresponding author

keywords: alien polychaetes, new migrant polychaetes, Alexandria polychaetes, Egyptian polychaetes

Received 4 September 2012, revised 5 November 2012, accepted 19 November 2012.

Abstract

Nineteen benthic polychaete species were recorded for the first time in the intertidal zone of the Alexandria coast, south-eastern Mediterranean Sea. They belong to Syllidae (7 species), Hesionidae (3 species), Serpulidae (2 species) and 7 other families (one species each). Of these species Eunice miurai Carrera-Parra & Salazar-Vallejo 1998 appears to be new to the Mediterranean Sea, while four of the alien species earlier recorded in the Mediterranean were found for the first time in Egyptian waters: Opisthosyllis brunnea Langerhans 1879, Loimia medusa Savigny 1822, Syllis schulzi Hartmann-Schröder 1960, Phyllodoce longifrons Ben-Eliahu 1972.
    The newly recorded species demonstrated markedly different patterns of frequency of occurrence and numerical abundance. Spirobranchus triqueter Linnaeus 1758, S. schulzi, L. medusa and Salvatoria clavata Claparède 1863 were permanent and abundant species in fouling samples along the Alexandria coast. Saccocirrus papillocercus Bobretzky 1872 persisted in the sediments at two sites, with a much higher count at the stressed one, while Protodrilus sp. inhabited sediments at two other sites throughout the year, sometimes in very high numbers. In addition, the alien species found earlier, Brania arminii Langerhans 1881, Odontosyllis fulgurans Audouin & Milne-Edwards 1833 and O. brunnea Langerhans 1879, were frequently observed along the Alexandria coast.


  References ref
Abd-Elnaby F. A., 1999, Composition and distribution of some bottom fauna associations along the Alexandria coast, Mediterranean Sea, M. Sc. thesis, Alex. Univ., 272 pp.

Abd-Elnaby F. A., 2005, Systematic and environmental studies on Polychaetes from Alexandria marine water, Ph. D. thesis, Suez Canal Univ., 330 pp.

Abd-Elnaby F. A., 2009a, New records of Polychaetes from the South Part of Suez Canal, Egypt, World J. Fish Mar. Sci., 1 (1), 7-19.

Abd-Elnaby F. A., 2009b, Polychaete study in Northeastern Mediterranean Coast of Egypt, World J. Fish Mar. Sci., 1 (2), 85-93.

Abd-Elnaby F. A., San Martín G., 2010, Eusyllinae, Anoplosyllinae, and Exogoninae (Polychaeta: Syllidae) for the Mediterranean Coasts of Egypt, together with the description of one new species, Life Sci. J., 7 (4), 131-139.

Abd-Elnaby F. A., San Martín G., 2011, Syllinae (Syllidae: Polychaeta) from the Mediterranean coast of Egypt with the description of two new species, Med. Mar. Sci., 12 (1), 43-52.

Albertelli G., Fraschetti S., 1995, A quantitative study of a macrobenthic community in the Ligurian Sea (north-western Mediterranean), Oebalia, 21, 103-113.

Alos C., 1990, Anélidos poliquetos del Cabo de Creus (NE de Espan~a). Facies de Corallina elongate Ellis & Solander y de Cystoseira mediterranea (J. Feldmann), Misc. Zool., 14, 17-28.

Amoureux L., Josef G., O’Connor B., 1980, Annélides polychètes de l’Eponge Fasciospongia cavernosa Schmidt, Cah. Biol. Mar., 21, 387-392.

Amoureux L., Rullier F., Fishelson L., 1978, Systématique et écologie d’annélides polychètes de la presqu’il du Sinai, Israel J. Zool., 27 (1-2), 57-163.

Antoniadou C., Chintiroglou C., 2005, Biodiversity of zoobenthic hard-substrate sublittoral communities in the Eastern Mediterranean (North Aegean Sea), Estuar. Coast. Shelf Sci., 62 (4), 637-653, http://dx.doi.org/10.1016/j.ecss.2004.09.032

Antoniadou C., Nicolaidou A., Chintiroglou C., 2004, Polychaetes associated with the sciaphilic alga community in the northern Aegean Sea: spatial and temporal variability, Helgoland Mar. Res., 58 (3), 168-182, http://dx.doi.org/10.1007/s10152-004-0182-6

Appy D. T., Linkletter E. L., Dadswell J. M., 1980, A guide to the marine flora and fauna of the Bay of Fundy: Annelida, Polychaeta, Fish. Mar. Service Tech. Rep., 920, 124 pp.

Arvanitidis C., 2000, Polychaete fauna of the Aegean Sea: inventory and new information, Bull. Mar. Sci., 60 (1), 73-96.

Aviz D., de Mello C. F., da Silva P. F., 2009, Macrofauna associated with galleries of Neoteredo reynei (Bartsch, 1920) (Mollusca: Bivalvia) in Rhizophora mangle Linnaeus trunks during less rainy season in mangrove of São Caetano de Odivelas, Pará (north coast of Brazil), Bol. Mus. Para. Emílio Goeldi. Ciéncias Naturais, Belém, 4 (1), 47-55.

Bellan G., 1980, Relationship of pollution to rocky substratum polychaetes on the French Mediterranean coast, Mar. Poll. Bull., 11 (11), 318-321, http://dx.doi.org/10.1016/0025-326X(80)90048-X

Bellan G., 2001, Polychaeta, [in:] European register of marine species: a check- list of the marine species in Europe and a bibliography of guides to their identification, Costello M. J. et al. (eds.), Coll. Patrimoines Nat., 50, 214-231.

Bellisario B., Novelli C., Cerfolli F., Angeletti D., Cimmaruta R., Nascetti G., 2010, The ecological restoration of the Tarquinia Salterns drives the temporal changes in the benthic community structure, Trans. Waters Bull., 4 (2), 3-62.

Ben-Eliahu M. N., 1972, Polychaeta Erantia of the Suez Canal, Israel J. Zool., 24, 54-70.

Ben-Eliahu M. N., 1975a, Polychaete cryptofauna from rims of similar intertidal vermetid reefs on the Mediterranean coasts of Israel and Gulf of Elat: Nereidae (Polychaeta Errantia), Israel J. Zool., 24, 177-191.

Ben-Eliahu M. N., 1975b, Polychaete cryptofauna from rims of similar intertidal vermetid reefs on the Mediterranean coasts of Israel and Gulf of Elat: Sabellidae (Polychaeta Sedentaria), Israel J. Zool., 24, 54-70.

Ben-Eliahu M. N., 1976a, Errant polychaete cryptofauna (excluding Syllidae & Nereidae) from rims of similar intertidal vermetid reefs on the Mediterranean coasts of Israel and Gulf of Elat, Israel J. Zool., 25 (4), 156-177.

Ben-Eliahu M .N., 1976b, Polychaete cryptofauna from rims of similar intertidal vermetid reefs on the Mediterranean coasts of Israel and Gulf of Elat: Sedentaria, Israel J. Zool., 25, 121-155.

Ben-Eliahu M. N., 1976c, Polychaete cryptofauna from rims of similar intertidal vermetid reefs on the Mediterranean coasts of Israel and Gulf of Elat: Serpulidae (Polychaeta Sedentaria), Israel J. Zool., 25, 103-119.

Ben-Eliahu M. N., 1977a, Polychaete cryptofauna from rims of similar intertidal vermetid reefs on the Mediterranean coasts of Israel and Gulf of Elat: Exogoninae and Autolytinae (Polychaeta Errantia: Syllidae), Israel J. Zool., 21, 189-237.

Ben-Eliahu M. N., 1977b, Polychaete cryptofauna from rims of similar intertidal vermetid reefs on the Mediterranean coasts of Israel and Gulf of Elat: Syllinae and Eusyllinae (Polychaeta Errantia: Syllidae), Israel J. Zool., 26, 1-58.

Ben-Eliahu M. N., 1989, Lessepsian migration in Nereididae (Annelida: Polychaeta): Some case histories, [in:] Environmental quality and ecosystem stability, E. Spanier, Y. Steinberger & M. Luria (eds.), Vol. IV/B-Ecosystem Stability, Proc. 4th Int. Conference Isr. Soc. Ecol. & Environmental Quality Sciences, June 4-8, Jerusalem, Israel, 125-134.

Ben-Eliahu M. N., 1991a, Nereididae of Suez Canal - potential Lessepsian migrants, Third International Polychaete Conference held at California State University, 6-11 August 1989, Long Beach, California Bull. Mar. Sci., 48 (2), 318-329.

Ben-Eliahu M. N., 1991b, Red Sea serpulids (Polychaeta) in the eastern Mediterranean, Pages 515-528, [in:] Systematics, biology and morphology of world Polychaeta, M. E. Petersen & J. B. Kirkegard (eds.), Proc. 2nd Inter. Polychaete Conf. Copenhagen 1986, Ophelia Suppl. 5.

Ben-Eliahu M. N., Fiege D., 1996, Serpulid tube-worms (Annelida: Polychaeta) of the central and eastern Mediterranean with particular attention to the Levant Basin, Mar. Biodiversity, 28 (1-3), 1-51.

Ben-Eliahu M. N., Payiatas G., 1999, Searching for Lessepsian migrant serpulids (Annelida: Polychaeta) on Cyprus - some results of a recent expedition, Israel J. Zool., 45, 101-119.

Ben-Eliahu M. N., Safriel U. N., 1982, A comparison between species diversities of Polychaetes from tropical and temperate structurally similar rocky intertidal habitats, J. Biogeogr., 9 (5), 371-390, http://dx.doi.org/10.2307/2844570

Ben-Eliahu M. N., ten Hove H. A., 1992, Serpulids (Annelida: Polychaeta) along the Mediterranean coast of Israel - new population build-ups of Lessepsian migrants, Israel J. Zool., 38, 35-53.

Bianchi C. N., 1981, Guide per il riconoscimento delle specie animali delle acque lagunari e costiere italiane, AQ/1/96.5. Policheti Serpulidei, Consiglio Nazionale delle Ricerche, 187 pp.

Bisby F. A., Ruggiero M. A., Wilson K. L., Cachuela-Palacio M., Kimani S. W., Roskov Y. R., Soulier-Perkins A., van Hertum J., 2005, Species 2000 and ITIS catalogue of life, CD-ROM.

Boaventura D., Moura A., Leitõ F., Carvalho S., Cúrdia J., Pereira P., da Fonseca L., dos Santos M. N., Monteiro C. C., 2006, Macrobenthic colonisation of artificial reefs on the southern coast of Portugal (Ancõo, Algarve), Hydrobiologia, 555 (1), 335-343, http://dx.doi.org/10.1007/s10750-005-1133-1

Borges P. A. V., Costa A., Cunha R., Gabriel R., Gonc¸alves V., Martins A. F., Melo I., Parente M., Raposeiro P., Rodrigues P., Santos R. S., Silva L., Vieira P., Vieira V. (eds.), 2010, A list of the terrestrial and marine biota from the Azores, Princípia, Oeiras, 432 pp.

Campbell D. A., Kelly M. S., 1981, Settlement of Pomatoceros triqueter (L.) in two Scottish lochs, and factors determining its abundance on mussels grown in suspended culture, J. Shellfish Res., 21 (2), 519-528.

Carrera-Parra L. F., Salazar-Vallejo S. I., 1998, A new genus and 12 new species of Eunicidae (Polychaeta) from the Caribbean sea, J. Mar. Biol. Assoc. U.K., 78 (1), 145-182, http://dx.doi.org/10.1017/S0025315400040005

Casellato S., Masiero L., Sichirollo E., Soresi S., 2007, Hidden secrets of the Northern Adriatic: ‘Tegnué’, peculiar reefs, Cent. Eur. J. Biol., 2 (1), 122-136, http://dx.doi.org/10.2478/s11535-007-0004-3

Casellato S., Sichirollo E., Cristofoli A., Masiero L., Soresi S., 2005, Biodiversitàdelle ‘tegnuè’ di Chioggia, zona di tutela biologica del Nord Adriatico, Biol. Mar. Med., 12 (1), 69-77.

Casellato S., Stefanon A., 2008, Coralligenous habitats in the northern Adriatic Sea: an overview, Mar. Ecol-Evol. Persp., 29, 321-341.

Castelli A., Bianchi C. N., Cantone G., Çinar M. E., Gambi M. C., 2008, Annelida Polychaeta, Biol. Mar. Med., 15 (Suppl. 1), 323-373.

Casu D., Ceccherelli G., Curini-Galletti M., Castelli A., 2006, Short-term effects of experimental trampling on polychaetes of a rocky intertidal substratum (Asinara Island MPA, NW Mediterranean), Sci. Mar. (Barc.), 70 (Suppl. 3), 179-186.

Cattrijsse A., Vincx M., 2001, Biodiversity of the benthos and the avifauna of the Belgian coastal waters: summary of data collected between 1970 and 1998. Sustainable Management of the North Sea, Federal Office for Scientific, Technical and Cultural Affairs, Brussels, 48 pp.

Cigliano M., Gambi M. C., Rodolfo-Metalpa R., Patti F. P., Hall-Spencer J. M., 2010, Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents, Mar. Biol., 157 (11), 2489-2502, http://dx.doi.org/10.1007/s00227-010-1513-6

Çinar M. E., 2005, Polychaetes from the coast of northern Cyprus (eastern Mediterranean Sea), with two new records for the Mediterranean Sea, Cah. Biol. Mar., 46, 143-159.

Çinar M. E., 2006, Serpulid species (Polychaeta: Serpulidae) from the Levantine coast of Turkey (eastern Mediterranean), with special emphasis on alien species, Aquat. Inv., 1 (4), 223-240, http://dx.doi.org/10.3391/ai.2006.1.4.6

Çinar M. E., Bilecenoğlu M., Öztürk B., Can A., 2006, New records of alien species on the Levantine coast of Turkey, Aquat. Inv., 1 (2), 84-90, http://dx.doi.org/10.3391/ai.2006.1.2.6

Çinar M. E., Bilecenoğlu M.,Öztürk B., Katagan T., Aysel V., 2005, Alien species on the coasts of Turkey, Med. Mar. Sci., 6 (2), 119-146.

Çinar M. E., Dağli E., 2012, New records of alien polychaete species for the coasts of Turkey, Med. Mar. Sci., 13 (1), 103-107.

Çinar M. E., Ergen Z., 2003, Eusyllinae and Syllinae (Annelida: Polychaeta) from Northern Cyprus (Eastern Mediterranean Sea) with a checklist of species reported from the Levant Sea, Bull. Mar. Sci., 72 (3), 769-793.

Çinar M. E., Ergen Z., Benli H. A., 2003, Autolytinae and Exogoninae (Annelida: Polychaeta) from Northern Cyprus (Eastern Mediterranean Sea) with a checklist of species reported from the Levant Sea, Bull. Mar. Sci., 72 (3), 741-767.

Çinar M. E., Gönlügür-Demirci G., 2005, Polychaeta assemblages on shallow-water benthic habitats along the Sinop Peninsula (Black Sea, Turkey), Cah. Biol. Mar., 46, 253-263.

Coll M., Pirrodi C., Steenbeek J., Kaschner K., Ben Rais Lasram F., Aguzzi J., Ballesteros E., Bianchi C. N., Corbera J., Dailianis T., Danovaro R., Estrada M., Froglia C., Galil B. S., Gasol J. M., Gertwagen R., Gil J., Guilhaumon F., Kesner-Reyes K., Kitsos M., Koukouras A., Lampadariou N., Laxamana E., López-Fé de la Cuadra C. M., Lotze H., Martin D., Mouillot D., Oro D., Raicevich S., Rius-Barile J., Saiz-Salinas J. I., San Vicente C., Somot S., Templado J., Turon X., Vafidis D., Villanueva R., Voultsiadou E., 2010, The biodiversity of the Mediterranean Sea, estimates, patterns and threats, PloS ONE, 5 (8), e11842, http://dx.doi.org/10.1371/journal.pone.0011842

Dağli E., Bakir K., Doğan A.,Özcan T., Kirkim F., Çnar M.E., Çztürk B.,Önen M., Katağan T., 2008, The effects of a fish farm on the benthic fauna near Markiz Island (Çandarl Bay-Aegean Sea/Turkey), J. FisheriesSciences.com, 2 (3), 576-586, http://dx.doi.org/10.3153/jfscom.mug.200702

Dauvin J. C., Dewarumez J. M., Gentil F., 2003, Liste actualisée des espèces d’Annélides Polychètes présentes en Manche, [An up to date list of polychaetous annelids from the English Channel], Cah. Biol. Mar., 44 (1), 67-95.

Day J. H., 1967, Polychaetes of southern Africa, Part 1: Errantia, British Mus. (Nat. Hist.), London, 878 pp.

Day J. H., Morgans J. F. C., 1956, The ecology of South African estuaries. Part 7. The Biology of Durban Bay, Ann. Natal Mus., 13, 259-312.

de Biasi A. M., Bianchi C. N., Morri C., 2003, Analysis of macrobenthic communities at different taxonomic levels: an example from an estuarine environment in the Ligurian Sea NW Mediterranean, Estuar. Coast. Shelf Sci., 58 (1), 99-106, http://dx.doi.org/10.1016/S0272-7714(03)00063-5

de León-Gonzàlez J. A., Díaz Castan~eda V., 2006, Eunicidae (Annelida: Polychaeta) associated with Phragmathopoma caudata Morch, 1863 and some coral reefs from Veracruz, Gulf of Mexico, Sci. Mar., 70 (S3), 91-99.

Dixon R. D., Pascoe P. L., Dixon L. R. J., 1998, Karyotypic differences between two species of Pomatoceros, P. triqueter and P. lamarckii (Polychaeta: Serpulidae), J. Mar. Biol. Assoc. U.K., 78 (4), 1113-1126, http://dx.doi.org/10.1017/S0025315400044362

Eneman E., 1984, Uit het Natuurhistorisch archief, [From the Natural History Archive], De Strandvlo, 4 (1), 4-17.

Fauchald K., 1977, The polychaete worms. Definition and key to the orders, families and genera, Sci. series, 282, 118 pp.

Faulwetter S., 2010, Check-list of marine Polychaeta from Greece. Aristotle University of Thessaloniki, Assembled within the framework of the EU FP7 PESI pro ject.

Faulwetter S., Chatzigeorgiou G., Galil B. S., Nicolaidou A., Arvanitidis C., 2011, Sphaerosyllis levantina sp. n. (Annelida) from the eastern Mediterranean, with notes on character variation in Sphaerosyllis hystrix Claparède, 1863, [in:] e-Infrastructures for data publishing in biodiversity science. ZooKeys, V. Smith & L. Penev (eds.), 150, 327-345.

Fauvel P., 1923, Faune de France. Polychètes errantes, Le Chevalier, Paris, 488 pp.

Fauvel P., 1927a, Polychètes sédentaires addenda aux errantes, archiannélides, myzostomaires, Faune France, Ed. le Chevalier Paris, 16, 1-412.

Fauvel P., 1927b, Rapport sur les annélides: Polychètes errantes. Zoological results of the Cambridge Expedition to the Suez Canal, 1924, Trans. Zool. Soc. London, 22 (1), 411-437.

Fauvel P., 1937, Les fonds de pèche pres d’Alexandria. XI, Annélides Polychètes, Notes Mém. Fish. Res. Dir., 19, 1-60.

Felder D. L., Camp D. K. (eds.), 2010, Gulf of Mexico-origins, waters, and biota. Biodiversity, Texas A&M Press, College Station, http://www.marinespecies.org/porifera/porifera.php?

Fishelson L., Rullier F., 1969, Quelques annélides polychètes de La Mer Rouge, Israel J. Zool., 18, 49-117.

Gambi M. C., Conti G., Bremec C. S., 1998, Polychaete distribution, diversity and seasonality related to seagrass cover in shallow soft bottoms of the Tyrrhenian Sea, Italy, Sci. Mar., 62 (1-2), 1-17, http://dx.doi.org/10.3989/scimar.1998.62n1-21

Gibbs E. P., Saiz Salinas J. I., 1996, The occurrence of the estuarine polychaete Lycastopsis littoralis (Namanereidinae: Nereididae) in the Ría De Bilbao, Northern Spain, J. Mar. Biol. Assoc. U.K., 76 (3), 617-623, http://dx.doi.org/10.1017/S0025315400031325

Glasby C. J., 1999, The Namanereidinae (Polychaeta: Nereididae). Part 1, taxonomy and phylogeny, Rec. Aust. Mus., Suppl. 25, 129 pp.

Guerra-García J. M., 2001, Habitat use of the Caprellidea (Crustacea: Amphipoda) from Ceuta, North Africa, Ophelia, 55 (1), 27-38, http://dx.doi.org/10.1080/00785236.2001.10409471

Guiry M. D., Guiry G. M., 2011, AlgaeBASE, World-wide electronic publication, Nat. Univ. Ireland, Galway, http://www.algaebase.org/

Hamdy R., 2008, Ecological studies on benthic polychaetes along Alexandria coast, M. Sc. thesis, Alex. Univ., 214 pp.

Hansson H. G., 1998, NEAT (North East Atlantic Taxa): South Scandinavian marine Annelida check-list, 33 pp.

Hartman O., 1961, Polychaetous annelids from California, Allan Hancock Pac. Exped., 25, 226 pp.

Hayward P. J., Ryland J. S. (eds.), 1990, The marine fauna of the British Isles and North-West Europe: 1. Introduction and protozoans to arthropods, Clarendon Press, Oxford, 627 pp.

Heaba F. N., 1987, Taxonomical and ecological studies of hard bottom polychaetes in Port Said Harbour, M. Sc. thesis, Tanta Univ., Egypt.

Heip C. H. R., Herman R. L., Bisschop G., Govaere J. C. R., Holvoet M., van Damme D., Vanosmael C., Willems K. R., De Coninck L.A.P., 1979, Benthic studies of the Southern Bight of the North Sea and its adjacent continental estuaries: Progress Report 1, [in:] Coordinated Research Actions Interuniversitary Actions Oceanology: symposium reports, Nederlands Inst. Ecol. (NIOO), 133-163.

Kambouroglou V., Nicolaidou A., 2006, A new alien species in Hellenic waters, Pseudonereis anomala (Polychaeta, Nereididae) invades harbors in the Eastern Mediterranean, Aquat. Inv., 1 (2), 97-98, http://dx.doi.org/10.3391/ai.2006.1.2.8

López E., San Martín G., 1997, Eusyllinae, Exogoninae and Autolytinae (Syllidae, Annelida, Polychaeta) from the Chafarinas lslands (Alboràn Sea, W. Mediterranean), Misc. Zool., 20 (2), 101-111.

López E., San Martín G., Jiménez M., 1996, Syllinae (Syllidae, Annelida, Polychaeta) from Chafarinas lslands (Alboràn Sea; Western Mediterranean), Misc. Zool., 19 (1), 105-118.

Makra A., Nicolaidou A., 2000, Benthic communities of the inner Argolikos Bay, Belgian J. Zool., 130 (Suppl. 1), 61-67.

Martín D., Gil J., 2010, Checklist of class Polychaeta (Phylum Annelida), 199-236, [in:] The biodiversity of the Mediterranean Sea: estimates, patterns, and threats, M. Coll et al., PLoS ONE, 5 (8), 36 pp.

Marzano C. N., Baldacconi R., Fianchini A., Gravina F., Corriero G., 2007, Settlement seasonality and temporal changes in hard substrate macrozoobenthic communities of Lesina Lagoon (Apulia, Southern Adriatic Sea), Chem. Ecol., 23 (6), 479-491, http://dx.doi.org/10.1080/02757540701702868

Marzialetti S., Nicoletti L., Ardiazzone G. D., 2009, The polychaete community of the fregene artificial reef (Tyrrhenian Sea, Italy), a 20 year study (1981-2001), Zoosymposia, 2, 551-566.

Massin C., Norro A., Mallefet J., 2002, Biodiversity of a wreck from the Belgian Continental Shelf: monitoring using scientific diving. Preliminary results, Bull. Inst. Royal Sci. Naturel. Belgique, 72, 67-72.

Mikac B., Musco L., 2010, Faunal and biogeographic analysis of Syllidae (Polychaeta) from Rovinj (Croatia, northern Adriatic Sea), Sci. Mar., 74 (2), 353-370, http://dx.doi.org/10.3989/scimar.2010.74n2353

Miloslavich P., Manuel J. D., Klein E., Jose J., Alvarado C. D., Gobin J., Escobar- Briones E., Cruz-Motta J. J., Weil E., Corte J., Bastidas A. C., Robertson R., Zapata F., Martin A., Castillo J., Kazandjian A., Ortiz M., 2010, Marine biodiversity in the Caribbean: regional estimates and distribution patterns, PLoS ONE, 5 (8), e11916, http://dx.doi.org/10.1371/journal.pone.0011916

Moreira J., Quintas P., Troncoso J. S., 2006, Spatial distribution of soft-bottom polychaete annelids in the Ensenada de Baiona (Ría de Vigo, Galicia, north- west Spain), Sci. Mar., 70 (Suppl. 3), 217-224.

Muller Y., 2004, Faune et flore du littoral du Nord, du Pas-de-Calais et de la Belgique: inventaire, [Coastal fauna and flora of the Nord, Pas-de-Calais and Belgium: inventory], Comm. Région. Biol. Région Nord Pas-de-Calais, 307 pp.

Munari C., Rossi R., Mistri M., 2005, Temporal trends in macrobenthos community structure and redundancy in a shallow coastal lagoon (Valli di Comacchio, northern Adriatic Sea), Hydrobiologia, 550 (1), 95-104, http://dx.doi.org/10.1007/s10750-005-4366-0

Musco L., Giangrande A., 2005, Mediterranean Syllidae (Annelida: Polychaeta) revisited: biogeography, diversity and species fidelity to environmental features, Mar. Ecol. Progr. Ser., 304, 143-153, http://dx.doi.org/10.3354/meps304143

Musco L., Terlizzi A., Licciano M., Giangrande A., 2009, Taxonomic structure and the effectiveness of surrogates in environmental monitoring: a lesson from polychaetes, Mar. Ecol. Prog. Ser., 383, 199-210, http://dx.doi.org/10.3354/meps07989

Nicolaidou A., Petrou K., Kormas A. K., Reizopoulou S., 2006, Interannual variability of soft bottom macrofaunal communities in two Ionian Sea lagoons, Hydrobiologia, 555 (1), 89-98, http://dx.doi.org/10.1007/s10750-005-1108-2

Occhipinti-Ambrogi A., Marchini A., Cantone G., Castelli A., Chimenz C., Cormaci M., Froglia C., Furnari G., Gambi M. C., Giaccone G., Giangrande A., Gravili C., Mastrototaro F., Mazziotti C., Orsi-Relini L., Piraino S., 2011, Alien species along the Italian coasts: an overview, Biol. Invasions, 13 (1), 215-237, http://dx.doi.org/10.1007/s10530-010-9803-y

Pettibone M. H., 1963, Marine polychaete worms of the New England Region 1. Aphroditidae through Trochochaetidae, Bull. U.S. Nat. Mus. (Smithsonian Inst.), 227, 1-356.

Pleijel F., 2007, Polychaetes of New Caledonia, [in:] Compendium of marine species of New Caledonia, C. E. Payri & B. Richer de Forges (eds.), Doc. Sci. Tech. 117, (2nd edn.), IRD Noumea, 175-181.

Ramos M. (ed.), 2010, IBERFAUNA. The Iberian fauna databank, http://iberfauna.mncn.csic.es/.

Rullier F., 1972, Annélides polychètes de Nouvelle-Calédonia. Expédition Franc¸aise sur les récifs corallines de la Nouvelle-Calédonia, 16.

Salazar-Vallejo S. I., 1996, Lista de species y bibliografía de Poliquetos (Polychaeta) del Gran Caribe, Anales Inst. Biol. Univ. nac. Autón, México, Ser. Zool., 67 (1), 11-50.

Sánchez-Moyano J. E., García-Adiego E. M., Estacio F., García-Gómez J. C., 2002, Effect of environmental factors on the spatial variation of the epifaunal polychaetes of the alga Halopteris scoparia in Algeciras Bay (Strait of Gibraltar), Hydrobiologia, 470 (1-3), 133-148, http://dx.doi.org/10.1023/A:1015680106097

San Martín G., 1984, Estudio biogeografico, faunistico y sistematico de los Poliquetos de la familia Silidos (Syllidae: Polychaeta) en Baleares, Ph. D. thesis no. 187, Publ. Univ. Complut. Madrid, 529 p.

San Martín G., 1991, Syllis (Polychaeta: Syllidae: Syllinae) from Cuba, The Gulf of Mexico, Florida and North Carolina, with a revision of several species described by Verrill, Bull. Mar. Sci., 5, 167-196.

San Martín G., 2003, Annelida Polychaeta II. Syllidae, Fauna Iber., 21, 21-554. San Martín G., 2005, Exogoninae (Polychaeta: Syllidae) from Australia with the description of a new genus and twenty-two species, Rec. Aust. Mus., 57 (1), 39-152, http://dx.doi.org/10.3853/j.0067-1975.57.2005.1438

Sardà R., 1986, Contribución al concimiento de las poblaciones anelidianas infaunales de la Costa Catalana, Univ. Barcelona, 12, 27-36.

Selim S. A., 1978, Systematic and distributional studies of polychaetes in the Eastern Harbour, Alexandria, M. Sc. thesis, Alex. Univ., Egypt, 402 pp.

Selim S. A., 1996a, New records of polychaete annelids from Alexandria waters, Egypt, J. Egypt. Ger. Soc. Zool., 21 (D), 75-86.

Selim S. A., 1996b, Notes on the distribution of polychaetes along Alexandria coast, Egypt, Bull. High Inst. Public Health, 26 (2), 341-350.

Selim S. A., 1996c, On some syllid polychaetes from Alexandria waters, Egypt, J. Egypt. Ger. Soc. Zool., 21 (D), 51-73.

Selim S. A., 1997a, Assessment of Polychaete fauna in the Eastern Harbour of Alexandria, Egypt, Bull. High Inst. Public Health, 27 (1), 131-146.

Selim S. A., 1997b, Description and remarks on Suez Canal serpulids (Polychaeta), J. Egypt. Ger. Soc. Zool., 22 (D), 87-110.

Selim S. A., 1997c, New records of two benthic polychaetes from Egyptian Mediterranean waters, J. Egypt. Ger. Soc. Zool., 22 (D), 29-39.

Selim S. A., 2006, Newly recorded spionid species (Polychaeta) from the Egyptian waters, with special reference to polydorids habitats, Egypt. J. Aquat. Biol. Fish., 10 (1), 191-210.

Selim S. A., 2007, Family Paraonidae (Polychaeta), a new record to the Egyptian Mediterranean waters, Egypt. J. Aquat. Res., 33 (2), 171-184.

Selim S. A., 2008a, Eusyllinae and Exogoninae (Polychaeta: Syllidae) - new records from the Egyptian Mediterranean coastal waters, Egypt. J. Aquat. Res., 34 (3), 160-180.

Selim S. A., 2008b, New records of sabellid species (Polychaeta: Sabellinae) from the coastal Egyptian waters, Egypt. J. Aquat. Res., 34 (1), 108-128.

Selim S. A., 2009, Polychaete fauna of the northern part of the Suez Canal (Port- Said-Toussoum), Egypt. J. Aquat. Res., 35 (1), 69-88.

Selim S. A., Abd-Elnaby F. A., Gab-Alla A., Ghobashy A. A., 2006a, New records of errant polychaetes from coastal waters of Alexandria, Egypt, Egypt. J. Aquac. Res., 32, 210-227.

Selim S. A., Abd-Elnaby F. A., Gab-Alla A., Ghobashy A. A., 2006b, New records of sedentary polychaetes from coastal waters of Alexandria, Egypt, Egypt. J. Aquac. Res., 32, 228-241.

Serrano A., San Martín G., López E., 2006, Ecology of Syllidae (Annelida: Polychaeta) from shallow rocky environments in the Cantabrian Sea (South Bay of Biscay), Sci. Mar., 70 (S3), 225-235, http://dx.doi.org/10.3989/scimar.2006.70s3225

Shalla S. H., Holt T. J., 1999, The Lessepsian migrant Pomatoeios kraussi (Annelids, Polychaeta) recent formation of dense aggregation in Lake Timsah and Bitter lakes (Suez Canal; Egypt), Egypt. J. Biol., 1, 133-137.

Simboura N., Nicolaidou A., Thessalou-Legaki M., 2000, Polychaete communities of Greece: an ecological overview, Mar. Ecol., 21 (2), 129-144, http://dx.doi.org/10.1046/j.1439-0485.2000.00684.x

Simboura N., Zenetos A., 2002, Benthic indicators to use in ecological quality classification of mediterranean soft bottom marine ecosystems, including a new biotic index, Med. Mar. Sci., 3 (2), 77-111.

Simboura N., Zenetos. A., 2005, Increasing Polychaete diversity as a consequence of increasing research effort in Greek waters: new records and exotic species, Med. Mar. Sci., 6 (1), 75-88.

Streftaris N., Zenetos A., Papathanassiou E., 2005, Globalisation in marine ecosystems: the story of non-indigenous marine species across European Seas, Oceanogr. Mar. Biol., 43, 419-453.

Surugiu V., 2005, The use of polychaetes as indicators of eutrophication and organic enrichment of coastal waters: a study case - Romanian Black Sea coast, Al. I. Cuza Univ. Iasi, 51, 55-62.

Şahin G. K., Çinar M. E., 2012, A check-list of polychaete species (Annelida: Polychaeta) from the Black Sea, J. Black Sea/Med. Environ., 18 (1), 10-48.

Şahin G. K., Çinar M. E., 2009, Eunicidae (Polychaeta) species in and around Iÿskenderun Bay (Levantine Sea, Eastern Mediterranean) with a new alien species for the Mediterranean Sea and a re-description of Lysidice collaris, Turk. J. Zool., 33 (3), 331-347, http://dx.doi.org/10.3906/zoo-0806-19

Teacă A., Begun T., Gomoiu M. T., 2006, Recent data on benthic populations from hard bottom mussel community in the Romanian Black Sea coastal zone, Geo- Eco-Marina, 12, 43-51.

Tena J., Capaccioni-Azzati R., Torres-Gavila F. J., García-Carrascosa A. M., 2000, Polychaetes associated with facies of photophilic algal community in the Chafarinas Archipelago (SW Mediterranean), Bull. Mar. Sci., 67 (1), 55-72.

Tovar-Hernandez M. A., Salazar-Vallej S. I., 2006, Sabellids (Polychaeta: Sabellidae) from the Grand Caribbean, Zool. Stud., 45 (1), 24-66.

Trott T. J., 2004, Cobscook Bay inventory: a historical checklist of marine invertebrates spanning 162 years, Northeast. Nat., SI 2, 261-324.

Uchida H., 2004, Hesionidae (Annelida, Polychaeta) from Japan, I. Kuroshio Biosph., 1, 27-92.

Vine P., 1986, Red Sea invertebrates, Immel Publ., London, 224 pp.

Vine P. J., Bailey-Brock J. H., 1984, Taxonomy and ecology of coral reef tube worms (Serpulidae, Spirorbidae) in the Sudanese Red Sea, Zool. J. Linn. Soc.-Lond., 80 (2-3), 135-156, http://dx.doi.org/10.1111/j.1096-3642.1984.tb01969.x

Vinogradov K. A., 1960, A note on the distribution of the marine bristle-worm Lycastopsis pontica in the Black and Azov Seas, Nauch. Ezhegod. Odess. Univ. Biol. Fakult., 160 (2), 143-144.

Vorobyova L. V., Bondarenko O. S., 2009, Meiobenthic bristle worms (Polychaeta) of the western Black Sea shelf, J. Black Sea/Mediterr. Environ., 15 (2), 109-121.

Wehe T., Fiege D., 2002, Annotated checklist of the polychaete species of the seas surrounding the Arabian Peninsula: Red Sea, Gulf of Aden, Arabian Sea, Gulf of Oman, Arabian Gulf, Fauna Arabia, 19, 7-238.

Zanol J., Fauchald K., Paiva P. C., 2007, A phylogenetic analysis of the genus Eunice (Eunicidae, polychaete, Annelida), Zool. J. Linn. Soc.-Lond., 150 (2), 413-434, http://dx.doi.org/10.1111/j.1096-3642.2007.00302.x

Zaâbi S., Gillet P., Chambers S., Afli A., Boumaiza M., 2012, Inventory and new records of Polychaete species from the Cap Bon peninsula, north-east coast of Tunisia, Western Mediterranean Sea, Med. Mar. Sci., 13 (1), 36-48.

Zenetos A., Çinar M. E., Pancucci-Papadopoulou M. A., Harmelin J. G., Furnari G., Andaloro F., Bellou F., Streftaris N., Zibrowius H., 2005, Annotated list of marine alien species in the Mediterranean with records of the worst invasive species, Med. Mar. Sci., 6 (2), 63-118.

Zenetos A., Gofas S., Verlaque M., Çinar M. E., García Raso J. E., Bianchi C. N., Morri C., Azzurro E., Bilecenoğlu M., Froglia C., Siokou I., Violanti D., Sfriso A., San Martín G., Giangrande A., Katagan T., Ballesteros E., Ramos Espla A., Mastrototaro F., Ocana O., Zingone A., Gambi M. C., Streftaris N., 2010, Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union's Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution, Med. Mar. Sci., 11 (2), 381-493.

Zenetos A., Katsanevakis S., Poursanidis D., Crocetta F., Damalas D., Apostolopoulos G., Gravili C., Vardala-Theodorou E., Malaquias M., 2011, Marine alien species in Greek Seas: additions and amendments by 2010, Med. Mar. Sci., 12 (1), 95-120.

Zibrowius H., 1968, Étude morphologique, systématique et écologique des Serpulidae (Annelida Polychaeta) de la région de Marseille, Rec. Trav. Stat. Mar. Endoume, 43 (59), 81-252.

Zibrowius H., 1992, Ongoing modification of the Mediterranean marine fauna and flora by the establishment of exotic species, Mésogée, 51, 83-107.

Zibrowius H., Bitar G., 1981, Serpulidae (Annelida, Polychaeta) indo-pacifiques établis dans la région de Beyrouth, Liban, Rap. Com. Int. Explor. Sci. Mer Médit., 27 (2), 159-160.

Zühlke R., Alsvag J., De Boois I., Cotter J., Ehrich S., Ford A., Hinz H., Jarre-Teichmann A., Jennings S., Kr¨oncke I., Lancaster J., Piet G., Prince P., 2001, Epibenthic diversity in the North Sea, Senck. Marit., 31 (2), 269-281, http://dx.doi.org/10.1007/BF03043036

full, complete article (PDF - compatibile with Acrobat 4.0), 396 KB

Communications



Compensatory growth of the bloom-forming dinoflagellate Prorocentrum donghaiense induced by nitrogen stress
Oceanologia 2013, no. 55(1), pp. 269-276
doi:10.5697/oc.55-1.269

Zhuoping Cai1,2, Shunshan Duan2, Honghui Zhu1,*
Guangdong Institute of Microbiology,
Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application,
Guangdong Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology
(Ministry-Guangdong Province Jointly Breeding Base),
South China, Guangzhou 510070, China;
e-mail: zhuhonghui66@yahoo.com.cn;
*corresponding author
2Institute of Hydrobiology, Jinan University,
Guangzhou 510632, China;
e-mail: zhuopingcai@yahoo.com

keywords: compensatory growth, Prorocentrum donghaiense, nitrogen

Received 21 November 2012, revised 13 February 2013, accepted 18 February 2013.

This study was supported by the Natural Science Foundation of China-Guangdong Province Joint Key Project (U1133003), Natural Science Foundation of China (41176104, 31070103), and Natural Science Foundation of Guangdong Province Key Project (10251007002000001).

Abstract

Although the phenomenon of compensatory growth has been documented in some animals and higher plants, little information is available on its manifestation in marine microalgae. We have conducted the first study on the compensatory growth of the red tide causative dinoflagellate Prorocentrum donghaiense after its recovery from different nitrogen concentrations. The results showed that NaNO3 concentrations of 0 and 7.5 mg l-1 significantly reduced the growth of P. donghaiense, as compared to 37.5 and 75 mg l-1. When the microalgal cells were returned to 75 mg l-1, they exhibited subsequent compensatory growth. The most significant compensatory growth was found in those cells previously experiencing 0 mg dm3, followed by 7.5 mg dm3, indicating that compensatory growth depended on the extent of nitrogen stress they had been subjected to. Our results suggest that compensatory growth can be induced in the marine microalga P. donghaiense after its recovery from nitrogen fluctuation, and that this should be taken into consideration in the prevalence of P. donghaiense blooms in coastal waters.

  References ref
Cai Z. P., Duan S. S., Wei W., 2009, Darkness and UV radiation provoked compensatory growth in marine phytoplankton Phaeodactylum tricornutum (Bacillariophyceae), Aquac. Res., 40 (13), 1559–1562, http://dx.doi.org/10.1111/j.1365-2109.2009.02218.x

Cai Z. P., Duan S. S., Wei W., 2009, Darkness and UV radiation provoked compensatory growth in marine phytoplankton Phaeodactylum tricornutum (Bacillariophyceae), Aquac. Res., 40 (13), 1559-1562, http://dx.doi.org/10.1111/j.1365-2109.2009.02218.x

Guo Y. F., Duan S. S., Li A. F., Liu Z. Q., 2005, Over-compensatory growth of Tetraselmis tetrathele following salt stress, Mar. Sci., 29, 37-42.

Harrison P. J., Berges J. A., 2005, Marine culture medium, [in:] Algal culturing techniques, R. A. Andersen (ed.), Acad. Press, San Diego, 21-33.

Hockin N. L., Mock T., Mulholland F., Kopriva S., Malin G., 2012, The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants, Plant. Physiol., 158 (1), 299-312, http://dx.doi.org/10.1104/pp.111.184333

Hu Z. X., Mulholland M., Duan S. S., Xu N., 2012, Effects of nitrogen supply and its composition on the growth of Prorocentrum donghaiense, Harmful Algae, 13, 72-82, http://dx.doi.org/10.1016/j.hal.2011.10.004

Lennartsson T., Nilsson P., Tuomi J., 1998, Induction of overcompensation in the field gentian, Gentianella campestris, Ecology, 79 (3), 1061-1072, http://dx.doi.org/10.1890/0012-9658(1998)079[1061:IOOITF]2.0.CO;2

Lomas M. W., Glibert P. M., 2000, Comparisons of nitrate uptake, storage, and reduction in marine diatoms and flagellates, J. Phycol., 36 (5), 903-913, http://dx.doi.org/10.1046/j.1529-8817.2000.99029.x

Marshall D. J., Cook C. N., Emlet R. B., 2006, Offspring size effects mediate competitive interactions in a colonial marine invertebrate, Ecology, 87 (1), 214-225, http://dx.doi.org/10.1890/05-0350

Metcalfe N. B., Monaghan P., 2001, Compensation for a bad start: grow now, pay later, Trends Ecol. Evol., 16 (5), 254-260, http://dx.doi.org/10.1016/S0169-5347(01)02124-3

Oba G., Mengistu Z., Stenseth N. C., 2000, Compensatory growth of the African dwarf shrub, Indigofera spinosa, following simulated herbivory, Ecol. Appl., 10 (4), 1133-1146, http://dx.doi.org/10.1890/1051-0761(2000)010[1133:CGOTAD]2.0.CO;2

Piedras F. R., Odebrecht C., 2012, The response of surf-zone phytoplankton to nutrient enrichment (Cassino Beach, Brazil), J. Exp. Mar. Biol. Ecol., 432-433, 156-161, http://dx.doi.org/10.1016/j.jembe.2012.07.020

Pirastru L., Darwish M., Chu F. L., Perreault F., Sirois L., Sleno L., Popovic R., 2012, Carotenoid production and change of photosynthetic functions in Scenedesmus sp. exposed to nitrogen limitation and acetate treatment, J. Appl. Phycol., 24 (1), 117-124, http://dx.doi.org/10.1007/s10811-011-9657-4

Ruiz-R N., Ward D., Saltz D., 2008, Leaf compensatory growth as a tolerance strategy to resist herbivory in Pancratium sickenbergeri, Plant Ecol., 198 (1), 19-26, http://dx.doi.org/10.1007/s11258-007-9381-y

Sevgili H., Hoşsu B., Emre Y., Kanyilmaz M., 2012, Compensatory growth after various levels of dietary protein restriction in rainbow trout, Oncorhynchus mykiss, Aquaculture, 344-349, 126-134, http://dx.doi.org/10.1016/j.aquaculture.2012.03.030

Shskara B. G., Shtvakumara G. B., Manjunath B., Mallikarjuna N., Sudrashan G. K., Ravikumar B., 2011, Effect of different levels and time of nitrogen application on growth, yield and nutrient uptake in aerobic rice (Oryza sativa), Environ. Ecol., 29, 892-895.

Sunda W. G., Graneli E., Gobler C. J., 2006, Positive feedback and the development and persistence of ecosystem disruptive algal bloom, J. Phycol., 42 (5), 963-974, http://dx.doi.org/10.1111/j.1529-8817.2006.00261.x

Watt M. S., Whitehead D., Kriticos D. J., Gous S. F. Richardson B., 2007, Using a process-based model to analyse compensatory growth in response to defoliation: simulating herbivory by a biological control agent, Biol. Control, 43 (1), 119-129, http://dx.doi.org/10.1016/j.biocontrol.2007.06.011

Zhao W., Chen S. P., Lin G. H., 2008, Compensatory growth responses to clipping defoliation in Leymus chinensis (Poaceae) under nutrient addition and water deffciency conditions, Plant Ecol., 196 (1), 85-99, http://dx.doi.org/10.1007/s11258-007-9336-3

full, complete article (PDF - compatibile with Acrobat 4.0), 127 KB