Oceanologia No. 53 (2) / 11





On the geometry of ocean surface waves
Oceanologia 2011, 53(2), 521-548

Stanisław R. Massel
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland

keywords: ocean surface waves, wave slopes, frequency-directional spectra, surface wave area

Received 20 December 2010, revised 18 March 2011, accepted 19 April 2011.


The factors influencing the atmosphere-ocean transfer of mass and momentum, as well as incipient wave breaking and the amount of energy dissipated due to breaking, are discussed in detail. In particular, the influence of directional spreading on the statistics of surface wave slopes and the area of the wind-roughened ocean surface is demonstrated. Theoretical analysis and comparison with the available experimental data show that unimodal directional spreading is not able to reproduce the observed ratio of the cross-wind/up-wind mean square slopes. Better agreement is achieved when bimodal directional spreading, consisting of two wrapped-Gaussian distributions, is applied. The bimodal form suggested by Ewans (1998) is used in the paper. Moreover, the formulae developed here show that the increase in the area due to surface waves is rather small for both regular and irregular waves.

  References ref

Abramowitz M., Stegun I.A., 1975, Handbook of mathematical functions, Dover Publ., New York, 1045 pp.

Apel J.R., 1994, An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter, J. Geophys. Res., 99 (C8), 16 269-16 291.

Banner M. L., 1990, Equilibrium spectra of wind waves, J. Phys. Oceanogr., 20 (7), 966-984. http://dx.doi.org/10.1175/1520-0485(1990)020<0966:ESOWW>2.0.CO;2

Banner M. L., Young I.R., 1994, Modelling spectral dissipation in the evolution of wind waves. Part I: Assessment of existing model performance, J. Phys. Oceanogr., 24 (7), 1550-1571. http://dx.doi.org/10.1175/1520-0485(1994)024<1550:MSDITE>2.0.CO;2

Bjerkas A.W., Riedel F.W., 1979, Proposed model for the elevation spectrum of a wind-roughened sea surface, Tech. Rep., APL-TG-1328-I-31, Appl. Phys. Lab., Johns Hopkins Univ., 31 pp.

Cox C., Munk W., 1954, Measurement of the roughness of the sea surface from photographs of the sun’s glitter, J. Opt. Soc. Am., 44 (11), 838-850. http://dx.doi.org/10.1364/JOSA.44.000838

Donelan M.A., Hamilton J., Hui W.H., 1985, Directional spectra of wind-generated waves, Philos. T. Roy. Soc. A, 315 (1534), 509-562. http://dx.doi.org/10.1098/rsta.1985.0054

Elfouhaily T., Chapron B., Katsaros K., 1997, A unified directional spectrum for long and short wind-driven waves, J. Geophys. Res., 102 (C7), 15 781-15 796.

Ewans K.C., 1998, Observations of the directional spectrum of fetch-limited waves, J. Phys. Oceanogr., 28 (3), 495-512. http://dx.doi.org/10.1175/1520-0485(1998)028<0495:OOTDSO>2.0.CO;2

Ewans K.C., van der Vlugt T., 1999, Estimating bimodal frequency-direction spectra from surface buoy data recorded during tropical cyclones, J. Offshore Mech. Arct., 121 (3), 172-180. http://dx.doi.org/10.1115/1.2829562

Goda Y., 1981, Simulation in examination of directional resolution, [in:] Directional wave spectra, R. L. Wiegel (ed.), ASCE, Waterway, 387-407.

Hasselmann K., Barnett T.P., Bouws E., Carlson H., Cartwright D.E., Enke K., Ewing J.A., Gienapp H., Hasselmann D.E., Kruseman P., Meerburg A., M¨uller P., Olbers D. J., Richter K., Sell W., Walden H., 1973, Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Deutsches Hydr. Zeit., A12, 1-95.

Hasselmann D.E., DunckelM., Ewing J.A., 1980, Directional wave spectra observed during JONSWAP 1973, J. Phys. Oceanogr., 10 (8), 1264-1280. http://dx.doi.org/10.1175/1520-0485(1980)010<1264:DWSODJ>2.0.CO;2

Heron M. L., Skirving W. J., Michael K. J., 2006, Short-wave ocean wave slope models for use in remote sensing data analysis, IEEE T. Geosci. Remote, 44 (7), 1962-1973. http://dx.doi.org/10.1109/TGRS.2006.870439

Hughes B.A., Grant H. L., Chappell R.W., 1977, A fast response surface-wave slope meter and measured wind-wave moments, Deep-Sea Res., 24 (12), 1211-1223. http://dx.doi.org/10.1016/0146-6291(77)90524-0

Hwang P.A., Shemdin O.H., 1988, The dependence of sea surface slope on atmospheric stability and swell conditions, J. Geophys. Res., 93 (C11), 13 903-13 912.

Hwang P.A., Wang D.W., 2001, Directional distributions and mean square slopes in the equilibrium and saturation ranges of the wave spectrum, J. Phys. Oceanogr., 31 (5), 1346-1360. http://dx.doi.org/10.1175/1520-0485(2001)031<1346:DDAMSS>2.0.CO;2

Krylov J.M., Strekalov S. S., Cyplukhin V. F., 1976, Wind waves and their effect on marine constructions, Gidrometeoizdat, Leningrad, 256 pp., (in Russian).

Kuik A. J., van Vledder Ph., Holthuijsen L.H., 1988, A method for the routine analysis of pitch-and-roll buoy wave data, J. Phys. Oceanogr., 18 (7), 1020-1034. http://dx.doi.org/10.1175/1520-0485(1988)018<1020:AMFTRA>2.0.CO;2

Longuet-Higgins M. S., 1957, The statistical analysis of a random, moving surface, Phil. T. Roy. Soc., 249 (966), 321-387. http://dx.doi.org/10.1098/rsta.1957.0002

Longuet-Higgins M. S., Cartwright D. E., Smith N.D., 1961, Observations of the directional spectrum of sea waves using the motions of a floating buoy, [in:] Ocean wave spectrum, Prentice-Hall Inc., Engelwood Cliffs, 111-136.

Mardia K.V., 1972, Statistics of directional data, Acad. Press, London, 240 pp.

Massel S.R., 1996, Ocean surface waves: their physics and prediction, World Sci. Publ., Singapore, 491 pp.

Massel S.R., 2007, Ocean waves breaking and marine aerosol fluxes, Springer, New York, 323 pp.

Massel S.R., Brinkman R.M., 1998, On the determination of directional wave spectra for practical applications, Appl. Ocean Res., 20 (6), 357-374. http://dx.doi.org/10.1016/S0141-1187(98)00026-1

Mitsujasu H., Suhaya T., Mizuno S., Ohkuso M., Honda T., Rikiishi K., 1975, Observations of the directional spectrum of ocean waves using a cloverleaf buoy, J. Phys. Oceanogr., 5 (4), 750-760. http://dx.doi.org/10.1175/1520-0485(1975)005<0750:OOTDSO>2.0.CO;2

Pelevin V.N., Burtsev J.G., 1975, The measurements of the sea surface slope distribution under the wind roughness, [in:] Optical investigations in the ocean and in the atmosphere above the ocean, Inst. Okean. AN SSSR, 202-218, (in Russian).

Wang D.W., Hwang P.A., 2001, Evolution of the biomodal directional distribution of ocean waves, J. Phys. Oceanogr., 31 (5), 1200-1221. http://dx.doi.org/10.1175/1520-0485(2001)031<1200:EOTBDD>2.0.CO;2

Woźniak S.B., 1996, Sea surface slope distribution and foam coverage as functions of the mean height of wind waves, Oceanologia, 38 (3), 317-332.

Young I.R., Verhagen L.A., Banner M. L., 1995, A note on the bimodal directional spreading of fetch-limited wind waves, J. Geophys. Res., 100 (C1), 773-778. http://dx.doi.org/10.1029/94JC02218

full, complete article (PDF - compatibile with Acrobat 4.0), 292 KB

The contribution of fluorescence to measurements of light scattering in oil-in-water emulsions
Oceanologia 2011, 53(2), 549-564

Adam Stelmaszewski
Physics Department, Gdynia Maritime University,
Morska 81-87, Gdynia 81-225, Poland;
e-mail: stel@am.gdynia.pl

keywords: seawater, fluorescence, light scattering, petroleum, emulsion

Received 21 January 2011, revised 1 April 2011, accepted 6 April 2011.


The paper presents some results of research on the fluorescence properties of petroleum oil-in-water emulsions. The research addresses the question of measuring and modelling light fields in an oil-polluted marine environment. The fluorescence of the emulsion manifests itself in the spectral range from 260 to over 400 nm and is much less intensive in the visible light region. Fluorescence is always weaker than the radiation scattered in an emulsion. The measurement and modelling of ultraviolet radiation scattering requires fluorescence to be taken into consideration, but in the visible spectral region this phenomenon is negligible.

  References ref

Bohren C. F., Huffman D.R., 1983, Absorption and scattering of light by small particles, Wiley, New York, 530 pp.

Dera J., 2003, Marine physics, 2nd edn., PWN, Warsaw, 541 pp., (in Polish).

GESAMP - Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, 1993, Impact of oil and related chemicals and wastes on the marine environment, Rep. Stud. No. 50, 180 pp.

GESAMP, 2007, Estimates of oil entering the marine environment from sea-based activities, Rep. Stud. No. 75, 96 pp.

Gurgul H., 1991, Dispersed systems in the sea, Univ. Szcz., Szczecin, 248 pp., (in Polish).

Jerlov N.G., 1976, Marine optics, Elsevier, Amsterdam, 231 pp.

Kaniewski E., 1999, Marine vessel as a source of ecological threats, Probl. Machin. Oper. Maint., 34, 151-163, (in Polish).

Król T., 1984, A simple computational model of light scattering function for spherical particles, Stud. Mater. Oceanol., 45, 97-119, (in Polish).

Król T., 1985, Computational model of Mie coefficients for spherical absorbing scattering particles, Stud. Mater. Oceanol., 49, 43-62, (in Polish).

Król T., 1991, The effect of the size of dispersed substances on absorption and scattering properties of dispersed media, Stud. Mater. Oceanol., 59, 175-181.

McKee D., Piskozub J., Brown I., 2008, Scattering error corrections for in situ absorption and attenuation measurements, Opt. Express, 16 (24), 19480-19492. http://dx.doi.org/10.1364/OE.16.019480   PMid:19030034

Mikłaszewicz B., 2006, Self-purification of Odra estuary and Pomeranian Bay waters polluted with crude oil derivative emulsions, Ph.D. thesis, Inst. Oceanol. PAS, Sopot, 118 pp., (in Polish).

Otremba Z., 1997, A thin oil film covering the sea surface as a modifier of the downward transmission of light, Oceanologia, 39 (4), 397-411.

Otremba Z., Piskozub J., Król T., 2003, Modelling the reflectance of sea areas polluted with oil emulsion, Fresen. Environmen. Bull., 12 (9), 1109-1113.

Parkinson C.L., Ward A., King M.D. (eds.), 2006, Earth Science Reference Handbook - a guide to NASA’s Earth science program and Earth observing satellite missions, Nat. Aeronaut. Space Administr., Washington, 277 pp., [http://eospso.gsfc.nasa.gov/ftp_docs/2006ReferenceHandbook.pdf].

Pereda S., Awan J.A., Mohammadi A.H., Valtz A., Coquelet C., Brignole E.A., Richon D., 2009, Solubility of hydrocarbons in water: experimental measurements and modeling using a group contribution with association equation of state (GCA-EoS), Fluid Phase Equilibr., 275 (1), 52-59. http://dx.doi.org/10.1016/j.fluid.2008.09.008

Pershin S.M., Bunkin A. F., Lukyanchenko V.A., Nigmatullin R.R., 2007, Detection of the OH band fine structure in liquid water by means of new treatment procedure based on the statistics of the fractional moments, Laser Phys. Lett., 4 (11), 809-813. http://dx.doi.org/10.1002/lapl.200710067

Piskozub J., Neumann T., Woźniak L., 2008, Ocean color remote sensing: choosing the correct depth weighting function, Opt. Express, 16 (19), 14683-14688. http://dx.doi.org/10.1364/OE.16.014683   PMid:18795006

Staroń W., 1999, Emulsion of petroleum derivatives in sea and river water, [in:] Physical problems of natural waters, Vol. 1, H. Gurgul (ed.), Univ. Szcz., Szczecin, 113-126, (in Polish).

Stelmaszewski A., 2001, Identification of petroleum in Baltic Sea by means of fluorescence, Ph.D. thesis, Inst. Oceanol. PAS, Sopot, 122 pp., (in Polish).

Stelmaszewski A., Król T., Toczek H., 2009, Light scattering in Baltic crude oil - seawater emulsion, Oceanologia, 51 (3), 405-414.

Stelmaszewski A., Toczek H., 2007, Preliminary studies of optical properties of oil-water emulsion particles, [in:] Physicochemical problems of natural waters ecology, Vol. 5, Gd. Maritime Univ., Gdynia, 40-44.

Van de Hulst H.C., 1957, Light scattering by small particles, Wiley, New York, 470 pp.

Verschueren K., 1983, Handbook of environmental data on organic chemicals, 2nd edn., van Nostrand Reinhold Co., New York, 1310 pp.

Walrafen G.E., Pugh E., 2004, Raman combinations and stretching overtones from water, heavy water and NaCl in water at shifts to ca. 7000 cm-1, J. Solution Chem., 33 (1), 81-97. http://dx.doi.org/10.1023/B:JOSL.0000026646.33891.a8

full, complete article (PDF - compatibile with Acrobat 4.0), 242 KB

Influence of density stratification on effluent plume dynamics
Oceanologia 2011, 53(2), 565-585

Goran Lončar1, Gordana Beg Paklar2, Ivica Janeković3
1Water Research Department, University of Zagreb,
Kačićeva 26, Zagreb 10000, Croatia;
e-mail: goran.loncar@grad.hr
2Institute for Oceanography and Fisheries, Laboratory of Physical Oceanography,
Šetalište Ivana Meštrovića 63, Split 21000, Croatia;
e-mail: beg@izor.hr
3Institute Ruder Bošković, Centre for Marine and Environmental Research,
Bijenička 54, Zagreb 10000, Croatia;
e-mail: ivica@irb.hr

keywords: numerical model, submarine outfall, density stratification

Received 10 November 2010, revised 6 April 2011, accepted 8 April 2011.

The work was partly supported by the Ministry of Science, Education and Sports of the Republic of Croatia (grant No. 098-0982705-2707).


In this study we modelled sea temperature (T), salinity (S) and density field dynamics using a 3D numerical model applied to Rijeka Bay (Croatia) in order to explore their effect on effluent plume dynamics in the vicinity of four submarine sewage outfalls when the bora wind (NE direction) is blowing. The vertical density stratification in the area studied is strongly related to the bora wind, which contributes significantly to the lowering of the pycnocline depth through enhanced mixing in the vertical, giving rise to changes in the neutral buoyancy level. The features of near-field plume dynamics were calculated with the use of a separate near-field numerical model, using information on the vertical density distribution previously calculated using a 3D numerical model. The results of the numerical simulations and statistical analysis of the wind data indicate a very low probability of complete water column homogenization and consequent effluent plume rise to the sea surface under the influence of the bora wind during the peak tourist season (May-September).

  References ref

Akar P. J., Jirka G.H., 1994a, Buoyant spreading processes in pollutant transport and mixing. Part 1: Lateral spreading with ambient current advection, J. Hydraul. Res., 32 (6), 427-439. http://dx.doi.org/10.1080/00221689409498692

Akar P. J., Jirka G.H., 1994b, Buoyant spreading processes in pollutant transport and mixing. Part 2: Upstream spreading in weak ambient current, J. Hydraul. Res., 33 (1), 24-37.

Andročec V., Beg-Paklar G., Dadić V., Djakovac T., Grbec B., Janeković I., Krstulovi N., Kušpilić G., Leder N., Lončar G., Marasović I., Precali R., Šolić M., 2009, The Adriatic Sea Monitoring Program - final report, MCEPP, Zagreb, Croatia.

Artegiani A., Bregant D., Paschini E., Pinardi N., Raicich F., Russo A., 1997, The Adriatic Sea general circulation. Part I: Air-sea interactions and water mass structure, J. Phys. Oceanogr., 27 (8), 1492-1514. http://dx.doi.org/10.1175/1520-0485(1997)027<1492:TASGCP>2.0.CO;2

Beg Paklar G., 2000, Influence of the bora wind on the northern Adriatic -simulations with the meteorological and oceanographic models, Ph.D. thesis, Fac. Sci., Univ. Zagreb, 210 pp.

Bleninger T., 2007, Coupled 3D hydrodynamic models for submarine outfalls: Environmental hydraulic design and control of multiport diffusers, Diss. Inst. Hydromech., Univ. Karlsruhe, Heft 2006/3, 219 pp.

Cushman-Roisin B., Gualtieri C., Mihailović D.T., 2008, Environmental fluid mechanics: Current issues and future outlook, [in:] Fluid mechanics of environmental interfaces, C. Gualtieri & D.T. Mihailović (eds.), Taylor & Francis, London, 1-13.

Featherstone R.E., 1984, Mathematical models of the discharge of wastewater into a marine environment, [in:] An introductory to water quality modelling, A. James (ed.), 1st edn., Wiley, Chichester, 150-162.

Fischer H.B., List E. J., Koh R.C.Y., Imberger J., Brooks N.H., 1979, Mixing in inland and coastal waters, Acad. Press, New York, 483 pp.

Hydroexpert, 1993, Analysis of sea currents and temperatures at the location of ADRIA LNG terminal at Omišalj, Fac. Civil Eng., Univ. Zagreb, Croatia.

Janeković I., Bobanović J., Kuzmić M., 2003, The Adriatic Sea M2 and K1 tides by 3D model and data assimilation, Geophys. Res. Abstr., 9, 203-217.

Janeković I., Kuzmić M., 2005, Numerical simulation of the Adriatic Sea principal tidal constituents, Ann. Geophys., 23 (10), 3207-3218. http://dx.doi.org/10.5194/angeo-23-3207-2005

Lončar G., 2010, Comparing the models of effluent spreading in the near field zone resulting from operational coastal public sewerage system submarine outfalls, Croat. Waters, 17 (69/70), 229-240.

Penzar B., Makjanić B., 1978, Uvod u opću klimatologiju, PMF - Sveučilište u Zagrebu, Zagreb, 205 pp.

Penzar B., Penzar I., Orlić M., 2001, Vrijeme i klima hrvatskog Jadrana, Nakladnakuća Dr. Feletar, Zagreb, 258 pp.

Pun K. L., DavidsonM. J., 1999, On the behaviour of advected plumes and thermals, J. Hydraul. Res., 37 (4), 296-311. http://dx.doi.org/10.1080/00221686.1999.9628266

Rodi W., 1987, Examples of calculation methods for flow and mixing in stratified fluids, J. Geophys. Res., 92 (C5), 5305-5328. http://dx.doi.org/10.1029/JC092iC05p05305

Roe P.L., 1981, Approximate Riemann solvers, parameters vectors and difference schemes, J. Comput. Phys., 43 (2), 357-372. http://dx.doi.org/10.1016/0021-9991(81)90128-5

Sleigh D.H., Gaskel P.H., 1998, An unstructured finite volume algorithm for predicting flow in rivers and estuaries, Comput. Fluids, 27 (4), 479-508. http://dx.doi.org/10.1016/S0045-7930(97)00071-6

Smagorinsky J., 1993, Some historical remarks on the use of nonlinear viscosities, [in:] Large eddy simulations of complex engineering and geophysical flows, B. Galperin & S. Orszag (eds.), Cambridge Univ. Press, Cambrige, 1-34.

Song Y., Haidvogel D., 1994, A semi-implicit ocean circulation model using a generalised topography-following coordinate system, J. Comput. Phys., 115 (1), 228-244. http://dx.doi.org/10.1006/jcph.1994.1189

Supić N., Vilibić I., 2006, Dense water characteristics in the northern Adriatic in the 1967-2000 interval with respect to surface fluxes and Po river discharge rates, Estuar. Coast. Shelf Sci., 66 (3-4), 580-593. http://dx.doi.org/10.1016/j.ecss.2005.11.003

full, complete article (PDF - compatibile with Acrobat 4.0), 3.12 MB

Morphology and distribution of phage-like particles in a eutrophic boreal lagoon
Oceanologia 2011, 53(2), 587-603

Sigitas Sulcius1,*, Juozas Staniulis2, Ričardas Paškauskas1,2
1Coastal Research and Planning Institute, Klaipeda University,
H. Manto 84, Klaipeda 92294, Lithuania;
e-mail: sigas@corpi.ku.lt
*corresponding author
2Institute of Botany, Nature Research Centre,
Zaliuju ezeru 49, Vilnius 2021, Lithuania

keywords: virus-like particles, electron microscopy, Curonian Lagoon

Received 9 February 2011, revised 25 March 2011, accepted 28 April 2011.

This study was funded by a grant (No. T-66/05) from the Lithuanian State Sciences and Studies Foundation.


In this paper we present the results of direct observations of the morphology and size of phage-like particles by means of transmission electron microscopy (TEM) as a function of their spatial distribution in the shallow highly productive Curonian Lagoon of the Baltic Sea. In total, 26 morphologically different forms of phage-like particles were found. Different trends of distribution in terms of abundance, size and shape of virus-like particles were demonstrated. The total abundance of viruses varied from 1.91×107 ml-1 to 5.06×107 ml-1. The virus to bacteria ratio (VBR) changed from 15.6 to 49 and was negatively associated with total bacterial numbers (r = -0.60; p < 0.05). The phages of family Myoviridae were the most diverse and were dominant at all stations.

  References ref

Ackermann H.W., 2001, Frequency of morphological phage descriptions in the year 2000, Arch. Virol., 146 (5), 843-857. http://dx.doi.org/10.1007/s007050170120   PMid:11448025

Ackermann H.W., Eisenstark A., 1974, The present state of phage taxonomy, Intervirology, 3 (4), 201-219. http://dx.doi.org/10.1159/000149758   PMid:4461697

Auguet J.C., Montanie H., Lebaron P., 2006, Structure of virioplankton in the Charente Estuary (France): transmission electron microscopy versus pulsed field gel electrophoresis, Microb. Ecol., 51 (2), 197-208. http://dx.doi.org/10.1007/s00248-005-0043-0   PMid:16463133

Boehme J., Frischer M.E., Jiang S.C., Kellogg C.A., Pichard S., Rose J.B., Steinway C., Paul J.H., 1993, Viruses, bacterioplankton, and phytoplankton in the southeastern Gulf of Mexico: distribution and contribution to oceanic DNA pools, Mar. Ecol.-Prog. Ser., 97, 1-20. http://dx.doi.org/10.3354/meps097001

Borsheim K.Y., Bratbak G., Heldal H., 1990, Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy, Appl. Environ. Microb., 56 (2), 352-356.   PMid:2306088   PMCid:183343

Bradley D.E., 1967, Ultrastructure of bacteriophages and bacteriocins, Bacteriol. Rev., 31 (4), 230-314.   PMid:4865539   PMCid:408286

Bratbak G., Heldal M., 1995, Viruses - the new players in the game; their ecological role and could they mediate genetic exchange by transduction?, [in:] Molecular ecology of aquatic microbes, I. Joint (ed.), Vol. G38, NATO ASI Ser., Springer-Verlag, Berlin, 415 pp.

Bratbak G., Heldal M., Norland S., Thingstad T. F., 1990, Viruses as partners in spring bloom microbial trophodynamics, Appl. Environ. Microb., 56 (5), 1400-1405.   PMid:16348190   PMCid:184418

Brussaard C.P.D., Marie D., Bratbak G., 2000, Flow cytometric detection of viruses, J. Virol. Methods, 85 (1-2), 175-182. http://dx.doi.org/10.1016/S0166-0934(99)00167-6

Büchen-Osmond C., 2003, Taxonomy and classification of viruses, [in:] Manual of clinical microbiology, P.R. Murray (ed.), Vol. 2, 8th edn., ASM Press, Washington, DC, 1217-1226.

Carsten J., Helminen U., Heiskanen A. S., 2004, Typology as a structuring mechanism for phytoplankton composition in the Baltic Sea, Coastline Rep. 4, 55-64.

Castberg T., Thyrhau R., Larsen A., Sandaa R.A., Heldal M., Van Etten J. L., Bratbak G., 2002, Isolation and characterization of a virus that infects Emiliania huxleyi (Haptophyta), J. Phycol., 38 (4), 767-774. http://dx.doi.org/10.1046/j.1529-8817.2002.02015.x

Cochlan W.P., Wikner J., Steward G. F., Smith D.C., Azam F., 1993, Spatial distribution of viruses, bacteria and chlorophyll a in neritic, oceanic and estuarine environments, Mar. Ecol.-Prog. Ser., 92, 77-87. http://dx.doi.org/10.3354/meps092077

Drucker V.V., Dutova N.V., 2006, Study of the morphological diversity of bacteriophages in Lake Baikal, Dokl. Biol. Sci., 410 (1), 421-423. http://dx.doi.org/10.1134/S001249660605022X   PMid:17278853

Ferrarin C., Razinkovas A., Gulbinskas S., Umgiesser G., Bliūdžiutė L., 2008, Hydraulic regime-based zonation scheme of the Curonian Lagoon, Hydrobiologia, 611 (1), 133-146. http://dx.doi.org/10.1007/s10750-008-9454-5

Gasiūnaitė Z.R., 2000, Coupling of the limnetic and brackishwater plankton crustaceans in the Curonian Lagoon (Baltic Sea), Int. Rev. Hydrobiol., 85 (5-6), 653-661. http://dx.doi.org/10.1002/1522-2632(200011)85:5/6<653::AID-IROH653>3.0.CO;2-W

Gasiūnaitė Z.R., Daunys D., Olenin S., Razinkovas A., 2008, The Curonian Lagoon, [in:] Ecology of Baltic coastal waters, U. Schiewer (ed.), Ecol. Stud. 197, Springer-Verlag, Berlin, Heidelberg, 197-216.

Gonzalez J.M., Suttle C.A., 1993, Grazing by marine nanoflagellate on viruses and viral-sized particles: Ingestion and digestion, Mar. Ecol.-Prog. Ser., 94, 1-10. http://dx.doi.org/10.3354/meps094001

Granhall U., 1972, Aphanizomenon flos-aquae: infection by Cyanophages, Physiol. Plantarum, 26 (3), 332-337. http://dx.doi.org/10.1111/j.1399-3054.1972.tb01119.x

Hara S., Koike I., Terauchi K., Kamiya H., Tanoue E., 1996, Abundance of viruses in deep oceanic waters, Mar. Ecol.-Prog. Ser., 145, 269-277. http://dx.doi.org/10.3354/meps145269

Hara S., Terauchi K., Koike I., 1991, Abundance of viruses in marine waters: assessment by epifluorescence and transmission electron microscopy, Appl. Environ. Microb., 57 (9), 2731-2734.
  PMid:16348556   PMCid:183648

Holmfeldt K., Middelboe M., Nybroe O., Riemann L., 2007, Large variability in host strain susceptibility and phage host-range govern interactions between lytic marine phages and their flavobacterium hosts, Appl. Environ.Microb., 73 (21), 6730-6739. http://dx.doi.org/10.1128/AEM.01399-07   PMid:17766444   PMCid:2074958

Jacquet S., Heldal M., Iglesias-Rodriguez D., Larsen A., Wilson W., Bratbak G., 2002, Flow cytometric analysis of an Emiliania huxleyi bloom terminated by viral infection, Aquat. Microb. Ecol., 27 (2), 111-124. http://dx.doi.org/10.3354/ame027111

Jeffrey S.W., Humphrey G. F., 1975, New spectrophotometric equatins for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton, Biochem. Physiol. Pfl., 167, 191-194.

Jenkins C.A., Hayes P.K., 2006, Diversity of cyanophages infecting the heterocystous filamentous cyanobacterium Nodularia isolated from the brackish Baltic Sea, J. Mar. Biol. Assoc. U.K., 86 (3), 613-621. http://dx.doi.org/10.1017/S0025315406013439

Lu J., Chen F., Hodson R.E., 2001, Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus sp. in river estuaries, Appl. Environ. Microb., 67 (7), 3285-3290. http://dx.doi.org/10.1128/AEM.67.7.3285-3290.2001   PMid:11425754   PMCid:93013

Lymer D., Logue J.B., Brussaard C.P.D., Baudoux A., Vrede K., Lindström E., 2008, Temporal variation in freshwater viral and bacterial community composition, Freshwater Biol., 53 (6), 1163-1175. http://dx.doi.org/10.1111/j.1365-2427.2007.01882.x

Maranger R., Bird D. F., 1995, Viral abundance in aquatic systems: a comparison between marine and fresh waters, Mar. Ecol.-Prog. Ser., 121, 217-226. http://dx.doi.org/10.3354/meps121217

Mathias C.B., Kirschner A.K.T., Velimirov B., 1995, Seasonal variations of virus abundance and viral control of the bacterial production in a backwater system of the Danube River, Appl. Environ. Microb., 61 (10), 3734-3740.   PMid:16535153   PMCid:1388715

Middelboe M., Jacquet S., Weinbauer M., 2008, Viruses in freshwater ecosystems: an introduction to the exploration of viruses in new aquatic habitats, Freshwater Biol., 53 (6), 1069-1075. http://dx.doi.org/10.1111/j.1365-2427.2008.02014.x

Muniesa M., Lucena F., Jofre J., 1999, Study of the potential relationship between the morphology of infectious somatic coliphages and their persistence in the environment, J. Appl. Microbiol., 87 (3), 402-409. http://dx.doi.org/10.1046/j.1365-2672.1999.00833.x   PMid:10540243

Murray A.G., Jackson G.A., 1992, Viral dynamics: a model of the effects of size, shape, motion and abundance of single-celled planktonic organisms and other particles, Mar. Ecol.-Prog. Ser., 89, 103-116. http://dx.doi.org/10.3354/meps089103

Noble R.T., Fuhrman J.A., 1998, Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria, Aquat. Microb. Ecol., 14 (2), 113-118. http://dx.doi.org/10.3354/ame014113

Olenina I., 2006, Phytoplankton, The Baltic Sea and the Curonian Lagoon Environmental Monitoring Annual Report, Klaipeda.

Pearce D.A., Wilson W.H., 2003, Viruses in Antarctic ecosystems, Antarct. Sci., 15 (3), 319-331. http://dx.doi.org/10.1017/S0954102003001330

Pilkaitytė R., 2007, Spring-summer transition in the Curonian Lagoon (SE Baltic Sea) phytoplankton community, Transit. Waters Bull., 1 (1), 39-47.

Pilkaitytė R., Razinkovas A., 2006, Factors controlling phytoplankton blooms in a temperate estuary: nutrient limitation and physical forcing, Hydrobiologia, 555 (1), 41-48. http://dx.doi.org/10.1007/s10750-005-1104-6

Pilkaitytė R., Razinkovas A., 2007, Seasonal changes in phytoplankton composition and nutrient limitation in a shallow Baltic lagoon, Boreal Environ. Res., 12 (5), 551-559.

Proctor L.M., Fuhrman J.A., 1990, Viral mortality of marine bacteria and cyanobacteria, Nature, 343, 60-62. http://dx.doi.org/10.1038/343060a0

Pustelnikovas O., 1998, Geochemistry of sediments of the Curonian Lagoon (Baltic Sea), Mokslo Aidai, Vilnius, 236 pp.

Safferman R. S., Cannon R.E., Desjardins P.R., Gromov B.V., Haselkorn R., Sherman L.A., Shilo M., 1983, Classification and nomenclature of viruses of cyanobacteria, Intervirology, 19 (2), 61-66. http://dx.doi.org/10.1159/000149339   PMid:6408019

Sommaruga R., Krössbacher M., Salvenmoser W., Catalan J., Psenner R., 1995. Presence of large virus-like particles in a eutrophic reservoir, Aquat. Microb. Ecol., 9 (3), 305-308. http://dx.doi.org/10.3354/ame009305

Stoecker D.K., Capuzzo J.M., 1990, Predation on Protozoa: its importance to zooplankton, J. Plankton Res., 12 (5), 891-908. http://dx.doi.org/10.1093/plankt/12.5.891

Suttle C.A., Chan A.M., 1994, Dynamics and distribution of cyanophages and their effect on marine Synechococcus spp., Appl. Environ.Microb., 60 (9), 3167-3174.   PMid:16349372   PMCid:201785

Thingstad T. F., Lignell R., 1997, Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand, Aquat. Microb. Ecol., 13 (1), 19-27. http://dx.doi.org/10.3354/ame013019

Weinbauer M.G., 2004, Ecology of prokaryotic viruses, FEMS Microbiol. Rev., 28 (2), 127-181. http://dx.doi.org/10.1016/j.femsre.2003.08.001   PMid:15109783

Weinbauer M.G., Höfle M.G., 1998, Size-specific mortality of lake bacterioplankton by natural virus communities, Aquat. Microb. Ecol., 15 (2), 103-113. http://dx.doi.org/10.3354/ame015103

Weinbauer M.G., Peduzzi P., 1994, Frequency, size and distribution of bacteriophages in different marine bacterial morphotypes, Mar. Ecol.-Prog. Ser., 108, 11-20. http://dx.doi.org/10.3354/meps108011

Wichels A., Biel S. S., Gelderblom H.R., Brinkhoff T., Muyzer G., Schutt C., 1998, Bacteriophage diversity in the North Sea, Appl. Environ. Microb., 64 (11), 4128-4133.   PMid:9797256   PMCid:106618

Wilcox R.M., Fuhrman J.A., 1994, Bacterial viruses in coastal sea-water: lytic rather than lysogenic production, Mar. Ecol.-Prog. Ser., 114, 35-45. http://dx.doi.org/10.3354/meps114035

Wommack K. E., Colwell R.R., 2000, Virioplankton: viruses in aquatic ecosystems, Microbiol. Mol. Biol. R., 64 (1), 69-114. http://dx.doi.org/10.1128/MMBR.64.1.69-114.2000   PMid:10704475   PMCid:98987

Wommack K.E., Hill R.T., Kessel M., Russek-Cohen E., Colwell R.R., 1992, Distribution of viruses in the Chesapeake Bay, Appl. Environ. Microb., 58 (9), 2965-2970.   PMid:1444409   PMCid:183034

full, complete article (PDF - compatibile with Acrobat 4.0), 593 KB

Demonstration of a new indicator for studying upwelling in the northern South China Sea
Oceanologia 2011, 53(2), 605-622

Li Lin1,2, You-Shao Wang1,2,3,*, Cui-Ci Sun1,2, Nan Li1,2, Haili Wang3, B. Greg Mitchell3, Mei-Lin Wu1,2, Hui Song1,2, Jing-Feng Wu4
1State Key Laboratory of Oceanography in the Tropics, South China Sea Institute of Oceanology,
Chinese Academy of Sciences, Guangzhou 510301, China;
e-mail: yswang@scsio.ac.cn
*corresponding author
2Marine Biology Research Station at Daya Bay, Chinese Academy of Sciences,
Shenzhen 518121, China
3Scripps Institution of Oceanography, University of California,
San Diego, CA 92093-0218, USA
4Rosenstiel School of Marine and Atmospheric Science, University of Miami,
4600 Rickenbacker Causeway, Miami, FL 33149, USA

keywords: multivariate statistical analysis, remote sensing, upwelling, silicate, South China Sea

Received 29 September 2010, revised 24 February 2011, accepted 25 March 2011.

This research was supported by the projects of knowledge innovation program of the Chinese Academy of Sciences (No. KZCX2-YW-Q07-02, No. KSCX2-SW-132 and No. KSCX2-YW-Z-1024), the National Natural Science Foundation of China (41076070) and the National 908 project (No. 908-02-04-04).


In order to demonstrate that silicate can be used as an indicator to study upwelling in the northern South China Sea, hierarchical cluster analysis (CA) and principle component analysis (PCA) were applied to analyse the metrics of the data consisting of 14 physical-chemical-biological parameters at 32 stations. CA categorized the 32 stations into two groups (low and high nutrient groups). PCA was applied to identify five Principal Components (PCs) explaining 78.65% of the total variance of the original data. PCA found important factors that can describe nutrient sources in estuarine, upwelling, and non-upwelling areas. PC4, representing the upwelling source, is strongly correlated to silicate (SiO3-Si). The spatial distribution of silicate from the surface to 200 m depth clearly showed the upwelling regions, which is also supported by satellite observations of sea surface temperature.

  References ref

Chau K.W., Muttil N., 2007, Data mining and multivariate statistical analysis for ecological system in coastal waters, J. Hydroinform., 9 (4), 305-317. http://dx.doi.org/10.2166/hydro.2007.003

Chen C.C., Shiah F.K., Chung S.W., Liu, K.K., 2006, Winter phytoplankton blooms in the shallow mixed layer of the South China Sea enhanced by upwelling, J. Marine Syst., 59 (1-2), 97-110. http://dx.doi.org/10.1016/j.jmarsys.2005.09.002

Chen C.-T.A., Hsing L.-Y., Liu, C.-L., Wang S.-L., 2004, Degree of nutrient consumption of upwelled water in the Taiwan Strait based on dissolved organic phosphorus or nitrogen, Mar. Chem., 87 (3-4), 73-86. http://dx.doi.org/10.1016/j.marchem.2004.01.006

Chen C.-T.A., Huang, M.-H., 1996, A mid-depth front separating the South China sea water and the Philippine sea water, J. Oceanogr., 52 (1), 17-25. http://dx.doi.org/10.1007/BF02236530

Chen C.-T.A., Wang S.-L., Wang B.-J., Pai S.-C., 2001, Nutrient budgets for the South China Sea basin, Mar. Chem., 75 (4), 281-300. http://dx.doi.org/10.1016/S0304-4203(01)00041-X

Chen S.T., Ruan W.Q., 1991, Summer upwelling and saturation dissolved oxygen distribution in the Central and Northern Taiwan Strait, Chinese J. Oceanogr. Taiwan Strait, 10 (1), 16-24, (in Chinese).

Di Lorenzo E., 2003, Seasonal dynamics of the surface circulation in the Southern California Current System, Deep-Sea Res. Pt. II, 50 (14-16), 2371-2388. http://dx.doi.org/10.1016/S0967-0645(03)00125-5

Dugdale R.C., Wilkerson F.P., Minas H. J., 1995, The role of a silicate pump in driving new production, Deep-Sea Res. Pt. I, 42 (5), 697-719. http://dx.doi.org/10.1016/0967-0637(95)00015-X

Han W.Y., 1998, Marine chemistry in the South China Sea, Science Press, Beijing, 298 pp., (in Chinese).

Helena B., Pardo R., Vega M., Barrado E., Fernandez J.M., Fernandez L., 2000, Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis, Water Res., 34 (3), 807-816. http://dx.doi.org/10.1016/S0043-1354(99)00225-0

Hong Q.M., Li L., 1991, A study of upwelling over continental shelf off eastern Guangdong, Chinese J. Oceanogr. Taiwan Strait, 10 (3), 271-277, (in Chinese).

Hu J.Y., Liu M. S., 1992, The current structure during summer in southern Taiwan Strait, Chinese J. Tropical Oceanogr., 11 (4), 42-47, (in Chinese).

Huang Q. Z., Wang W.Z., Li Y.S., Li C.W., Mao M., 1992, General situation of the current and eddy in the South China Sea, Chinese J. Adv. Earth Sci., 5, 1-9, (in Chinese).

Hutchins D.A., Bruland K.W., 1998, Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime, Nature, 393 (6685), 561-564. http://dx.doi.org/10.1038/31203

Johnson R.A., Wichern D.W., 1992, Applied multivariate statistical analysis, 5th edn., Prentice-hall, New Jersey.

Kowalkowski T., Zbytniewski R., Szpejna J., Buszewski B., 2006, Application of chemometrics in river water classification, Water Res., 40 (4), 744-752. http://dx.doi.org/10.1016/j.watres.2005.11.042   PMid:16442142

Latin J., Carroll D., Green P., 2003, Analyzing multivariate data, Duxbury Press, New York, 580 pp.

Liao G.H., Yuan Y.C., Wang Z.G., 2006, The three dimensional structure of the circulation in the South China Sea during the summer of 1998, Acta Oceanol. Sin., 28 (5), 15-25.

Liu K.-K., Chao S.-Y., Shaw P.-T., Gong G.-C., Chen C.-C., Tang T.Y., 2002, Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study, Deep-Sea Res. Pt. I, 49 (8), 1387-1412. http://dx.doi.org/10.1016/S0967-0637(02)00035-3

McKenna J.E., 2003, An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis, Environ. Modell. Softw., 18 (3), 205-220. http://dx.doi.org/10.1016/S1364-8152(02)00094-4

Mendiguchía C., Moreno C., García-Vargas M., 2007, Evaluation of natural and anthropogenic influences on the Guadalquivir River (Spain) by dissolved heavy metals and nutrients, Chemosphere, 69 (10), 1509-1517. http://dx.doi.org/10.1016/j.chemosphere.2007.05.082   PMid:17631380

Mohtadi M., Hebbeln D., Marchant M., 2005, Upwelling and productivity along the Peru-Chile Current derived from faunal and isotopic compositions of planktic foraminifera in surface sediments, Mar. Geol., 216 (3), 107-126. http://dx.doi.org/10.1016/j.margeo.2005.01.008

Monteiro P.M. S., Largier J.L., 1999, Thermal stratification in Saldanha Bay (South Africa) and subtidal, density-driven exchange with the coastal waters of the Benguela upwelling system, Estuar. Coast. Shelf Sci., 49 (6), 877-890. http://dx.doi.org/10.1006/ecss.1999.0550

Morton B., Blackmore G., 2000, South China Sea, Mar. Pollut. Bull., 42 (12), 1236-1263. doi:10.1016/S0025-326X(01)00240-5

Nixon S., Thomas A., 2001, On the size of the Peru upwelling ecosystem, Deep-Sea Res. Pt. I, 48 (11), 2521-2528. http://dx.doi.org/10.1016/S0967-0637(01)00023-1

Papatheodorou G., Demopoulou G., Lambrakis N., 2006, A long-term study of temporal hydrochemical data in a shallow lake using multivariate statistical techniques, Ecol. Model., 193 (3-4), 759-776. http://dx.doi.org/10.1016/j.ecolmodel.2005.09.004

Pekey H., Karakaş D., Bako˘§glu M., 2004, Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses, Mar. Pollut. Bull., 49, 809-818. http://dx.doi.org/10.1016/j.marpolbul.2004.06.029   PMid:15530525

Pelegrí J. L., Marrero-Díaz A., Ratsimandresy A., Antoranz A., Cisneros-Aguirre J., Gordo C., Grisolía D., Hernández-Guerra A., Láiz I., Martínez A., Parrilla G., Pérez-Rodríguez P., Rodríguez-Santana A., Sangrà P., 2005, Hydrographic cruises off northwest Africa: the Canary Current and the Cape Ghir region, J. Marine Syst., 54 (1-4), 39-63. http://dx.doi.org/10.1016/j.jmarsys.2004.07.001

Prego R., Guzmán-Zu.niga D., Varela M., de Castro M., Gomez-Gesteira M., 2007, Consequences of winter upwelling events on biogeochemical and phytoplankton patterns in a western Galician ria (NW Iberian peninsula), Estuar. Coast. Shelf Sci., 73 (3-4), 409-422. http://dx.doi.org/10.1016/j.ecss.2007.02.004

Sakshaug E., Slagstad D., Holm-Hansen O., 1991, Factors controlling the development of phytoplankton blooms in the Antarctic Ocean - a mathematical model, Mar. Chem., 35 (1-4), 259-271, doi:10.1016/S0304-4203(09)90021-4. http://dx.doi.org/10.1016/S0304-4203(09)90021-4

Shen G.Y., Shi B. Z., 2006, Marine Ecology, Sci. Press, Beijing, (in Chinese).

Shrestha S., Kazama F., 2007, Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan, Environ. Modell. Softw., 22 (4), 464-475. http://dx.doi.org/10.1016/j.envsoft.2006.02.001

Singh K.P., Malik A., Mohan D., Sinha S., 2004, Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) - a case study, Water Res., 38 (18), 3980-3992. http://dx.doi.org/10.1016/j.watres.2004.06.011   PMid:15380988

Soong Y. S., Hu J.-H., Ho C.-R., Niiler P.P., 1995, Cold-core eddy detected in South China Sea, EOS Trans. AGU, 76 (35), 345-345. http://dx.doi.org/10.1029/95EO00209

Su J.L., Wang W., 1990, On the sources of Taiwan Warm current from South China Sea, Chinese J. Donghai Mar. Sci., 8 (3), 1-9, (in Chinese).

Suikkanen S., Laamanen M., Huttunen M., 2007, Long-term changes in summer phytoplankton communities of the open northern Baltic Sea, Estuar. Coast. Shelf Sci., 71 (3-4), 580-592, doi:10.1016/j.ecss.2006.09.004. http://dx.doi.org/10.1016/j.ecss.2006.09.004

Tang D. L., Kester D.R., Ni I.-H., Kawamura H., Hong H.-S., 2002, Upwelling in the Taiwan Strait during the summer monsoon detected by satellite and shipboard measurements, Remote Sens. Environ., 83 (3), 457-471. http://dx.doi.org/10.1016/S0034-4257(02)00062-7

Tang D. L., Ni I.-H., Kester D.R., Müller-Karger F.E., 1999, Remote sensing observations of winter phytoplankton blooms southwest of the Luzon Strait in the South China Sea, Mar. Ecol.-Prog. Ser., 191, 43-51. http://dx.doi.org/10.3354/meps191043

Traganza E.D., Nestor D.A., McDonald A.K., 1980, Satellite observations of a nutrient upwelling off the coast of California, J. Geophys. Res., 85 (C7), 4101-4106. http://dx.doi.org/10.1029/JC085iC07p04101

Vega M., Pardo R., Barrado E., Deban L., 1998, Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis, Water Res., 32 (12), 3581-3592. http://dx.doi.org/10.1016/S0043-1354(98)00138-9

Wang Y. S., Lou Z.P., Sun C.C., Sun S., 2008, Ecological environment changes in Daya Bay, China, from 1982 to 2004, Mar. Pollut. Bull., 56 (11), 1871-1879, doi:10.1016/j.marpolbul.2008.07.017. http://dx.doi.org/10.1016/j.marpolbul.2008.07.017   PMid:18783802

Wang Y.-S., Lou Z.-P., Sun C.-C., Wu M.-L., Han S.-H., 2006, Multivariate statistical analysis of water quality and phytoplankton characteristics in Daya Bay, China, from 1999 to 2002, Oceanologia, 48 (2), 193-211.

Wang Y.-S., Sun C.-C., Lou Z.-P., Wang H., Mitchell B.G., Wu M.-L., Sun Z.-X., 2011, Identification of water quality and benthos characteristics in Daya Bay, China, from 2001 to 2004, Oceanol. Hydrobiol. St., 40 (1), 82-95. http://dx.doi.org/10.2478/s13545-011-0009-4

Woodson C.B., Eerkes-Medrano D. I., Flores-Morales A., Foley M.M., Henkel S.K., Hessing-Lewis M., Jacinto D., Needles L., Nishizaki M.T., O'Leary J., Ostrander C.E., Pespeni M., Schwager K.B., Tyburczy J.A., Weersing K.A., Kirincich A.R., Barth J.A., McManus M.A., Washburn L., 2007, Local diurnal upwelling driven by sea breezes in northern Monterey Bay, Cont. Shelf Research, 27 (18), 2289-2302. http://dx.doi.org/10.1016/j.csr.2007.05.014

Wu L.X., 1991, Physical chemical characteristics of seawater in the cold eddy southwest of Dongsha Islands, Chinese J. Tropical Oceanol., 10 (4), 37-43, (in Chinese).

Wu M.-L., Wang Y.-S., 2007, Using chemometrics to evaluate anthropogenic effects in Daya Bay, China, Estuar. Coast. Shelf Sci., 72 (4), 732-742, doi:10.1016/j.ecss.2006.11.032. http://dx.doi.org/10.1016/j.ecss.2006.11.032

Wu M.-L., Wang Y.-S., Sun C.-C., Wang H., Lou Z.-P., Dong J.-D., 2009a, Using chemometrics to identify water quality in Daya Bay, China, Oceanologia, 51 (2), 217-232.

Wu M.-L., Wang Y.-S., Sun C.-C., Wang H., Dong J.-D., Han S.-H., 2009b, Identification of anthropogenic effects and seasonality on water quality in Daya Bay, South China Sea, J. Environ. Manage., 90 (10), 3082-3090. http://dx.doi.org/10.1016/j.jenvman.2009.04.017   PMid:19520489

Wu R. S., Li L., 2003, Summarization of study on upwelling system in the South China Sea, Chinese J. Oceanogr. Taiwan Strait, 22 (2), 269-277, (in Chinese).

Xu C., Zhu Z.H., 1999, pH, alkalinity and dissolved oxygen, [in:] Researches on Ecosystem of Daya Bay, Q. Jin (ed.), China Meteorol. Press, Beijing, China, 13-24, (in Chinese).

Yang D. F., Gao Z.H., Sun P.Y., 2006, Mechanism of nutrient silicon and water temperature influences on phytoplankton growth, Chinese J. Mar. Sci. Bull., 8, 49-59, (in Chinese).

Zhou F., Guo H.C., Liu Y., Jiang Y.M., 2007, Chemometrics data analysis of marine water quality and source identification in Southern Hong Kong, Mar. Pollut. Bull., 54 (6), 745-756. http://dx.doi.org/10.1016/j.marpolbul.2007.01.006

full, complete article (PDF - compatibile with Acrobat 4.0), 1.62 MB

Dependence between temperature and clearance rate of Balanion comatum Wulff
Oceanologia 2011, 53(2), 623-629

Krzysztof Rychert
Pomeranian University in Słupsk,
Arciszewskiego 22B, Słupsk 76-200, Poland;
e-mail: krychert@wp.pl

keywords: Balanion comatum, clearance rate, grazing

Received 13 December 2010, revised 2 April 2011, accepted 11 May 2011.

This study was supported by the Polish Ministry of Science and Higher Education (grant N304 120434).


The dependence between temperature and clearance rate of the ciliate Balanion comatum Wulff 1919 was assessed in the coastal zone of the southern Baltic Sea. Five in situ experiments were carried out with the use of wheat starch as a surrogate of food particles. The clearance rate rose from 1.4 to 7.0 µl cell-1 h-1 with a temperature rise from 8 to 19°C. B. comatum preferred particles of size 1.9-4.4 µm, and the clearance rates calculated for the preferred particles were consistently higher than those measured for the whole range of particles ingested (Wilcoxon's signed rank test, p = 0.04). The exponential dependence between temperature and clearance rates for preferred particles was statistically significant (R2 = 0.86, p = 0.02) and enabled the Q10 coefficient to be calculated. This amounted to 2.9 and lay within the range of typical values. The linear dependence (also drawn for preferred particles) demonstrated a higher significance (R2 = 0.91, p = 0.02), indicating the linear dynamics of the process.

  References ref

Brush M. J., Brawley J.W., Nixon S.W., Kremer J.N., 2002, Modeling phytoplankton production: problems with the Eppley curve and an empirical alternative, Mar. Ecol.-Prog. Ser., 238, 31-45. http://dx.doi.org/10.3354/meps238031

Caron D.A., 1983, Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures, Appl. Environ. Microb., 46 (2), 491-498.   PMid:16346372   PMCid:239428

Dolan J.R., Coats D.W., 1991, Preliminary prey digestion in a predacious estuarine ciliate and the use of digestion data to estimate ingestion, Limnol. Oceanogr., 36 (3), 558-565. http://dx.doi.org/10.4319/lo.1991.36.3.0558

Heinbokel J. F., 1978, Studies on the functional role of tintinnids in the Southern California Bight. II. Grazing rates of field populations, Mar. Biol., 47 (2), 191-197. http://dx.doi.org/10.1007/BF00395639

Holling C. S., 1959, Some characteristics of simple types of predation and parasitism, Can. Entomol., 91, 385-398. http://dx.doi.org/10.4039/Ent91385-7

Jakobsen H.H., Hansen P. J., 1997, Prey size selection, grazing and growth response of the small heterotrophic dinoflagellate Gymnodinium sp. and the ciliate Balanion comatum - a comparative study, Mar. Ecol.-Prog. Ser., 158, 75-86. http://dx.doi.org/10.3354/meps158075

Jakobsen H.H., Montagnes D. J. S., 1999, A redescription of Balanion comatum Wulff, 1919 (Prorodontida, Ciliophora), with notes on its cultivation and behaviour, J. Eukaryot. Microbiol., 46 (2), 198-205. http://dx.doi.org/10.1111/j.1550-7408.1999.tb04604.x

Jones S.W., Goulder R., 1973, Swimming speed of some ciliated Protozoa from an eutrophic pond, Naturalist, 924, 33-35.

Kenter U., Zimmermann U., Müller H., 1996, Grazing rates of the freshwater ciliate Balanion planctonicum determined by flow cytometry, J. Plankton Res., 18 (6), 1047-1053. http://dx.doi.org/10.1093/plankt/18.6.1047

Kivi K., Setälä O., 1995, Simultaneous measurement of food particle selection and clearance rates of planktonic oligotrich ciliates (Ciliophora: Oligotrichida), Mar. Ecol.-Prog. Ser., 119, 125-137. http://dx.doi.org/10.3354/meps119125

Montagnes D. J. S., Kimmance S.A., Atkinson D., 2003, Using Q10 : Can growth rates increase linearly with temperature?, Aquat. Microb. Ecol., 32, 307-313. http://dx.doi.org/10.3354/ame032307

Müller H., Geller W., 1993, Maximum growth rates of aquatic ciliated protozoa: the dependence on body size and temperature reconsidered, Arch. Hydrobiol., 126, 315-327.

Müller H., Schlegel A., 1999, Responses of three freshwater planktonic ciliates with different feeding modes to cryptophyte and diatom prey, Aquat. Microb. Ecol., 17, 49-60. http://dx.doi.org/10.3354/ame017049

Rassoulzadegan F., 1982, Dependence of grazing rate, gross growth efficiency and food size range on temperature in a pelagic oligotrichous ciliate Lohmanniella spiralis Legg., fed on naturally occurring particulate matter, Ann. Inst. Oc’eanogr. Paris, 58, 177-184.

Rychert K., 2008, Particle size selectivity of two marine ciliates - Balanion comatum Wulff and Strombidium sp., Pol. J. Ecol., 56, 251-257.

Setälä O., Kivi K., 2003, Planktonic ciliates in the Baltic Sea in summer: distribution, species association and estimated grazing impact, Aquat. Microb. Ecol., 32, 287-297. http://dx.doi.org/10.3354/ame032287

Utermöhl H., 1958, Zur Vervollkommnung der quantitativen Phytoplankton-Methodik, Mitt. Int. Ver. Limnol., 9, 1-38.

Weisse T., 1999, The microbial loop in the Red Sea: dynamics of pelagic bacteria and heterotrophic nanoflagellates, Mar. Ecol.-Prog. Ser., 55, 241-250. http://dx.doi.org/10.3354/meps055241

Witek M., 1998, Annual changes of abundance and biomass of planktonic ciliates in the Gdańsk Basin, Southern Baltic, Int. Rev. Hydrobiol., 83 (2), 163-182. http://dx.doi.org/10.1002/iroh.19980830207

full, complete article (PDF - compatibile with Acrobat 4.0), 124 KB

Bioaccumulation of gamma emitting radionuclides in red algae from the Baltic Sea under laboratory conditions
Oceanologia 2011, 53(2), 631-650

Tamara Zalewska*, Michał Saniewski
Maritime Branch, Institute of Meteorology and Water Management,
Waszyngtona 42, Gdynia 81-342, Poland;
e-mail: tamara.zalewska@imgw.pl
*corresponding author

keywords: radionuclides, marine macroalgae, bioaccumulation

Received 12 November 2010, revised 3 March 2011, accepted 4 March 2011.


The bioaccumulation ability of radionuclides 51Cr, 54Mn, 57Co, 60Co, 65Zn, 85Sr, 109Cd, 110mAg, 113Sn, 137Cs and 241Am in two red algae species from the southern Baltic Sea - Polysiphonia fucoides and Furcellaria lumbricalis - was determined under laboratory conditions. P. fucoides demonstrated better bioaccumulative properties towards most of the investigated radionuclides. As a result, P. fucoides can be recommended as a good bioindicator of radioactive environmental pollution. The bioaccumulation of radionuclides in F. lumbricalis was studied during an extended laboratory experiment. The initial extensive uptake of radioisotopes was followed by the rapid removal of cations; in general, concentrations tended to decrease with time. 137Cs displayed a different behaviour, its concentration in the algae increasing over time mainly due to its large ion radius; this is a factor that could be responsible for the stronger mechanical and chemical bonding of Cs+ and that could hamper the movement of ions in both directions.

  References ref

Boisson F., Hutchins D.A., Fowler S.W., Fisher N. S., Teyssié J.-L., 1997, Influence of temperature on the accumulation and retention of 11 radionuclides by the marine alga Fucus vesiculosus, Mar. Pollut. Bull., 35 (7-12), 313-327.

Bojanowski R., 1973, The occurrence of major and minor chemical elements in the more common Baltic seaweed, Oceanologia, 2, 81-152.

Bojanowski R., Pempkowiak J., 1977, Akumulacja 90Sr, 137Cs, 106Ru, 144Ce i 239,240Pu w roślinach wodnych południowego Bałtyku, Oceanologia, 7, 89-104.

Brown J.D., Hosseini A., Borretzen P., Thorring H., 2006, Development of a methodology for assessing the environmental impact of radioactivity in Northern Marine environments, Mar. Pollut. Bull., 52 (10), 1127-1137. http://dx.doi.org/10.1016/j.marpolbul.2006.05.021   PMid:16914169

Burger J., Gochfeld M., Kosson D. S., Powers C.W., Jewett S., Friedlander B., Chenelot H., Volz C.D., Jeitner C., 2006, Radionuclides from Amchitka and Kiska Islands in the Aleutians: establishing a baseline for future biomonitoring, J. Environ. Radioactiv., 91 (12), 27-40. http://dx.doi.org/10.1016/j.jenvrad.2006.08.003   PMid:17029666

Cobbett C. S., 2000, Phytochelatins and their roles in heavy metal detoxification, Plant Physiol., 123 (3), 825-832. http://dx.doi.org/10.1104/pp.123.3.825   PMid:10889232;  PMCid:1539264

Falandysz J., 1994, Mercury concentration in benthic animals and plants inhabiting the Gulf of Gdańsk, Baltic Sea, Sci. Total Environ., 141 (1-3), 45-49. http://dx.doi.org/10.1016/0048-9697(94)90016-7

Filipkowska A., Lubecki L., Szymczak-Żyła M., Kowalewska G., Żbikowski R., Szefer P., 2008, Utilisation of macroalgae from the Sopot beach (Baltic Sea), Oceanologia, 50 (2), 255-273.

Fowler S.W., Teyssié J.-L., Cotret O., Danis B., Rouleau C., Warnau M., 2004, Applied radiotracer techniques for studying pollutant bioaccumulation in selected marine organisms (jellyfish, crabs and sea stars), Nukleonika, 49 (3), 97-100.

HELCOM, 2009, Radioactivity in the Baltic Sea 1999-2006, Baltic Sea Environ. Proc. No. 117, 47-49.

IAEA, 2010, HELCOM-MORS proficiency test determination of radionuclides in fish flesh samples, IAEA/AQ/13, Inter. Atom. Energy Agency, Vienna, 55 pp.

Kleinschmidt R., 2009, Uptake and depuration of 131I by the macroalgae Catenella nipae - Potential use as an environmental monitor for radiopharmaceutical waste, Mar. Pollut. Bull., 58 (10), 1539-1543. http://dx.doi.org/10.1016/j.marpolbul.2009.05.011   PMid:19501848

Kumbland L., Bradshaw C., Gilek M., 2005, Bioaccumulation of 51Cr, 63Ni and 14C in Baltic Sea benthos, Environ. Pollut., 134 (1), 45-56. http://dx.doi.org/10.1016/j.envpol.2004.07.017   PMid:15572223

Kumblad L., Kautsky U., Naslund B., 2006, Transport and fate of radionuclides in aquatic environments - the use of ecosystem modelling for exposure assessments of nuclear facilities, J. Environ. Radioactiv., 87 (1), 107-129. http://dx.doi.org/10.1016/j.jenvrad.2005.11.001   PMid:16406229

Lepicard S., Heling R., Maderich V., 2004, POSEIDON/RODOS models for radiological assessment of marine environment after accidental releases: application to costal areas of the Baltic, Black and North Seas, J. Environ. Radioactiv., 72 (1-2), 153-161. http://dx.doi.org/10.1016/S0265-931X(03)00197-8

Littler M.M., Littler D. S., 1980, The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model, Am. Nat., 116 (1), 25-44. http://dx.doi.org/10.1086/283610

Lobban C. S., Harrison P. J., 1997, Seaweed ecology and physiology, Cambridge Univ. Press, New York, 384 pp.

Malea P., Haritonidis S., 2000, Use of the green alga Ulva rigida C. Agardh as an indicator species to reassess metal pollution in the Thermaikos Gulf, Greece, after 13 years, J. Appl. Phycol., 12 (2), 169-176. http://dx.doi.org/10.1023/A:1008136320459

Radway J.C., Wilde E.W., Whitaker M. J., Weissman J.C., 2001, Screening of algal strains for metal removal capabilities, J. Appl. Phycol., 13 (5), 451-455. http://dx.doi.org/10.1023/A:1011111711821

Skwarzec B., Bojanowski R., 1992, Distribution of plutonium in selected components of the Baltic ecosystem within the Polish economic zone, J. Environ. Radioactiv., 15 (3), 249-263. http://dx.doi.org/10.1016/0265-931X(92)90061-W

Strezov A., Nonova T., 2009, Influence of macroalgal diversity on accumulation of radionuclides and heavy metals in Bulgarian Black Sea ecosystems, J. Environ. Radioactiv., 100 (2), 144-150. http://dx.doi.org/10.1016/j.jenvrad.2008.09.007   PMid:19027206

Szefer P., Skwarzec B., 1988, Concentration of elements in some seaweeds from Jastal region of the southern Baltic and in the Żarnowiec Lake, Oceanologia, 25, 87-98.

Szefer P., 2002a, Metal pollutants and radionuclides in the Baltic Sea - an overview, Oceanologia, 44 (2), 129-178.

Szefer P., 2002b, Metals, metalloids and radionuclides in the Baltic Sea ecosystem, Tr. Met. Env., 5, 752 pp.

Szweykowska A., Szweykowski J., 1979, Botanika, PWN, Warszawa, 344 pp.

Warnau M., Fowler S.W., Teyssié J.-L., 1999, Biokinetics of radiocobalt in the Asteroid Asterias rubens (Echinodermata): sea water and food exposures, Mar. Pollut. Bull., 39 (1-12), 159-164. doi:10.1016/S0025-326X(98)00179-9

Wolterbeek H.Th., Viragh A., Sloof J.E., Bolier G., van der Veer B., de Kok J., 1995, On the uptake and release of zinc (65Zn) in the growing alga Selenastrum capricornutum Printz, Environ. Pollut., 88 (1), 85-90. http://dx.doi.org/10.1016/0269-7491(95)91051-L

full, complete article (PDF - compatibile with Acrobat 4.0), 357 KB


Mytilopsis leucophaeata, an alien dreissenid bivalve discovered in the Gulf of Gdańsk (southern Baltic Sea)
Oceanologia 2011, 53(2), 651-655

Anna Dziubińska
Department of Experimental Ecology of Marine Organisms,
Institute of Oceanography, University of Gdańsk,
al. Marszałka Piłsudskiego 46, Gdynia 81-378, Poland;
e-mail: ocead@ug.edu.pl

keywords: Mytilopsis leucophaeata, Gulf of Gdańsk, fouling communities

Received 25 October 2010, revised 3 March 2011, accepted 11 March 2011.


Mytilopsis leucophaeata (Conrad's false mussel), an invasive American bivalve, has been found for the first time in the Gulf of Gdańsk on hard substrata (PVC panels) deployed at depths from 3.5 to 6.0 m.

  References ref

Boettger C.R., 1933, Über die Ausbreitung der Muschel Congeria cochleata Nyst in europäischen Gewässern und ihr Auftreten im Nordostseekanal, Zool. Anz., 101, 43-48.

Laine A.O., Mattila J., Lehikoinen A., 2006, First record of the brackish water dreissenid bivalve Mytilopsis leucophaeata in the northern Baltic Sea, Aquat. Invasions, 38-41.

MacNeill D.B., 1991, Identification of juvenile Dreissena polymorpha and Mytilopsis leucophaeata, Dreissena polymorpha Inf. Rev., 2 (5), 1-3.

Marelli D.C., Gray S., 1983, Conchological redescriptions of Mytilopsis sallei and Mytilopsis leucophaeata of the brackish Western Atlantic (Bivalvia: Dreissenidae), Veliger, 25, 185-193.

Nowacki J., 1993, Water temperature, salinity and density, [in:] Puck Bay, K. Korzeniewski (ed.), Fun. Roz. UG, Gdańsk, 79-112, (in Polish).

Schlesch H., 1937, Bemerkungen über die Verbreitung der Süsswasser- und Meeresmollusken im östlichen Ostseegebiete, Tartu Loodusuurijate Seltsi Aruanded, 43, 37-64.

Siddall S.E., 1980, Early development of Mytilopsis leucophaeata (Bivalvia, Dreissenacea), Veliger, 22, 378-379.

Verween A., Vincx M., Degraer S., 2006a, Mytilopsis leucophaeata: the brackish water equivalent of Dreissena polymorpha? A review, [in:] The zebra mussel in Europe, G. van der Velde, S. Rajagopal & A. bij de Vaate (eds.), Backhuys Publ., Leiden, 29-44.

Verween A., Vincx M., Degraer S., 2006b, Growth pattern of Mytilopsis leucophaeata, an invasive biofouling bivalve in Europe, Biofouling, 22 (4), 221-231. http://dx.doi.org/10.1080/08927010600816401   PMid:17290866

Verween A., Vincx M., Degraer S., 2007, The effect of temperature and salinity on the survival of Mytilopsis leucophaeata larvae (Mollusca, Bivalvia): The search for environmental limits, J. Exp. Mar. Biol. Ecol., 348, 111-120. http://dx.doi.org/10.1016/j.jembe.2007.04.011

Verween A., Vincx M., Degraer S., 2009, Seasonal variation in gametogenesis and spawning of Mytilopsis leucophaeata, an invasive bivalve in Europe, J. Mollus. Stud., 75 (3), 307-310. http://dx.doi.org/10.1093/mollus/eyp015

full, complete article (PDF - compatibile with Acrobat 4.0), 280 KB