Oceanologia No. 52 (3) / 10




Sea surface temperature retrieval from MSG/SEVIRI data in the Baltic Sea area
Oceanologia 2010, no. 52(3), pp. 331-344

Monika Woźniak, Adam Krężel*
Institute of Oceanography, University of Gdańsk,
al. Marszałka Piłsudskiego 46, PL-81-378 Gdynia, Poland;
e-mail: oceak@univ.gda.pl
*corresponding author

keywords: sea surface temperature, Baltic, Meteosat

Received 12 November 2009, revised 6 July 2010, accepted 30 July 2010.


The aim of the paper was to confirm the proposition that the classical SST algorithms MCSST and NLSST originally prepared for AVHRR data could also be used for Meteosat/SEVIRI data with satisfactory accuracy in the mid-latitude region, where the spatial resolution is about 7x7 km. The research was performed in the southern Baltic Sea (between 13°E 53°N and 21°E 58°N). Data were collected in all the seasons of 2007. The coefficients were found by means of regression analysis. SSTs determined on the basis of AVHRR data were used in the regression analysis instead of in situ data. A set of paired AVHRR and SEVIRI images spaced no more than 8 minutes apart were compared. The results show that the method is capable of producing sea surface temperatures with a statistical error (standard deviation) of 1°C.

  References ref

Borgne P., Legendre G., Marsouin A., 2006, Operational SST retrieval from MSG/SEVIRI data Proc. 2006 EUMETSAT Conf., Helsinki, Finland.

Derrien M., Farki B., Harang L., Le Gléau H., Noyalet A., Pochic D., Sairouni A., 1993, Automatic cloud detection applied to NOAA-11/AVHRR imagery, Remote Sens. Environ., 46 (3), 246-267. http://dx.doi.org/10.1016/0034-4257(93)90046-Z

Derrien M., Le Gléau H., 2005, MSG/SEVIRI cloud mask and type from SAFNWC, Int. J. Remote Sens., 26 (21), 4707-4732. http://dx.doi.org/10.1080/01431160500166128

EUMETSAT, 2007, Cloud detection for MSG - Algorithm theoretical basis, document Vol. 2, EUM/MET/REP/07/0132.

Karlsson K. G., 1996, Cloud classification with the SCANDIA model SMHI, Rep. Meteorol. Climatol. No. 67.

Krężel A., Ostrowski M., Szymelfenig M., 2005, Sea surface temperature distribution during upwelling along the Polish Baltic coast, Oceanologia, 47 (4), 415-432.

Levizzani V., Schmetz J., Lutz H. J., Kerkmann J., Alberoni P. P., Cervino M., 2001, Precipitation estimations from geostationary orbit and prospects for METEOSAT, Second Generation Meteorol. Appl., 8 (1), 23-41. http://dx.doi.org/10.1017/S1350482701001037

Li X., Pichel W., Clemente Colón P., Krasnopolsky V., Sapper J., 2001, Validation of coastal sea and lake surface temperature measurements derived from NOAA/AVHRR data, Int. J. Remote Sens., 22 (7), 1285-1303. http://dx.doi.org/10.1080/01431160151144350

Lutz H. J., 1999, Cloud processing for Meteosat Second Generation EUMETSAT Tech. Mem. No. 4.

Romaguera M., Sobrino J. A., Olesen F. S., 2006, Estimation of sea surface temperature from SEVIRI data: algorithm testing and comparison with AVHRR products, Int. J. Remote Sens., 27 (22), 5081-5086. http://dx.doi.org/10.1080/01431160500165674

Rossow W. B., Garder L. C., 1993a, Cloud detection using satellite measurements of infrared and visible radiances for ISCCP, J. Climate, 6 (12), 2341-2369. http://dx.doi.org/10.1175/1520-0442(1993)006<2341:CDUSMO>2.0.CO;2

Rossow W. B., Garder L. C., 1993b, Validation of ISCCP cloud detections J. Climate, 6 (12), 2370-2393. http://dx.doi.org/10.1175/1520-0442(1993)006<2370:VOICD>2.0.CO;2

Rossow W. B., Mosher F., Kinsella E., Arking A., Desbois M., Harrison E., Minnis P., Ruprecht E., Seze G., Simmer C., Smith E., 1985, ISCCP cloud algorithm intercomparison, J. Clim. Appl. Meteorol., 24 (9), 877-903. http://dx.doi.org/10.1175/1520-0450(1985)024<0887:ICAI>2.0.CO;2

Saunders R. W., Kriebel K. T., 1988, An improved method for detecting clear sky and cloudy radiances from AVHRR data, Int. J. Remote Sens., 9 (1), 123-150. http://dx.doi.org/10.1080/01431168808954841

Schmetz J., Govaerts Y., König M., Lutz H. J., Ratier A., Tjemkes S., 2002, A short introduction to Meteosat Second Generation (MSG) EUMETSAT.

Valiente J. A., Niclos R., Barbera M. J., Estrela M. J., 2007, Analysis of the SST Split-Window Equation using the synergy between Meteosat Second Generation and NOAA polar satellites ,Proc. 2007 EUMETSAT Conf., Amsterdam, The Netherlands.

Walton C. C., Pichel W. G., Sapper J. F., May D. A., 1998, The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites, J. Geophys. Res., 103 (C12), 27 999-28 012.

full, complete article (PDF - compatibile with Acrobat 4.0), 1.0 MB

Spatial and interannual variations of seasonal sea surface temperature patterns in the Baltic Sea
Oceanologia 2010, no. 52(3), pp. 345-362

Katarzyna Bradtke*, Agnieszka Herman, Jacek A. Urbański
Institute of Oceanography, University of Gdańsk,
al. Marszałka Piłsudskiego 46, PL-81-378 Gdynia, Poland;
e-mail: ocekb@univ.gda.pl
*corresponding author

keywords: sea surface temperature, seasonality, global climate change, Baltic Sea

Received 12 April 2010, revised 2 June 2010, accepted 1 July 2010.


On the basis of monthly averaged satellite data, this study examined how the annual cycle of the Baltic Sea surface temperature (SST) varied spatially and temporally during the period 1986-2005. We conclude that there are two main thermal seasons in the Baltic Sea separated only by short transitional periods - spring lasting about one month, and autumn lasting two months. Generally speaking, summer covers the part of the year from June to October with the highest monthly mean SST in August. Winter, with a minimum monthly mean SST in February in shallow waters or in March in deeper areas, lasts from December to April. As a result of climate changes over the Baltic Sea region, strong positive trends in SST occur in the summer months. In consequence, the period with extremely high sea surface water temperatures has become slightly longer in the central Baltic. In the last decade winter changes in SST display zero or even negative tendencies. The investigated period was characterized by an annual increase in mean temperatures of about 0.03-0.07°C. However, the rates of monthly mean SST changes were sometimes more than three times as high.

  References ref

Alvera Azcárate A., Barth A., Rixen M., Beckers J.M., 2004, Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the Adriatic Sea surface temperature, Ocean Model., 9 (4), 325-346.

Armstrong E.,2002,Data set overview, [in:]MODIS Sea Surface Temperature (SST)products, Ref.Man., Revised 26 August 2002, JPL Publ., CL 02 0691, ftp://podaac.jpl.nasa.gov/pub/documents/dataset_docs/modis_sst.html.

BALTEX, 2006, Assessment of climate change for the Baltic Sea basin-The BACC project.Summary, The BACC Lead Author Group (eds.), Int.BALTEX Secr.Publ.No 35, 26 pp., [www.baltex-research.eu/BACC/material/IBS_No35_BACC.pdf ].

Beaugrand G., Reid P.C., Ibanez F., Lindley J.A., Edwards M., 2002, Reorganization of North Atlantic marine copepod biodiversity and climate, Science, 296 (5573), 1692-1694.

EEA, ETC/ACC, UBA (D), RIVM, 2004, Impacts of Europe-s changing climate, EEA Rep.No 2/2004, 107 pp.

Fennel K., 2001, The generation of phytoplankton patchiness by mesoscale current patterns, Ocean Dynam., 52 (2), 58-70.

Granskog M., Kaartokallio H., Kuosa H., Thomas D.N., Vainio J., 2006, Sea ice in the Baltic Sea-A review, Estuar.Coast.Shelf Sci., 70 (1-2), 145-160.

Gröger J., Rumohr H., 2006, Modelling and forecasting long term dynamics of Western Baltic macrobenthic fauna in relation to climate signals and environmental change, J.Sea Res., 55 (4), 266-277.

Jones P.D., Moberg A., 2003, Hemispheric and large scale surface air temperature variations:an extensive revision and an update to 2001, J.Climate, 16 (2), 206-223.

Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Leetma A., Reynolds B., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Jenne R., Joseph D., 1996, The NCEP/NCAR 40 year reanalysis project, Bull.Am.Meteorol.Soc., 77 (3), 437-471.

KarléLen W., 2005, Recent global warming:an artifact of a too short temperature record?, Ambio, 34 (3), 263-264.

Kendall M.G., Gibbons J.D., 1990, Rank correlation methods, 5th edn., Edward Arnold, London, 260 pp.

Kirby R.R., Beaugrand G., Lindley J.A., Richardson A.J., Edwards M., Reid P.C., 2007, Climate effects and benthic pelagic coupling in the North Sea, Mar. Ecol.Prog.Ser., 330, 31-38.

Kröncke I., Dippner J.W., Heyen H., Zeiss B., 1998, Long term changes in macrofaunal communities o .Norderney (East Frisia, Germany)in relation to climate variability, Mar.Ecol.Prog.Ser., 167, 25-36.

Lehmann A., Hinrichsen H.H., 2000a, On the thermohaline variability of the Baltic Sea, J.Marine Syst., 25 (2), 333-357.

Lehmann A., Hinrichsen H.H., 2000b, On the wind driven and thermohaline circulation of the Baltic Sea, Phys.Chem.Earth (B), 25 (2), 183-189.

MacKenzie B.R., Gislason H., Möllmann Ch., KéNoster F.W., 2007, Impact of 21st century climate change on the Baltic Sea fish community and fisheries, Glob. Change Biol., 13 (7), 1348-1367.

MacKenzie B.R., Köster F.W., 2004, Fish production and climate:sprat in the Baltic Sea, Ecology, 85 (3), 784-794.

MacKenzie B.R., Schiedek D., 2007, Daily ocean monitoring since the 1860s shows record warming of northern European seas, Glob.Change Biol., 13 (7), 1335-1347.

Meier H.E.M., 2006, Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios, Clim.Dynam., 27 (1), 39-68.

Müren U., Berglund J., Samuelsson K., Andersson A., 2005, Potential effects of elevated sea water temperature on pelagic food webs, Hydrobiologia, 545 (1), 153-166.

NCEP, 2007, NCEP/NCAR reanalysis 1, http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.html.

Omstedt A., Pettersen Ch., Rodhe J., Winsor P., 2004, Baltic Sea climate:200 yr of data on air temperature, sea level variation, ice cover, and atmospheric circulation, Climate Res., 25 (3), 205-216.

Piegorsch W.W., Bailer A.J., 2005, Analyzing environmental data, Wiley, Chichester, 496 pp.

Pilkaitytè R., Razinkovas A., 2006, Factors controlling phytoplankton blooms in a temperate estuary:nutrient limitation and physical forcing, Hydrobiologia, 555 (1), 41-48.

Pliński M., Dobroń K., 1999, The composition, abundance and distribution of dino agellates in the Gulf of Gdansk in the years 1992-1994, Oceanol.Stud., 28 (1-2), 41-49.

Rummukainen M., Raisanen J., Bringfelt B., Ullerstig A., Omstedt A., Willen U., Hansson U., Jones C., 2001, A regional climate model for northern Europe: model description and results from the downscaling of two GCM control simulations, Climate Dynam., 17 (5-6), 339-359.

Siegel H., Gerth M., Neumann T., Doerfer R., 1999, Case studies on phytoplankton blooms in coastal and open waters of the Baltic Sea using Coastal Zone Color Scanner data, Int.J.Remote Sens., 20 (7), 1249-1264.

Siegel H., Gerth M., Tschersich G., 2006, Sea surface temperature development of the Baltic Sea in the period 1990-2004, Oceanologia, 48 (S), 119-131.

Smith de M.J., Goodchild M.F., Longley P.A., 2007, Geospatial analysis. A comprehensive guide to principles, techniques and software tools, Troubador Publ., Ltd, Leicester, 516 pp.

Sparks T.H., Menzel A., 2002, Observed changes in seasons:an overview, Int. J.Climatol., 22 (14), 1715-1725.

Stenseth N.C., Ottersen G., Hurrel J.W., Belgrano A., 2004, Marine ecosystems and climate variation, Oxford Univ.Press, Oxford, 252 pp.

Stigebrandt A., Gustafsson B.G., 2003, Response of the Baltic Sea to climate change-theory and observations, J.Sea Res., 49 (4), 243-256.

Vazquez J., Perry K., Kilpatrick K., 1998, NOAA/NASA AVHRR oceans pathfinder sea surface temperature data set user's reference manual version 4.0;April 10, 1998, JPL Publication D 14070, on-line document:ftp://podaac.jpl.nasa.gov/pub/documents/dataset_docs/avhrr_pathfinder_sst.html.

Walter G.R., Post E., Convey P., 2002, Ecological responses to recent climate change, Nature, 416 (6879), 389-395.

Wasmund N., Nausch G., Matthäus W., 1998, Phytoplankton spring blooms in the southern Baltic Sea-spatio temporal development and long term trends, J.Plankton Res., 20 (6), 1099-1117.

Wasmund N., Uhlig S., 2003, Phytoplankton trends in the Baltic Sea, ICES J.Mar. Sci., 60, 177-186.

Wiktor K., Pliński M., 1992, Long term changes in the biocenosis of the Gulf of Gdańsk, Oceanologia, 32, 69-79.

Witek B., Pliński M., 1998, Occurrence of blue green algae in the phytoplankton of the Gulf of Gdańsk in the years 1994-1997, Oceanol.Stud., 3 (27), 77-82

full, complete article (PDF - compatibile with Acrobat 4.0), 2.7 MB

On the transformation of long gravity waves on a sloping beach:
Oceanologia 2010, no. 52(3), pp. 363-389

Jan Kazimierz Szmidt*, Benedykt Hedzielski
Institute of Hydro-Engineering, Polish Academy of Sciences,
Waryńskiego 17, PL-71-310 Szczecin, Poland;
e-mail: jks@ibwpan.gda.pl
*corresponding author

keywords: long wave, wave transformation, sloping beach, wave run-up

Received 1 July 2009, revised 31 May 2010, accepted 2 June 2010.

This work was supported by the Polish Ministry of Science and Higher Education under grant No. N N506 378134.


The transformation of long water waves arriving at a sloping beach is investigated. An approximate theory is presented for plane periodic waves propagating in water of non-uniform depth. The theoretical description of the phenomenon, based on certain kinematic assumptions, is formulated in the material variables, and the solution is constructed by applying the Hamilton variational principle. In order to assess the accuracy of the formulation and to learn more about long wave transformation, experimental measurements were carried out in a laboratory flume. In the experiments, a water wave, generated by a piston-type wave maker placed at one end of the flume, propagated towards a rigid inclined ramp installed at the other end of the flume. The wave transformation along the direction of its propagation was recorded by a set of wave gauges installed along the flume. The wave run-up on the sloping beach was measured with a special conductivity gauge placed alongside the ramp. Comparison of the theoretical results with experimental data indicates that the proposed theoretical formulation provides a good description of the main features of wave transformation behaviour over a sloping beach, except in the vicinity of the shore point, where some discrepancies occur.

  References ref

Bathe K. J., 1982, Finite element procedure in engineering analysis Prentice Hall, Upper Saddle River, New Jersey, 1037 pp.

Björk A., Dahlquist G., 1983, Numerical methods PWN,Warszawa, 548 pp., (in Polish).

Carrier G. F., Greenspan H. P., 1958, Water waves of finite amplitude on a sloping beach, J. Fluid Mech., 4 (01), 97-109. http://dx.doi.org/10.1017/S0022112058000331

Chybicki W., 2006,Theory of surface waves in water of non-uniform depth, Wyd. IBW PAN, Gdańsk, 244 pp., (in Polish).

Dingemans M. W., 1997, Water wave propagation over uneven bottoms, Part 1 - Linear wave propagation, World Sci., Singapore-New York, 1061 pp. http://dx.doi.org/10.1017/S0022112058000331

Goto C., 1979, Non-linear equation of long waves in the Lagrangian description, Coast. Eng. Japan, 22, 1-9.

Kânoğlu U., 2004, Nonlinear evolution and runup-rundown of long waves over a sloping beach, J. Fluid Mech., 513, 363-372. http://dx.doi.org/10.1017/S002211200400970X

Madsen O. S., 1971, On the generation of long waves, J. Geophys. Res., 76 (36), 8672-8683. http://dx.doi.org/10.1029/JC076i036p08672

Massel S. R., 1982, On the non-linear theory of paddle generated waves in laboratory channels, Arch. Hydro Eng., 39 (3), 183-208, (in Polish).

Massel S. R., Pelinovsky E. N., 2001, Run-up of dispersive and breaking waves, Oceanologia, 43 (1), 61-97.

Miles J., Salmon R., 1985, Weakly dispersive nonlinear gravity waves, J. Fluid Mech., 157, 519-531.

Pelinovsky E. N., 1991, Long waves climbing a beach, Hydrotech. Trans., 54, 81-86.

Shuto N., 1967, Run-up of long waves on a sloping beach, Coast. Eng. Japan, 10, 23-37.

Synolakis C. E., 1987, The run-up of solitary waves, J. Fluid Mech., 185, 523-545. http://dx.doi.org/10.1017/S002211208700329X

Szmidt K., 2006, Modelling of non-linear long water waves on a sloping beach, Bull. Polish Acad. Sci., Tech. Sci., 54 (4), 381-389.

Wilde P., Chybicki W., 2004, Long water waves as a structure-fluid interaction problem, Arch. Hydro Eng. Environ. Mech., 51 (2), 95-118.

Wilde P., Wilde M., 2001, On the generation of water waves in a flume Arch. Hydro Eng. Environ. Mech., 48 (4), 69-83.

full, complete article (PDF - compatibile with Acrobat 4.0), 1.2 MB

Waves, currents and sea level variations along the Letipea - Sillamäe coastal section of the southern Gulf of Finland
Oceanologia 2010, no. 52(3), pp. 391-416

Ülo Suursaar
Estonian Marine Institute, University of Tartu,
Mäealuse 14, EE-12618 Tallinn, Estonia;
e-mail: ulo.suursaar@ut.ee

keywords: wave hindcast, upwelling, coastal jets, climate change, RDCP, Baltic Sea

Received 17 February 2010, revised 7 June 2010, accepted 21 June 2010.

The study was partially supported by the Estonian target financed project 0104s08, ESF grant project 7609, as well as by Kunda EstCell and Port of Sillamäe monitoring contracts.


Variations in the hydrodynamic conditions were studied on the basis of 336 days of measurements with a Doppler current profiler. With wave data as a calibration reference, a semi-empirical hindcast of wave parameters is presented in the fetch-limited near-shore area for the period 1966-2008. A resultant 4-6 cm s-1 westward current dominated along the coast. Occasional fast sub-surface westward currents under modest wind forcing, as well as asymmetrical vertical profiles for westward and eastward currents indicated the influence of upwelling-related baroclinic coastal jets. The average frequency of upwelling was estimated at 17%; some of the events were identified in near-homothermic winter conditions on the basis of salinity and multi-layer flow records. While the mean sea level trend at Narva-Jõesuu roughly approximated the global estimates for 1899-2009, the annual maximum sea level increase was 5-8 mm yr-1. Both mean and maximum wave heights declined as a result of decreasing winds from the north.

  References ref

Andrejev O., Myrberg K., Alenius P., Lundberg P., 2004, Mean circulation and water exchange in the Gulf of Finland - a study based on three-dimensional modelling, Boreal Environ. Res., 9 (1), 1-16.

BACC, 2008, Assessment of climate change for the Baltic Sea basin Springer Verlag, Berlin-Heidelberg, 473 pp.

Bowden K. F., 1983, Physical oceanography of coastal water Ellis Horwood Ltd., Chichester, 302 pp.

Bychkova I. A., Viktorov S. V., 1987, Use of satellite data for identification and classification of upwelling in the Baltic Sea, Oceanology, 27 (2), 158-162.

CERC-Coastal Engineering Research Center, U. S. Army, 1984, Shore protection manual Vol. 1, 3rd edn., U. S. Govt. Printing Office, Washington D. C., 719 pp.

Church J. A., White N. J., 2006, A 20th century acceleration in global sea-level rise, Geophys. Res. Lett., 33, L01602, doi:10.1029/2005GL024826. http://dx.doi.org/10.1029/2005GL024826

IPCC-Intergovernmental Panel on Climate Change, 2007, The physical science basis, Contribution of Working Group I to the Fourth Assessment Report, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (eds.), Cambridge Univ. Press, New York, 996 pp.

Jaagus J., Post P., Tomingas O., 2008, Changes in storminess on the western coast of Estonia in relation to large-scale atmospheric circulation, Climate Res., 36 (1), 29-40. http://dx.doi.org/10.3354/cr00725

Jankowski A., 2002, Variability of coastal water hydrodynamics in the southern Baltic - hindcast modelling of an upwelling event along the Polish coast, Oceanologia, 44, 395-418.

Keevallik S., Soomere T., Pärg R., Zhukova V., 2007, Outlook for wind measurements at Estonian automatic weather stations, Proc. Estonian Acad. Sci. Eng., 13 (3), 234-251.

Kowalewski M., Ostrowski M., 2005, Coastal up- and downwelling in the southern Baltic, Oceanologia, 47 (4), 453-475.

Laanearu J., Lips U., 2003, Observed thermohaline fields and low-frequency currents in the Narva Bay, Proc. Estonian Acd. Sci. Eng., 9 (2), 99-106.

Lass H. U., Talpsepp L., 1992, Observations of coastal jets in the Southern Baltic Cont. Shelf. Res., 13 (2-3), 189-203. http://dx.doi.org/10.1016/0278-4343(93)90105-7

Lehmann A., Krauss W., Hinrichsen H. H., 2002, Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea, Tellus A, 54 (3), 299-316. http://dx.doi.org/10.1034/j.1600-0870.2002.00289.x

Leppäranta M., Myrberg K., 2009, Physical oceanography of the Baltic Sea, Springer Praxis, Berlin-Heidelberg-New York, 378 pp.

Lessin G., Lips I., Raudsepp U., 2007, Modelling the nitrogen and phosphorus limitation on phytoplankton growth in Narva Bay, south-eastern Gulf of Finland, Oceanologia, 49 (2), 259-276.

Lips I., Lips U., Liblik T., 2009, Consequences of coastal upwelling events on physical and chemical patterns in the central Gulf of Finland (Baltic Sea), Cont. Shelf Res., 29 (15), 1836-1847. http://dx.doi.org/10.1016/j.csr.2009.06.010

Massel S. R., 2010, Surface waves in deep and shallow waters, Oceanologia, 52 (1), 5-52. http://dx.doi.org/10.5697/oc.52-1.005

Meier H. E. M., Broman B., Kjellström E., 2004, Simulated sea level in past and future climates of the Baltic Sea, Climate Res., 27 (1), 59-75. http://dx.doi.org/10.3354/cr027059

Myrberg K., Andrejev O., 2003, Main upwelling regions in the Baltic Sea - a statistical analysis based on three-dimensional modelling, Boreal Environ. Res., 8 (2), 97-112.

Myrberg K., Lehmann A., Raudsepp U., Szymelfenig M., Lips I., Lips U., Matciak M., Kowalewski M., Krężel A., Burska D., Szymanek L., Ameryk A., Bielecka L., Bradtke K., Gałkowska A., Gromisz S., Jędrasik J.,Kaluźny M., Kozłowski 321;., Krajewska Sołtys A., Ołdakowski B., Ostrowski M., Zalewski M., Andrejev O., Suomi I., Zhurbas V., Kauppinen O. K., Soosaar E., Laanemets J., Uiboupin R., Talpsepp L., Golenko M., Golenko N., Vahtera E., 2008, Upwelling events, coastal offshore exchange, links to biogeochemical processes - Highlights from the Baltic Sea Science Congress, March 19-22, 2007 at Rostock University, Oceanologia, 50 (1), 95-113.

Otsmann M.,Suursaar Ü.,Kullas T.,2001,The oscillatory nature of the flows in the system of straits and small semi-enclosed basins of the Baltic Sea, Cont. Shelf Res., 21 (15), 1577-1603. http://dx.doi.org/10.1016/S0278-4343(01)00002-4

Räämet A., Soomere T.,Z aitseva Pärnaste I., 2010, Variations in extreme wave heights and wave directions in the north-eastern Baltic Sea, Proc. Estonian Acad. Sci., 59 (2), 182-192. http://dx.doi.org/10.3176/proc.2010.2.18

Räämet A., Suursaar Ü., Kullas T., Soomere T., 2009, Reconsidering uncertainties of wave conditions in the coastal areas of the northern Baltic Sea, J. Coastal Res., Sp. Iss.(56), 257-261.

Seinä A., Peltola J., 1991, Duration of the ice season and statistics of fast ice thickness along the Finnish coast 1961-1990, Finn. Mar. Res., 258, 46 pp.

Soomere T., 2008, Extremes and decadal variations of the northern Baltic Sea wave conditions [in:] Extreme ocean waves, E. Pelinovsky & C. Kharif (eds.), Springer, New York, 139-157.

Soomere T., Leppäranta M., Myrberg K., 2009, Highlights of the physical oceanography of the Gulf of Finland re ecting potential climate changes, Boreal Environ. Res., 14 (1), 152-165.

Soomere T., Myrberg K., Leppäranta M., Nekrasov A., 2008, The progress in knowledge of physical oceanography of the Gulf of Finland: a review for 1997-2007, Oceanologia, 50 (3), 287-362.

Soomere T., Zaitseva I., 2007, Estimates of wave climate in the northern Baltic Proper derived from visual wave observations at Vilsandi, Proc. Estonian Acad. Sci. Eng., 13 (1), 48-64.

Soomere T., Zaitseva Pärnaste I., Räämet A., 2010, Seasonal and long-term variations of wave conditions in Estonian coastal waters, Boreal. Environ. Res., (in press).

Sooäär J., Jaagus J., 2007, Long-term variability and changes in the sea ice regime in the Baltic Sea near the Estonian coast, Proc. Estonian Acd. Sci. Eng., 13 (3), 189-200.

Stigebrandt A., Gustafsson B. G., 2003, Response of the Baltic Sea to climate change- theory and observations, J. Sea Res., 49 (4), 243-256. http://dx.doi.org/10.1016/S1385-1101(03)00021-2

Suursaar Ü., 2009, Interpretation of Doppler effect-based vertical velocity measurements in the coastal waters of Estonia, Baltic Sea: possible influence of upwelling, Langmuir circulation and turbidity Fluid Structure Interaction, WIT Trans. Built Environ., Vol.105, WIT Press, Southampton-Boston, 193-203.

Suursaar Ü., Aps R., 2007, Spatio-temporal variations in hydro-physical and -chemical parameters during a major upwelling event off the southern coast of the Gulf of Finland in summer 2006, Oceanologia, 49 (2), 209-228.

Suursaar Ü., Aps R., Kotta I., Roots O., 2009, North-East Estonian coastal sea: recovery from the past anthropogenic pressure and new stressors on the background of natural variability Ecosystems and Sustainable Development VII, WIT Trans. Ecol. Environ., Vol.122, WIT Press, Southampton-Boston, 331-342.

Suursaar Ü., Aps R., Martin G., Põllumäe A., Kaljurand K., 2008, Monitoring of the pulp mill effluents in the coastal waters of North Estonia Water Pollution IX, WIT Trans. Ecol. Environ., Vol.111, WIT Press, Southampton-Boston, 217-226.

Suursaar Ü., Kullas T., 2006, In uence of wind climate changes on the mean sea level and current regime in the coastal waters of west Estonia, Baltic Sea, Oceanologia, 48 (3), 361-383.

Suursaar Ü., Kullas T., 2009, Decadal variations in wave heights off Kelba, Saaremaa Island, and their relationships with changes in wind climate Oceanologia, 51 (1), 39-61. http://dx.doi.org/10.5697/oc.51-1.039

Suursaar Ü., Sooäär J., 2007, Decadal variations in mean and extreme sea level values along the Estonian coast of the Baltic Sea, Tellus A, 59 (2), 249-260. http://dx.doi.org/10.1111/j.1600-0870.2006.00220.x

Talpsepp L., 2008, On the in uence of the sequence of coastal upwellings and downwellings on surface water salinity in the Gulf of Finland, Estonian J. Eng., 14 (1), 29-41. http://dx.doi.org/10.3176/eng.2008.1.03

Vallner L., Sildvee H., Torim A., 1988, Recent crustal movements in Estonia, J. Geodyn., 9 (2-4), 215-223. http://dx.doi.org/10.1016/S0264-3707(88)80066-8

Voipio A.(ed.), 1981, The Baltic Sea, Elsevier Oceanogr. Ser., Amsterdam, 418 pp.

Wang K., Leppäranta M., Gästgifvars M., Vainio J., Wang C., 2008, The drift and spreading of the Runner 4 oil spill and the ice conditions in the Gulf of Finland, winter 2006, Estonian J. Earth Sci., 57 (3), 181-191. http://dx.doi.org/10.3176/earth.2008.3.06

Weisberg R. H., Black B. D., Li Z., 2000, An upwelling case study on Florida's west coast, J. Geophys.Res., 105 (C5), 11 459-11 469.

Weisse R., G Ünther R., 2007, Wave climate and long-term changes for the Southern North Sea obtained from a high-resolution hindcast 1958-2002 Ocean Dynam., 57 (3), 161-172. http://dx.doi.org/10.1007/s10236-006-0094-x

full, complete article (PDF - compatibile with Acrobat 4.0), 427.8 kB

Baroclinic Rossby radius of deformation in the southern Baltic Sea
Oceanologia 2010, no. 52(3), pp. 417-429

Robert Osiński*, Daniel Rak, Waldemar Walczowski, Jan Piechura
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland;
e-mail: roberto@water.iopan.gda.pl
*corresponding author

keywords: baroclinic Rossby radius, Brunt-Väisälä frequency, southern Baltic Sea, mesoscale dynamics

Received 29 January 2010, revised 8 April 2010, accepted 6 August 2010.

This work was supported by the Polish State Committee of Scientific Research under grant No. N N305 111636.


The first baroclinic Rossby radius of deformation (R1) is a fundamental horizontal scale of mesoscale processes. This scale is important for planning both numerical modelling and study areas.
    R1 was computed on the basis of an 11-year series of high resolution CTD measurements collected during r/v "Oceania" cruises. The data set covered the three main basins of the Baltic Proper: the Bornholm Basin (BB), the Słupsk Furrow (SF) and the Gdańsk Basin (GB). The smallest mean value of R1 was found in the Gdańsk Basin (5.2 km), the largest one in the Bornholm Deep (7.3 km).
    The seasonal variability of R1 is lower in the western basin than in the eastern one. The seasonal cycle of R1 may be broken by extreme events, e.g. main Baltic inflows (MBI) of saline water. The inflowing water rebuilds the vertical stratification in the southern Baltic Sea and dramatically changes the R1 values. The difference of R1 between a stagnation period and an inflow situation is shown on the basis of observations made during 2002-2003. The main inflow occurred in winter, after ten years of stagnation, and the very low values of R1 (about 4 km) changed to very high ones (more than 9 km).
    Analysis of stagnation and saltwater inflow events may throw light on the value of R1 in future climatic scenarios. The potential influence of climate change on Baltic Sea salinity, especially a decrease in MBI activity, may change the baroclinic Rossby radius of deformation and the mesoscale dynamics. Values of R1 are expected to be lower in the future climate than those measured nowadays.

  References ref

Alenius P. A., Nekrasov A., Myrberg K., 2003, Variability of the baroclinic Rossby radius in the Gulf of Finland, Cont. Shelf Res., 23 (6), 563-573. http://dx.doi.org/10.1016/S0278-4343(03)00004-9

Chelton D. B., de Szoeke R. A., Schlax M. G., El Naggar K., Siwertz N.,1998, Geographical variability of the first baroclinic Rossby radius of deformation, J. Phys. Oceanogr., 28 (3), 433-460. http://dx.doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2

Elken J., Matthäus W. ,2008, Baltic Sea oceanography [in:]Assessment of climate change for the Baltic Sea basin. Annex A. 1. 1 H. von Storch & A. Omstedt (eds.), BALTEX Publ., Springer, Berlin, 474 pp.

Emery W. J., Lee W. G., Magaard L., 1984, Geographic and seasonal distributions of Brunt-Väisälä frequency and Rossby radii in the North Pacific and North Atlantic, J. Phys. Oceanogr., 14 (2), 294-317. http://dx.doi.org/10.1175/1520-0485(1984)014<0294:GASDOB>2.0.CO;2

Feistel R., Nausch G., Hagen E., 2006, Unusual in ow activity in 2002-2003 and varying deep-water properties, Oceanologia, 48 (S), 21-35.

Feistel R., Nausch G., Matthäus W., Hagen E., 2003, Temporal and spatial evolution of the Baltic deep water renewal in spring 2003, Oceanologia, 45 (4), 623-642.

Fennel W., Seifert T., Kayser B., 1991, Rossby radii and phase speeds in the Baltic Sea, Cont. Shelf Res., 11 (1), 23-36. http://dx.doi.org/10.1016/0278-4343(91)90032-2

Gill A.E.,1982,Atmosphere-ocean dynamics, Int. Geophys. Ser. 30, Acad.Press, London, 662 pp.

HELCOM,2003,The Baltic marine environment 1999-2002 Baltic Sea Environ. Proc. 87, 48 pp.

Houry S., Dombrowsky E., De Mey P., Minster J. F., 1987,Brunt-Väisälä frequency and Rossby radii in the South Atlantic, J. Phys. Oceanogr., 17 (10), 1619-1626. http://dx.doi.org/10.1175/1520-0485(1987)017<1619:BVFARR>2.0.CO;2

Matthäus W., Franck H., 1992, Characteristics of major Baltic in flows a statistical analysis, Cont. Shelf Res., 12 (12), 1375-1400. http://dx.doi.org/10.1016/0278-4343(92)90060-W

Matthäus W., Lass H. U., 1995, The recent salt in ow into the Baltic Sea, J. Phys. Oceanogr., 25 (2), 280-286. http://dx.doi.org/10.1175/1520-0485(1995)025<0280:TRSIIT>2.0.CO;2

Meier H. E. M., 2006, Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios, Clim. Dynam., 27 (1), 39-68, doi:10.1007/s00382 006 0124 x.

Meier H. E. M., Feistel R., Piechura J., Arneborg L., Burchard H., Fiekas V., Golenko N., Kuzmina N., Mohrholz V., Nohr C., Paka V. T., Sellschopp J., Stips A., Zhurbas V., 2006, Ventilation of the Baltic Sea deep water: A brief review of present knowledge from observations and models, Oceanologia, 48 (S), 133-164.

Omstedt A., Elken J., Lehmann A., Piechura J., 2004, Knowledge of the Baltic Sea physics gained during the BALTEX and related programmes, Prog. Oceanogr., 63 (1-2), 1-28. http://dx.doi.org/10.1016/j.pocean.2004.09.001

Piechura J., Beszczyńska-Möller A., 2004, Inflow waters in the deep regions of the southern Baltic Sea - transport and transformations, Oceanologia, 46 (1), 113-141.

Piechura J., Walczowski W., Beszczyńska Möller A., 1997, On the structure and dynamics of the water in the Słupsk Furrow, Oceanologia, 39 (1), 35-54.

Reissmann J. H., Burchard H., Feistel R., Hagen H., Lass H. U., Mohrholz V., Nausch G., Umlauf L., Wieczorek G., 2009, Vertical mixing in the Baltic Sea and consequences for eutrophication - a review Prog.Oceanogr., 82 (1), 47-80, doi:10.1016/j.pocean.2007.10.004. http://dx.doi.org/10.1016/j.pocean.2007.10.004

Rodhe J., Winsor P., 2002, On the influence of the freshwater supply on the Baltic Sea mean salinity, Tellus, 54 A, 175-186.

Saenko O. A., 2006, Influence of global warming on baroclinic Rossby radius in the ocean: A model intercomparison, J. Climate, 19 (7), 1354-1360. http://dx.doi.org/10.1175/JCLI3683.1

full, complete article (PDF - compatibile with Acrobat 4.0), 542.4 kB

Fluorescence measured in situ as a proxy of CDOM absorption and DOC concentration in the Baltic Sea
Oceanologia 2010, no. 52(3), pp. 431-471

Piotr Kowalczuk*, Monika Zabłocka, Sławomir Sagan, Karol Kuliński
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland;
e-mail: piotr@iopan.gda.pl
*corresponding author

keywords: CDOM absorption, DOC concentration, Baltic Sea

Received 20 April 2010, revised 27 July 2010, accepted 9 August 2010.

This study was funded by the Polish Ministry of Science and Higher Education through grant No. NN 306-2942-33 for the research project entitled "Spectral properties of CDOM absorption and fluorescence and their relationship with Dissolved Organic Carbon concentration in the Baltic Sea". The principle investigator was Piotr Kowalczuk. The research infrastructure, including access to the research vessel r/v "Oceania", was provided by the Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland. Partial support for this study was also provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBałtyk, co-founded by the European Union through European Regional Development Fund contract No. POIG 01.01.02-22-011/09.


This study presents results from field surveys performed in 2008 and 2009 in the southern Baltic in different seasons. The main goal of these measurements was to identify the empirical relationships between DOM optical properties and DOC. CDOM absorption and fluorescence and DOC concentrations were measured during thirteen research cruises. The values of the CDOM absorption coefficient at 370 nm aCDOM(370) ranged from 0.70 m-1 to 7.94 m-1, and CDOM fluorescence intensities (ex./em. 370/460) IFl, expressed in quinine sulphate equivalent units, ranged from 3.88 to 122.97 (in filtered samples). Dissolved organic carbon (DOC) concentrations ranged from 266.7 to 831.7 µM C. There was a statistically significant linear relationship between the fluorescence intensity measured in the filtered samples and the CDOM absorption coefficient aCDOM(370), R2 = 0.87. There was much more scatter in the relationship between the fluorescence intensity measured in situ (i.e. in unprocessed water samples) and the CDOM absorption coefficient aCDOM(370), resulting in a slight deterioration in the coefficient of determination R2 = 0.85. This indicated that the presence of particles could impact fluorometer output during in situ deployment. A calibration experiment was set up to quantify particle impact on the instrument output in raw marine water samples relative to readings from filtered samples. The bias calculated for the absolute percentage difference between fluorescence intensities measured in raw and filtered water was low (-2.05%), but the effect of particle presence expressed as the value of the RMSE was significant and was as high as 35%. Both DOM fluorescence intensity (in raw water and filtered samples) and the CDOM absorption coefficient aCDOM(370) are highly correlated with DOC concentration. The relationship between DOC and the CDOM absorption coefficient aCDOM(370) was better (R2 = 0.76) than the relationship between DOC and the respective fluorescence intensities measured in filtered and raw water (R2 = 0.61 and R2 = 0.56). The seasonal cycle had an impact on the relationship between DOC and CDOM optical properties. The hyperbolic relationships between aCDOM(370) vs. carbon-specific absorption coefficient a*CDOM(370), and IFl vs. the ratio of fluorescence intensity to organic carbon concentration IFl/DOC were very good. The discharge and mixing of riverine waters is a primary driver of variability in DOC and CDOM optical properties in the surface waters of the southern Baltic Sea, since all the parameters considered are negatively correlated with salinity. It was found that there was a positive trend of increasing values of DOM optical parameters with salinity increase (within a range of 8-12) in deep water below the permanent pycnocline. Evidence is also presented to show that late-summer photodegradation was responsible for the depletion of CDOM florescence intensities in the mixed layer above the seasonal thermocline. It was further demonstrated that the DOC concentration increases in the stagnant waters of the Baltic Sea deeps. The Integrated Optical-Hydrological Probe, which registers high-resolution vertical profiles of salinity, temperature, CDOM and the optical properties of water, confirmed that DOM optical proxies can be used in studies of DOM biogeochemical cycles in the Baltic Sea.

  References ref

Bélanger S., Babin M., Larouche P., 2008, An empirical ocean color algorithm for estimating the contribution of chromophoric dissolved organic matter to total light absorption in optically complex waters, J. Geophys. Res., 113, C04027, doi:10.1029/2007JC004436. http://dx.doi.org/10.1029/2007JC004436

Bélanger S., Xie H., Krotkov N., Larouche P., Vincent W. F., Babin M., 2006, Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change, Global Biogeochem. Cy., 20 (4), GB4005,doi:10.1029/2006GB002708. http://dx.doi.org/10.1029/2006GB002708 Belzile C., Roesler C. S., Christensen J. P., Shakhova N., Semiletov I., 2006, Fluorescence measured using the WETStar DOM uorometer as a proxy for dissolved matter absorption, Estuar. Coast. Shelf Sci., 67 (3), 441-449. http://dx.doi.org/10.1016/j.ecss.2005.11.032

Blough N. V., Del Vecchio R., 2002, Chromophoric DOM in the coastal environment, [in:] Biogeochemistry of marine dissolved organic matter, D. Hansell & C. Carlson (eds.), Acad. Press, New York, 509-546.

Boss E., Pegau W. S., Zaneveld J. R., Barnard A. H., 2001, Spatial and temporal variability of absorption by dissolved material at a continental shelf, J. Geophys. Res., 106 (C5), 9499-9507. http://dx.doi.org/10.1029/2000JC900008

Chen R. F., Zhang Y., Vlahos P., Rudnick S. M., 2002, The fluorescence of dissolved organic matter in the Mid Atlantic Bight, Deep Sea Res. Pt. II, 49 (20), 4439-4459. http://dx.doi.org/10.1016/S0967-0645(02)00165-0

Coble P. G., 2007, Marine optical biogeochemistry:the chemistry of ocean color, Chem. Rev., 107 (2), 402-418. http://dx.doi.org/10.1021/cr050350+

Conmy R. N., Coble P. G., Del Castillo C. E., 2004, Calibration and performance of a new in situ multi channel uorometer for measurement of colored dissolved organic matter in the ocean, Cont. Shelf Res., 24 (3), 431-442. http://dx.doi.org/10.1016/j.csr.2003.10.010

Darecki M., Weeks A., Sagan S., Kowalczuk P., Kaczmarek S., 2003, Optical characteristics of two contrasting case 2 waters and their in uence on remote sensing algorithms, Cont. Shelf Res., 23 (3-4), 237-250. http://dx.doi.org/10.1016/S0278-4343(02)00222-4

Del Castillo C. E., Coble P. G., Morell J. M., López J. M., Corredor J. E., 1999, Analysis of the optical properties of the Orinoco River plume by absorption and uorescence spectroscopy, Mar. Chem., 66 (1-2), 35-51. http://dx.doi.org/10.1016/S0304-4203(99)00023-7

Del Castillo C. E., Miller R. L., 2008, On the use of ocean color remote sensing to measure the transport of dissolved organic carbon by the Mississippi River Plume, Remote Sens. Environ., 112 (3), 836-844. http://dx.doi.org/10.1016/j.rse.2007.06.015

Del Vecchio R., Blough N. V., 2004, Spatial and seasonal distribution of chromophoric dissolved organic matter and dissolved organic carbon in the Middle Atlantic Bight, Mar. Chem., 89 (1-4), 169-187. http://dx.doi.org/10.1016/j.marchem.2004.02.027

Del Vecchio R., Subramaniam A., Schollaert Uz S., Ballabrera Poy J., Brown C. W., Blough N. V., 2009, Decadal time series of SeaWiFS retrieved CDOM absorption and estimated CO2 photoproduction on the continental shelf of the eastern United States, Geophys. Res. Lett., 36, L02602. http://dx.doi.org/10.1029/2008GL036169

D'Sa E. J., Miller R. L., 2003, Bio-optical properties in waters in uenced by the Mississippi River during low ow conditions, Remote Sens. Environ., 84 (4), 538-549. http://dx.doi.org/10.1016/S0034-4257(02)00163-3

Duursma E. K., 1965, The dissolved organic constituents of seawater, [in:] Chemical oceanography, Vol 1., J. P. Riley & G. Skirrow (eds.), Acad. Press, London, 433-475.

Ferrari G., 2000, The relationship between chromophoric dissolved organic matter and dissolved organic carbon in the European Atlantic coastal area and in the West Mediterranean Sea (Gulf of Lions), Mar. Chem., 70 (4), 339-357. http://dx.doi.org/10.1016/S0304-4203(00)00036-0

Ferrari G., Dowell M. D., 1998, CDOM absorption characteristics with relation to uorescence and salinity in coastal areas of the southern Baltic Sea, Estuar. Coast. Shelf Sci., 47 (1), 91-105. http://dx.doi.org/10.1006/ecss.1997.0309

Ferrari G., Dowell M. D., Grossi S., Targa C., 1996, Relationship between optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in southern Baltic Sea region, Mar. Chem., 55 (3-4), 299-316. http://dx.doi.org/10.1016/S0304-4203(96)00061-8

Ferrari G., Tassan S., 1991, On the accuracy of determining light absorption by `yellow substance' through measurements of induced uorescence, Limnol. Oceanogr., 36 (4), 777-786. http://dx.doi.org/10.4319/lo.1991.36.4.0777

Fichot C. G., Sathyendranath S., Miller W. L., 2008, SeaUV and SeaUV(C): Algorithms for the retrieval of UV/visible di-use attenuation coe-cients from ocean color, Remote Sens. Environ., 112 (4), 1584-1602.

Garver S. A., Siegel D. A., 1997, Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation, 1. Time series from the Sargasso Sea, J. Geophys. Res., 102 (C8), 18607-18625. http://dx.doi.org/10.1029/96JC03243

Green S. A., Blough N. V., 1994, Optical absorption and uorescence properties of chromophoric dissolved organic matter in natural waters, Limnol. Oceanogr., 39 (8), 1903-1916. http://dx.doi.org/10.4319/lo.1994.39.8.1903

Grzybowski W., 2000, Effect of short term irradiation on the absorbance spectra of the chromophoric organic matter dissolved in the coastal and riverine waters, Chemosphere, 40 (12), 1313-1318. http://dx.doi.org/10.1016/S0045-6535(99)00266-0

Grzybowski W., 2002, The signi-cance of dissolved organic matter photodegrada tion as a source of ammonium in natural waters, Oceanologia, 44 (3), 355-365.

Grzybowski W., Pempkowiak J., 2003, Preliminary results on low molecular weight organic substances dissolved in the waters of the Gulf of Gdańsk, Oceanologia, 45 (4), 693-704.

Hansell D. A., Carlson C. A., 1998, Deep ocean gradients in the concentration of dissolved organic carbon, Nature, 395 (6699), 263-266. http://dx.doi.org/10.1038/26200

Hansell D. A., Carlson C. A., 2001, Marine dissolved organic matter and the carbon cycle, Oceanography, 14 (4), 41-49.

Hoge F. E., Swift R. N., Yungel J. K., Vodacek A., 1993a, Fluorescence of dissolved organic matter: A comparison of North Paci-c and North Atlantic Oceans during April 1993, J. Geophys. Res., 98 (C12), 22 779-22 787.

Hoge F. E., Vodacek A., Blough N. V., 1993b, Inherent optical properties of the ocean: retrieval of the absorption coe-cient of chromophoric dissolved organic matter from uorescence measurements, Limnol. Oceanogr., 38 (7), 1394-1402. http://dx.doi.org/10.4319/lo.1993.38.7.1394

Hojerslev N. K., 1988, Natural occurrences and optical effects of Gelbstoff, Rep. No.50, Inst. Phys. Oceanogr., Univ. Copenhagen, 30 pp.

Hojerslev N. K., 1989, Surface water quality studies in the interior marine environment of Denmark, Limnol. Oceanogr., 34 (8), 1630-1639. http://dx.doi.org/10.4319/lo.1989.34.8.1630

Hojerslev N. K., Holt N., Aarup T., 1996, Optical measurements in the North Sea - Baltic Sea transition zone. 1. On the origin of the deep water in the Kattegat, Cont. Shelf Res., 16 (10), 1329-4343. http://dx.doi.org/10.1016/0278-4343(95)00075-5

Jerlov N. G., 1976, Marine optics, Elsevier, New York, 231 pp.

Johannessen S. C., Miller W. L., 2001, Quantum yield for the photochemical production of dissolved inorganic carbon in seawater, Mar. Chem., 76 (4), 271-283. http://dx.doi.org/10.1016/S0304-4203(01)00067-6

Johannessen S. C., Miller W. L., Cullen J. J., 2003, Calculation of UV attenuation and colored dissolved organic matter absorption spectra from measurements of ocean color, J. Geophys. Res., 108 (C9), 3301. http://dx.doi.org/10.1029/2000JC000514

Kahru M., Mitchell B. G., 2001, Seasonal and non seasonal variability of satellite derived chlorophyll and colored dissolved organic matter concentration in the California Current, J. Geophys. Res., 106 (C2), 2517-2529. http://dx.doi.org/10.1029/1999JC000094

Kirk J. T. O., 1994, Light and photosynthesis in aquatic ecosystems, 2nd edn., Cambridge, Univ. Press, New York, 509 pp. http://dx.doi.org/10.1017/CBO9780511623370

Kowalczuk P.,1999,Seasonal variability of yellow substance absorption in the surface layer of the Baltic Sea, J. Geophys. Res., 104 (C12), 30047-30058. http://dx.doi.org/10.1029/1999JC900198

Kowalczuk P., Cooper W. J., Durako M. J., Kahn A. E., Gonsior M., Young H.,2010,Characterization of dissolved organic matter uorescence in the South Atlantic Bight with use of PARAFAC model: Relationships between fluorescence and its components, absorption coeffcients and organic carbon concentrations, Mar. Chem., 118 (1-2), 22-36. http://dx.doi.org/10.1016/j.marchem.2009.10.002

Kowalczuk P., Cooper W. J., Whitehead R. F., Durako M. J., Sheldon W., 2003, Characterization of CDOM in organic rich river and surrounding coastal ocean in the South Atlantic Bight, Aquat.Sci., 65 (4), 384-401. http://dx.doi.org/10.1007/s00027-003-0678-1

Kowalczuk P., Darecki M., 1998, The relative share of light absorption by yellow substances in total light absorption in the surface layer of southern Baltic Sea, Proc. Ocean Optics XIV Conf., Kailua Kona, Hawaii, USA, 10-13 November 1998, paper 1052, 9 pp.

Kowalczuk P., Darecki M., Olszewski J., Kaczmarek S., 2005, Empirical relationships between Coloured Dissolved Organic Matter (CDOM)absorption and apparent optical properties in Baltic Sea waters, Int. J. Remote Sens., 26 (2), 345-370. http://dx.doi.org/10.1080/01431160410001720270

Kowalczuk P., Kaczmarek S., 1996, Analysis of temporal and spatial variability of `yellow substance' absorption in the Southern Baltic, Oceanologia, 38 (1), 3-32.

Kowalczuk P., Stedmon C. A., Markager S., 2006, Modeling absorption by CDOM in the Baltic Sea from season,salinity and chlorophyll, Mar. Chem., 101 (1-2), 1-11. http://dx.doi.org/10.1016/j.marchem.2005.12.005

Kuliński K., 2010, Carbon cycling in the Baltic Sea, Ph-D. thesis, Inst. Oceanol. PAN, Sopot, 134 pp., (in Polish).

Kuliński K., Pempkowiak J., 2008, Dissolved organic carbon in the southern country regionBaltic Sea: Quantification of factors affecting its distribution, Estuar. Coast. Shelf Sci., 78 (1), 38-44. http://dx.doi.org/10.1016/j.ecss.2007.11.017

Mannino A., Russ M. E., Hooker S. B., 2008, Algorithm development and validation for satellite derived distributions of DOC and CDOM in the U. S. Middle Atlantic Bight, J. Geophys. Res., 113, C07051. http://dx.doi.org/10.1029/2007JC004493

Maritorena S., Siegel D. A., Peterson A. R., 2002, Optimization of a semi analytical ocean color model for global scale applications, Appl. Optics, 41 (15), 2705-2714. http://dx.doi.org/10.1364/AO.41.002705

Morel A., Prieur L., 1977, Analysis in variation of ocean color, Limnol. Oceanogr., 22 (4), 709-722. http://dx.doi.org/10.4319/lo.1977.22.4.0709

Nelson N. B., Siegel D. A., Carlson C. A., Swan C., Smethie Jr. W. M., Khatiwala S., 2007, Hydrography of chromophoric dissolved organic matter in the North Atlantic, Deep Sea Res. Pt. I, 54 (5), 710-731. http://dx.doi.org/10.1016/j.dsr.2007.02.006

Nyquist G., 1979, Investigation of some optical properties of sea water with special reference to lignin sulphates and humic substances, Ph. D. thesis, Dpt. Anal. Mar. Chem.,Göteborg Univ., Göteborg, 203 pp.

Ochocki S.,Nakonieczny J.,Chmielowski H., Zalewski M., 1995, The hydrochemical and biological impact of the river Vistula on the pelagic system of the Gulf of Gdańsk in 1994. Part 2. Primary production and chlorophyll a , Oceanologia, 37 (2), 207-226.

Olszewski J., Sagan S., Darecki M., 1992, Spatial and temporal changes in some optical parameters in the southern Baltic, Oceanologia, 33, 87-103.

Pempkowiak J., Kupryszewski G., 1980, The input of organic matter to the Baltic from the Vistula River, Oceanologia, 12, 79-98.

Rochelle-Newall E. J., Fisher T. R., 2002a, Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay, Mar. Chem., 77 (1), 23-41. http://dx.doi.org/10.1016/S0304-4203(01)00073-1

Rochelle-Newall E. J., Fisher T. R., 2002b, Production of chromophoric dissolved organic matter uorescence in marine and estuarine environments: an investigation into the role of phytoplankton, Mar. Chem., 77 (1), 7-21. http://dx.doi.org/10.1016/S0304-4203(01)00072-X

Rochelle-Newall E. J., Fisher T. R., Fan C. L., Glibert P. M., 1999, Dynamics of chromophoric dissolved organic matter and dissolved organic carbon in experimental mesocosms, Int. J. Remote Sens., 20 (3), 627-641. http://dx.doi.org/10.1080/014311699213389

Reuter R., Diebel-Langohr D., Dörre F.,Hengstermann T.,1986,Airborne laser uorosensor measurements of Gelbstoff, [in:] The influence of yellow substances on remote sensing of sea water constituents from space, Rep. ESA Contract RFQ 3 5060/84/NL/MD,GKSS Res. Cent., Geesthacht, Germany.

Sagan S., 1991, Light transmission in the water of the southern Baltic Sea, Diss. Monogr. 2, Inst. Oceanol. PAN, Sopot, 137 pp., (in Polish).

Sathyendranath S. (ed.), 2000, Remote sensing of ocean colour in coastal, and other optically complex,waters, IOCCG Rep. No. 3, Dartmouth,CA, 140 pp.

Siegel D. A., Maritorena S., Nelson N. B., Behrenfeld M. J., 2005a, In dependence and interdependencies among global ocean color properties: Reassessing the bio optical assumption ,J.Geophys.Res.,110,C07011. http://dx.doi.org/10.1029/2004JC002527

Siegel D. A., Maritorena S., Nelson N. B., Behrenfeld M. J., McClain C. R., 2005b, Colored dissolved organic matter and its in uence on the satellite based characterization of the ocean biosphere, Geophys. Res. Lett., 32, L20605. http://dx.doi.org/10.1029/2005GL024310

Siegel D. A., Maritorena S., Nelson N. B., Hansell D. A., Lorenzi-Kayser M., 2002, Global distribution and dynamics of colored dissolved and detrital organic materials, J. Geophys. Res., 107 (C12), 3228. http://dx.doi.org/10.1029/2001JC000965

Shank G.C.,Zepp R.G.,Whitehead R.F.,Moran M.A.,2005,Variations in the spectral properties of freshwater and estuarine CDOM caused by partitioning onto river and estuarine sediments, Estuar. Coast. Shelf Sci., 65 (1-2), 289-301. http://dx.doi.org/10.1016/j.ecss.2005.06.009

Sharp J. H., 2002, Analytical methods for total DOM pools, [in:] Biogeochemistry of marine dissolved organic matter, D. A. Hansell & C. A. Carlson (eds.), Acad. Press, San Diego,CA, 35-58.

Skoog A., Hall P. O. J., Hulth S., Paxeus N., van der Loeff M. R., Westerlund S., 1996, Early diagenetic production and sediment-water exchange of uorescent dissolved organic matter in the coastal environment, Geochim. Cosmochim. Ac., 60 (19), 3619-3629. http://dx.doi.org/10.1016/0016-7037(96)83275-3

Skoog A., Wedborg M., Fogelqvist E., 2010, Organic carbon concentrations and humic substance uorescence in the Baltic Sea, Kattegatt, and Skagerrak, Mar. Chem., (in revision).

Stedmon C. A., Markager S., Kaas H., 2000, Optical properties and signatures of chromophoric dissolved organic matter (CDOM)in Danish coastal waters, Estuar. Coast. Shelf Sci., 51 (2), 267-278. http://dx.doi.org/10.1006/ecss.2000.0645

Stedmon C. A., Osburn C. L., Kragh T., 2010, Tracing water mass mixing in the Baltic-North Sea transition zone using the optical properties of coloured dissolved organic matter, Estuar. Coast. Shelf Sci., 87 (1), 156-162. http://dx.doi.org/10.1016/j.ecss.2009.12.022

Twardowski M. S., Donaghay P. L., 2001, Separating in situ and terrigenous sources of absorption by dissolved organic materials in coastal waters, J. Geophys. Res., 106 (C7), 2545-2560. http://dx.doi.org/10.1029/1999JC000039

Vodacek A., Blough N. V., DeGrandpre M. D., Peltzer E. T., Nelson R. K., 1997, Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photooxidation, Limnol. Oceanogr., 42 (2), 674-686. http://dx.doi.org/10.4319/lo.1997.42.4.0674

Vodacek A., Hoge F., Swift R. N., Yungel J. K., Peltzer E. T., Blough N. V., 1995, The use of in situ and airborne uorescence measurements to determine UV absorption coefficients and DOC concentrations in surface waters, Limnol. Oceanogr., 40 (2), 411-415. http://dx.doi.org/10.4319/lo.1995.40.2.0411

Woźniak B., Dera J., 2007, Light absorption in sea water, Springer, Dordrecht, 456 pp.

Zaneveld J. R. V., Kitchen J. C., Moore C., 1994, The scattering error correction of reflecting tube absorption meters, Ocean Optics XII, Proc. SPIE, 2258, 44-55. http://dx.doi.org/10.1117/12.190095

Zepp R., Schlotzhauer P. F., 1981, Comparison of photochemical behaviour of various humic substances in water: 3. Spectroscopic properties of humic substances, Chemoshpere, 10 (5), 479-486. http://dx.doi.org/10.1016/0045-6535(81)90148-X

full, complete article (PDF - compatibile with Acrobat 4.0), 710.9 kB

Restructuring of a zooplankton community by perturbation from a wind-forced coastal jet
Oceanologia 2010, no. 52(3), pp. 473-497

Ole-Petter Pedersen1,*, Kurt S. Tande2, Chaolun Li3, Meng Zhou4
1University of Tromsø,
9037 Tromsø, Norway;
e-mail: ole.p.pedersen@uit.no
*corresponding author
2Bodø University College,
8049 Bodø, Norway
3Institute of Oceanology, Chinese Academy of Sciences,
266071 Qingdao, P. R. China
4Department of Environmental, Earth and Ocean Sciences, University of Massachusetts,
Boston, MA 02125, USA

keywords: zooplankton, filament, intrusion, restructuring, mesoscale

Received 2 June 2010, revised 23 September 2010, accepted 26 August 2010.

This work was supported by the Research Council of Norway, contract No. 140290/140.


The impact of transient wind events on an established zooplankton community was observed during a field survey in a coastal region off northern Norway in May 2002. A transient wind event induced a coastal jet/filament intrusion of warm, saline water into our survey area where a semi-permanent eddy was present. There was an abrupt change in zooplankton community structure within 4-7 days of the wind event, with a change in the size structure, an increase in lower size classes less than 1 mm in equivalent spherical diameter (ESD) and a decrease in larger size classes greater than 1.5 mm in ESD. The slope of zooplankton biovolume spectra changed from -0.6 to -0.8, consistent with the size shifting towards smaller size classes. This study shows that even well established zooplankton communities are susceptible to restructuring during transient wind events, and in particular when wind forcing induces horizontal currents or filaments.

  References ref

Benitez-Nelson C. R., Bidigare R. R., Dickey T. D., Landry M. R., Leonard C. L., Brown S. L., Nencioli F., Rii Y. M., Maiti K., Becker J. W., Bibby T. S., Black W., Cai W. J., Carlson C. A., Chen F., Kuwahara V. S., Maharrey C., McAndrew P. M., Quay P. D., Rappé M. S., Selph K. E., Simmons M. P., Yang E. J., 2007, Mesoscale eddies drive increased silica export in the subtropical Pacific Ocean Science, 316 (5827), 1017-1021.

Błachowiak-Samołyk K., Kwaśniewski S., Richardson K., Dmoch K., Hansen E., Hop H., Falk-Petersen S., Mouritsen L. T., 2006, Arctic zooplankton do not perform diel vertical migration (DVM) during periods of midnight sun, Mar. Ecol. Prog. Ser., 308, 101-116. http://dx.doi.org/10.3354/meps308101

Davis C. S., Wiebe P. H., 1985, Macrozooplankton biomass in a warm-core Gulf Stream ring: time series changes in size structure, taxonomic composition, and vertical distribution, J. Geophys. Res., 90 (C5), 8871-8884. http://dx.doi.org/10.1029/JC090iC05p08871

Dickie L. M., Kerr S. R., Boudreau P. R., 1987, Size-dependent processes underlying regularities in ecosystem structure, Ecol. Monogr., 57 (3), 233-250. http://dx.doi.org/10.2307/2937082

Eden B. R., Steinberg D. K., Goldthwait S. A., McGillicuddy Jr. D. J., 2009, Zooplankton community structure in a cyclonic and mode-water eddy in the Sargasso Sea Deep Sea, Res. Pt. I, 56 (10), 1757-1776.

Edvardsen A.,Z hou M., Tande K. S., Zhu Y. W., 2002, Zooplankton population dynamics: measuring in situ growth and mortality rates using an Optical Plankton Counter, Mar. Ecol. Prog. Ser., 227, 205-219. http://dx.doi.org/10.3354/meps227205

Falkenhaug T., Tande K. S., Timonin A., 1997, Spatio-temporal patterns in the copepod community in Malangen, Northern Norway, J. Plankton. Res., 19 (4), 449-468. http://dx.doi.org/10.1093/plankt/19.4.449

Fossheim M., Zhou M.,T ande K. S., Pedersen O. P., Zhu Y., Edvardsen A., 2005, Interactions between biological and environmental structures along the coast of Northern Norway, Mar. Ecol. Prog. Ser., 300, 147-158. http://dx.doi.org/10.3354/meps300147

Gandin L., 1963, Objective analysis for meteorological fields Gidromet, Leningrad, English translation: 1965, Israel Prog. Sci. Trans., Jerusalem, 242 pp.

Gjevik B., Moe H., 1994, Steady and transient ows around banks located near a shelf edge, Cont. Shelf Res., 14 (12), 1389-1409. http://dx.doi.org/10.1016/0278-4343(94)90055-8

Goldthwait S. A., Steinberg D. K., 2008, Elevated biomass of mesozooplankton and enhanced fecal pellet ux in cyclonic and mode-water eddies in the Sargasso, Sea Deep Sea Res. Pt. II, 55 (10-13), 1360-1377. http://dx.doi.org/10.1016/j.dsr2.2008.01.003

Halvorsen E., Tande K. S., 1999, Physical and biological factors in uencing the seasonal variations in distribution of zooplankton across the shelf at Nordvestbanken, northern Norway, 1994 Sarsia, 84 (3-4), 279-292.

erman A. W., Beanlands B., Phillips E. F., 2004, The next generation of optical plankton counter: the Laser-OPC, J. Plankton Res., 26 (10), 1135-1145. http://dx.doi.org/10.1093/plankt/fbh095

Hernández-León S., Almeida C., Gomez M., Torres S., Montero I., Portillo-Hahnefeld A., 2001, Zooplankton biomass and indices of feeding and metabolism in island-generated eddies around Gran Canaria, J. Marine Syst., 30 (1-2), 51-66. http://dx.doi.org/10.1016/S0924-7963(01)00037-9

Jakobsen T., 1987, Coastal cod in northern Norway, Fish. Res., 5 (2-3), 223-234. http://dx.doi.org/10.1016/0165-7836(87)90042-7

Johannessen J. A., Shuchman R. A., Digranes G., Lyzenga D. R., Wackerman C., Johannessen O. M., Vachon P. W., 1996, Coastal ocean fronts and eddies imaged with ERS 1 synthetic aperture radar, J. Geophys. Res., 101 (C3), 6651-6667. http://dx.doi.org/10.1029/95JC02962

Landry M. R., Decima M., Simmons M. P., Hannides C. C. S., Daniels E., 2008, Mesozooplankton biomass and grazing responses to Cyclone Opal, a subtropical mesoscale eddy, Deep Sea Res.Pt. II, 55 (10-13), 1378-1388. http://dx.doi.org/10.1016/j.dsr2.2008.01.005

Ledwell J. R., McGillicuddy Jr. D. J., Anderson L. A., 2008, Nutrient ux into an intense deep chlorophyll layer in a mode-water eddy, Deep Sea Res.Pt.II, 55 (10-13), 1139-1160.

Lewis D. M., Belcher S. E., 2004, Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift, Dynam. Atmos. Oceans, 37 (4), 313-351. http://dx.doi.org/10.1016/j.dynatmoce.2003.11.001

Li Q. P., Hansell D. A., 2008, Nutrient distributions in baroclinic eddies of the oligotrophic North Atlantic and inferred impacts on biology, Deep Sea Res. Pt. II, 55 (10-13), 1291-1299.

Ljřen R., Nakken O., 1969, On the hydrography of the shelf waters of Mřre and Helgeland, Fisk. Dir. Skr. Ser. Havunders., 15, 285-294. http://dx.doi.org/10.1016/j.dsr2.2008.01.009

Loeng H., 1991, Features of the oceanographic conditions of the Barents Sea, Polar Res., 10 (1), 5-18. http://dx.doi.org/10.1111/j.1751-8369.1991.tb00630.x

Mann K. H., Lazier J. R. N., 2006, Dynamics of marine ecosystems Blackwell Publ., Malden, MA, 496 pp.

McGillicuddy Jr. D. J., Anderson L. A., Bates N. R., Bibby T., Buesseler K. O., Carlson C. A., Davis C. S., Ewart C., Falkowski P. G., Goldthwait S. A., Hansell D. A., Jenkins W. J., Johnson R., Kosnyrev V. K., Ledwell J. R., Li Q. P., Siegel D. A., Steinberg D. K., 2007, Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms, Science, 316 (5827), 1021-1026. http://dx.doi.org/10.1126/science.1136256

Orvik K. A., Mork M., 1995, A case study of Doppler-shifted inertial oscillations in the Norwegian Coastal Current, Cont .Shelf Res.,1 5 (11-12), 1369-1379.

Ottersen G., Sundby S., 1995, Effects of temperature, wind and spawning stock biomass on recruitment of Arcto-Norwegian cod, Fish. Oceanogr., 4 (4), 278-292. http://dx.doi.org/10.1111/j.1365-2419.1995.tb00073.x

Owen R., 1981, Fronts and eddies in the sea: mechanisms, interactions and biological effects [in:] Analysis of marine ecosystems, A. R. Longhurst (ed.), Acad. Press, London, 197-233.

Pedersen O. P., Gaardsted F., Lågstad P., Tande K. S., 2010, On the use of the HUGIN 1000 HUS Autonomous Underwater Vehicle for high resolution zooplankton measurements, J. Oper. Oceanogr., 3 (1), 17-25.

Pedersen O. P., Tande K. S., Pedersen T., Slagstad D., 2009, Advection and retention as life trait modulators of capelin larvae - A case study from the Norwegian coast and the Barents Sea, Fish. Res., 97 (3), 234-242. http://dx.doi.org/10.1016/j.fishres.2009.02.008

Pedersen O. P., Zhou M., Tande K. S., Edvardsen A., 2005, Eddy formation on the coast of North Norway - evidenced by synoptic sampling, ICES, J. Mar. Sci., 62 (4), 615-628. http://dx.doi.org/10.1016/j.icesjms.2005.01.017

Pedersen T., Fossheim M., 2008, Diet of 0-group stages of capelin (Mallotus villosus), herring (Clupea harengus) and cod (Gadus morhua) during spring and summer in the Barents Sea, Mar. Biol., 153 (6), 1037-1046. http://dx.doi.org/10.1007/s00227-007-0875-x

Platt T., Denman K., 1978, The structure of pelagic marine ecosystems Rapp. P.-V. Réun. Cons. Int. Explor. Mer, 173, 60-65.

Price J. F., Weller R. A., Schudlich R. R., 1987, Wind-driven ocean currents and Ekman transport, Science, 238 (4833), 1534-1538. http://dx.doi.org/10.1126/science.238.4833.1534

Rodriguez L., Mullin M. M., 1986, Relation between biomass and body weight of plankton in a steady state oceanic ecosystem, Limnol. Oceanogr, 31 (2), 361-370. http://dx.doi.org/10.4319/lo.1986.31.2.0361

Sætre R., Ljøen R., 1971, The Norwegian coastal current, Proc. First Int. Conf. Port and Ocean Engineering under Arctic conditions, Vol. 2., Tech. Univ. Norway, Trondheim, 514-535.

Sundby S., 1984, Influence of bottom topography on the circulation at the continental shelf of northern Norway, Fisk. Dir. Skr. Ser. Havunders., 17, 501-519.

Tsurumi M., Mackas D. L., Whitney F. A., DiBacco C., Galbraith M. D., Wong C. S., 2005, Pteropods, eddies, carbon flux, and climate variability in the Alaska Gyre, Deep Sea Res. Pt. II, 52 (7-8), 1037-1053. http://dx.doi.org/10.1016/j.dsr2.2005.02.005

Vesin J. P., Leggett W. C., Able K. W., 1981, Feeding ecology of capelin (Mallotus villosus) in the estuary and western Gulf of St. Lawrence and its multispecies implications, Can. J. Fish. Aquat. Sci., 38, 257-267. http://dx.doi.org/10.1139/f81-037

Wiebe P. P., 1988, Functional regression equations for zooplankton displacement volume, wet weight, dry weight and carbon: A correction, Fish. Bull, 86, 833-835.

Wiebe P. H., Morton A. W., Bradley A. M., Backus R. H., Craddock J. E., Barber V., Cowles T. J., Flierl G. R., 1985, New developments in the MOCNESS, an apparatus for sampling zooplankton and micronekton, Mar. Biol., 87 (3), 313-323. http://dx.doi.org/10.1007/BF00397811

Zhou M., 2006, What determines the slope of a plankton biomass spectrum?, J. Plankton Res., 28 (5), 437-448. http://dx.doi.org/10.1093/plankt/fbi119

Zhou M., Huntley M. E., 1997, Population dynamics theory of plankton based on biomass spectra, Mar. Ecol. Prog. Ser., 159, 61-73. http://dx.doi.org/10.3354/meps159061

Zhou M., Tande K. S., Zhu Y., Basedow S., 2009, Productivity, trophic levels and size spectra of zooplankton in northern Norwegian shelf regions, Deep Sea Res. Pt. II, 56 (21-22), 1934-1944. http://dx.doi.org/10.1016/j.dsr2.2008.11.018

Zhu Y., Tande K. S., Zhou M., 2009, Mesoscale physical processes and zooplankton productivity in the northern Norwegian shelf region, Deep Sea Res. Pt. II, 56 (21-22), 1922-1933. http://dx.doi.org/10.1016/j.dsr2.2008.11.019

full, complete article (PDF - compatibile with Acrobat 4.0), 5.0 MB

Plutonium isotopes 238Pu, 239+240Pu, 241Pu and 240Pu/239Pu atomic ratios in the southern Baltic Sea ecosystem
Oceanologia 2010, no. 52(3), pp. 499-512

Dagmara I. Strumińska-Parulska*, Bogdan Skwarzec
Analytics and Environmental Radiochemistry Chair, Faculty of Chemistry, University of Gdańsk,
Sobieskiego 18/19, PL-80-952 Gdańsk, Poland;
e-mail: strumyk@chem.univ.gda.pl
*corresponding author

keywords: plutonium, 238Pu, 239+240Pu, 241Pu and 240Pu/239Pu atomic ratio, Baltic Sea, Chernobyl accident, atmospheric fallout

Received 5 January 2009, revised 31 August 2010, accepted 3 September 2010.

This study was supported financially by the Polish Ministry of Science and Higher Education under grant No. DS/8460-4-0176-0.


The paper summarizes the results of plutonium findings in atmospheric fallout samples and marine samples from the southern Baltic Sea during our research in 1986-2007. The activities of 238Pu and 239+240Pu isotopes were measured with an alpha spectrometer. The activities of 241Pu were calculated indirectly by 241Am activity measurements 16-18 years after the Chernobyl accident. The 240Pu/239Pu atomic ratios were measured using accelerator mass spectrometry (AMS).
    The 241Pu activities indicate that the main impact of the Chernobyl accident was on the plutonium concentration in the components of the Baltic Sea ecosystem examined in this work. The highest 241Pu/239+240Pu activity ratio was found in sea water (140 ± 33). The AMS measurements of atmospheric fallout samples collected during 1986 showed a significant increase in the 240Pu/239Pu atomic ratio from 0.29 ± 0.04 in March 1986 to 0.47 ± 0.02 in April 1986.

  References ref

Bergström S., Carlsson B.,1 994, River runoff to the Baltic Sea: 1950-1990, Ambio, 23 (4-5), 280-287.

Begichev S. N., Borovoj A. A., Burlakova E. V., Gagarinsky A. J., Demin V. F., Khrulev A. A., Khodakovsky L. L., 1990, Radioactive releases due to the Chernobyl accident, [in:] Fission product transport processes in reactor accidents, J. T. Rogers (ed.), Hemisphere Publ.Co., New York, 717-734.

Bojanowski R., 1981, Pierwiastki śladowe w Zatoce Gdańskiej, Stud. Mater. Oceanol., KBM PAN,34, 53-92.

Bojarski C., Jaśkowski J., Miłkowski W., Piękoś R., Stępczak K., 1992, Katastrofa w Czarnobylu a Polska-Raport, Wyd. Gd., Gdańsk, 26 pp.

Buesseler K. O., 1997, The isotopic signature of fallout plutonium in the North Pacific, J. Environ. Radioactiv., 36 (1), 69-83. http://dx.doi.org/10.1016/S0265-931X(96)00071-9

Chamizo E., Garcia Leon M., Synal H. A., Suter M., Wacker L.,2006, Determination of the Pu-240/Pu-239 atomic ratio in soils from Palomares (Spain) by low energy accelerator mass spectrometry, Nuc. Instrum. Meth. B, 249 (1-2), 768-771. http://dx.doi.org/10.1016/j.nimb.2006.03.136

Diamond H., Fields P. R., Stevens C. S., Studier M. H., Fried S. M., Inghram M. G., Hess D. C., Pyle G. L., Mech J. F., Manning W. M., Ghiorso A., Thompson S. G., Higgins G. H., Seaborg G. T., Browne C. I., Smith H. L., Spence R. W., 1960, Heavy isotope abundances in `Mike' thermonuclear device, Phys. Rev., 119 (6), 2000-2004. http://dx.doi.org/10.1103/PhysRev.119.2000

Fifield L. K., Cresswell R. G., di Tada M. L., Ophel T. R., Day J. P., Clacher A. P., King S. J., Priest N D., 1996, Accelerator mass spectrometry of plutonium isotopes, Nuc. Instrum. Meth. B, 117 (3), 295-303. http://dx.doi.org/10.1016/0168-583X(96)00287-X

Fifield L.K.,Synal H.A.,Suter M.,2004,Accelerator mass spectrometry of plutonium at 300 kV , Nuc.I nstrum. Meth. B, Vol. 223-224, 802-806. http://dx.doi.org/10.1016/j.nimb.2004.04.148

Hirose K., 1995, Geochemical studies on the Chernobyl radioactivity in environmental samples, J. Radioanal. Nucl.Ch., 197 (2), 331-342. http://dx.doi.org/10.1007/BF02036009

Hrnecek E., Steier P., Wallner A., 2005, Determination of plutonium in environmental samples by AMS and alpha spectrometry, Appl. Radiat. Isotopes, 63 (5-6), 633-638. http://dx.doi.org/10.1016/j.apradiso.2005.05.012

IAEA - International Atomic Energy Agency,1986,Summary report on the post accident review meeting on the Chernobyl accident, Safety Ser. 75, INSAG 1, IAEA, Vienna, 106 pp.

IAEA - International Atomic Energy Agency, 1993, A critical documentation of the Agency's Policy, Vienna-Hannover, 52.

Irlweck K., Wicke J., 1998, Isotopic composition of plutonium immissions in Austria after the Chernobyl accident, J. Radioanal. Nucl. Ch., 227 (1-2), 133-136. http://dx.doi.org/10.1007/BF02386445

Kelley J. M., Bond L. A., Beasley T. M., 1999, Global distribution of Pu isotopes and 237Np, Sci. Total Environ., 237/238, 483-500. http://dx.doi.org/10.1016/S0048-9697(99)00160-6

Ketterer M. E., Hafer K. M., Mietelski J. W., 2004, Resolving Chernobyl vs. global fallout in soils from Poland using plutonium atom ratios measured by inductively coupled plasma mass spectrometry, J. Environ. Radioactiv., 73 (2), 183-201. http://dx.doi.org/10.1016/j.jenvrad.2003.09.001

Kirchner G., Noack C. C., 1988, Core history and nuclide inventory of the Chernobyl core at the time of the accident, Nucl. Safety, 29 (1), 1-5. http://dx.doi.org/10.1097/00004032-198406000-00005

Komura K., Sakanoue M., Yamamoto M., 1984, Determination of the 240Pu/239Pu ratio in environmental samples based on the measurement of the Lx/αray activity ratio, Health Phys., 46 (6), 1213-1219.

Krey P. W., Hardy E. P., Pachucki C., Rourke F., Coluzza J., Benson W. K., 1976, Mass isotopic composition of global fallout plutonium in soil, [in:] Transuranium nuclides in the environment, IAEA SM 199 39, Vienna, 671-676.

Lujaniene G., Aninkevicius V., Lujanas V., 2009, Artificial radionuclides in the atmosphere over Lithuania, J. Environ. Radioactiv., 100 (2), 108-119. http://dx.doi.org/10.1016/j.jenvrad.2007.07.015

McAninch J. E., Hamilton T. F., Brown T. A., Jokela T. A., Knezovich J. P., Ognibene T. J., Proctor I. D., Roberts M. L., Sideras Haddad E., Southon J. R., Vogel J. S., 2000, Plutonium measurements by accelerator mass spectrometry at LLNL, Nuc. Instrum. Meth. B, 172 (1-4), 711-716. http://dx.doi.org/10.1016/S0168-583X(00)00091-4

Medvedev G., Nucleonics Week (US), 31 May 1990.

Mikulski Z., 1970, Wody środlądowe w strefie brzegowej południowego Bałtyku, PIHM, Oddz. Mor., Gdałsk, 98 pp.

Mikulski Z., 1982, River inflow to the Baltic Sea 1921-1975, Univ. Warsaw, Fac. Geogr. Reg. Stud., (mimeo).

Mussalo H., Jaakkola T., Miettinen J. K., Laiho K., 1980, Distribution of fallout plutonium in Southern Finns, Health Phys., 39 (2), 245-255. http://dx.doi.org/10.1097/00004032-198008000-00011

Oughton D. H., Skipperud L., Salbu B., Fifield L. K., Cresswell R. C., Day J. P., 1999, Determination of 240Pu/239Pu isotope ratios in Kara Sea and Novaya Zemlya sediments using accelerator mass spectrometry, Proc. Conf. Mar. Pollut., IAEA SM 354 59, Vienna, 123-128.

Skwarzec B., 1992, Rozmieszczenie i potencjalne źrodła pochodzenia plutonu w ekosystemie Morza Baltyckiego, Stud. Mater. Oceanol., 62, 87-100.

Skwarzec B., 1995, Polon, uran i pluton w ekosystemie południowego Bałtyku, Rozpr. Monogr. 6, Inst. Oceanol. PAN, Sopot, 184 pp.

Skwarzec B., Strumińska D. I., Prucnal M., 2003, Estimates of 239+240Pu inventories in Gdańsk bay and Gdańsk basin, J. Environ. Radioactiv., 70 (3), 237-252. http://dx.doi.org/10.1016/S0265-931X(03)00107-3

Skwarzec B., 1997a, Radiochemical methods for the determination of polonium, radiolead, uranium and plutonium in the environmental samples, Chem. Anal. Warsaw, 42, 107.

Skwarzec B., 1997b, Polonium,uranium and plutonium in the southern Baltic Sea, Ambio, 26 (2), 113-117.

Skwarzec B., Strumińska D. I., Boryło A., 2001, Bioaccumulation and distribution of plutonium in-sh from Gdańsk Bay, J. Environ. Radioactiv., 55 (2), 167-178. http://dx.doi.org/10.1016/S0265-931X(00)00190-9

Struminska D. I., Skwarzec B., 2004, Plutonium concentrations in waters from the southern Baltic Sea and their distribution in the cod skin and gills, J. Environ. Radioactiv., 72 (3), 355-361. http://dx.doi.org/10.1016/S0265-931X(03)00220-0

Strumińska D. I., Skwarzec B., 2006, Plutonium 241Pu concentrations in southern Baltic Sea ecosystem, J. Radioanal. Nucl. Ch., 268 (1), 59-63. http://dx.doi.org/10.1007/s10967-006-0124-7

Uścinowicz S., Zachowicz J., 1994, Mapa geologiczna dna Bałtyku 1:200 000,PIG, Warszawa.

Wacker L., Chamizo E., Fifield L. K., Stocker M., Suter M., Synal H. A., 2005, Measurement of actinides on a compact AMS system working at 300 kV, Nuc. Instrum. Meth B, 240 (1-2), 452-457. http://dx.doi.org/10.1016/j.nimb.2005.06.144

Vukanac I., Paligorić D.,Novković D.,Djuraśević M.,Obradović Z.,Milośević Z., Manić S., 2006, Retrospective estimation of the concentration of 241Pu in air sampled at a Belgrade site following the Chernobyl accident, Appl. Radiat. Isotopes, 64 (6), 689-692. http://dx.doi.org/10.1016/j.apradiso.2005.12.014

full, complete article (PDF - compatibile with Acrobat 4.0), 437.9 kB

The different uses of sea space in Polish Marine Areas: is conflict inevitable?
Oceanologia 2010, no. 52(3), pp. 513-530

Jan Marcin Węsławski1,*, Jacek Urbański2, Lucyna Kryla-Staszewska2, Eugeniusz Andrulewicz3, Tomasz Linkowski3, Emil Kuzebski3, Włodzimierz Meissner4, Zbigniew Otremba5, Joanna Piwowarczyk1
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland;
e-mail: weslaw@water.iopan.gda.pl
*corresponding author
2Geoinformatics Laboratory, Institute of Oceanography, University of Gdańsk,
al. Marszałka Piłsudskiego 46, PL-81-378 Gdynia, Poland,
3Sea Fisheries Institute,
Kołłątaja 1, PL-81-332 Gdynia, Poland,
4Avian Ecophysiology Unit, Department of Vertebrates Ecology and Zoology, University of Gdańsk,
al. Legionów 9, PL-80-441 Gdańsk, Poland
5Gdynia Maritime University,
Morska 87, PL-81-225 Gdynia, Poland

keywords: marine protected areas, spatial planning, sea space use

Received 22 March 2010, revised 26 July 2010, accepted 8 August 2010.


Seven major types of sea space use (Nature Protection Measures, Fisheries Exploitation, Geological Exploitation, Recreation, Large Infrastructures, Navigation, Military uses) in the Polish Marine Areas are presented in terms of how much space is used (km2) for each use and the degree of overlap among the different uses. The greatest degree of conflict is noted with regard to Nature Protection (which overlaps with 60% of the areas used for Recreation and Geological Exploitation), and Fisheries Exploitation (which overlaps with 60% of the areas used for Nature Protection, Recreation, Infrastructure and Navigation). On the other hand, Fisheries Exploitation areas are the least disturbed by other users, and its major competitor is Nature Protection, which claims 20% of the areas used by fisheries. A GIS-based map that illustrates the degree of conflict is included, and the authors suggest participatory management as the proper way to minimize conflicts over sea space use and to promote the effective protection of natural resources.

  References ref

Agardy T., 2000, Information needs for marine protected areas: Scientific and societal, B. Mar. Sci., 66 (3), 875-888.

Andrulewicz E., Napierska D., Otremba Z., 2003, The environmental effects of installation and functioning of submarine SwePol Link HVDC transmission line: a case study of the Polish Marine Area of the Baltic Sea, J. Sea Res., 49, 337-345. http://dx.doi.org/10.1016/S1385-1101(03)00020-0

Andrulewicz E., Otremba Z., Kamińska K., 2010, Ongoing technical activities and nature conservation measures in maritime spatial planning within the Polish Marine Areas, Pol. J. Environ. Stud.,( in press).

Beukema J. J., Dekker R., 2005, Decline of recruitment success in cockles and other bivalves in the Wadden Sea:possible role of climate change,predation on postlarvae and-sheries, Mar. Ecol. Prog. Ser., 287, 149-167. http://dx.doi.org/10.3354/meps287149

Buck B. H., Krause G., Rosenthal H., 2004, Extensive open ocean aquaculture development within wind farms in Germany: the prospect of offshore co-management and legal constraints, Ocean Coast. Manage., 47 (3-4), 95-122. http://dx.doi.org/10.1016/j.ocecoaman.2004.04.002

Dimech M., Darmanin M., Smith I. P., Kaiser M. J., Schembri P. J., 2009, Fishers' perception of a 35 year old exclusive Fisheries Management Zone, Biol. Conserv., 142 (11), 2691-2702. http://dx.doi.org/10.1016/j.biocon.2009.06.019

Douvere F., 2008, The role of marine spatial planning in implementing ecosystem based, sea use management, Mar. Policy, 32 (5), 762-771. http://dx.doi.org/10.1016/j.marpol.2008.03.021

Douvere F., Ehler C. N., 2009, New perspectives on sea use management: Initial findings from European experience with marine spatial planning, J. Environ. Manage., 90 (1), 77-88. http://dx.doi.org/10.1016/j.jenvman.2008.07.004

Durinck J., Skov H., Jensen F. P., Pihl S., 1994, Important marine areas for wintering birds in the Baltic Sea, Ornis Consult Rep., Copenhagen.

Fanshawe S., Van Blaricom G. R., Shelly A. A., 2003, Restored top carnivores as detriments to the performance of marine protected areas intended fo rfishery sustainability: A case study with red abalones and sea otters, Conserv. Biol., 17 (1), 273-283. http://dx.doi.org/10.1046/j.1523-1739.2003.00432.x

Fock H. O., 2008, Fisheries in the context of marine spatial planning: Defining principal areas for fisheries in the German EEZ, Mar. Policy, 32 (4), 728-739. http://dx.doi.org/10.1016/j.marpol.2007.12.010

Geological Survey, 2010, http://www.pgi.gov.pl/index.php?option=com\content\task=view \id=1118\Itemid=597.

Graham I. M., Harris R. N., Denny B., Fowden D., Pullan D., 2009, Testing the effectiveness of an acoustic deterrent device for excluding seals from Atlantic salmon rivers in Scotland, ICES J. Mar. Sci., 66 (5), 860-864. http://dx.doi.org/10.1093/icesjms/fsp111

Guillemot N., Leopold M., Cuif M., Chabanet P., 2009, Characterization and management of informal fisheries confronted with socio economic changes in New Caledonia (South Pacific), Fish. Res., 98 (1-3), 51-61. http://dx.doi.org/10.1016/j.fishres.2009.03.013

Hansson S., Hjerne O., Harvey C., Kitchell J. F., Cox S. P., Essington T. E., 2007, Managing Baltic Sea fisheries under contrasting production and predation regimes:Ecosystem model analyses, AMBIO, 36 (2-3), 265-271. http://dx.doi.org/10.1579/0044-7447(2007)36[265:MBSFUC]2.0.CO;2

HELCOM, 2007, Climate change in the Baltic Sea area.Thematic Assessment in 2007, Baltic Sea Environ. Proc. No. 111, 50 pp.

Humborg C., Morth C. M., Sundbom M., Wulff F., 2007, Riverine transport of biogenic elements to the Baltic Sea-past and possible future perspectives, Hydrol. Earth Syst. Sci. Disc., 11 (5), 1095-1131. http://dx.doi.org/10.5194/hessd-4-1095-2007

Jablonski S., Filet M., 2008, Coastal management in Brazil A political riddle, Ocean Coast. Manage., 51 (7), 536-543. http://dx.doi.org/10.1016/j.ocecoaman.2008.06.008

Jansson A., Folke C., Langaas S., 1998, Quantifying the nitrogen retention capacity of natural wetlands in the large scale drainage basin of the Baltic Sea, Landscape Ecol., 13 (4), 249-262. http://dx.doi.org/10.1023/A:1008020506036

Jegliński W., Kramarska R., Uścinowicz S., Zachowicz J., 2009, Valorisation of the sea bottom, pp.94-95 , [in:] Atlas of Polish marine areas bottom habitats, (auth. coll.), Broker Innowacji, Gdynia, 177 pp., (in Polish).

Jones P. J. S., 2001, Marine protected area strategies: issues, divergences and the search for middle ground, Rev. Fish. Biol. Fisher., 11 (3), 197-216. http://dx.doi.org/10.1023/A:1020327007975

Karlsson O., Hiby L., Lundberg T., Jussi M., Jussi I., Helander B., 2005, Photo identi-cation,site-delity,and movement of female gray seals (Halichoerus grypus)between haul outs in the Baltic Sea, AMBIO, 34 (8), 628-634.

Krebs C. J., 1994, Ecology: The experimental analysis of distribution and abundance, Harper Collins College Publ., New York, 722 pp.

Larkin P. A., 1996, Concepts and issues in marine ecosystem management, Rev. Fish. Biol. Fisher., 6 (2), 139-164. http://dx.doi.org/10.1007/BF00182341

Larsen J., Guillemette M., 2007, Effects of wind turbines on ight behaviour of wintering common eiders: implications for habitat use and collision risk, J. Appl. Ecol., 44 (3), 516-522. http://dx.doi.org/10.1111/j.1365-2664.2007.01303.x

Levin P. S., Kaplan I., Grober-Dunsmore R., Chittaro P. M., Oyamada S., Andrews K., Mangel M., 2009, A framework for assessing the biodiversity and fishery aspects of marine reserves, J. Appl. Ecol., 46 (4), 735-742. http://dx.doi.org/10.1111/j.1365-2664.2009.01667.x

Liu J. H., Hills P., 1997, Environmental planning,biodiversity and the development process: The case of Hong Kong's Chinese white dolphins, J. Environ. Manage., 50 (4), 351-367. http://dx.doi.org/10.1006/jema.1997.0130

Lunney D., Pressey B., Archer M., Hand S., Godthelp H., Curtin A., 1997, Integrating ecology and economics: Illustrating the need to resolve the conflicts of space and time, Ecol. Econ., 23 (2), 135-143. http://dx.doi.org/10.1016/S0921-8009(97)00049-9

Matthiopoulos J., Smout S., Winship A. J.,T hompson D., Boyd I. L., Harwood J., 2008, Getting beneath the surface of marine mammal-fisheries competition, Mammal Rev., 38 (2-3), 167-188. http://dx.doi.org/10.1111/j.1365-2907.2008.00123.x

Meissner W., Staszewski A., Ziołkowski M., 2001, Śmiertelność ptaków wodnych na polskim wybrzeżu Bałtyku w sezonie 1998/1999, Not. Orn., 42 (1), 56-62.

Meissner W., Typiak J., Kośmicki A., Bzoma S., 2009, Liczebność ptaków wodnych na Zatoce Gdałskiej w okresie maj 2007-kwiecień 2008, Not. Orn., 50 (1), 65-72.

Olsson O., Fransson T., Larsson K., 1999, Post edging migration of common murres Uria aalge in the Baltic Sea: management implications, Ecography, 22 (3), 233-239. http://dx.doi.org/10.1111/j.1600-0587.1999.tb00497.x

Otremba Z., Andrulewicz E., 2008, Environmental concerns related to existing and planned technical installations in the Baltic Sea, Pol. J. Environ. Stud., 17 (2), 173-179.

Pedersen S. A., Push C., Sell A. L., Bottcher U., Rogers S. I., Skold M., Skov H., Podolska M., Piet G. J., Rice J. C., Fock H., Krause J., 2009, Natura 2000 sites and fisheries in German offshore waters, ICES J. Mar. Sci., 66 (1), 155-169. http://dx.doi.org/10.1093/icesjms/fsn193

Ropelewski A., 1952, Ssaki Bałtyku, Zak. Ochrony Przyrody PAN, Krakow,76 pp.

Rönnbäck P., Kautsky N., Pihl L., Troell M., Soerqvist T., Wennhage H., 2007, Ecosystem goods and services from Swedish coastal habitats: Identi-cation, valuation,and implications of ecosystem shifts, AMBIO, 36 (7), 534-544. http://dx.doi.org/10.1579/0044-7447(2007)36[534:EGASFS]2.0.CO;2

Samples K. C., 1989, Assessing recreational and commercial conflicts over artificial fishery habitat use: theory and practice, B. Mar. Sci., 44 (2), 844-852.

Sjoberg M., Ball J. P., 2000, Grey seal, Halichoerus grypus,habitat selection around haulout sites in the Baltic Sea:bathymetry or central place foraging?, Can. J. Zool., 78 (9), 1661-1667.

Skóra K. E., Kuklik I., 2009, Marine mammals, pp. 40-43, [in:] Atlas of Polish marine areas bottom habitats , (auth. coll.), Broker Innowacji, Gdynia, 177 pp., (in Polish).

Stempniewicz L., 1994, Marine birds drowning infishing nets in the Gulf of Gdałsk (southern Baltic): numbers, species composition, age and sex structure, Ornis Svecica, 4 (2-3), 123-132.

Szeffer K., Furmańczyk K., 2007, Zagospodarowanie i przestrzenne aspekty rozwoju strefy przybrzeżnej Bałtyku, zarówno strefy wód terytorialnych (12 milowej) jak i wył$#ącznej strefy ekonomicznej (EEZ), Gdańsk,http://www.mrr.gov.pl/Rozwoj+przestrzenny/Polska+polityka+przestrzenna/Prace+nad+KPZK+2008 2033/.

Varjopuro R., Sahivirta E., Makinen T., Helminen H., 2000, Regulation and monitoring of marine aquaculture in Finland, J. Appl. Ichthyol., 16 (4-5), 148-156. http://dx.doi.org/10.1046/j.1439-0426.2000.00255.x

Vieno N., uhkanenand T., Kronberg L., 2007, Elimination of pharmaceuticals in sewage treatment plants in Finland, Water Res., 41 (5), 1001-1012. http://dx.doi.org/10.1016/j.watres.2006.12.017

Węsławski J. M., Warzocha J., Wiktor J., Urbański J., Bradtke K., Kryla L., Tatarek A., Kotwicki L., Piwowarczyk J., 2009, Biological valorisation of the southern Baltic Sea (Polish Exclusive Economic Zone), Oceanologia, 51 (3), 415-435. http://dx.doi.org/10.5697/oc.51-3.415

Wilson J. C., Elliot M., 2009, The habitat creation potential of offshore wind farms, Wind Energy, 12 (2), 203-212. http://dx.doi.org/10.1002/we.324

Zaucha J., Jakubowska P. (eds.), 2008, Examples of national cases of sea spatial conflicts and potentials in the BSR, MRR, Warszawa.

full, complete article (PDF - compatibile with Acrobat 4.0), 1.4 kB