Oceanologia No. 54 (3) / 12




Variability of temperature and salinity over the last decadein selected regions of thesouthern Baltic Sea
Oceanologia 2012, 54(3), 339-354

Daniel Rak*, Piotr Wieczorek
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: rak@iopan.gda.pl
*corresponding author

keywords: temperature, salinity, southern Baltic Sea, trend, seasonal variability

Received 1 July 2011, revised 16 February 2012, accepted 5 April 2012.


Changes in the basic physical properties of selected areas of the Baltic Proper were analysed on the basis of the results of a 12-year series of high-resolution measurements collected during cruises of r/v "Oceania". The high-resolution CTD sections covered three main basins: the Bornholm Basin, Słupsk Furrow and Gdańsk Basin. Positive temperature trends of 0.11 and 0.16°C year-1 were observed in the surface and deep layers respectively. The salinity trend was also positive. The rise in the air temperature has probably caused the increase in surface water temperature, while advection has been of greater significance in the deep layer. The increase in salinity coincides with the more frequent occurrence of small and medium-size inflows through the Danish Straits, even though large inflows are evidently less frequent than used to be the case. The seasonal variability of temperature in the water column was analysed. The phase shift in the seasonal evolution with depth is described. The maximum temperature shift in the waters investigated varies from 32 to 38 days.

  References ref

Beszczyńska-Möller A., 2004, Dynamika wód wlewowych w Bałtyku Południowym, Ph.D. thesis, Inst. Oceanology, PAS.

Cyberska B., 1994, Temperatura wody, 108-111, [in:] Atlas Morza Bałtyckiego, A. Majewski & Z. Lauer (eds.): IMGW, Seria atlasy i monografie, Warszawa, 214 pp.

Elken J., Matthäus W., 2008, Baltic Sea oceanography, [in:] Assessment of climate change for the Baltic Sea basin, Annex A.1.1, H. von Storch & A. Omstedt (eds.), BALTEX Publ., Springer, Berlin, 474 pp.

EmeryW. J., Thomson R.E., 2001, Data analysis methods in physical ceanography, Elsevier Sci., Amsterdam, 380-392.

Feistel R., Nausch G., Hagen E., 2006, Unusual inflow activity in 2002-2003 and varying deep-water properties, Oceanologia, 48 (S), 21-35.

Feistel R., Nausch G., Mohrholz V., Łysiak-Pastuszak E., Seifert T., Matthäus W., Krüger S., Sehested H. I., 2003, Warm waters of summer 2002 in the deep Baltic Proper, Oceanologia, 45 (4), 571-592.

Fonselius S., 1969, Hydrography of the Baltic Sea deep basin III, Fishery Board of Sweden, Ser. Hydrogr., 23, 1-97.

HELCOM, 1990, Second periodic assessment of the state of the marine environment of the Baltic Sea, 1984-88, Background Doc., Baltic Sea Environ. Proc. No. 35 B, Helsinki Commiss., 432 pp.

Jakobsen F., 1995, The major inflow to the Baltic Sea during January 1993, J. Marine Syst., 6 (3), 227-240, http://dx.doi.org/10.1016/0924-7963(94)00025-7

Lehmann A., Lorenz P., Jacob D., 2004, Modelling the exceptional Baltic Sea inflow events in 2002-2003, Geophys. Res. Lett., 31, L21308, http://dx.doi.org/10.1029/2004GL020830

LepperäntaM., Myrberg K., 2009, Physical oceanography of the Baltic Sea, Springer Praxis, Chichester, 60-125.

Majewski A., Lauer Z. (eds.), 1994, Atlas Morza Bałtyckiego, IMGW, Ser. Atlasy Monogr., Warszawa, 214 pp.

Matthäus W., Franck H., 1992, Characteristics of major Baltic inflows - a statistical analysis, Cont. Shelf Res., 12 (12), 1375-1400, http://dx.doi.org/10.1016/0278-4343(92)90060-W

Matthäus W., Lass H.U., 1995, The recent salt inflow into the Baltic Sea, J. Phys. Oceanogr., 25, 280-286, http://dx.doi.org/10.1175/1520-0485(1995)025<0280:TRSIIT>2.0.CO;2

Mikulski Z., 1982, River inflow to the Baltic Sea 1921-1975, PAS, Polish Natl. Committ. IHP, Univ. Warsaw, Fac. Geogr. Reg. Stud., (mimeo).

Mikulski Z., 1987, Podział regionalny Morza Bałtyckiego, [in:] Bałtyk Południowy, B. Augustowski (ed.), Gdańskie Tow. Nauk., Ossolineum, Wrocław, 41-51.

Meier H.E.M., Feistel R., Piechura J., Arneborg L., Burchard H., Fiekas V., Golenko N., Kuzmina N., Mohrholz V., Nohr C., Paka V.T., Sellschopp J., Stips A., Zhurbas V., 2006, Ventilation of the Baltic Sea deep water: A brief review of present knowledge from observations and models, Oceanologia, 48 (S), 133-164.

MohrholzV.,DutzJ.,KrausG.,2006, Theimpactsofexceptionallywarm summer inflow events on the environmental conditions in the Bornholm Basin, J. Marine Syst., 60 (3-4), 285-301, http://dx.doi.org/10.1016/j.jmarsys.2005.10.002

OmstedtA.,1990, ModellingtheBalticSeaasthirteensub-basinswithvertical resolution,Tellus A, 42 (2), 286-301, http://dx.doi.org/10.1034/j.1600-0870.1990.00006.x

PiechuraJ., Beszczyńska-MöllerA.,2004, Inflowwatersin thedeepregionsof the southern Baltic Sea - transport and transformations, Oceanologia, 46 (1), 113-141.

Reissmann J., Burchard H., Feistel R., Hagen E., Lass H. U., Mohrholz V., Nausch G., Umlauf L., WieczorekG., 2009, Verticalmixingin theBalticSeaand consequences for eutrophication - A review, Progr. Oceanogr., 82, 47-80, http://dx.doi.org/10.1016/j.pocean.2007.10.004

Reynolds R. W.,Rayner N. A.,Smith T. M.,Stokes D. C., Wang A., 2002,An improved insitu andsatellite SST analysis for climate, J.Climate,15 (13),1609-1625, http://dx.doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2

full, complete article (PDF - compatibile with Acrobat 4.0), 1.36 MB

Spectral dependence of the correlation between the backscattering coefficient and the volume scattering function measured in the southern Baltic Sea
Oceanologia 2012, 54(3), 355-367

Włodzimierz Freda
Gdynia Maritime University,
Morska 81-87, Gdynia 81-225, Poland;
e-mail: wfreda@am.gdynia.pl

keywords: volume scattering function, backscattering coefficient, Baltic Sea

Received 29 March 2012, revised 14 May 2012, accepted 17 May 2012.


Direct measurements of the backscattering coefficient bb require the determination ofthe Volume Scattering Function (VSF) and its integration over a backward hemisphere. In sea water they are difficult and are therefore carried out very rarely. That is why the backscattering coefficient is much more frequently obtained with so-called single angle scattering meters: these operate by measuring the VSF for a fixed angleregion of the backward hemisphere. This article examines the spectral variability of the correlation between directly measured backscattering coefficients and VSFs. Also presented are the averaged slopes of VSF spectra, measured in southern Baltic waters over a wide range of scattering angles.

  References ref

Boss E., Pegau W. S., 2001, Relationship of light scattering at an angle in the backward direction to the backscattering coefficient, Appl. Opt., 40, 5503–5507, http://dx.doi.org/10.1364/AO.40.005503

Chami M., Shybanov E.B., Churilova T.Y., Khomenko G.A., Lee M.E.G., Martynov O.V., Berseneva G.A., Korotaev G.K., 2005, Optical properties of the particles in the Crimea coastal waters (Black Sea), J. Geophys. Res., 110, C11020, 1–17, http://dx.doi.org/http://dx.doi.org/10.1029/2005JC003008

Chami M., Marken E., Stamnes J. J., Khomenko G., Korotaev G., 2006, Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles, J. Geophys. Res., 111, C05013, 1–10, http://dx.doi.org/http://dx.doi.org/10.1029/2005JC003230

Freda W., Król T., Martynov O.V., Shybanov E.B., Hapter R., 2007, Measurements of Scattering Function of sea water in Southern Baltic, Eur. Phys. J.-Spec. Top., 144 (1), 147–154, http://dx.doi.org/10.1140/epjst/e2007-00119-6

Freda W., Piskozub J., 2007, Improved method of Fournier-Forand marine phase function parameterization, Opt. Express, 15 (20), 12763–12768, http://dx.doi.org/10.1364/OE.15.012763

Gordon H.R., Brown O.B., Evans R.H., Brown J.W., Smith R.C., Baker K. S., Clark D.K., 1988, A semianalitycal radiance model of ocean color, J. Geophys. Res., 93 (D9), 10 909-10 924, http://dx.doi.org/10.1029/JD093iD09p10909

Jerlov N.G., 1953, Particle distribution in the ocean, Rep. Swed. Deep-Sea Exped., Vol. 3, 71–98.

Jonasz M., Fournier G.R., 2007, Light scattering by particles in water, Acad. Press, Elsevier, London, 704 pp.

Lee M.E., Lewis M.R., 2003, A new method for the measurement of the optical volume scattering function in the upper ocean, J. Atmos. Ocean. Tech., 20 (4), 563–571, http://dx.doi.org/10.1175/1520-0426(2003)20<563:ANMFTM>2.0.CO;2

Maffione R.A., Dana D.R., 1997, Instruments and methods for measuring the backward-scattering coeffcient of ocean waters, Appl. Optics, 36 (24), 6057–6067, http://dx.doi.org/10.1364/AO.36.006057

Maffione R.A., Dana D.R., Honey R.C., 1991, Instrument for underwater measurement of optical backscatter, [in:] Underwater imaging, photography and visibility, R.W. Spinrad, (ed.), Proc. SPIE, 1537, 173–184.

Mankovsky V. I., 1971, On the relation between the integral light scattering coefficient of seawater and the scattering coefficient in a fixed direction, Morsk. Gidrofiz. Issled. Akad. Nauk SSSR, 6, 145–154.

Mobley C.D., Sundman L.K., Boss E., 2002, Phase function effects on oceanic light fields, Appl. Optics, 41 (6), 1035–1050, http://dx.doi.org/10.1364/AO.41.001035

Morel A., 1974, Optical properties of pure water and pure sea water, [in:] Optical aspects of oceanography, Acad. Press, New York, 1.24.

Oishi T., 1990, Significant relationship between the backward scattering coefficient of sea water and the scatterance at 120., Appl. Optics, 29 (31), 4658.4665, http://dx.doi.org/10.1364/AO.29.004658

Petzold T. J., 1972, Volume scattering functions for selected ocean waters, SIO Ref. 72.78, Scripps Inst. Oceanogr., La Jolla, 79 pp.

Slade W.H., Boss E. S., 2006, Calibrated near-forward volume scattering function obtained from the LISST particle sizer, Opt. Express, 14 (8), 3602.3615, http://dx.doi.org/10.1364/OE.14.003602

Sullivan J.M., Twardowski M. S., 2009, Angular shape of the oceanic particulate volume scattering function in the backward direction, Appl. Optics, 48 (35), 6811.6819, http://dx.doi.org/10.1364/AO.48.006811

full, complete article (PDF - compatibile with Acrobat 4.0), 376 KB

A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990-2009
Oceanologia 2012, 54(3), 369-393

Andreas Lehmann1,*, Kai Myrberg2,3, Katharina Höflich1
1 Helmholtz Centre for Ocean Research Kiel,
Düsternbrooker Weg 20, D-24105 Kiel, Germany;
e-mail: alehmann@geomar.de
*corresponding author
2 Finnish Environment Institute/Marine Research Centre,
Mechelininkatu 34a, FIN-00251 Helsinki, Finland;
3 Department of Geophysics, Klaipeda University,
Herkaus Manto 84, LT-92294 Klaipeda, Lithuania;

keywords: Baltic Sea, upwelling, sea surface temperature, modelling

Received 8 December 2011, revised 3 April 2012, accepted 7 May 2012.


A statistical analysis of Baltic Sea upwelling has been carried out to cover, for the first time, the entire sea area for the period 1990-2009. Weekly composite SST maps based on NOAA/AVHRR satellite data were used to evaluate the location and frequency of upwelling. The results obtained were analysed and compared with earlier studies with excellent agreement. Our study enables the most intense upwelling areas in the entire Baltic Sea to be evaluated. According to the analysis of 443 SST maps, the most common upwelling regions are found off the Swedish south and east coasts (frequency 10-25%), the Swedish coast of the Bothnian Bay (16%), the southern tip of Gotland (up to 15%), and the Finnish coast of the Gulf of Finland (up to 15%). Pronounced upwelling also occurs off the Estonian coast and the Baltic east coast (up to 15%), the Polish coast and the west coast of Rügen (10-15%); otherwise the upwelling frequency was between 5 and 10%. Additionally, simulated SST distributions derived from a Baltic Sea numerical model were analysed for the same period. Furthermore, at specific positions close to the coastline, surface winds based on the SMHI meteorological data base were analysed for the same 20-year period. Wind components parallel to the coast were discriminated into favourable and unfavourable winds forcing upwelling. The obtained frequencies of upwelling-favourable winds fit very well the observed upwelling frequencies derived from satellite SST maps. A positive trend of upwelling frequencies along the Swedish east coast and the Finnish coast of the Gulf of Finland was calculated for the period 1990-2009.

  References ref

Alenius P., Nekrasov A., Myrberg K., 2003, Variability of the baroclinic Rossby radius in the Gulf of Finland, Cont. Shelf Res., 23 (6), 563–573, http://dx.doi.org/10.1016/S0278-4343(03)00004-9

Bumke K., Karger U., Hasse L., Niekamp K., 1998, Evaporation over the Baltic Sea as an example of a semi-enclosed sea, Contr. Atmos. Phys., 71 (2), 249-261.

Bychkova I., Viktorov S., Shumakher., 1988, A relationship between the large scale atmospheric circulation and the origin of coastal upwelling in the Baltic, Meteorol. Gidrol., 10, 9-98, (in Russian).

Demchenko N., Chubarenko I., Kaitala S., 2011, The development of seasonal structural fronts in the Baltic Sea after winters of varying severity, Climate Res., 48 (1), 73-84, http://dx.doi.org/10.3354/cr01032

Fennel W., Seifert T., Kayser B., 1991, Rossby radii and phase speeds in the Baltic Sea, Cont. Shelf Res., 11 (1), 23-36, http://dx.doi.org/10.1016/0278-4343(91)90032-2

Gidhagen L., 1987, Coastal upwelling in the Baltic Sea – satellite and in situ measurements of sea-surface temperatures indicating coastal upwelling, Estuar. Coast. Shelf Sci., 24 (4), 449-362, http://dx.doi.org/10.1016/0272-7714(87)90127-2

Haapala J., 1994, Upwelling and its influence on nutrient concentration in the coastal area of the Hanko Peninsula, entrance of the Gulf of Finland, Estuar. Coast. Shelf Sci., 38 (5), 507.521, http://dx.doi.org/10.1006/ecss.1994.1035

Haapala J., Alenius P., 1994, Temperature and salinity statistics for the northern Baltic Sea 1961-1990, Fin. Mar. Res., 262, 51-121.

Hela I., 1976, Vertical velocity of the upwelling in the sea, Comment. Phys.-Math., 46 (1), 9-24.

Horstmann U., 1983, Distribution patterns of temperature and water colour in the Baltic Sea as recorded in satellite images: indicators for phytoplankton growth, Ber. Inst. Meeresk., 106, 147 pp.

Kahru M., Håkansson B., Rud O., 1995, Distributions of the sea-surface temperature fronts in the Baltic Sea as derived from satellite imagery, Cont. Shelf Res., 15 (6), 663-679, http://dx.doi.org/10.1016/0278-4343(94)E0030-P

Kowalewski M., Ostrowski M., 2005, Coastal up- and downwelling in the southern Baltic, Oceanologia, 47 (4), 453-475.

Krężel A., Ostrowski M., Szymelfenig M., 2005, Sea surface temperature distribution during upwelling along the Polish Baltic coast, Oceanologia, 47 (4), 415-432.

Lass H. -U., Schmidt T., Seifert T., 2003, Hiddensee upwelling field measurements and modelling results, ICES Coop. Res. Rep., 257, 204-208.

Lehmann A., 1995, A three-dimensional baroclinic eddy-resolving model of the Baltic Sea, Tellus A, 47 (5), 1013-1031, http://dx.doi.org/10.1034/j.1600-0870.1995.00206.x

Lehmann A., Getzlaff K., Harlass J., 2011, Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009, Climate Res., 46 (2), 185-196, http://dx.doi.org/10.3354/cr00876

Lehmann A., Hinrichsen H. -H., 2000, On the thermohaline variability of the Baltic Sea, J. Marine Syst., 25 (3-4), 333-357, http://dx.doi.org/10.1016/S0924-7963(00)00026-9

Lehmann A., Hinrichsen H. -H., 2002, Water, heat and salt exchange between the deep basins of the Baltic Sea, Boreal Environ. Res., 7 (4), 405-415. Lehmann A., Myrberg K., 2008, Upwelling in the Baltic Sea . a review, J. Marine Syst., 74 (Suppl.), S3-S12, http://dx.doi.org/10.1016/j.jmarsys.2008.02.010

Lips I., Lips U., 2008, Abiotic factors influencing cyanobacterial bloom development in the Gulf of Finland (Baltic Sea), Hydrobiologia, 614 (1), 133-140, http://dx.doi.org/10.1007/s10750-008-9449-2

Lips I., Lips U., Liblik T., 2009, Consequences of coastal upwelling events on physical and chemical patterns in the central Gulf of Finland (Baltic Sea), Cont. Shelf Res., 29 (15), 1836-1847, http://dx.doi.org/10.1016/j.csr.2009.06.010

Matciak M., Urbański J., Piekarek-Jankowska H., Szymelfenig M., 2001, Presumable groundwater seepage influence on the upwelling events along the Hel Peninsula, Oceanol. Hydrobiol. St., 30 (3-4), 125-132.

Myrberg K., Andrejev O., 2003, Main upwelling regions in the Baltic Sea: a statistical analysis based on three-dimensional modelling, Boreal Environ. Res., 8 (2), 97-112.

Myrberg K., Andrejev O., Lehmann A., 2010, Dynamic features of successive upwelling events in the Baltic Sea - a numerical case study, Oceanologia, 52 (1), 77-99, http://dx.doi.org/10.5697/oc.52-1.077

Novotny K., Liebsch K. G., Dietrich R., Lehmann A., 2005, Combination of sealevel observations and an oceanographic model for geodetic applications in the Baltic Sea, [in:] A window on the future of geodesy, F. Sanso (ed.), IAG Symp. Vol. 128, 195-200.

Osiński R., Rak D., Walczowski W., Piechura J., 2010, Baroclinic Rossby radius of deformation in the southern Baltic Sea, Oceanologia, 52 (3), 417-429, http://dx.doi.org/10.5697/oc.52-3.417

Rudolph C., Lehmann A., 2006, A model-measurements comparison of atmospheric forcing and surface fluxes of the Baltic Sea, Oceanologia, 48 (3), 333-380.

Siegel H., Gerth M., Rudolff R., Tschersich G., 1994, Dynamic features in the western Baltic Sea investigated using NOAA-AVHRR data, Dt. Hydrogr. Z., 46 (3), 191-209, http://dx.doi.org/10.1007/BF02226949

Suursaar Ü, 2010, Waves, currents and sea level variations along the Letipea - Sillamäe coastal section of the southern Gulf of Finland, Oceanologia, 52 (3), 391-416, http://dx.doi.org/10.5697/oc.52-3.391

full, complete article (PDF - compatibile with Acrobat 4.0), 3.47 MB

Monitoring the effect of upwelling on the chlorophyll a distribution in the Gulf of Finland (Baltic Sea) usingremote sensing and in situ data
Oceanologia 2012, 54(3), 395-419

Rivo Uiboupin*, Jaan Laanemets, Liis Sipelgas, Laura Raag, Inga Lips
Marine Systems Institute, Tallinn Universityof Technology,
Akadeemia 15a, Tallinn 12618, Estonia;
e-mail: rivo.uiboupin@msi.ttu.ee
*corresponding author

keywords: MERIS, MODIS, upwelling, chlorophyll a, SST,Baltic Sea, Gulf of Finland

Received 12 March 2012, revised 17 April 2012, accepted 8 May 2012.

The study was supported by the Estonian Science Foundation (grants No. 7467, No. 6752, No.7633, No. 7581 & No. 8968). The remote sensing data were provided by ESA via Cat-1 project No. 6855.


The spatio-temporal variability of chlorophyl a (Chl a) caused by a sequence of upwelling events in the Gulf of Finland in July-August 2006 was studied using remote sensing data and field measurements. Spatial distributions of sea surface temperature (SST) and Chl a concentration were examined using MODIS and MERIS data respectively. The MERIS data were processed with an algorithm developed by the Free University of Berlin (FUB) for case 2 waters. Evaluation of MERIS Chl a versus in situ Chl a showed good correlation (r2 = 0.67), but the concentration was underestimated. The linear regression for a 2 h window was applied to calibrate MERIS Chl a. The spatio-temporal variability exhibited the clear influence of upwelling events and related filaments on Chl a distribution in the western and central Gulf. The lowest Chl a concentrations were recorded in the upwelled water, especially at the upwelling centres, and the highest concentrations (13 mg m-3) were observed about two weeks after the upwelling peak along the northern coast. The areas along the northern coast of upwelled water (4879 km2) on the SST map, and increased Chl a (5526 km2) two weeks later, were roughly coincident. The effect of upwelling events was weak in the eastern part of the Gulf, where Chl a concentration was relatively consistent throughout this period.

  References ref

Bradtke K., Herman A., Urbański J.A., 2010, Spatial and interannual variations of seasonal sea surface temperature patterns in the Baltic Sea, Oceanologia, 52 (3), 345-362,http://dx.doi.org/10.5697/oc.52-3.345

Csanady G.T., 1982, Circulation in the coastal ocean, D. Reidel Publ. Co., Dordrecht, 279 pp.

Dekker A.G., 1993, Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing, Ph.D. thesis, Free University, Amsterdam.

Dekker A.G., Peters S.W.M., 1993, The use of the thematic mapper for the analysis of eutrophic lakes - a case-study in the Netherlands, Int. J. Remote Sens., 14 (5), 799-821, http://dx.doi.org/10.1080/014311699212498

Doerffer R., Sorensen K., Aiken J., 1999, MERIS potential for coastal zone applications, Int. J. Remote Sens., 20 (9), 1809-1818, http://dx.doi.org/10.1080/014311699212498

Doerffer R., Schiller H., 2007, The MERIS case 2 water algorithm, Int. J. Remote Sens., 28 (3-4), 517-535, http://dx.doi.org/10.1080/01431160600821127

Gidhagen L., 1987, Coastal upwelling in the Baltic - satellite and in situ measurements of sea surface temperatures indicating coastal upwelling, Estuar. Coast. Shelf Sci., 24 (4), 449-462,http://dx.doi.org/10.1016/0272-7714(87)90127-2

Gower J., King S., Borstad G., Brown L., 2008, The importance of a band at 709 nm for interpreting water-leaving spectral radiance, Can. J Remote Sens., 34 (3), 287-295.

HELCOM, 1988, Guidelines for the Baltic Monitoring Programme for the third stage, Baltic Sea Environ. Proc., 27D.

Horstmann U., 1983, Distribution patterns of temperature and water colour in the Baltic Sea as recorded in satellite images: Indicators for phytoplankton growth, Ber. Inst. Meeresk., Kiel, 106, 147 pp.

Kahru M.H., Håkansson B., Rud O., 1995, Distributions of the sea-surface temperature fronts in the Baltic Sea as derived from satellite imagery, Cont. Shelf Res., 15 (6), 663-679, http://dx.doi.org/10.1016/0278-4343(94)E0030-P

Kanoshina I., Lips U., Leppänen J.-M., 2003, The influence of weather conditions (temperature and wind) on cyanobacterial bloom development in the Gulf of Finland (Baltic Sea), Harmful Algae, 2 (1), 29-41, http://dx.doi.org/10.1016/S1568-9883(02)00085-9

Kononen K., Kuparinen J., Mäkelä K., Laanemets J., Pavelson J., Nömmann S., 1996, Initiation of cyanobacterial blooms in a frontal region at the entrance to the Gulf of Finland, Baltic Sea, Limnol. Oceanogr., 41 (1), 98-112.

Koponen S., Attila J., Pulliainen J., Kallio K., Pyhälahti T., Lindfors A., Rasmus K., Hallikainen M., 2007, A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland, Cont. Shelf Res., 27 (2), 228-244, http://dx.doi.org/10.1016/j.csr.2006.10.006

Kratzer S., Brockmann C., Moore G., 2008, Using MERIS full resolution data to monitor coastal waters . A case study from Himmerfjärden, a fjord-like bay in the northwestern Baltic Sea, Remote Sens. Environ., 112 (5), 2284-2300, http://dx.doi.org/10.1016/j.rse.2007.10.006

Krężel A., Ostrowski M., Szymelfenig M., 2005a, Sea surface temperature distribution during upwelling along the Polish Baltic coast, Oceanologia, 47 (4), 415-432.

Krężel A., Szymanek L., Kozłowski L., Szymelfenig M., 2005b, Influence of coastal upwelling on chlorophyll a concentration in the surface water along the Polish coast of the Baltic Sea, Oceanologia, 47 (4), 433-452.

Kutser T., Metsamaa L., Strömbeck N., Vahtmäe E., 2006, Monitoring cyanobacterial blooms by satellite remote sensing, Estuar. Coast. Shelf Sci., 67 (1.2), 303-312,http://dx.doi.org/10.1016/j.ecss.2005.11.024

Kuvaldina N., Lips I., Lips U., Liblik T., 2010, The influence of a coastal upwelling event on chlorophyll a and nutrient dynamics in the surface layer of the Gulf of Finland, Baltic Sea, Hydrobiologia, 639 (1), 221-230, http://dx.doi.org/10.1007/s10750-009-0022-4

Laanemets J., Väli G., Zhurbas V., Elken J., Lips I., Lips U., 2011, Simulation of mesoscale structures and nutrient transport during summer upwelling events in the Gulf of Finland in 2006, Boreal Environ. Res., 16 (suppl. A), 15-26.

Laanemets J., Zhurbas V., Elken J., Vahtera E., 2009, Dependence of upwelling-mediated nutrient transport on wind forcing, bottom topography and stratification in the Gulf of Finland: model experiments, Boreal Environ. Res., 14 (1), 213-225.

Lass H.U., Mohrholz V., Nausch G., Siegel H., 2010, On phosphate pumping into the surface layer of the eastern Gotland Basin by upwelling, J. Marine Syst., 80 (1-2), 71-89, http://dx.doi.org/10.1016/j.jmarsys.2009.10.002

Lehmann A., Myrberg K., 2008, Upwelling in the Baltic Sea - A review, J. Marine Syst., 74 (Suppl.), S3-S12, http://dx.doi.org/10.1016/j.jmarsys.2008.02.010

Lips I., Lips U., 2008, Abiotic factors influencing cyanobacterial bloom development in the Gulf of Finland (Baltic Sea), Hydrobiologia, 614 (1), 133-140, http://dx.doi.org/10.1007/s10750-008-9449-2

Lips I., Lips U., 2010, Phytoplankton dynamics affected by the coastal upwelling events in the Gulf of Finland in July-August 2006, J. Plankton Res., 32 (9), 1269-1282, http://dx.doi.org/10.1093/plankt/fbq049

Lips I., Lips U., Liblik T., 2009, Consequences of coastal upwelling events on physical and chemical patterns in the central Gulf of Finland (Baltic Sea), Cont. Shelf Res., 29 (15), 1836-1847, http://dx.doi.org/10.1016/j.csr.2009.06.010

Männik A., Merilain M., 2007, Verification of different precipitation forecasts during extended winter-season in Estonia, HIRLAM Newsletter, 52, 65-70.

Metsamaa L., Kutser T., Strombeck N., 2006, Recognising cyanobacterial blooms based on their optical signature: a modelling study, Boreal Environ. Res., 11 (6), 493-506.

Myrberg K., Andrejev O., 2003, Main upwelling regions in the Baltic Sea - a statistical analysis based on three-dimensional modelling, Boreal Environ. Res., 8 (2), 97-112.

Myrberg K., Lehmann A., Raudsepp U., Szymelfenig M., Lips I., Lips U., Matciak M., Kowalewski M., Krężel A., Burska D., Szymanek L., Ameryk A., Bielecka L., Bradtke K., Gałkowska A., Gromisz S., Jędrasik J., Kaluźny M., Kozłowski L., Krajewska-Sołtys A., Ołdakowski B., OstrowskiM., Zalewski M., Andrejev O., Suomi I., Zhurbas V., Kauppinen O.-K., Soosaar E., Laanemets J., Uiboupin R., Talpsepp L., Golenko M., Golenko N., Vahtera E., 2008, Upwelling events, coastal offshore exchange, links to biogeochemical processes - Highlights from the Baltic Sea Science Congress at Rostock University, Germany, 19-22 March 2007, Oceanologia, 50 (1), 95-113.

Pavelson J., Kononen K., Laanemets J., 1999, Chlorophyll distribution patchiness caused by hydrodynamical processes: a case study in the Baltic Sea, ICES J. Mar. Sci., 56 (Suppl.), 87-99.

Petersen W., Wehde H., Krasernann H., Colijn F., Schroeder F., 2008, FerryBox and MERIS - Assessment of coastal and shelf sea ecosystems by combining in situ and remotely sensed data, Estuar. Coast. Shelf Sci., 77 (2), 296-307, http://dx.doi.org/10.1016/j.ecss.2007.09.023

Rantajärvi E., Olsonen R., Hallfors S., Leppanen J.M., Raateoja M., 1998, Effect of sampling frequency on detection of natural variability in phytoplankton: unattended high-frequency measurements on board ferries in the Baltic Sea, ICES J. Mar. Sci., 55 (4), 697-704, http://dx.doi.org/10.1006/jmsc.1998.0384

Reinart A., Kutser T., 2006, Comparison of different satellite sensors in detecting cyanobacterial bloom events in the Baltic Sea, Remote Sens. Environ., 102 (1-2), 74-85.

Schroeder T., Behnert I., Schaale M., Fischer J., Doerffer R., 2007a, Atmospheric correction algorithm for MERIS above Case-2 waters, Int. J. Remote Sens., 28 (7), 1469-1486, http://dx.doi.org/10.1080/01431160600962574

Schroeder T., Schaale M., Fischer J., 2007b, Retrieval of atmospheric and oceanic properties from MERIS measurements: A new Case-2 water processor for BEAM, Int. J. Remote Sens., 28 (24), 5627-5632, http://dx.doi.org/10.1080/01431160701601774

Seifert T., Tauber F., Kayser B., 2001, A high resolution spherical grid topography of the Baltic Sea - 2nd edition, Baltic Sea Science Congress, Stockholm 25-29 November 2001, Poster No. 147, [http://www.io-warnemuende.deiowtopo].

Siegel H., Gerth M., Rudolff R., Tschersich G., 1994, Dynamic features in the western Baltic Sea investigated using NOAA-AVHRR data, Dt. Hydrogr. Zet., 46, 191-209, http://dx.doi.org/10.1007/BF02226949

Siegel H., Gerth M., Tschersich G., 2006, Sea surface temperature development of the Baltic Sea in the period 1990-2004, Oceanolgia, 48 (S), 119-131.

Sorensen K., Aas E., Hokedal J., 2007, Validation of MERIS water products and bio-optical relationships in the Skagerrak, Int. J. Remote Sens., 28 (3-4), 555-568, http://dx.doi.org/10.1080/01431160600815566

Suikkanen S., Laamanen M., Huttunen M., 2007, Long-term changes in summer phytoplankton communities of the open northern Baltic Sea, Estuar. Coast. Shelf Sci., 71 (3-4), 580-592, http://dx.doi.org/10.1016/j.ecss.2006.09.004

Suursaar Ü, Aps R., 2007, Spatio-temporal variations in hydrophysical and chemical parameters during a major upwelling event off the southern coast of the Gulf of Finland in summer 2006, Oceanologia, 49 (2), 209-229.

Uiboupin R., Laanemets J., 2009, Upwelling characteristics derived from satellite sea surface temperature data in the Gulf of Finland, Baltic Sea, Boreal Environ. Res., 14 (2), 297-304.

Vahtera E., Laanemets J., Pavelson J., Huttunen M., Kononen K., 2005, Effect of upwelling on the pelagic environment and bloom-forming cyanobacteria in the western Gulf of Finland. Baltic Sea, J. Marine Syst., 58 (1-2), 67-82, http://dx.doi.org/10.1016/j.jmarsys.2005.07.001

Wu C., 2004, Normalized spectral mixture analysis for monitoring urban composition using ETM plus imagery, Remote Sens. Environ., 93 (4), 480-492, http://dx.doi.org/10.1016/j.rse.2004.08.003

Zhurbas V.M., Laanemets J., Vahtera E., 2008, Modeling of the mesoscale structure of coupled upwelling/downwelling events and the related input of nutrients to the upper mixed layer in the Gulf of Finland, Baltic Sea, J. Geophys. Res., 113 (C5), C05004, http://dx.doi.org/10.1029/2007JC004280

full, complete article (PDF - compatibile with Acrobat 4.0), 6.96 MB

Currents and waves in the northern Gulf of Riga: measurement and long-term hindcast
Oceanologia 2012, 54(3), 421-447

Ülo Suursaar*, Tiit Kullas, Robert Aps
Estonian Marine Institute, University of Tartu,
Mäealuse 14, EE-12618 Tallinn, Estonia;
e-mail: ulo.suursaar@ut.ee
*corresponding author

keywords: hydrodynamic modelling, water exchange, wave hindcast, wind climate, RDCP, Baltic Sea

Received 27 February 2012, revised 19 April 2012, accepted 30 April 2012.

The study was supported by the Estonian target financed project 0104s08, the Estonian Science Foundation grant No 8980 and by the EstKliima project of the European Regional Fund programme No 3.2.0802.11-0043.


Based on measurements of waves and currents obtained for a period of 302 days with a bottom-mounted RDCP (Recording Doppler Current Profiler) at two differently exposed locations, a model for significant wave height was calibrated separately for those locations; in addition, the Gulf of Riga-Väinameri 2D model was validated, and the hydrodynamic conditions were studied. Using wind forcing data from the Kihnu meteorological station, a set of current, water exchange and wave hindcasts were obtained for the period 1966-2011. Current patterns in the Gulf and in the straits were wind-dependent with characteristic wind switch directions. The Matsi coast was prone to upwelling in persistent northerly wind conditions. During the hindcast period, currents increased along the Kõiguste coast and in the Suur Strait, waves decreased noticeably off Kõiguste but fluctuated without a clear linear trend near Matsi. The spatially contrasting results for differently exposed coasts were related to the corresponding variations in local wind conditions and to changes in atmospheric circulation patterns over northern Europe.

  References ref

Andrejev O., Myrberg K., Alenius P., Lundberg P., 2004, Mean circulation and water exchange in the Gulf of Finland - a study based on three-dimensional modelling, Boreal Environ. Res., 9 (1), 1-16.

Astok V., Otsmann M., Suursaar Ü., 1999, Water exchange as the main physical process in semi-enclosed marine systems: the Gulf of Riga case, Hydrobiologia, 393 (0), 11-18, http://dx.doi.org/10.1023/A:1003517110726

Berzinsh V., Bethers U., Sennikovs J., 1994, Gulf of Riga: bathymetric, hydrological and meteorological databases, and calculations of the water exchange, Proc. Latvian Acad. Sci., B7/8, 107-117.

Bowman M. J., Esaias W. E. (eds.), 1978, Oceanic fronts in coastal processes, Springer-Verlag, Berlin, 114 pp.

Broman B., Hammarklint T., Rannat K., Soomere T., Valdmann A., 2006, Trends and extremes of wave fields in the north-eastern part of the Baltic Proper, Oceanologia, 48 (S), 165-184.

Csanady G.T., 1973, Wind-induced barotropic motions in long lakes, J. Phys. Oceanogr., 3, 429-438, http://dx.doi.org/10.1023/A:1003517110726

Huttula T., 1994, Suspended sediment transport in Lake Säkylän Pyhäjärvi, Aqua Fenn., 24 (2), 171-185.

Jaagus J., Post P., Tomingas O., 2008, Changes in storminess on the western coast of Estonia in relation to large-scale atmospheric circulation, Climate Res., 36 (1), 29-40, http://dx.doi.org/10.3354/cr00725

Jankowski A., 2002, Variability of coastal water hydrodynamics in the southern Baltic - hindcast modelling of an upwelling event along the Polish coast, Oceanologia, 44 (4), 395-418.

Jones J.E., Davies A.M., 2001, Influence of wave-current interaction, and high frequency forcing upon storm induced currents and elevations, Estuar. Coast. Shelf Sci., 53 (4), 397-413, http://dx.doi.org/10.1006/ecss.1999.0622

Jönsson A., 2006, A model study of suspended sand due to surface waves during a storm in the Baltic Proper, J. Marine Syst., 63 (3-4), 91-104, http://dx.doi.org/10.1016/j.jmarsys.2006.05.005

Keevallik S., Soomere T., Pärg R., Zhukova V., 2007, Outlook for wind measurements at Estonian automatic weather stations, Proc. Estonian Acad. Sci.-Eng., 13 (3), 234-251.

Kotta J., Paalme T., Püss T., Herkül K., Kotta I., 2008, Contribution of scaledependent environmental variability on the biomass patterns of drift algae and associated invertebrates in the Gulf of Riga, northern Baltic Sea, J. Marine Syst., 74 (Suppl. 1), S116-S123, http://dx.doi.org/10.1016/j.jmarsys.2008.03.030

Kovtun A., Torn K., Martin G., Kullas T., Kotta J., Suursaar Ü., 2011, Influence of abiotic environmental conditions on spatial distribution of charophytes in the coastal waters of West Estonian Archipelago, Baltic Sea, J. Coastal Res., SI64 (1), 412-416.

Kullas T., Otsmann M., Suursaar Ü., 2000, Comparative calculations of flows in the straits of the Gulf of Riga and the Väinameri, Proc. Estonian Acad. Sci. Eng., 6 (4), 284-294.

Lehmann A., Getzlaff K., Harlass J., 2011, Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009, Climate Res., 46 (2), 185-196, http://dx.doi.org/10.3354/cr00876

Leppäranta M., Myrberg K., 2009, Physical oceanography of the Baltic Sea, Springer Praxis, Berlin-Heidelberg-New York, 378 pp.

Lilover M. J., Lips U., Laanearu J., Liljebladh B., 1998, Flow regime in the Irbe Strait, Aquat. Sci., 60 (3), 253-265, http://dx.doi.org/10.1007/s000270050040

Luhamaa A., Kimmel K., Männik A., R˜o˜om R., 2011, High resolution re-analysis for the Baltic Sea region during 1965-2005 period, Clim. Dynam., 36 (3-4), 727-738, http://dx.doi.org/10.1007/s00382-010-0842-y

Massel S.R., 1996, Ocean surface waves: their physics and prediction, World Sci., Singapore, 491 pp., http://dx.doi.org/10.1142/9789812795908

Ojaveer E., 1995, Ecosystem of the Gulf of Riga between 1920 and 1990, Academia 5, Estonian Acad. Publ., Tallinn, 272 pp.

Otsmann M., Astok V., Suursaar Ü., 1997, A model for water exchange between the Baltic Sea and the Gulf of Riga, Nord. Hydrol., 28 (4-5), 351-364.

OtsmannM., Suursaar Ü., Kullas T., 2001, The oscillatory nature of the flows in the system of straits and small semi-enclosed basins of the Baltic Sea, Cont. Shelf Res., 21 (15), 1577-1603, http://dx.doi.org/10.1016/S0278-4343(01)00002-4

Pinto J.G., Ulbrich U., Leckenbusch G.C., Spangehl T., Reyers M., Zacharias S., 2007, Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM, Clim. Dynam., 29 (2-3), 195-210, http://dx.doi.org/10.1007/s00382-007-0230-4

Raudsepp U., Laanemets J., Haran G., Alari V., Pavelson J., K˜outs T., 2011, Flow, waves and water exchange in the Suur Strait, the Gulf of Riga in 2008, Oceanologia, 53 (1), 35-56, http://dx.doi.org/10.5697/oc.53-1.035

Räämet A., Suursaar Ü., Kullas T., Soomere T., 2009, Reconsidering uncertainties of wave conditions in the coastal areas of the northern Baltic Sea, J. Coastal Res., Sp. Iss. (56), 257-261.

Scientific-practical handbook of the climate of the U.S.S.R, 1990, Part 3, Gidrometeoizdat, Leningrad, (in Russian).

Seymour R. J., 1977, Estimating wave generation in restricted fetches, J. Waterw. Port. C. Div., 103 (WW2), Paper No. 12924, 251-263.

Smith S.D., Banke E.G., 1975, Variations of the sea surface drag coefficient with wind speed, Q. J. Roy. Meteorol. Soc., 101, 665-673, http://dx.doi.org/10.1002/qj.49710142920

Soomere T., 2003, Anisotropy of wind and wave regimes in the Baltic proper, J. Sea Res., 49 (4), 305-316, http://dx.doi.org/10.1016/S1385-1101(03)00034-0

Soomere T., Räämet A., 2011, Long-term spatial variations in the Baltic Sea wave fields, Ocean Sci., 7 (1), 141-150, http://dx.doi.org/10.5194/os-7-141-2011

Suursaar Ü., 2010, Waves, currents and sea level variations along the Letipea - Sillamäe coastal section of the southern Gulf of Finland, Oceanologia, 52 (3), 391-416, http://dx.doi.org/10.5697/oc.52-3.391

Suursaar Ü., Aps R., 2007, Spatio-temporal variations in hydro-physical and -chemical parameters during a major upwelling event off the southern coast of the Gulf of Finland in summer 2006, Oceanologia, 49 (2), 209-228.

Suursaar Ü., Astok V., Kullas T., N˜omm A., Otsmann M., 1995, Currents in the Suur Strait and their role in the nutrient exchange between the Gulf of Riga and the Baltic Proper, Proc. Estonian Acad. Sci. Ecol., 5 (3/4), 103-123.

Suursaar Ü., Kullas T., 2006, Influence of wind climate changes on the mean sea level and current regime in the coastal waters of west Estonia, Baltic Sea, Oceanologia, 48 (3), 361-383.

Suursaar Ü., Kullas T., 2009, Decadal variations in wave heights off Kelba, Saaremaa Island, and their relationships with changes in wind climate, Oceanologia, 51 (1), 39-61, http://dx.doi.org/10.5697/oc.51-1.039

Suursaar Ü., Kullas T., Otsmann M., 2002, A model study of the sea level variations in the Gulf of Riga and the Väinameri Sea, Cont. Shelf Res., 22 (14), 2001-2019, http://dx.doi.org/10.1016/S0278-4343(02)00046-8

Suursaar Ü., Kullas T., Otsmann M., Saaremäe I., Kuik J., Merilain M., 2006, Cyclone Gudrun in January 2005 and modelling its hydrodynamic consequences in the Estonian coastal waters, Boreal Environ. Res., 11 (2), 143-159.

Suursaar Ü., Sooäär J., 2007, Decadal variations in mean and extreme sea level values along the Estonian coast of the Baltic Sea, Tellus A, 59 (2), 249-260, http://dx.doi.org/10.1111/j.1600-0870.2006.00220.x

Tõnisson H., Orviku K., Jaagus J., Suursaar Ü., Kont A., Rivis R., 2008, Coastal damages on Saaremaa Island, Estonia, caused by the extreme storm and flooding on January 9, 2005, J. Coastal Res., 24 (3), 602-614, http://dx.doi.org/10.2112/06-0631.1

USACE - U.S. Army Corps of Engineers, 2002, Coastal engineering manual, Rep. EM 1110-2-1100, U.S. Govt. Print. Office, Washington DC.

Zhurbas V., Elken J., Väli G., Kuzmina N., Paka V., 2010, Pathways of suspended particles transport in the bottom layer of the southern Baltic Sea depending on wind forcing (numerical simulations), Oceanology, 50 (6), 841-854, http://dx.doi.org/10.1134/S0001437010060032

full, complete article (PDF - compatibile with Acrobat 4.0), 1.6 MB

Response of eastern Indian Ocean (ODP Site 762B) benthic foraminiferal assemblages to the closure of the Indonesian seaway
Oceanologia 2012, 54(3), 449-472

Ajai Kumar Rai*, Virendra Bahadur Singh
Department of Earth & Planetary Sciences, University of Allahabad,
Allahabad-211002, India;
e-mail: raikajai@gmail.com
*corresponding author

keywords: Indian Ocean, benthic foraminifera, Indonesian seaway, productivity, upwelling

Received 8 December 2011, revised 3 April 2012, accepted 7 May 2012.


Pliocene-Pleistocene deep sea benthic foraminifera from ODP Site 762B in the eastern Indian Ocean were examined to understand the tectonically/climatically induced palaeoceanographic changes. In addition to already published data on this site by Rai & Singh (2001), some more faunal parameters were considered in the present work. Characteristic benthic foraminiferal assemblages as well as more diverse fauna during the early Pliocene (before 3.5 Ma) reflected relatively oligotrophic and warm bottom water conditions. At the beginning of the late Pliocene (i.e. ~3 ± 0.5 Ma) relative abundances of Uvigerina proboscidea, infaunal taxa and high productivity taxa increased, whereas faunal diversity showed a distinct decline, suggesting the development of pronounced upwelling resulting in higher surface water productivity. The strongly reduced inflow of warm and oligotrophic water masses as the South Equatorial Current (SEC) from the South Pacific to the eastern Indian Ocean due to the effective closure of the Indonesian seaway increased the surface water productivity. The closing of the Indonesian seaway during the late Pliocene was also responsible for the cessation of the warm, southward-flowing Leeuwin Current (LC) and the greater influence of the cold, deep and northward-flowing Western Australian Current (WAC) in the eastern Indian Ocean.

  References ref

Altenbach A.V., Pflaumann U., Schiebl R., Thies A., Timm S., Trauth M., 1999, Scaling percentages and distributional patterns of benthic foraminifera with flux rates of organic carbon, J. Foramin. Res., 29 (3), 173-185.

An Z., 2000, The history and variability of the East Asian paleomonsoon climate, Quaternary Sci. Rev., 19 (1-5), 171-187, http://dx.doi.org/10.1016/S0277-3791(99)00060-8

Bartoli G., Sarnthein M., Weinelt M., Erlenkeuser H., Garbe-Schönberg D., Lea D.W., 2005, Final closure of Panama and the onset of northern hemisphere glaciation, Earth Planet. Sci. Lett., 237 (1-2), 33-44, http://dx.doi.org/10.1016/j.epsl.2005.06.020

Berggren W.A., Kent D.V., Swisher III C.C., Aubry M.P., 1995, A revised Cenozoic geochronology and chronostratigraphy, SEPM Spec. Publ., 54, 129-212.

Bé A.W.H., Hutson W.H., 1977, Ecology of planktonic foraminifera and biogeographic patterns of life and fossil assemblages in the Indian Ocean, Micropaleontology, 23 (4), 369-414, http://dx.doi.org/10.2307/1485406

Billups K., Schrag D.P., 2002, Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/ 16O measurements on benthic foraminifera, Paleoceanography, 17 (1), http://dx.doi.org/10.1029/2000PA000567

Burke S.C., Berger W.H., Coulbourn W.T., Vincent E., 1993, Benthic foraminifera in box core ERDC 112, Ontong Java Plateau, J. Foramin. Res., 23 (1), 19-39, http://dx.doi.org/10.2113/gsjfr.23.1.19

Burton K.W., Ling H. F., O’nions R.K., 1997, Closure of the Central American Isthmus and its effect on deep-water formation in the North Atlantic, Nature, 386, 382-385, http://dx.doi.org/10.1038/386382a0

Cane M.A., Molnar P., 2001, Closing of the Indonesian seaway as a precursor to east African aridification around 3-4 million years ago, Nature, 411, 157-162, http://dx.doi.org/10.1038/35075500

Cerling T.E., Harris J.M., MacFadden B. J., Leakey M.G., Quade J., Eisenmann V., Ehleringer J.R., 1997, Global vegetation change through the Miocene/Pliocene boundary, Nature, 389, 153-158, http://dx.doi.org/10.1038/38229

Chaisson W., Ravelo A.C., 2000, Pliocene development of the East-West hydrographic gradient in the equatorial Pacific, Paleoceanography, 15, 497-505, http://dx.doi.org/10.1029/1999PA000442

Corliss B.H., Chen C., 1988, Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications, Geology, 16 (8), 716-719, http://dx.doi.org/10.1130/0091-7613(1988)016<0716:MPONSD>2.3.CO;2

Cresswell G.R., Golding T. J., 1980, Observation of south-flowing current in the southeastern Indian Ocean, Deep-Sea Res. Pt. A, 27 (6), 449-466, http://dx.doi.org/10.1016/0198-0149(80)90055-2

De S., Gupta A.K., 2010, Deep-sea faunal provinces and their inferred environments in the Indian Ocean based on distribution of Recent benthic foraminifera, Palaeogeogr. Palaeocl., 291 (3-4), 429-442, http://dx.doi.org/10.1016/j.palaeo.2010.03.012

Den Dulk M., Reichart G. J., Heyst S.V., Zachariasse W. J., van der Zawn G. J., 2000, Benthic foraminifera as proxies of organic matter flux and bottom water oxygenation? A case history from the northern Arabian Sea, Palaeogeogr. Palaeocl., 161 (3-4), 337-359, http://dx.doi.org/10.1016/S0031-0182(00)00074-2

Den Dulk M., Reichart G. J., Memon G.M., Roelofs E.M.P., Zachariasse W. J., van der Zwaan G. J., 1998, Benthic foraminiferal response to variations in the surface water productivity and oxygenation in the northern Arabian Sea, Mar. Micropaleontol., 35 (1-2), 43-66, http://dx.doi.org/10.1016/S0377-8398(98)00015-2

Dickens G.R., Owen R.M., 1994, Late Miocene-early Pliocene manganese redirection in the central Indian Ocean: expansion of the intermediate water oxygen minimum zone, Paleoceanography, 9, 169-181, http://dx.doi.org/10.1029/93PA02699

Dowsett H., Barron J., Poore R., 1996, Middle Pliocene sea surface temperatures: a global reconstruction, Mar. Micropaleontol., 27 (1-4), 13-25, http://dx.doi.org/10.1016/0377-8398(95)00050-X

Fedorov A., Philander G., 2000, Is El Ni˜no changing?, Science, 288 (5473), 997-1002, http://dx.doi.org/10.1126/science.288.5473.1997

Gaudant J., Courme-Rault M., Saint-Martin S., 2010, On the fossil fishes, diatoms, and foraminifera from Zanclean (Lower Pliocene) diatomitic sediments of Aegina Island (Greece): a stratigraphical and paleoenvironmental study, Palaeodiversity, 3, 141-149.

Gooday A. J., 1994, The biology of deep-sea foraminifera; a review of some advances and their applications in Paleoceanography, Palaios, 9 (1), 14-31, http://dx.doi.org/10.2307/3515075

Gooday A. J., 2003, Benthic foraminifera (protista) as tools in deep-water palaeoceanography: environmental influences on faunal characteristics, Adv. Mar. Biol., 46, 1-90, http://dx.doi.org/10.1016/S0065-2881(03)46002-1

Godfrey J. S., Weaver A. J., 1991, Is the Leeuwin Current driven by Pacific heating and winds?, Prog. Oceanogr., 27 (3-4), 225-272, http://dx.doi.org/10.1016/0079-6611(91)90026-I v

Gourlan A.T., Meynadier L., All`egre C. J., 2008, Tectonically driven changes in the Indian Ocean circulation over the last 25 Ma: neodymium isotope evidence, Earth Planet. Sci. Lett., 26 (1-2), 353-364, http://dx.doi.org/10.1016/j.epsl.2007.11.054

Gupta A.K., Das M., Bhaskar K., 2006, South Equatorial Current (SEC) driven changes at DSDP Site 237, Central Indian Ocean, during the Plio-Pleistocene: evidence from benthic foraminifera and stable isotopes, J. Asian Earth Sci., 28 (4-6), 276-290, http://dx.doi.org/10.1016/j.jseaes.2005.10.006

Gupta A.K., Satapathy S.K., 2000, Latest Miocene-Pleistocene abyssal benthic foraminifera from west-central Indian Ocean DSDP Site 236: paleoceanographic and paleoclimatic inferences, J. Palaeontol. Soc. India, 45, 33-48.

Gupta A.K., Srinivasan M. S., 1992, Uvigerina proboscidea abundances and paleoceanography of the northern Indian Ocean DSDP Site 214 during the Late Neogene, Mar. Micropaleontol., 19 (4), 355-367, http://dx.doi.org/10.1016/0377-8398(92)90038-L

Gupta A.K., Thomas E., 1999, Latest Miocene through Pleistocene paleoceanographic evolution of the northwestern Indian Ocean (DSDP Site 219): global and regional factors, Paleoceanography, 14 (1), 62-73, http://dx.doi.org/10.1016/0377-8398(92)90038-L

Hall R., 2002, Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations, J. Asian Earth Sci., 20 (4), 353-431, http://dx.doi.org/10.1016/S1367-9120(01)00069-4

Haug G.H., Tiedemann R., 1998, Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation, Nature, 393, 673-676, http://dx.doi.org/10.1038/31447

Haug G.H., Tiedemann R., Zahn R., Ravelo A.C., 2001, Role of Panama uplift on oceanic freshwater balance, Geology, 29 (3), 207-210, http://dx.doi.org/10.1130/0091-7613(2001)029<0207:ROPUOO>2.0.CO;2

Hayward B.W., 2001, Global deep-sea extinction during the Pleistocene ice ages, Geology, 29 (7), 599-602, http://dx.doi.org/10.1130/0091-7613(2001)029<0599:GDSEDT>2.0.CO;2

Hayward B.W., 2002, Late Pliocene to middle Pleistocene extinctions of deep sea benthic foraminifera (‘Stilostomella Extinction’) in the southwest Pacific, J. Foramin. Res., 32 (3), 274-307, http://dx.doi.org/10.2113/32.3.274

Haywood A.M., Valdes P. J., Sellwood B.W., 2000, Global scale palaeo-climate reconstruction of the middle Pliocene climate using the UKMO GCM, Initial results, Global Planet. Change, 25 (3-4), 239-256, http://dx.doi.org/10.1016/S0921-8181(00)00028-X

Hurlbert S.H., 1971, The nonconcept of species diversity: a critique and alternative parameters, Ecology, 52 (4), 577-586, http://dx.doi.org/10.2307/1934145

Jian Z., Yu Y., Li B., Wang J., Zhang X., Zhou Z., 2006, Phased evolution of the south-north hydrographic gradient in the South China Sea since the middle Miocene, Palaeogeogr. Palaeoclimatol., 230 (3-4), 251-263, http://dx.doi.org/10.1016/j.palaeo.2005.07.018

Kaiho K., 1994, Benthic foraminiferal dissolved oxygen index and dissolved oxygen levels in the modern ocean, Geology, 22 (8), 719-722, http://dx.doi.org/10.1130/0091-7613(1994)022<0719:BFDOIA>2.3.CO;2

Karas C., Nürnberg D., Gupta A.K., Tiedemann R., Mohan K., Bickert T., 2009, Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow, Nat. Geosci., 2, 434-438, http://dx.doi.org/10.1038/ngeo520

Keller G., 1985, Depth stratification of planktonic foraminifers in the Miocene Ocean, Geol. Soc. Am. Mem., 163, 177-195.

Kennett J.P., Keller G., Srinivasan M. S., 1985, Miocene planktonic foraminiferal biogeography and paleoceanographic development of the Indo-pacific Region, Geol. Soc. Am. Mem., 163, 197-236.

Kuhnt W., Holbourn A., Hall R., Zuvela M., Käse R., 2004, Neogene history of the Indonesian throughflow continent-ocean interactions with in East Asian marginal seas, Geophys. Monogr. Ser., 149, http://dx.doi.org/10.1029/149GM16

Kuhnt W., Holbourn A., Zhao Q., 2002, The early history of the South China Sea: evolution of Oligocene-Miocene deep water environments, Rev. Micropal´eontol., 45, 99-159.

Linke P., Lutze G. F., 1993, Microhabitat preferences of benthic foraminifera - a static concept or a dynamic adaptation to optimize food acquisition?, Mar. Micropaleontol., 20 (3-4), 215-234, http://dx.doi.org/10.1016/0377-8398(93)90034-U

Lisiecki L.E., Raymo M.E., 2005, A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20 (PA1003), http://dx.doi.org/10.1029/2004PA001071

Loubere P., 1996, The surface ocean productivity and bottom water oxygenation signals in deep water benthic foraminiferal assemblages, Mar. Micropaleontol., 28 (3-4), 247-261, http://dx.doi.org/10.1016/0377-8398(96)00004-7

Lourens L. J., Hilgen F. J., Laskar J., Shackleton N. J., Wilson D., 2004, The Neogene period, [in:] A geologic time scale, F.M. Gradstein, J.G. Ogg & A.G. Smith (eds.), Cambridge Univ. Press., Cambridge, 409-440. Mackensen A., Sejrup H. P., Janse E., 1985, Living benthic foraminifera off Norway, Mar. Micropaleontol., 9 (4), 275-306, http://dx.doi.org/10.1016/0377-8398(85)90001-5

Miao Q., Thunell R., 1993, Reccent deep-sea benthic foraminiferal distributions in the South China and Sulu Seas, Mar. Micropaleontol., 22 (1-2), 1-32, http://dx.doi.org/10.1016/0377-8398(93)90002-F

Murgese S.D., Deckker P.D., 2007, The late Quaternary evolution of water masses in the eastern Indian Ocean between Australia and Indonesia, based on benthic foraminifera faunal and carbon isotope analyses, Mar. Micropaleontol., 247 (3-4), 382-401, http://dx.doi.org/10.1016/j.palaeo.2006.11.002

Nishimura S., 1992, Tectonic approach to changes in surface-water circulation between the tropical Pacific and Indian Oceans, [in:] Pacific Neogeneenvironment, evolution and events, R. Tsuchi & J.C. Ingle Jr. (eds.), Univ. Tokyo Press, 157-167.

Nishimura S., Suparka S., 1997, Tectonic approach to the Neogene evolution of the Pacific Indian Ocean seaways, Tectonophysics, 281 (1-2), 1-16, http://dx.doi.org/10.1016/S0040-1951(97)00155-8

Nomura R., 1995, Paleogene to Neogene deep-sea paleoceanography in the eastern Indian Ocean: benthic foraminifera from ODP Sites 747, 757 and 758, Micropaleontology, 41 (3), 251-290, http://dx.doi.org/10.2307/1485862

Pearce A. F., 1991, Eastern boundary currents of the southern hemisphere, J. Roy. Soc. West. Aust., 74, 35-45.

Rai A.K., Singh V.B., 2001, Late Neogene deep-sea benthic foraminifer at ODP site 762B, eastern Indian Ocean: diversity trends and Paleoceanography, Palaeogeogr. Palaeoclimatol., 173 (1-2), 1-8, http://dx.doi.org/10.1016/S0031-0182(01)00299-1

Rai A.K., Singh V.B., 2004, Late Neogene deep sea benthic foraminiferal biostratigraphy of ODP sites 762B and 763A, (Exmouth Plateau) eastern Indian Ocean, J. Geol. Soc. India, 63, 415-429.

Rai A.K., Srinivasan M. S., 1994, Pleistocene oceanographic changes indicated by deep sea benthic foraminifera in the northern Indian Ocean, Proceedings of the Indian Academy of Sciences (Earth and Planetary Sciences), 103 (4), 499-517.

Rai A.K., Srinivasan M. S., Maurya A. S., 2007, Influence of antarctic bottom water (AABW) and monsoonal activity in the central Indian Ocean over past 5 million years: benthic foraminiferal record at DSDP site 238, J. Geol. Soc. India, 69 (2), 222-231.

Rathburn A.E., Corliss B.H., 1994, The ecology of living (stained) deep-sea benthic foraminifera from the Sulu Sea, Paleoceanography, 9 (1), 87-150, http://dx.doi.org/10.1029/93PA02327

Ravelo A.C., Andreasen D.H., Lyle M., Lyle A.O., Wara M.W., 2004, Regional climate shifts caused by gradual global cooling in the Pliocene epoch, Nature, 429, 263-267, http://dx.doi.org/10.1029/93PA02327

Raymo M.E., Grant B., Horowitz M., Rau G.H., 1996, Mid-Pliocene warmth: stronger greenhouse stronger conveyor, Mar. Micropaleontol., 27 (1-4), 313- 326, http://dx.doi.org/10.1016/0377-8398(95)00048-8

Raymo M.E., Ruddiman W. F., 1992, Tectonic forcing of late Cenozoic climate, Nature, 359, 117-122, http://dx.doi.org/10.1038/359117a0

Rodgers K.B., Latif M., Lugetke S., 2000, Sensitivity of equatorial Pacific and Indian Ocean watermasses to the position of the Indonesian throughflow, Geophys. Res. Lett., 27 (18), 2941-2945.

Ruddiman W. F., Raymo M.E., Martinson D.G., Clement B.M., Backman J., 1989, Pleistocene evolution: northern hemisphere ice sheets and North Atlantic Ocean, Paleoceanography, 4 (4), 353-412, http://dx.doi.org/10.1029/PA004i004p00353

Schmiedl G., Mackensen A., Müller P. J., 1997, Recent benthic foraminifera from the eastern South Atlantic Ocean: dependence on food supply and water masses, Mar. Micropaleontol., 32 (3-4), 249-288, http://dx.doi.org/10.1016/S0377-8398(97)00023-6

Schönfeld J., 1996, The ‘Stilostomella extinction’. Structure and dynamics of the last turnover in deep-sea benthic foraminiferal assemblages, [in:] Microfossils and oceanic environments, A. Moguilevsky & R.C. Whatley (eds.), Univ. Wales-Aberystwyth Press, Aberystwyth, 27-37.

Siesser W.G., Bralower T. J., Tang C., Galrun B., 1992, Late Miocene- Quaternary calcareous nannofossil biomagnetochronology on the Exmouth Plateau, Northwest Australia, Proceedings of Ocean Drilling Program, Scientific Results Vol. 122, U. von Rad, B.U. Haq et al. (eds.), Ocean Drilling Program, College Station, TX, 677-681.

Sinha D.K., Singh A.K., Tiwari M., 2006, Palaeoceanographic and palaeoclimatic history of ODP site 763A (Exmouth Plateau), southeast Indian Ocean: 2.2 Ma record of planktic foraminifera, Curr. Sci. India, 90 (10), 1363-1369.

Smart C.W., Thomas E., Ramsay A.T. S., 2007, Middle-late Miocene benthic foraminifera in a western equatorial Indian Ocean depth transect: paleoceanographic implications, Palaeogeogr. Palaeoclimatol., 247 (3-4), 402-420, http://dx.doi.org/10.1016/j.palaeo.2006.11.003

Smith R. L., 1992, Coastal upwelling in the modern ocean, [in:] Upwelling systems: evolution since the early Miocene, C.P. Summerhayes, W. L. Prell & K.C. Emeis (eds.), Geol. Soc. Spec. Publ., 64, 9-28.

Smith W., Grassle J., 1977, Sampling properties of a family of diversity measures, Biometrics, 33 (2), 282-292, http://dx.doi.org/10.2307/2529778

Srinivasan M. S., Sinha D.K., 1998, Early Pliocene closing of the Indonesian seaway: evidence from north-east Indian Ocean and Tropical Pacific deep sea cores, J. Asian Earth Sci., 16 (1), 29-44, http://dx.doi.org/10.1016/S0743-9547(97)00041-X

Stehli F.G., Webb S.D. (eds.), 1985, The great American biotic interchange, Plenum, New York, 532 pp.

Tchernia P., 1980, Descriptive regional oceanography, Pergamon, Oxford, 252 pp.

Thomas E., Gooday A. J., 1996, Cenozoic deep-sea benthic foraminifers: tracers for changes in oceanic productivity?, Geology, 24 (4), 355-358, http://dx.doi.org/10.1130/0091-7613(1996)024<0355:CDSBFT>2.3.CO;2

Toggweiler J.R., Samuels B., 1995, Effect of Drake Passage on the global thermohaline circulation, Deep-Sea Res., 42 (4), 477-500, http://dx.doi.org/10.1016/0967-0637(95)00012-U

Tomczak M., Godfrey J. S., 2001, Regional Oceanography: an introduction, [originally published by Pergamon 1994. Retrieved Jan., 2002, from http://www.es.flinders.edu.au/mattom/regoc/pdfversion.html].

Venkatarathnam K., Biscaye P.E., 1977, Distribution and origin of quartz in the sediment of the Indian Ocean, J. Sediment. Res., 47 (2), 642-649.

Wells P., Wells G., Cali J., Chivas A., 1994, Response of deep-sea benthic foraminifera to Late Quaternary climate changes, southeast Indian Ocean, offshore western Australia, Mar. Micropaleontol., 23 (3), 185-229, http://dx.doi.org/10.1016/0377-8398(94)90013-2

Wyrtki K., 1971, Oceanographic atlas of the International Indian Ocean Expedition, Nat. Sci. Found. Publ., OCE/NSF 86-00-001 Washington, DC, 531 pp.

Zachos J.C., Pagani M., Sloan L., Thomas E., Billups K., 2001, Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292 (5517), 686-692, http://dx.doi.org/10.1126/science.1059412

full, complete article (PDF - compatibile with Acrobat 4.0), 415 KB

Vertical distribution of zooplankton in the epipelagic zone off Sharm El-Sheikh, Red Sea, Egypt
Oceanologia 2012, 54(3), 473-489

MohamedMoussa Dorgham1,*, Mohsen Mohamed Elsherbiny2,3, Mahnoud Hassan Hanafi2
1 Department of Oceanography, University of Alexandria,
Alexandria, 21511, Egypt;
e-mail: mdorgham1947@yahoo.com
*corresponding author
2 Department of Marine Sciences, University of Suez Canal,
Ismaelia, 41522, Egypt
3 Department of Marine Biology, Faculty of Marine Sciences, King Abdul Aziz University,
Jeddah, Saudi Arabia;
e-mail: ooomar@kau.edu.sa

keywords: hydrography, copepods, Red Sea plankton, Sharm EL-Sheikh plankton,zooplankton dynamics, epipelagic zone, vertical plankton,Chaetognatha,Appendicularia

Received 4 August 2011, revised 18 April 2012, accepted 22 May 2012.


The purpose of the present study was to track the seasonal vertical distribution of zooplankton abundance in the epipelagic zone off Sharm El-Sheikh, Red Sea. Zooplankton samples were collected seasonally within the depth ranges of 0-25, 25-50, 50-75, 75-100 m at a single station off Sharm El-Sheikh City. The present study is a trial to expand knowledge about the structure as well as the vertical distribution of the epipelagic zooplankton community in the Gulf of Aqaba in general and in its southern part in particular. The results indicate the occurrence of 52 copepod species and several species of other planktonic groups in the study area; the zooplankton standing crop fluctuated between 1124 and 4952 organisms m-3. Copepods appeared to be the predominant component, forming an average of 86.5% of the total zooplankton count, and with other groups demonstrated a markedly different seasonal vertical distribution. Twelve bathypelagic copepod species were reported during the present study, and five species were new to the area, having migrated northwards from the main basin of the Red Sea.

  References ref

Aamer M.A., El-Sherbiny M.M., Gab-Alla A.A., Kotb M.M., 2007, Ecological studies on zooplankton standing crop of Sharm El-Maiya Bay, Sharm El-Sheikh, northern Red Sea, Catrina, 1 (1), 73-80.

Almogi-Labin A., 1984, Population dynamics of planktonic Foraminifera and Pteropoda, Gulf of Aqaba, Red Sea, Proc. KNAW, Ser. B Paleontol., 87, 481-511.

Al-Najjar T.H., 2000, The seasonal dynamics and grazing control of Phyto- and mesozooplankton in the northern Gulf of Aqaba, Ph.D. thesis, Bremen University.

Al-Najjar T.H., 2004, Quantitative Estimation of surface zooplankton biomass in the Gulf of Aqaba, Red Sea, Dirasat Pure Sci., 31 (2), 115-122.

Al-Najjar T.H., BadranM., Zibdeh M., 2002, Seasonal cycle of surface zooplankton biomass in relation to the chlorophyll a in the Gulf of Aqaba, Red Sea, Abhath Al-Yarmouk Basic Sci. Eng., 12 (1), 109-118.

Al-Najjar T.H., El-Sherbiny M.M., 2008, Spatial and seasonal variations in biomass and size structure of zooplankton in coastal waters of the Gulf of Aqaba, Jordan J. Biol. Sci., 1 (2), 55-59.

Al-Najjar T.H., Rasheed M., 2005, Zooplankton biomass in the most northern tip of the Gulf of Aqaba, a case study, Leb. Sci. J., 6 (2).

Aoki I., Komatsu T., Fishelson L., 1990, Surface zooplankton dynamics and community structure in the Gulf of Aqaba (Eilat), Red Sea, Mar. Biol., 107, 179-190, http://dx.doi.org/10.1007/BF01313255

APHA, 1985, Standard methods for the examination of the water and waste waters, 16th edn.

Arnemo R., 1965, Limnological studies in Hyttodamman. 3 - Zooplankton, Inst. Freshwater Res., Drottinghon, Rep. No. 46.

Böttger-Schnack R., 1995, Summer distribution of micro- and small mesozoo- plankton in the Red Sea and Gulf of Aden, with special reference to non- calanoid copepods, Mar. Ecol.-Prog. Ser., 118, 81-102, http://dx.doi.org/10.3354/meps118081

Böttger-Schnack R., Hagen W., Schiel B. S., 2001, The microcopepod fauna in the Gulf of Aqaba, northern Red Sea: species diversity and distribution of Oncaeidae (Poecilostomatoida), J. Plankton Res., 23 (9), 1029-1035, http://dx.doi.org/10.1093/plankt/23.9.1029

Böttger-Schnack R., Schnack D., Hagen W., 2008, Microcopepod community structure in the Gulf of Aqaba and northern Red Sea, with special reference to Oncaeidae, J. Plankton Res., 30 (5), 529-550, http://dx.doi.org/10.1093/plankt/fbn018

Buckley L. J., Lough R.G., 1987, Recent growth, biochemical composition, and prey field of larval haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua) on Georges Bank, Canad. J. Fish. Aquat. Sci., 44 (1), 14-25, http://dx.doi.org/10.1139/f87-003

Checkley D.M. Jr., Dagg M. J., Uye S., 1992, Feeding, excretion and egg production by individuals and populations of the marine planktonic copepods Acartia spp. and Centropages furcatus, J. Plankton Res., 14 (1), 71-96, http://dx.doi.org/10.1093/plankt/14.1.71

Christou E.D., 1998, Interannual variability of copepods in a Mediterranean coastal area (Saronikkos Gulf, Aegean Sea), J. Marine Syst., 15 (1-4), 523-532, http://dx.doi.org/10.1016/S0924-7963(97)00080-8

Conway D.V. P., White R.G., Hugues-Dit-Ciles J., Gallienne C.P., Robins D.B., 2003, Guide to the coastal and surface zooplankton of the south western Indian Ocean, Occas. Publ. No. 15, Marine Biol. Assoc. UK, 354 pp.

Cornils A., Schnack-Schiel S.B., Al-Najjar T., BadranM. I., RasheedM., Manasreh R., Richter C., 2007, The seasonal cycle of the epipelagic mesozooplankton in the northern Gulf of Aqaba (Red Sea), J. Marine Syst., 68 (1-2), 278-292, http://dx.doi.org/10.1016/j.jmarsys.2007.01.001

Cornils A., Schnack-Schiel S.B., Hagen W., Dowidar M., Stambler N., Plehn O., Richter C., 2005, Spatial and temporal distribution of mesozooplankton in the Gulf of Aqaba and the northern Red Sea in February/March 1999, J. Plankton Res., 27 (6), 505-518, http://dx.doi.org/10.1093/plankt/fbi023

Dorgham M.M., Hussein M.M., 1997, Zooplankton dynamics in a neritic area of the Arabian Gulf (Doha Harbour), Arab Gulf J. Scient. Res., 15 (2), 415-435.

Echelman T., Fishelson L., 1990, Surface zooplankton dynamics and community structure in the Northern Gulf of Aqaba, Red Sea, Mar. Biol., 107 (1), 179-190, http://dx.doi.org/10.1007/BF01313255

El-Serehy H., Abdel-Rahman N., 2004, Distribution patterns of planktonic copepods crustaceans in the coral reefs and sandy areas along the Gulf of Aqaba, Red Sea, Egypt, Egypt. J. Biol, 6, 126-135.

El-Sherbiny M.M., Hanafy M.H., Aamer M.A., 2007, Monthly variations in abundance and species composition of the epipelagic zooplankton off Sharm El-Sheikh, Northern Red Sea, Res. J. Environ. Sci., 1, 200-210.

Farstey V., Lazar B., Genin A., 2002, Expansion and homogeneity of the vertical distribution of zooplankton in a very deep mixed layer, Mar. Ecol.-Prog. Ser., 238, 91-100, http://dx.doi.org/10.3354/meps238091

Fenaux R., 1979, First data on the ecology of Appendicularia in the Gulf of Eilat, Isr. Jour. Zool., 28, 177-192.

Giesbrecht W., 1892, Systematik und Faunistik der pelagischen Copepoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte, [in:] Fauna und Flora des Golfes von Neapel, Vol. 19., 1-831.

Godeaux J., 1978, The population of Thaliacea in the Gulf of Eilat, Bull. Soc. R. Sci. Liege, 74, 376-389.

Goldman C.R., Heron A. J., 1984, Limnology, McGraw-Hill, New York, 464 pp. Hanafy M.H., Dorgham M.M., El-Sherbiny M.M., 1998, Zooplankton community in Mangal Ecosystem on Sharm El-Sheikh Coast, Red Sea, Egypt, J. Aquat Biol. Fish., 2 (4), 465-482.

Heron G.A., Bradford-Grieve J.M., 1995, The marine fauna of New Zealand. Pelagic cyclopoid (Copepoda, Poecilostomatoida, Oncaeidae), Memoires, New Zel. Oceanogr. Inst., 104, 1-57.

Incze L. S., Aas P., Ainare T., 1996, Distributions of copepod nauplii and turbulence on the southern flank of Georges Bank: implications for feeding by larval cod (Gadus morhua), Deep-Sea Res. Pt. II, 43 (7-8), 1855-1874, http://dx.doi.org/10.1016/S0967-0645(96)00055-0

Khalil M.T., Abdel-Rahman N. S., 1997, Abundance and diversity of surface zooplankton in the Gulf of Aqaba, Red Sea, Egypt, J. Plankton Res., 19, 927-936.

Kimor B., Golandsky B., 1977, The microplankton of the Gulf of Eilat: aspects of seasonal and bathymetric distribution, Mar. Biol., 42 (1), 55-76, http://dx.doi.org/10.1007/BF00392014

Manasrah R., Raheed M., Badran M. I., 2006, Relationships between water temperature, nutrients and dissolved oxygen in the northern Gulf of Aqaba, Red Sea, Oceanologia, 48 (2), 237-253.

Mathew P.H., 1977, Studies on the zooplankton of a tropical lake, [in:] Proceedings of the symposium on ‘warm water zooplankton’, Natl. Inst. Oceanogr., Goa, India, 297-308.

Michel H.B., Behbehani M., Herring D., 1986, Zooplankton of the Western Arabian Gulf South of Kuwait waters, Kuwait Bull. Mar. Sci., KISR, Ser. No. 1435, 1-36.

Omori M., Ikeda T., 1984, Methods in marine zooplankton ecology, John Wiley and Sons Inc., New York, 372 pp.

Parsons T.R., Maita Y., Lalli G.M., 1984, A manual of chemical and biological methods for seawater analysis, Pergamon Press Ltd., Oxford, 173 pp.

Prado-Por M. S.A., 1990, A diel cycle of vertical distribution of the Calanoida (Crustacea: Copepoda) in the Northern Gulf of Aqaba, Bull. Nat. Inst. Oceanogr. Monaco, 7, 109-116.

Reiss Z., Hottinger L., 1984, The Gulf of Aqaba, ecological micropaleontology, Springer, Berlin, New York, 354 pp., http://dx.doi.org/10.1007/978-3-642-69787-6

Schnack-Schiel S.B., Niehoff B., Hagen W., Böttger-Schnack R., Cornils A., Dowidar M.M., Pasternak A., Stambler N., Stübing D., Richter C., 2008, Population dynamics and life strategies of Rhincalanus nasutus (Copepoda) at the onset of the spring bloom in the Gulf of Aqaba (Red Sea), J. Plankton Res., 30 (6), 655-672, http://dx.doi.org/10.1093/plankt/fbn029

Vaissiere R., Seguin G., 1984, Initial observations of the zooplankton micro distribution on the fringing coral reef at Aqaba (Jordan), Mar. Biol., 83 (1), 1-11, http://dx.doi.org/10.1007/BF00393080

Webber M.K., Roff J.C., 1995, Annual structure of the copepod community and its associated pelagic environment off Discovery Bay, Jamaica, Mar. Biol., 123 (3), 467-479, http://dx.doi.org/10.1007/BF00349226

Weikert H., 1982, The vertical distribution of zooplankton in relation to habitat zones in the area of the Atlantis II Deep, central Red Sea, Mar. Ecol.-Prog. Ser., 8, 129-143, http://dx.doi.org/10.1007/BF00349226

Weikert H., 1987, Plankton and the pelagic environment, [in:] Key environments, Red Sea, A. J. Edwards & S.M. Head (eds.), Pergamon Press, Oxford, 90-111. Williamson D. L., 1967, On a collection of planktonic Decapoda and Stomatopoda (Crustacea) from the Mediterranean coast of Israel, Bull. Sea Fisher. Res. Station, Haifa, 45, 32-64.

Wolf-Vecht A., Paldor N., Brenner S., 1992, Hydrographic indications of advection/convection effects in the Gulf of Eilat, Deep-Sea Res. Pt. A, 39 (7-8), 1393-1401, http://dx.doi.org/10.1016/0198-0149(92)90075-5

Yahel R., Yahel G., Berman T., Jaffe J. S., Genin A., 2005, Diel pattern with abrupt crepuscular changes of zooplankton over a coral reef, Limnol. Oceanogr., 50 (3), 930-944, http://dx.doi.org/10.4319/lo.2005.50.3.0930

full, complete article (PDF - compatibile with Acrobat 4.0), 176 KB

Mapping an ecosystem service:A quantitative approach to derive fish feeding ground maps
Oceanologia 2012, 54(3), 491-505

Andrius Šiaulys1,*, Darius Daunys1, Martynas Bučas1, Egidijus Bacevičius1,2
1 Coastal Research and Planning Institute, Klaipėda University,
Herkaus Manto 84, Klaipėda 92294, Lithuania;
e-mail: andrius@corpi.ku.lt
*corresponding author
2 Fisheries Service under the Ministry of Agriculture of the Republic of Lithuania,
Division of Fisheries Research and Science,
Smiltynės Str. 1/1, Klaipėda 91001, Lithuania

keywords: Seabed quality, macrozoobenthos, fish diet, modelling, random forests, Baltic Sea

Received 13 March 2012, revised 17 May2012, accepted 25 May 2012.

This study was supported by Norwegian Financial Mechanism (project No. LT0047) and BONUS PREHAB.


This study presents a quantitative approach to mapping benthophagous fish feeding grounds. This approach combines the spatial biomass distribution of benthic prey items and their importance for the diets of predators. A point based biomass data of macrozoobenthos together with a set of environmental factors was used to develop Random Forests models that produce continuous biomass distribution layers for individual prey species. Depending on the diet composition and the importance of prey for fish feeding, these layers are overlaid and an integrated GIS map of the seabed showing the quality of feeding grounds is generated. These maps provide a useful basis for conservation and marine spatial planning. In addition, this method could be applied to the mapping of resources used by other benthophagous organisms. The method is presented using the example of three common Baltic fish species: cod, flounder and viviparous eelpout.

  References ref

Bendtsen J., Söderkvist J., Dahl K., Hansen J.L. S., Reker J., 2007, Model simulations of blue corridors in the Baltic Sea, BALANCE Interim Report No. 9.

Bitinas A., Aleksa P., Damušytė A., Gulbinskas S., Jarmalavičius D., Kuzavinis M., Minkevičius V., Pupienis D., Trimonis E., Šečkus R., Žaromskis R., Žilinskas G., 2004, Baltijos juros Lietuvos krantu. geologinis atlasas, Lietuvos geologijos tarnyba, Vilnius, 95 pp.

Björnsson B., 1993, Swimming speed and swimming metabolism of Atlantic Cod (Gadus morhua) in relation to available food: A laboratory study, Can. J. Fish. Aquat. Sci., 50 (12), 2542-2551. http://dx.doi.org/10.1139/f93-277

Booij N., Ris R.C., Holthuijsen L.H., 1999, A third-generation wave model for coastal regions. 1. Model description and validation, J. Geophys. Res., 104 (C4), 7649-7666, http://dx.doi.org/10.1029/98JC02622

Breiman L., 2001, Random forests, Mach. Learn., 45 (5), 32 pp.

Bromley P. J., 1994, The role of gastric evacuation experiments in quantifying the feeding rates of predatory fish, Rev. Fish. Biol. Fisher., 4 (1), 36-66. http://dx.doi.org/10.1007/BF00043260

Bubinas A., Ložys L., 2000, The Nutrition of fish in the Curonian Lagoon and the coastal zone of the Baltic Sea, Acta Zool. Lituan., 10 (4), 60-73.

Bučas M., Daunys D., Olenin S., 2009, Recent distribution and stock assessment of the red alga Furcellaria lumbricalis on an exposed Baltic Sea coast: combined use of field survey and modelling methods, Oceanologia, 51 (3), 1-19.

Collin A., Archambault P., Long B., 2011, Predicting species diversity of benthic communities within turbid nearshore using full-waveform bathymetric LiDAR and machine learners, PLoS ONE, 6 (6), e21265, http://dx.doi.org/10.1371/journal.pone.0021265

Didžiulis V., 1999, Pagrindinės makrozoobentosinių organizmų bendrijų charakteristikos LEZ ir jų reikšmė upinės plekšnės (Platichthys flesus trachurus) mitybai ir jupaplitimui, Pajūrio regiono ekologija, 36-39.

Ellis J., Ysebaert T., Hume T., Norkko A., Bult T., Herman P., Thrush S., Oldman J., 2006, Predicting macrofaunal species distributions in estuarine gradients using logistic regression and classification systems, Mar. Ecol. Prog. Ser., 316, 69-83.

Gelumbauskaitė L.Ž., Grigelis A., Cato I., Repečka M., Kjellin B., 1999, Bottom sediment maps of the central Baltic Sea, Scale 1:500,000. A short description, LGT Ser. Marine Geol. Maps No. 1, SGU Ser. Geol. Maps Ba No. 54, Vilnius-Uppsala.

Gogina M., Zettler M. L., 2010, Diversity and distribution of benthic macrofauna in the Baltic Sea: data inventory and its use for species distribution modelling and prediction, J. Sea Res., 64, 313-321, http://dx.doi.org/10.1016/j.seares.2010.04.005

Hansen I. S., Keul N., Sorensen J.T., Erichsen A., Andersen J.H., 2007, Baltic Sea oxygen maps, BALANCE Interim Report No. 17.

He P., 1991, Swimming endurance of the Atlantic cod, Gadus morhua L., at low temperatures, Fish. Res., 12 (1), 65-73, http://dx.doi.org/10.1016/0165-7836(91)90050-P

Hiscock K., Tyler-Walters H., 2006, Assessing the sensitivity of seabed species and biotopes - the Marine Life Information Network (MarLIN), Hydrobiologia, 555 (1), 309-320, http://dx.doi.org/10.1007/s10750-005-1127-z

Hyslop E. J., 1980, Stomach contents analysis - a review of methods and their applications, J. Fish. Biol., 17 (4), 411-429, http://dx.doi.org/10.1111/j.1095-8649.1980.tb02775.x

Järvekülg A., 1979, Bottom fauna of the Eastern part of the Baltic Sea. (Donnaja fauna vosochnoj chasti Baltijskogo morja), Valgus, Tallinn, (in Russian), 324 pp.

Kremen C., Ostfeld R. S., 2005, A call to ecologists: measuring, analyzing, and managing ecosystem services, Front. Ecol. Environ., 3 (10), 540-548. Liaw A., Wiener M., 2002, Classification and regression by random forest, R News, 2/3, 18-22, http://dx.doi.org/10.1890/1540-9295(2005)003[0540:ACTEMA]2.0.CO;2

Macdonald J. S., Waiwood K.G., Green R.H., 1982, Rates of digestion of different prey in Atlantic cod (Gadus morhua), ocean pout (Macrozoarces americanus), winter flounder (Pseudopleuronectes americanus), and American plaice (Hippoglossoides platessoides), Can. J. Fish. Aquat. Sci., 39 (5), 651-659 http://dx.doi.org/10.1139/f82-094

McArthur M.A., Brooke B.P., Przeslawski R., Ryan D.A., Lucieer V. L., Nichol S., McCallum A.W., Mellin C., Cresswell I.D., Radke L.C., 2010, On the use of abiotic surrogates to describe marine benthic biodiversity, Estuar. Coast. Shelf Sci., 88 (1), 21-32, http://dx.doi.org/10.1016/j.ecss.2010.03.003

Mulicki Z., 1947, Odżywianie się storni (Pleuronectes flesus L.) w Zatoce Gdańskiej (Food and feeding habit of the flounder [Pleuronectes flesus L.] in the Gulf of Gdańsk), Arch. Hydrobiol. Ryb., 13, 221-259.

Ojaveer H., Jaanus A., MacKenzie B.R., Martin G., Olenin S., Radziejewska T., Telesh I., Zettler M. I., Zaiko A., 2010, Status of biodiversity in the Baltic Sea, PLoS ONE, 5 (9), e12467, http://dx.doi.org/10.1371/journal.pone.0012467

Olenin S., 1997, Benthic zonation of the Eastern Gotland Basin, Neth. J. Aquat. Ecol., 30 (4), 265-282, http://dx.doi.org/10.1007/BF02085871

Ostrowski J., 1997, Odżywianie się storni (Pleuronectes flesus L.) w południowym Bałtyku w 1996 i 1997. (Diet of the flounder [Pleuronectes flesus L.] in the southern Baltic in 1996-1997), Rep. Sea Fish. Inst., Gdynia, 237-247.

Potts J.M., Elith J., 2006, Comparing species abundance models, Ecol. Model., 199, 153-163, http://dx.doi.org/10.1016/j.ecolmodel.2006.05.025

Quinn G.P., Keough M. J., 2002, Experimental design and data analysis for biologists, Cambridge Univ. Press, Cambridge, 520 pp, http://dx.doi.org/10.1017/CBO9780511806384

Repečka M., Gelumbauskaitė Ž., Grigelis A., Šimkevičius P., Radzevičius R., Monkevičius A., Bubinas A., Kasperovičienė J., Gadeikis S., 1997, Valstybinis jurinis geologinis kartografavimas 1:50 000 masteliu Klaipėdos-šventosios akvatorijoje. I objektas, Lietuvos geologijos tarnyba, Lietuvos geologijos institutas, Vilnius, 227 pp.

Rosenberg R., Blomqvist M., Nilsson H.C., Cederwall H., Dimming A., 2004, Marine quality assessment by use of benthic species-abundance distributions: a proposed new protocol within the European Union Water Framework Directive, Mar. Pollut. Bull., 49 (9-10), 728-739, http://dx.doi.org/10.1016/j.marpolbul.2004.05.013

Sanchirico J.N., Mumby P., 2009, Mapping ecosystem functions to the valuation of ecosystem services: implications of species-habitat associations for coastal land-use decisions, Theor. Ecol., 2, 67-77, http://dx.doi.org/10.1007/s12080-008-0034-0

Santos J., Jobling M., 1991, Factors affecting gastric evacuation in cod, Gadus morhua L., fed single-meals of natural prey, J. Fish. Biol., 38 (5), 697-713, http://dx.doi.org/10.1111/j.1095-8649.1991.tb03159.x

Snelgrove P.V.R., 1998, The biodiversity of macrofaunal organisms in marine sediments, Biodivers. Conserv., 7 (9), 1123-1132, http://dx.doi.org/10.1023/A:1008867313340

Thrush S. F., Pridmore R.D., Hewitt J.E., 1994, Impacts on soft-sediment macrofauna: the effects of spatial variation on temporal trends, Ecol. Appl., 4 (1), 31-41, http://dx.doi.org/10.2307/1942112

Tomczak M.T., Müller-Karulis B., Järv L., Kotta J., Martin G., Minde A., Põllumäe A., Razinkovas A., Strake S., Bucas M., Blenckner T., 2009, Analysis of trophic networks and carbon flows in South Eastern Baltic costal ecosystems, Prog. Oceanogr., 81 (1-4), 111-131, http://dx.doi.org/10.1016/j.pocean.2009.04.017

Troy A., Wilson M.A., 2006, Mapping ecosystem services: Practical challenges and opportunities in linking GIS and value transfer, Ecol. Econ., 60, 435-449, http://dx.doi.org/10.1016/j.ecolecon.2006.04.007

Tyler A.V., 1970, Rates of gastric emptying in young cod, J. Fish. Res. Board Can., 27 (7), 1177-1189. Urtans E., 1992, Feeding daily rhythm of eelpout (Zoarces viviparus (L.)) in the Gulf of Riga, ICES CM 1992/J:28, 12 pp., (mimeo).

Uzars D., 2000, Variation in environmental conditions, feeding and growth of cod in the Eastern Baltic, ICES CM 2000/Q10, 1-9.

Wei C. L., Rowe G.T., Escobar-Briones E., Boetius A., Soltwedel T., et al., 2010, Global patterns and predictions of seafloor biomass using random forests, PLoS ONE, 5 (12), e15323, http://dx.doi.org/10.1371/journal.pone.0015323

Wentworth C.K., 1922, A scale grade and class terms for clastic sediments, J. Geol., 30 (5), 377-392, http://dx.doi.org/10.1086/622910

Węsławski J.M.,Warzocha J.,Wiktor J., Urbański J., Radtke K., Kryla L., Tatarek A., Kotwicki L., Piwowarczyk J., 2009, Biological valorisation of the southern Baltic Sea (Polish Exclusive Economic Zone), Oceanologia, 51 (3), 415-435, http://dx.doi.org/10.5697/oc.51-3.415

Willems W., Goethals P., Van den Eynde D., Van Hoey G., Van Lancker V., Verfaillie E., Vincx M., Degraer S., 2008, Where is the worm? Predictive modelling of the habitat preferences of the tube-building polychaete Lanice conchilega, Ecol. Model., 212, 74-79, http://dx.doi.org/10.1016/j.ecolmodel.2007.10.017

full, complete article (PDF - compatibile with Acrobat 4.0), 264 KB