Oceanologia No. 51 (3) / 09


Invited paper


Invited paper

Do toxic cyanobacteria blooms pose a threat to the Baltic ecosystem?
Oceanologia 2009, no. 51(3), pp. 293-319

Hanna Mazur-Marzec*, Marcin Pliński
Department of Marine Biology and Ecology,
Institute of Oceanography, University of Gdańsk,
al. Marszałka Piłsudskiego 46, PL-81-378 Gdynia, Poland;
e-mail: biohm@univ.gda.pl
*corresponding author

Keywords: Cyanobacteria, harmful blooms, Aphanizomenon flos-aquae, Nodularia spumigena, nodularin, Baltic Sea

Received 19 August 2009, revised 27 August 2009, accepted 1 September 2009.

This work was supported by the Ministry of Science and Higher Education in Poland (project number 2651/P01/2008/34).
Cyanobacteria, otherwise known as blue-green algae, are oxygenic, photosynthetic prokaryotes. They occur naturally in many fresh, marine and brackish waters worldwide and play an important role in global carbon and nitrogen cycles. In their long history, cyanobacteria have developed structures and mechanisms that enable them to survive and proliferate under different environmental conditions. In the Baltic Sea, the mass development of cyanobacteria is compounded by a high level of eutrophication. The dominant species in the Baltic, the filamentous Aphanizomenon flos-aquae and Nodularia spumigena, can fix dissolved atmospheric N2, as a result of which they can outcompete other phytoplankton organisms. Heterocystous, filamentous cyanobacteria also make a significant contribution to the internal nutrient loading in the Baltic. The blooms of N. spumigena are of particular concern, as this cyanobacterium produces nodularin (NOD), a hepatotoxic peptide. The concentration of the toxin in the sea is regulated mainly by dilution with uncontaminated water, photolysis, sorption to sediments and microbial degradation. The transfer of the toxin in the Baltic trophic chain through zooplankton, mussels, fish and birds has been reported, but biodilution rather than bioconcentration has been observed. Cyanobacterial blooms are thought to pose a serious threat to the ecosystem. Their harmful effects are related to the occurrence of a high biomass, oxygen depletion, a reduction in biodiversity, and the production of toxic metabolites.

  References ref

Amé M. V., Echenique J. R., Pflugmacher S., Wunderlin D. A., 2006, Degradation of microcystin RR by Sphingomonas sp. CBA4 isolated from San Roque reservoir (Córdoba - Argentina), Biodegradation, 17 (5), 447-455.

An J., Carmichael W. W., 1994, Use of a colorimetric protein phosphatase inhibition assay and enzyme linked immunosorbent assay for the study of microcystins and nodularins, Toxicon, 32 (12), 1495-1507. http://dx.doi.org/10.1016/0041-0101(94)90308-5

Andersen R. J., Luu H. A., Chen D. Z. X., Holms C. F. B., Kent M. L., Le Blanc M., Taylor F. R. J., Williams D. E., 1993, Chemical and biological evidence links microcystins to salmon netpen liver disease, Toxicon, 31 (10), 1315-1323. http://dx.doi.org/10.1016/0041-0101(93)90404-7

Bianchi T. S., Engelhaupt E., West an P., Andrén T., Rolff C., Elmgren R., 2000, Cyanobacterial blooms in the Baltic Sea: natural or human induced?, Limnol. Oceanogr., 45 (3), 716-726. http://dx.doi.org/10.4319/lo.2000.45.3.0716

Bouaicha N., Maatouk I., 2004, Microcystin LR and nodularin induce intracellular glutathione alteration,reactive oxygen species production and lipid peroxidation in primary cultured rat hepatocytes, Toxicol. Lett., 148 (1-2), 53-63. http://dx.doi.org/10.1016/j.toxlet.2003.12.005

Bourne D. G., Jones G. J., Blakeley R. I., Jones A., Negri A. P., Riddles P., 1996, Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR, Appl. Environ. Microb., 62 (11), 4086-4094.

Carmichael W. W., 1992, Cyanobacteria secondary metabolites and the cyanotoxins, J. Appl. Microbiol., 72, 445-59. http://dx.doi.org/10.1111/j.1365-2672.1992.tb01858.x

Chen W., Song L., Peng L., Wan N., Zhang X., Gan N., 2008, Reduction in microcystin concentrations in large and shallow lakes:water and sediment interface contributions, Water Res., 42 (3), 763-773. http://dx.doi.org/10.1016/j.watres.2007.08.007

Choi B. W., Namikoshi M., Sun F., Rinehart K. L., Carmichael W. W., Kaup A. M., Evans W. R., Beasley V. R., 1993, Isolation of linear peptides related to the hepatotoxins nodularin and microcystins, Tetrahedron Lett., 34 (49), 7881-7884. http://dx.doi.org/10.1016/S0040-4039(00)61500-9

Choi H. J., Ki B. H., Ki J. D., Han M. S., 2005, Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwaters, Biol. Control, 33 (3), 335-343.

Christoffersen K., Lyck S., Winding A., 2002, Microbial activity and bacterial community structure during degradation of microcystins, Aquat. Microb. Ecol., 27 (2), 125-136. http://dx.doi.org/10.3354/ame027125

Cole J. J., Lane J. M., Marino R., Howarth R. W., 1993, Molybdenum assimilation by cyanobacteria and phytoplankton in freshwater and salt water, Limnol. Oceanogr., 38 (1), 25-35. http://dx.doi.org/10.4319/lo.1993.38.1.0025

Cox P. A., Banack S. A., Murch S. J., 2003, Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam, Proc. Nat. Acad. Sci., 100 (23), 13380-13383. http://dx.doi.org/10.1073/pnas.2235808100

Cox P. A., Banack S. A., Murch S. J., Resmussen U., Tien G., Bidigare R. R., Metcalf J. S., Morrison L. F., Codd G. A., Bergman B., 2005, Diverse taxa of cyanobacteria produce β-N-methylamino-L-alanine, neurotic amino acid, Proc. Nat. Acad. Sci., 102 (14), 5074-5078. http://dx.doi.org/10.1073/pnas.0501526102

Drevs T., Jaanus A., Vahtmae E., 2007, Effect of cyanobacterial blooms on the abundance of the flounder Platichthys flesus (L.) in the Gulf of Finland, Est. J. Ecol., 56 (3), 196-208.

Edler L., Ferno S., Lind M. G., Lundberg R., Nilsson P. O., 1985, Mortality of dogs associated with a bloom of the cyanobacterium Nodularia spumigena in the Baltic Sea, Ophelia, 24 (2), 103-109.

Edwards Ch., Graha D., Fowler N., Lawton L. A., 2008, Biodegradation of microcystins and nodularin in freshwaters, Chemosphere, 73 (8), 1315-1321. http://dx.doi.org/10.1016/j.chemosphere.2008.07.015

Engström-Öst J., Koski M., Schmidt K., Viitasalo M., Jonasdottir S. H., Kokkonen M., Repka S., Sivonen K., 2002, Effect of toxic cyanobacteria on a plankton assemblage: community development during decay of Nodularia spumigena, Mar. Ecol.-Prog. Ser., 232, 1-14. http://dx.doi.org/10.3354/meps232001

Falconer I. R., Humpage A. R., 1996, Tumour promotion by cyanobacterial toxins, Phycologia, 35 (Suppl. 6), 74-79. http://dx.doi.org/10.2216/i0031-8884-35-6S-74.1

Finni T., Kononen K., Olsonen R., Wallström K., 2001, The history of cyanobacterial blooms in the Baltic Sea, Ambio,30 (4-5), 172-178.

Fladmark K. E., Serres M. H., Larsen N. L., Yasumoto T., Aune T., Doskeland S. O., 1998, Sensitive detection of apoptogenic toxins in suspension cultures of rat and salmon hepatocytes, Toxicon,36 (1), 1101-1114. http://dx.doi.org/10.1016/S0041-0101(98)00083-X

Gorkhova E., 2009, Toxic cyanobacteria Nodularia spumigena in the diet of Baltic mysids: evidence from molecular diet analysis, Harmful Algae, 8 (1), 264-272. http://dx.doi.org/10.1016/j.hal.2008.06.006

Henriksen P., 2005, Estimating nodularin content of cyanobacterial blooms from abundance of Nodularia spumigena and its characteristic pigments - a case study from the Baltic entrance area, Harmful Algae, 4 (1), 167-178. http://dx.doi.org/10.1016/j.hal.2004.02.003

Heresztyn T., Nicholson B. C.,1997, Nodularin concentration in Lakes Alexandrina and Albert, South Australia,during a bloom of the cyanobacterium (blue-green algae) Nodularia spumigena and degradation of the toxin, Environ. Toxic. Water, 12 (4), 273-282. http://dx.doi.org/10.1016/j.toxicon.2005.04.005

Herfindal L., Oftedal L., Selheim F., Wahlsten M., Sivonen K., Doskeland S. O., 2005, A high proportion of Baltic Sea benthic cyanobacterial isolates contain apoptogens able to induce rapid death of isolated rat hepatocytes, Toxicon, 46 (3), 252-260.

Imanishi S., Kato H., Mizuno M., Tsuji K., Harada K.-I., 2005, Bacterial degradation of microcystin and nodularin, Chem. Res. Toxicol., 18 (3), 591-598. http://dx.doi.org/10.1021/tx049677g

Ishii H., Nishijima M., Abe T., 2004, Characterization of degradation process of cyanobacterial hepatotoxins by a gram negative aerobic bacterium, Water Res., 38 (11), 2667-2676. http://dx.doi.org/10.1016/j.watres.2004.03.014

Kankaanpää H., Leiniö S., Olin M., Sjövall O., Meriluoto J., Lehtonen K. K., 2007, Accumulation and depuration of cyanobacterial toxin nodularin and biomarker responses in the mussel Mytilus edulis, Chemosphere, 68 (7), 1210-1217. http://dx.doi.org/10.1016/j.chemosphere.2007.01.076

Kankaanpää H., Sipiä V., Kuparinen J. S., Ott J. L., Carmichael W. W., 2001, Nodularin analyses and toxicity of a Nodularia spumigena (Nostocales, Cyanobacteria) water - bloom in the western Gulf of Finland, Baltic Sea, in August 1999, Phycologia, 40 (3), 268-274. http://dx.doi.org/10.2216/i0031-8884-40-3-268.1

Kankaanpää H., Sjövall O., Huttunen M., Olin M., Karlsson K., Hyvärinen K., Sneitz L., Härkönen J., Sipiä V. O., Meriluoto J. A. O., 2009, Production and sedimentation of peptide toxins nodularin R and microcystin LR in the northern Baltic Sea, Environ. Pollut., 157 (157), 1301-1309.

Kankaanpää H., Turunen A.-K., Karlsson K., Bylund G., Meriluoto J. A. O., Sipiä V., 2005, Heterogeneity of nodularin bioaccumulation in northern Baltic Sea flounders in 2002, Chemosphere, 59 (8), 1091-1097. http://dx.doi.org/10.1016/j.chemosphere.2004.12.010

Kankaanpää H., Vuorinen P. J., Sipiä V., Keinänen M., 2002, Acute effects and bioaccumulation of nodularin in sea trout (Salmo trutta m.trutta L.)exposed orally to Nodularia spumigena under laboratory conditions, Aquat. Toxicol., 61 (3-4), 155-168. http://dx.doi.org/10.1016/S0166-445X(02)00054-1

Karjalainen M., Engström-Öst J., Korpinen S., Peltonen H., Pääkkönen J.-P., Rönkkönen S., Suikkanen S., Viitasalo M., 2007, Ecosystem consequences of cyanobacteria in the Northern Baltic Sea, Ambio, 36 (2-3), 195-202. http://dx.doi.org/10.1007/s00227-005-0126-y

Karjalainen M., Kozlowsky-Suzuki B., Lehtiniemi M., Engström-Öst J., Kankaanpää H., Viitasalo M., 2006, Nodularin accumulation during cynobacterial blooms and experimental depuration in zooplankton, Mar. Biol., 148 (4), 683-691. http://dx.doi.org/10.1007/s00227-008-1046-4

Karjalainen M.,Pääkkönen J.-P.,Peltonen H.,Sipiä V., Valtonen T., Viiasalo M., 2008, Nodularin concentrations in zooplankton and fish during a cyanobacterial bloom, Mar. Biol., 155 (5), 483-491.

Karjalainen M., Reinikainen M., Lindvall F., Spoof L., Meriluoto J. A. O., 2003, Uptake and accumulation of dissolved radiolabeled nodularin in Baltic sea zooplankton, Environ. Toxicol., 18 (1), 52-60. http://dx.doi.org/10.1002/tox.10100

Karjalainen M., Reinikainen M., Spoof L., Meriluoto J. A. O., Sivonen K., Viitasalo M., 2005, Trophic transfer of cyanobacterial toxins from zooplankton to planktivores:consequences for pike larvae and mysid shrimps, Environ. Toxicol., 20 (3), 354”362.

Karlsson K. M., Kankaanpää H., Huttunen M., Meriluoto J. A. O., 2005a, First observation of microcystin LR in pelagic cyanobacterial blooms in the northern Baltic Sea, Harmful Algae, 4 (1), 163-166. http://dx.doi.org/10.1016/j.hal.2004.02.002

Karlsson K. M., Sipiä V., Kankaanpää H., Meriluoto J. A. O., 2003, Mass spectrometric detection of nodularin and desmethylnodularin in mussels and flounders, J. Chromatogr. B, 784 (2), 243-253. http://dx.doi.org/10.1016/S1570-0232(02)00802-4

Karlsson K.M., Spoof L. E. M., Meriluoto J. A. O., 2005b, Quantitative LC-ESI-MS analyses of microcystins and nodularin R in animal tissue - matrixe effects and method validation, Environ. Toxicol., 20 (3), 381-389. http://dx.doi.org/10.1002/tox.20115

Kato H., Imanishi S. Y., Tsuji K., Harada K.-I., 2007, Microbial degradation of cyanobacterial cyclic peptides, Water Res., 41 (8), 1754-1762. http://dx.doi.org/10.1016/j.watres.2007.01.003

Keleti G.,Sykora J.L.,1982 Production and properties of cyanobacterial endotoxins, Appl. Environ. Microb., 43 (1), 104-109.

Konoshina I., Lips U., Leppänen J.-M., 2003, The influence of weather conditions (temperature and wind) on cyanobacterial bloom development in the Gulf of Finland (Baltic Sea), Harmful Algae, 2 (1), 29-41. http://dx.doi.org/10.1016/S1568-9883(02)00085-9

Koski M., Schmidt K., Engström-Öst J., Viitasalo M., Jonasdottir S. H., Repka S., Sivonen K., 2002, Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena, Limnol. Oceanogr., 47 (3), 878-885. http://dx.doi.org/10.4319/lo.2002.47.3.0878

Kozlowsky-Suzuki B., Karjalainen M., Lehtiniemi M., Engström-Öst J., Koski M., Carlsson P., 2003, Feeding,reproduction and toxin accumulation by copepods Acartia biflosa and Eurytemora affnis in the presence of the toxic cyanobacterium Nodularia spumigena, Mar. Ecol.-Prog. Ser., 249, 237-249. http://dx.doi.org/10.3354/meps249237

Kuiper-Goodman T., Falconer I., Fitzgerald J., 1999, Human health aspect, [in:] Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management, I. Chorus & J. Bartram (eds.), WHO Publ., E. & F. N. Spon, London, 113-153.

Kurmayer R., Christiansen G., 2009, The genetic basis of toxin production in Cyanobacteria, Freshwater Rev., 2 (1), 31-50.

Laanemets J., Lilover M. J., Raudsepp U., Autio R., Vahtera E., Lips I., Lips U., 2006, A fuzzy logic model to describe the cyanobacteria Nodularia spumigena blooms in the Gulf of Finland,Baltic Sea, Hydrobiologia, 554 (1), 31-45. http://dx.doi.org/10.1007/s10750-005-1004-x

Lankoff A., Banasik A., Nowak M., 2002, Protective effect of melatonin against nodularin induced oxidative stress, Arch. Toxicol., 76 (3), 158-165. http://dx.doi.org/10.1007/s00204-001-0310-x

Larsson U., Hajdu S., Walve J., Elmgren R., 2001, Baltic Sea nitrogen fixation estimated from the summer increase in upper mixed layer total nitrogen, Limnol. Oceanogr., 46 (4), 811-820.

Lehtimäki J., Moisander P., Sivonen K., Kononen K., 1997, Growth,nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria, Appl. Environ. Microb., 63 (5), 1647-1656.

Lehtonen K. K., Kankaanpää H., Leiniö S., Sipiä V. O., Pflugmacher S., Sandberg-Kilpi E., 2003, Accumulation of nodularin like compounds from the cyanobacterium Nodularia spumigena and changes in acetylcholinesterase activity in the clam Macoma baltica during short-term laboratory exposure, Aquat. Toxicol., 64 (4), 461-476. http://dx.doi.org/10.1016/S0166-445X(03)00101-2

Lobner D., Piana P. M. T., Salous A. K., Peoples R. W., 2007, β-N-methylamino-L-alanine enhances neurotoxicity through multiple reactions, Neurobiol.Dis., 25 (2), 360-366. http://dx.doi.org/10.1016/j.nbd.2006.10.002

Łotocka M., 2001, Toxic effect of cyanobacterial blooms on the grazing activity of Daphnia magna Straus, Oceanologia, 43 (4), 441-453.

Łysiak-Pastuszak E., Drgas N., 2001a, Nitrogen compounds, [in:] Environmental conditions in the Polish zone of the southern Baltic in 2000, W. Krzemiński, E. Łysiak-Pastuszak & M. Miętus (eds.), Mater. Oddz. Mor. Inst. Meteorol. Gosp. Wod., Gdynia, 102-113.

Łysiak-Pastuszak E., Drgas N., 2001b, Phosphorus compounds, [in:] Environmental conditions in the Polish zone of the southern Baltic in 2000, W. Krzemi.ski, E. Łysiak-Pastuszak & M. Miętus (eds.), Mat. Oddz. Mor. Inst. Meteorol. Gosp. Wod., Gdynia, 89-96.

Łysiak-Pastuszak E., Drgas N., Piątkowska Z., 2004, Eutrophication in the Polish coastal zone: the past, present status and future scenarios, Mar. Pollut. Bull., 49 (3),186-195. http://dx.doi.org/10.1016/j.marpolbul.2004.02.007

Manage P. M., Kawabata Z., Nakano S.-I., 2001, Dynamics of cyanophage-like particles and algicidal bacteria causing Microcystis aeruginosa mortality, Li nology, 2 (2),73-78.

Martins R. F.,Ramos M. F., Herfindal L., Sousa J. A., Skarven K., Vasconcelos V. M., 2008, Antibacterial and cytotoxic assessment of marine cyanobacteria - Synechocystis and Synechococcus, Mar. Drugs, 6 (1), 1-11. http://dx.doi.org/10.3390/md6010001

Mazur H., Lewandowska J., Błaszczyk A., Kot A., Pliński M., 2003, Cyanobacterial toxins in fresh and brackish waters of Pomorskie Province (Northern Poland), Oceanol. Hydrobiol. Stud., 32 (1), 15-26.

Mazur-Marzec H., Krężel A., Kobos J., Pliński M., 2006a, Toxic Nodularia spumigena blooms in the coastal waters of the Gulf of Gdańsk:a ten year survey, Oceanologia, 48 (2), 255-273.

Mazur-Marzec H., Meriluoto J., Pliński M., Szafranek J., 2006b, Characterization of nodularin variants from the Baltic Sea using liquid chromatography/mass spectrometry/mass spectrometry, Rapid Comun. Mass Sp., 20 (13), 2023-2032.

Mazur-Marzec H., Toruńska A., BBłońska M. J., Moskot M., Pliński M., Jakobkiewicz-Banecka J., Węgrzyn G., 2009, Biodegradation of nodularin and effect of the toxin on bacterial isolates from the Gulf of Gdańsk, Water Res., 43 (11), 2801-2810. http://dx.doi.org/10.1016/j.watres.2009.03.042

Mazur-Marzec H., Tymińska A., Szafranek J., Pliński M., 2007, Accumulation of nodularin in sediments, mussels, and fish from the Gulf of Gdańsk,southern Baltic Sea, Environ. Toxicol., 22 (1), 101-111. http://dx.doi.org/10.1002/tox.20239

Mazur-Marzec H., Żeglińska L., Pliński M., 2005, The effect of salinity on growth, toxin production, and morphology of Nodularia spumigena isolated from the Gulf of Gdańsk, southern Baltic Sea, J. Appl. Phycol., 17 (2), 171-179. http://dx.doi.org/10.1007/s10811-005-5767-1

Moffitt M. C., Neilan B. A., 2000, The expansion of mechanistic and organismic diversity associated with non-ribosomal peptides, FEMS Microbiol. Lett., 191 (2), 159-167. http://dx.doi.org/10.1111/j.1574-6968.2000.tb09334.x

Moffitt M. C., Neilan B. A., 2001, On the presence of peptide synthetase and polyketide synthase genes in the cyanobacterial genus Nodularia, FEMS Microbiol. Lett., 196 (2), 207-214. http://dx.doi.org/10.1111/j.1574-6968.2001.tb10566.x

Moffitt M. C., Neilan B. A., 2004, Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins , Appl. Environ. Microb., 70 (11), 6353-6362. http://dx.doi.org/10.1128/AEM.70.11.6353-6362.2004

Moisander P. H., McClinton E., Paerl H. W., 2002, Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria, Microb. Ecol., 43 (4), 432-442. http://dx.doi.org/10.1007/s00248-001-1044-2

Namikoshi M., Choi B. W., Sakai R., Sun F., Rinehart K. L., Carmichael W. W., Evans W. R., Cruz P., Munro M. H. G., Blunt J. W., 1994, New nodularin: a general method for structure assignment, J. Org. Chem., 59 (9), 2349-2357. http://dx.doi.org/10.1021/jo00088a014

Nehring S., 1993, Mortality of dogs associated with a bloom of the mass development of Nodularia spumigena (Cyanophyceae), in a brackish lake at the German North Sea coast, J. Plankton Res., 15 (7), 867-872. http://dx.doi.org/10.1093/plankt/15.7.867

Neumann T., Schernewski G., 2005, An ecological model evaluation of two nutrient abatement strategies for the Baltic Sea, J. Marine Syst., 56 (1-2), 195-206. http://dx.doi.org/10.1016/j.jmarsys.2004.10.002

Ohta T., Sueoka E., Iida N., Komori A., Suganuma M., Nishiwaki R., Tatematsu M., Ki S. J., Carmichael W. W., Fujiki H., 1994, Nodularin, a potent Inhibitor of protein phosphatases 1 and 2A, is a new environmental carcinogen in male F344 rat liver, Cancer Res., 54 (24), 6402-6406.

Paczuska L., Kosakowska A., 2003, Is iron a limiting factor of Nodularia spumigena blooms?, Oceanologia, 45 (4), 679-692.

Paerl H. W., Fulton R. S., 2006, Ecology of harmful cyanobacteria, [in:] Ecology of harmful algae, E. Granéeli & J. T. Turner (eds.), Ecol. Stud. Vol. 189, Part B, Springer, Berlin, Heidelberg, 95-109.

Paerl H. W., Huisman J., 2008, Blooms like it hot, Science, 320 (5872), 57-58. http://dx.doi.org/10.1126/science.1155398

Paldavičienė A., Mazur-Marzec H., Razinkovas A., 2009, Toxic cyanobacteria blooms in the Lithuanian part of the Curonian Lagoon, Oceanologia, 51 (2), 203-216. http://dx.doi.org/10.5697/oc.51-2.203

Pliński M., Jóźwiak T., 1995, Dynamics of heterocytous cyanobacteria growth in the brackish water, Abstr. 7th Int. Conf. Toxic Phytoplankton,12-16 July 1995, Sendai, Japan, p. 101.

Pliński M., Mazur-Marzec H., Jóźwiak T., Kobos J., 2007, The potential causes of cyanobacterial blooms in Baltic Sea estuaries, Oceanol. Hydrobiol.Stud., 36 (1), 125-137.

Pliński M., Musiał A., Ostrowski B., 1998, Blue green algae blooms in the Gulf of Gdańsk and surrounding area, Oceanol. Stud., 27 (1), 39-44.

Ploug H., 2008, Cyanobacterial surface blooms formed by Aphanizomenon sp. and Nodularia spumigena in the Baltic Sea:small-scale fluxes, pH, and oxygen microenvironments, Limnol. Oceanogr., 53 (3), 914-921. http://dx.doi.org/10.4319/lo.2008.53.3.0914

Poutanen E.-L., Nikkilä K., 2001, Carotenoid pigments as tracers of cyanobacterial blooms in recent and post glacial sediments of the Baltic Sea, Ambio, 30 (4-5), 179-183.

Rahm L., Jöonsson A., Wulff F., 2000, Nitrogen fixation in the Baltic proper: an empirical study, J. Marine Syst., 25 (3-4), 239-248. http://dx.doi.org/10.1016/S0924-7963(00)00018-X

Rantala A., Fewer D. P., Hisbergues M., Rouhiainen L., Valtomaa J.,Börner T., Sivonen K., 2004, Phylogenetic evidence for the early evolution of microcystin synthesis, Proc. Nat. Acad. Sci., 101 (2), 568-573. http://dx.doi.org/10.1073/pnas.0304489101

Rapala J., Berg K. A., Lyra C., Niemi R. M., Manz W., Suomalainen S., Paulin L., Lahti K., 2005, Paucibacter toxinivorans gen. nov., sp. nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin, Int. J. Syst. Evol. Micr., 55 (4), 1563-1568. http://dx.doi.org/10.1099/ijs.0.63599-0

Rapala J., Lahti K.,Räsänen L. A., Esala A.-L., Niemelä S. I., Sivonen K., 2002, Endotoxins associated with cyanobacteria and their removal during drinking water treatment, Water Res., 36 (10), 2627-2635. http://dx.doi.org/10.1016/S0043-1354(01)00478-X

Rashidan K. K., Bird D. F., 2001, Role of predatory bacteria in the termination of a cyanobacterial bloom, Microb. Ecol., 41 (2), 97-105.

Rinehart K. L., Harada K.-I. ,Namikoshi M., Chen C., Harvis C. A., Munroe M. H. G., Blunt J. W., Mulligan P. E., Beasley V. R., Dahlem A. M., Carmichael W. W., 1988, Nodularin, microcystin and the configuration of Adda, J. A . Chem. Soc., 110 (25), 8557-8558. http://dx.doi.org/10.1021/ja00233a049

Rinehart K. L., Namikoshi M., Choi B. W., 1994, Structure and biosynthesis of toxins from blue-green algae (cyanobacteria), J. Appl. Phycol., 6 (2),159-176. http://dx.doi.org/10.1007/BF02186070

Salomon P., Janson S., Granéli E., 2003, Molecular identification of bacteria associated with filaments of Nodularia spumigena and their effect on the cyanobacterial growth, Harmful Algae, 2 (4),261-272. http://dx.doi.org/10.1016/S1568-9883(03)00045-3

Sellner K. G., 1997, Physiology, ecology, and toxic properties of marine cyanobacteria blooms, Limnol. Oceanogr., 42 (5, part 2), 1089-1104. http://dx.doi.org/10.4319/lo.1997.42.5_part_2.1089

Simis S. G. H., Tijdens M., Hoogveld H. L., Gons H. J., 2005, Optical changes associated with cyanobacterial bloom termination by viral lysis, J. Plankton Res., 27 (9), 937-949. http://dx.doi.org/10.1093/plankt/fbi068

Sipiä V. O., Kankaanpää H. T., Flinkman J., Lahti K., Meriluoto J. A. O., 2001a, Time dependent accumulation of cyanobacterial hepatotoxins in flounders (Platichthys flesus)and mussels (Mytilus edulis) from the northern Baltic Sea, Environ. Toxicol., 16 (4), 330-336. http://dx.doi.org/10.1002/tox.1040

Sipiä V. O., Kankaanpää H. T.,Lahti K.,Carmichael W. W., Meriluoto J. A. O., 2001b, Detection of nodularin in flounder and cod from the Baltic Sea, Environ. Toxicol., 16 (2), 121-126. http://dx.doi.org/10.1002/tox.1015

Sipiä V. O., Kankaanpää H., Peltonen H., Vinni M., Meriluoto J. A. O., 2007, Transfer of nodularin to three spined stickleback (Gasterosteus aculeatus L.), herring (Clupea harengus L.), and salmon (Salmo salar L.) in the northern Baltic Sea, Ecotox. Environ. Safe., 66 (3), 421-425. http://dx.doi.org/10.1016/j.ecoenv.2006.02.006

Sipiä V. O., Kankaanpää H. T, Pflugmacher S., Flinkman J., Furey A., James K. J., 2002, Bioaccumulation and detoxification of nodularin in tissues of flounders (Platichthys flesus), mussels (Mytilus edulis, Dreissena polymorpha), and clam (Macoma baltica) from the northern Baltic Sea, Ecotox. Environ. Safe., 53 (2), 305-311. http://dx.doi.org/10.1006/eesa.2002.2222

Sipiä V. O., Karlsson K. M., Meriluoto J. A. O., Kankaanpää H. T., 2003, Eiders (Somateria mollissima) obtain nodularin, a cyanobacterial hepatotoxin, in Baltic Sea food web, Environ. Toxicol. Chem., 23 (5), 1256-1260.

Sipiä V. O., Neffling M. R., Metcalf J. S., Nybo S. M. K.,Meriluoto J. A. O., Codd G.A., 2008, Nodularin in feathers and liver of eiders (Somateria mollissima) caught from the western Gulf of Finland in June-September 2005, Harmful Algae, 7 (1), 99-105.

Sivonen K.,Jones G., 1999, Cyanobacterial toxins, [in:] Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management, I.Chorus & J.Bartram (eds.), WHO Publ., E.& F. N. Spon, London, New York, 41-111.

Sivonen K., Kononen K., Carmichael W. W., Dahlem A. M., Rinehart K. L., Kiviranta J., Niemel ä S. I., 1989, Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the toxin, Appl. Environ. Microb., 55 (8), 1990-1995.

Sivonen K., Niemelä S. I., Niemi R.mM., LepistöL., Luona T. H., Räsänen L. A., 1990, Toxic cyanobacteria (blue green algae) in Finnish fresh and coastal waters, Hydrobiologia, 190 (3), 267-275. http://dx.doi.org/10.1007/BF00008195

Spoof L., Vesterkvist P., Lindholm T., Meriluoto J., 2003, Screening for cyanobacterial hepatotoxins, microcystins and nodularins in environmental water samples by reversed-phase liquid chromatography - electrospray ionization mass spectrometry, J. Chromatogr. A, 1020 (1), 105-119. http://dx.doi.org/10.1016/S0021-9673(03)00428-X

Stal L. J., Albertano P., Bergman B., von Bröckel K., Gallon J. R., Hayes P. K., Sivonen K., Walsby A. E., 2003, BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea - responses to a changing environment, Cont. Shelf Res., 23 (17-19), 1695-1714. http://dx.doi.org/10.1016/j.csr.2003.06.001

Strogyloudi E., Giannakourou A., Legrand C., Ruehl A., Graneli E., 2006, Estimating the accumulation and transfer of Nodularia spumigena toxins by the blue mussel Mytilus edulis: An appraisal from culture and mesocosm experiments, Toxicon, 48 (4), 359-372. http://dx.doi.org/10.1016/j.toxicon.2006.05.009

Suikkanen S., Fistarol G. O., Granéli E., 2004, Allelopathic effects of the Baltic cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures, J. Exp. Mar. Biol. Ecol., 308 (1), 85-101. http://dx.doi.org/10.1016/j.jembe.2004.02.012

Sullivan M. B., Waterbury J. B., Chisholm S. W., 2003, Cyanophages infecting the oceanic cyanobacterium Prochlorococcus, Nature, 424 (6952), 1047-1051. http://dx.doi.org/10.1038/nature01929

Surakka A., Sihvonen L. M., Lehtiäki J. M., Wahlsten M., Vuorela P., Sivonen K., 2005, Benthic cyanobacteria from the Baltic Sea contain cytotoxic Anabaena, Nodularia, and Nostoc strains and an apoptosis inducing Phormidium strain, Environ. Toxicol., 20 (3), 285-292. http://dx.doi.org/10.1002/tox.20119

Thingstad T. F., Lignell R., 1997, Theoretical models for the control of bacterial a growth rate, abundance, diversity and carbon demand, Aquat. Microb. Ecol., 13 (1), 19-27. http://dx.doi.org/10.3354/ame013019

Tillett D., Dittmann E., Erhard M., von Döhren H., Börner T., Neilan B. A., 2000, Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC 7806: an integrated peptide-polyketide synthetase system, Chem. Biol., 7 (11),753-764. http://dx.doi.org/10.1016/S1074-5521(00)00021-1

Toruńska A., Bolałek J., Pliński M., Mazur-Marzec H., 2008, Biodegradation and sorption of nodularin (NOD)in fine grained sediments, Chemosphere, 70 (11), 2039-2046. http://dx.doi.org/10.1016/j.chemosphere.2007.09.015

Tuomainen J. M., Hietanen S., Kuparinen J., Martikainen P. J., Servomaa K., 2006, Community structure of the bacteria associated with Nodularia sp. (Cyanobacteria) aggregates in Baltic Sea, Microb. Ecol., 52 (3), 513-522. http://dx.doi.org/10.1007/s00248-006-9130-0

Tymińska A.,M azur-Marzec H., Graczyk M., Pliński M., 2005, Effect of two different Nodularia spumigena extracts on Danio rerio eggs mortality and hatching time, Oceanol. Hydrobiol. Stud., 34 (Suppl. 3), 149-159.

Vahtera E., Conley D. J., Gustafsson B. G., Kuosa H., Pitkänen H., Savchuk O. P., Tamminen T., Viitasalo M., Voss M., Wasmund N., Wulf F., 2007, Internal ecosystem feedbacks enhance nitrogen .xing cyanobacteria blooms and complicate management in the Baltic Sea, Ambio, 36 (2-3), 186-194. http://dx.doi.org/10.1579/0044-7447(2007)36[186:IEFENC]2.0.CO;2

Vahtera E., Laanemets J., Pavelson J., Huttunen M., Kononen K., 2005, Effect of upwelling on the pelagic environment and bloom forming cyanobacteria in the western Gulf of Finland, Baltic Sea , J. Marine Syst., 58 (1-2), 67-82. http://dx.doi.org/10.1016/j.jmarsys.2005.07.001

Valdor R., Aboal M., 2007, Effect of living cyanobacteria, cyanobacterial extracts and pure microcystins on growth and ultrastructure of microalgae and bacteria, Toxicon, 49 (6), 769-779. http://dx.doi.org/10.1016/j.toxicon.2006.11.025

Vuorio K., Lagus A., Lehtimäki J. M., Suomela J., Helminen H., 2005, Phytoplankton community responses to nutrient and iron enrichment under different nitrogen to phosphorus ratios in the northern Baltic Sea , J. Exp. Mar. Biol. Ecol., 322 (1), 39-52. http://dx.doi.org/10.1016/j.jembe.2005.02.006

Walsby A. E., Hayes P. K., Boje R., 1995, The gas vesicles,buoyancy and vertical distribution of cyanobacteria in the Baltic Sea, Eur. J. Phycol., 30 (2), 87-94. http://dx.doi.org/10.1080/09670269500650851

Wasmund N., 1997, Occurrence of cyanobacterial blooms in the Baltic Sea in relation to environmental conditions, Int. Rev. Ges. Hydrobio., 82 (2), 169-84. http://dx.doi.org/10.1002/iroh.19970820205

Wiegand C., Pflugmacher S., 2005, Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review, Toxicol. Appl. Pharm., 203 (3), 201-218. http://dx.doi.org/10.1016/j.taap.2004.11.002

Wiegand C., Pflugmacher S., Oberemm A., Meems N., Beattie K. A., Steinberg C. E. W., Codd G. A., 1999, Uptake and effects of microcystin LR on detoxication enzymes of early life stages of the zebrafish (Danio rerio), Environ. Toxicol., 14 (1), 89-95. http://dx.doi.org/10.1002/(SICI)1522-7278(199902)14:1<89::AID-TOX12>3.0.CO;2-7

Wiklund T., Bylund G., 1994, Diseases of flounder (Platichthys flesus (L.)) in Finnish coastal waters, [in:] Diseases and parasites of flounder (Platichthys flesus) in the Baltic Sea, G. Bylund & L.-G. Lönnström (eds.), BMB Publ. No. 15, 49-52.

Yoshida T., Takashima Y., Tomaru Y., Shirai Y., Takao Y., Hiroishi S., Nagasaki K., 2006, Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa, Appl. Environ. Microb., 72 (2), 1239-1247. http://dx.doi.org/10.1128/AEM.72.2.1239-1247.2006

Yoshizawa S., Matsushima R., Watanabe M. F., Harada K.-I., Ichihara A., Carmichael W. W., Fujiki H., 1990, Inhibition of protein phosphatases by microcystins and nodularin associated with hepatotoxicity, J. Cancer Res. Clin., 116 (6), 609-614. http://dx.doi.org/10.1007/BF01637082

Zurawell R. W., Chen H., Burke J. M., Prepas E. E., 2005, Hepatotoxic cyanobacteria:a review of the biological importance of microcystins in freshwater environments, J. Toxicol. Env. Health B, 8 (1), 1-37.

full, complete article (PDF - compatibile with Acrobat 4.0), 259.8 kB


Inflow of Atlantic-origin waters to the Barents Sea along glacial troughs
Oceanologia 2009, no. 51(3), pp. 321-340

Gennady G. Matishov1,2, Dmitry G. Matishov1,2, Denis V. Moiseev1,*
1 Murmansk Marine Biological Institute,
Kola Science Centre of Russian Academy of Sciences,
Vladimirskaya St. 17, 183010 Murmansk, Russia;
e-mail: Denis_Moiseev@mmbi.info
2 South Science Centre,
Russian Academy of Sciences,
Chekhova Av. 41, 344006 Rostov-on-Don, Russia
*corresponding author

Keywords: Bathymetry, troughs, climate, circulation, thermohaline, water masses

Received 4 March 2009, revised 8 June 2009, accepted 18 June 2009.
This paper discusses the role of glacial shelf topography in the formation of general oceanological and biological mechanisms in the Barents Sea. Analysis of geomorphological data and oceanographic observations obtained on board MMBI research vessels in 2001-08 has shown that: fluxes of Atlantic-origin waters pass along glacial troughs; the inflow of Atlantic waters to the Barents Sea from the west increased from 2001 till 2007, although this advection began to weaken in 2008; vertical and horizontal thermohaline gradients intensified during the investigated period; a warm period similar to that of the 1930s was observed in the Barents Sea at the beginning of the 21st century.

  References ref

Blindheim J., 1989, Cascading of Barents Sea bottom water into the Norwegian Sea Rapp. P-V Réun. Con . Int. Explor. Mer, 188, 49-58.

Borovskaya R. V., Lomakin P. D., 2008, Specific Features of ice conditions in the Sea of Azov and the Kerch Strait in the winter season of 2005/06 Ru s.Meteorol. Hydrol., 33 (7), 453-457. http://dx.doi.org/10.3103/S1068373908070078

Gammelsrød T., Leikvin O., Lien V., Budgell W. P., Loeng H., Maslowski W., 2009, Mass and heat transports in the NE Barents Sea: Observations and models J. Marine Syst., 75 (1-2), 56-69.

Golubev V. A., Zuyev A. N., Lebedev I. A., 1989, On the objective analysis of oceanographic fields according to data of ship observations in the Barents Sea Trudi AANII, 415, 117-126,(in Russian).

Golubev V. A., Zuyev A. N., Lebedev I. A., 1992, A complex of methods of the statistical processing and objective analysis of in situ oceanographic observations data Trudi AANII, 426,7-19, (in Russian).

Golubev V., Zuyev A., Oelke C., 2000, BarKode: the Barents and Kara Seas oceanographic data base (1898-1998), http://www.npolar.no/oelke/barkode/barkode.html.

Helland-Hansen B., Nansen F., 1909, The Norwegian Sea Fisk. dir. Skr. Ser. Havunder., 2 (2), 1 .360.

Ingvaldsen R., Loeng H., Asplin L., 2002, Variability in the Atlantic inflow to the Barents Sea based on a one-year time series from moored current meters Cont. Shelf Res., 22, 505-519. http://dx.doi.org/10.1016/S0278-4343(01)00070-X

Knipowitsch N., 1905, Hydrologische Untersuchungen im Europäischen Eismeer Ann. Hydrogr. Mar. Meteorol., 33, 241-260.

Koenigk T., Mikolajewicz U., Jungclau J. H., Kroll A., 2009, Sea ice in the Barents Sea: seasonal to interannual variability and climate feedbacks in a global coupled model Clim. Dynam., 32, 1119-1138. http://dx.doi.org/10.1007/s00382-008-0450-2

Kostianoy A. G., Nihoul J. C. J., Rodionov V. B., 2004, Physical oceanography of frontal zones in the Sub-arctic Seas, Elsevier Oceanogr. Ser. 71, Elsevier, Amsterdam, 316 pp.

Loeng H., 1991, Features of the physical oceanographic conditions of the Barents Sea Polar Res., 10 (1), 5-18.

Lyøyning T. B., 2001, Hydrography in the north-western Barents Sea, July-August 1996 Polar Res., 20 (1), 1-12. http://dx.doi.org/10.1111/j.1751-8369.2001.tb00034.x

Matishov G. G., 1976, Structure and origin of marginal (lengthwise) troughs of glacial shelves Oceanology, 14 (2), 315-328, (in Russian).

Matishov G. G., 1977, Relief, morphotectonics and major traits of development of the Barents Sea shelf Oceanology, 17 (3), 527-542, (in Russian).

Matishov G. G., 1979, Genetic classification of the relief of the subsea continental edge (Arctic Ocean and North Atlantic), Oceanology, 21 (1), 94-105, (in Russian).

Matishov G. G., 1997a, Bathymetric map of the Barents and West Kara Seas Russ. Acad. Sci., Murmansk Mar. Biol. Inst., Scale 1:2/313/000 at Latitude 72° N, Murmansk.

Matishov G. G., 1997b, Rola peryglacjału oceanicznego w ewolucji ekosystemów morskich Arktyki Sesja Polarna, Lublin, 40-50.

Matishov G. G.,1999, Oceanic periglacial in the evolution of the Arctic marine ecosystems, World Res. Rev., 11 (2), 190-195.

Matishov G. G., 2008, The influence of climatic and ice regime variability on navigation, Her. Russ. Acad. Sci., 78 (5), 457-463. http://dx.doi.org/10.1134/S1019331608050043

Matishov G., Cherkin N., Vermillion M., Forman S., 1995, Bathymetric map of the Franz Josef Land Area Geol. Soc. Am. Map and Chart Ser. MCH080, Map scale 1:500 000/Boudler,CO.

Matishov G. G., Golubev V. A., Zhichkin A. P., 2007, Temperature anomalies in the Barents Sea during summer periods of 2001-2005, Dokl. Earth Sci., 412 (1), 82-84. http://dx.doi.org/10.1134/S1028334X07010187

Matishov G., Makarevich P., Timofeev S., Kuznetsov L., Druzkov N., Larionov V., Golubev V., Zuyev A., Adrov N., Denisov V., Iliyn G., Kuznetsov A., Denisenko S., Savinov V., Shavikyn A., Smolyar I., Levitus S., O'Brien T., Baranova O., 2000, Biological atlas of the Arctic Seas 2000: Plankton of the Barents and Kara Seas Int.OceanAtla Ser., Vol. 2, Murmank Mar. Biol. Inst. - World Data Center Oceanogr., Murmansk - Silver Spring., 348 pp.

Matishov D. G., Matishov G. G.,2004, Radioecology in Northern European Seas Springer, Berlin, 335 pp.

Matishov G. G., Matishov D. G., Berdnikov S. V., Sorokina V. V., Levitus S., Smolyar I. V., 2008a, Secular climate fluctuations in the Sea of Azov Region (based on thermohaline data over 120 years), Dokl. Earth Sci., 422 (7), 1101-1104. http://dx.doi.org/10.1134/S1028334X08070222

Matishov G. G., Matishov D. G., Gargopa Yu.M., 2008b, Climatogenic changes in ecosystems of the Russia's southern seas under man-caused impacts Izv. RAS, Geogr. Ser. 3, 26-34, (in Russian).

Matishov G. G., Stepan'yan O. V., Povazhnyi V. V., Kovaleva G. V., Kreneva K. V., 2007, Functioning of the ecosystem in the Sea of Azov during winter Dokl. Earth Sci., 413 (2), 297-299. http://dx.doi.org/10.1134/S1028334X07020377

Matishov G. G., Tarasov G. A., Pavlova L. G., Alekseev V. V., 1994, Quaternary geology of the shelf areas surrounding Franz Joseph Land Mar. Geol., 119 (3-4), 301 .304.

Matishov G. G., Volkov V. A., Denisov V. V., 1998a, Structure of warm Atlantic water circulation in the Northern Barents Sea, Dokl. Earth Sci., 362 (7), 1041-1044.

Matishov G., Zuyev A., Golubev V., Adrov N., Slobodin V., Levitus S., Smolyar I., 1998b, Climatic atlas of the Barents Sea: Temperature, salinity, oxygen Int. Ocean Atlas Ser., Vol.1, Murmansk Mar. Biol. Inst. - World Data Center Oceanogr., Murmansk - Silver Spring., 140 pp.

Matishov G., Zuyev A., Golubev V., Adrov N., Timofeev S., Karamushko O., Pavlova L., Fadyakin O., Buzan A., Braunshtein A., Moiseev D., Smolyar I., Locarnini R., Tatushko R., Boyer T., Levitu S., 2004, Climatic atlas of the Arctic Seas 2004: Part I. Database of the Barents, Kara, Laptev and White Seas - oceanography and marine biology Int. Ocean Informat. Ser., Vol.9, NOAA Atla NESDIS 58, DVD, World Data Center Oceanogr., Silver Spring.

O 'Dwyer J., Kasajima Y., Nøst O. A., 2001, North Atlantic Water in the Barents Sea opening Polar Res., 20 (2), 209-216.

Panteleev G., Motoyoshi I., Grotov A., Nechaev D., Yaremchuk M., 2004, Mass, heat and salt balances in the Eastern Barents Sea obtained by inversion of hydrographic section data J. Oceanogr., 60 (3), 613-623. http://dx.doi.org/10.1023/B:JOCE.0000038353.37993.e1

Pfirman S. L., Bauch D., Gammel rod T., 1994, The Northern Barents Sea: water mass distribution and modification [in:]The polar oceans and their role in shaping the global environment: The Nansen centennial volume O. Johannessen, R. Muench & J. Overland (eds.), AGU Geophys. Monogr. 85, AGU, Washington, D. C., 77-94.

Polyakov I. V., Alexeev V. A., Bhatt U. S., Polyakova E. I., Zhang X., 2009, North Atlantic warming: patterns of long-term trend and multi-decadal variability Clim. Dynam., http://dx.doi.org/10.1007/s00382-008-0522-3

Rudel B., Jones E. P., Anderson L .G., Kattner G., 1994, On the intermediate depth waters of the Arctic Ocean [in:] The polar oceans and their role in shaping the global environment: The Nansen centennial volume O. Johannessen, R. Muench & J. Overland (eds.), AGU Geophys. Monogr. 85, AGU, Washington, D. C., 33-46.

SBE 19plu SEACAT Profiler, 2005, User's manual Version 012, Bellevue, Washington, D. C.

Schauer U., Loeng H., Rudel B., Ozhigin V. K., Dieck W., 2002, Atlantic water flow through the Barents and Kara Seas Deep-Sea Res. Pt. I, 49 (12), 2281-2298.

SEACAT SBE 19, 2001, Conductivity, temperature, depth recorder. Operating manual Washington, D.C.

Skagseth Ø., Furevik T., Ingvaldsen R., Loeng H., Mork K. A., Orvik K. A., Ozhigin V., 2008, Volume and heat transports to the Arctic Ocean via the Norwegian and Barents Seas [in:] Arctic-subarctic ocean fluxes defining the role of the Northern Seas in climate R. R. Dickon, J. Meincke & P. Rhine (ed.), Springer, Dordrecht, 45-62.

Smolyar I., Adrov N., 2003, The quantitative definition of the Barents Sea Atlantic water: mapping of the annual climatic cycle and interannual variability ICES J. Marine Sci., 60 (4), 836-845. http://dx.doi.org/10.1016/S1054-3139(03)00071-7

Tantsyura A. I., 1959, On currents in the Barents Sea, Tr. Polyarn. Nauchno-Issled. Inst .Mor. Ryb. Khoz. Okeanogr., 11, 35-53, (in Russian).

Tereschenko V. V., 1996, Seasonal and year-to-year variations of temperature and salinity along the Kola meridian transect ICES CM/C:11, 24 pp.

Vinje T., 2001, Anomalies and trends of sea-ice extent and atmospheric circulation in the Nordic Seas during the period 1864-1998, J. Climate, 14 (3), 255-267. http://dx.doi.org/10.1175/1520-0442(2001)014<0255:AATOSI>2.0.CO;2

World Ocean Atlas, 1994, CD-ROM data sets Nat. Oceanogr. Data Center, Ocean Climate Lab., U. S. Gov. Print. Office, Washington, D. C.

full, complete article (PDF - compatibile with Acrobat 4.0), 17.0 MB

Recent distribution and stock assessment of the red alga Furcellaria lumbricalis on an exposed Baltic Sea coast: combined use of field survey and modelling methods
Oceanologia 2009, no. 51(3), pp. 341-359

Martynas Bučas1,*, Darius Daunys1, Sergej Olenin1,2
1 Coastal Research and Planning Institute,
University of Klaipėda,
H. Manto 84, LT-5808 Klaipėda, Lithuania;
e-mail: martynas@corpi.ku.lt
2 Unifob Environmental Research,
University of Bergen,
Fosswincklesgt 6, N-5007 Bergen, Norway
*corresponding author

Keywords: phytobenthos, sublittoral, depth limits, occupied area

Received 4 February 2009, revised 14 July 2009, accepted 30 July 2009.

This research was supported by the EU FP6 project MARBEF (GOCE-CT-2003-505446), EU Life Nature "Marine protected areas in the eastern Baltic Sea" (LIFE05NAT/LV/000100) and the EU BONUS + project PREHAB "Spatial PREdiction of benthic HABitats in the Baltic Sea: incorporating anthropogenic pressures and economic evaluation" (BONUS-163).
Recent results of field studies on the exposed coast of Lithuania were used to model the area occupied by the red alga Furcellaria lumbricalis using the Natural Neighbor interpolation technique, while linear regression was applied to estimate the species' standing stock. The area covered by F. lumbricalis extended for 26 km along the coast between depths of 1 and 15 m. The maximum species cover in the study area ranged between 4 and 10 m depth, which is one of the widest in the Baltic Sea. The modelled area of F. lumbricalis covered 35 ± 11 km2 with a total biomass of 7554 ± 3813 t.

  References ref

Andrulewicz E., Kruk-Dowgiałło L., Osowiecki A., 2004, Phytobenthos and macrozoobenthos of the Słupsk Bank stony reefs, Baltic Sea, Hydrobiologia, 514 (1-3), 163-170. http://dx.doi.org/10.1023/B:hydr.0000018216.91488.2c

Ašmontas A., 1994, Climate and hydrometeorological regime, [in:] Oil terminal in Butingė. Baltic ECO, J. Lazauskas (ed.), Vilnius, 54-70,(in Lithuanian).

Austin A. P., 1960, Life history and reproduction of Furcellaria fastigiata (L.) Lam. The haploid plants and the development of the carposporophyte, Ann. Bot.-London, 24 (2), 257-274.

Bäck S., Kauppila P., Kangas P., Ruuskanen A., Westberg V., Perus J., Räike A., 2006, A biological monitoring programme for the coastal waters of Finland according to the EU Water Framework Directive, Environ. Res. Eng. Manag., 4 (38), 6-11.

Bird C. J., Saunders G. W., McLachlan J., 1991, Biology of Furcellaria lumbricalis (Hudson) Lamouroux (Rhodophyta:Gigartinales), a commercial carrageenophyte, J. Appl. Phycol., 3 (1), 61-82. http://dx.doi.org/10.1007/BF00003920

Blinova E. I., Tolstikova N. E., 1972, Stocks of commercial agar-rich algae Furcellaria fastigiata (Huds.) J. V. Lamour. in the coast of Lithuania, Rastit. Resur., 8 (3), 380-388, (in Russian).

Bučas M., Daunys D., Olenin S., 2007, Overgrowth patterns of the red algae Furcellaria lumbricalis at an exposed Baltic Sea coast: The results of a remote underwater video data analysis, Estuar. Coast. Shelf Sc., 75 (3), 308-316. http://dx.doi.org/10.1016/j.ecss.2007.04.038

Daunys D., Bučas M., Zemlys P., 2008, Spatial prediction of Furcellaria lumbricalis in Lithuania coastal waters, [in:] Mapping and modelling of marine habitats in the Baltic Sea region, G. D. Dinesen (ed.), BALANCE Interim Rep. No. 27, 178-181.

Daunys D., Olenin S., Paškauskas R., Zemlys P., Olenina I., Bučas M., 2007, Typology and classification of ecological status of Lithuanian coastal and transitional waters:an update of existing system, procurement of services for the institutional building for the Nemunas River basin management, Tech. Rep. Transit. Fac. Proj. No. 2004/016-925-04-06.

Davies J., Baxter J., Bradley M., Connor D., Kahn J., Murray E., Sanderson W., Turnbull C., Vincent M., 2001, Marine monitoring handbook, UKMarneSACs Proj., Peterborough, 405 pp.

Dubra J., 1994, Currents' regime, [in:] Oilterminalin Butingė, J.Lazauskas (ed.), Vilnius, 54-70, (in Lithuanian).

Eriksson B. K., Bergstrùm L., 2005, Local distribution patterns of macroalgae in relation to environmental variables in the northern Baltic Proper, Estuar. Coast. Shelf Sc., 62 (1-2), 109-117. http://dx.doi.org/10.1016/j.ecss.2004.08.009

Eriksson B. K., Johansson G., Snoeijs P., 1998, Long-term changes in the sublittoral zonation of brown algae in the southern Bothnian Sea, Eur. J. Phycol., 33 (3), 241-249. http://dx.doi.org/10.1080/09670269810001736743

Frederiksson R., Tobiasson S., 2003, Simpevarp site investigation. Inventory of macrophyte communities at Simpevarp nuclear power plant. Area of distribution and biomass determination, Rep. No. P-03-69, Kalmar Univ., 74 pp.

Gelumbauskaitė L. Z., Grigelis A., Cato I., Repečka M., Kjellin B., 1999, LGT Series of Marine Geological maps No. 1, SGU Ser. Geological Maps Ba No. 54., http://www2.dmu.dk/1 Viden/2 Miljoe-tilstand/3 vand/4 Charm/charm res/data/WP1/Del verable9/carm all%20maps.htm.

Gudelis V., Janukonis Z., 1977, Dynamic classification and regionalism of the Baltic Sea coastal zone, Proc. Lithuanian SSR Acad. Sci., B4 (101), 154-159, (in Lithuanian).

Guiry M. D., Guiry G. M., 2009, AlgaeBase, World-wide electronic publication, Nation. Univ. Ireland, Galway, http://www.algaebase.org, cited 2009 Jan. 15.

Gulbinskas S., Trimonis E., 1999, Lithodynamic processes in the strait of Klaipėda, Ann. Geogr., 32, 93-102, (in Lithuanian).

HELCOM, 2007, HELCOM lists of threatened and/or declining species and biotopes/habitats in the Baltic Sea area, Baltic Sea Environ. Proc. No. 113, 17 pp.

Karlsson J., 2001, Monitering av vegetationsklädda bottnar vid svenska västkusten, Arsrapport 2000, Rapport till Naturvardsverket No. 212 0006, 22 pp.

Karlsson J., 2002, Inventering av marina makroalger och marin fauna i Bohuslän 2000: Tistlarna-Vr, Rapport till Länsstyrelsen i Västra Gùtalands län, Tjärnù Marinb ologiska Laboratorium, 15 pp.

Kautsky H., 1995, Quantitative distribution of sublittoral plant and animal communities Baltic Sea gradient, [in:] Biology and ecology of shallow coastal waters, A. Eleftherou, A. D. Ansell & C. J. Smth (eds.), Proc. 28th Europ. Mar. Biol. Symp., 23-28 Sept. 1993, Crete, Greece, 23-30. http://dx.doi.org/10.3354/meps060169

Kautsky H., van der Maarel E., 1990, Multivariate approaches to the variation in phytobenthic communities and environmental vectors in the Baltic Sea, Mar. Ecol.-Prog. Ser., 60, 169-184.

Kiirikki M., 1996, Mechanisms affecting macroalgal zonation in the northern Baltic Sea , Eur. J. Phycol., 31 (3), 225-232. http://dx.doi.org/10.1080/09670269600651421

Kireeva M., 1960, Distribution and biomass of marine algae in the Baltic Sea, Trudi WNIRO, 42, 195-205,(in Russian).

Korolev A., Kuznetsova T., Drozdetsky V., 1993, Investigations of the Furcellaria lumbricalis distribution and abundance at the eastern coast of the Baltic Sea, ICES 1993/L,39, 16 pp.

Korolev A., Muravsky V., Prytkov E., 1983, Discharges of Furcellaria on the shore caused by storms and their basic characteristics in the Baltic Sea, Rybohozjaistvennie ssledovanija v basseine Balt jskogo morja, Riga, 18, 95-102, (in Russian).

Kostamo K., Mäkinen A., 2006, Observations on the mode and seasonality of reproduction in Furcellaria lumbricalis (Gigartinales, Rhodophyta) populations in the northern Baltic Sea, Bot. Mar., 49 (4), 304-309. http://dx.doi.org/10.1515/BOT.2006.037

Labanauskas V., 1998, Diversity and distribution of macroalgae species along the northern part of the Lithuanian Baltic coastline, Bot. Lithuanica, 4 (4), 403-413, (in Lithuanian).

Labanauskas V., 2000, Communities of marine macrophytobenthos along the Lithuanian coastline of the Baltic Sea, Bot. Lithuanica, 6 (4), 403-413, (in Lithuanian).

Larsen A., Sand-Jensen K., 2005, Salt tolerance and distribution of estuarine benthic macroalgae in the Kattegat-Baltic Sea area, Phycologia, 45 (1), 13-23. http://dx.doi.org/10.2216/03-99.1

Mäkinen A., Kääriä J., Rajasilta M., 1988, Factors controlling the occurrence of Furcellaria lumbricalis (Huds.) Lamour. and Phyllophora truncata (Pallas) Zinova in the upper littoral of the Archipelago of SW Finland, Kiel. Meeresforsch. Sonderh., 6,140-146.

Maksimov J., Labanauskas V., Olenin S., 1996, Baltic herring reproduction and bottom communities studies in the area Klaipėda-Palanga (the Baltic Sea Lithuanian coast), [in:] Fishery and aquaculture in Lithuania [Zuvininkystė Lietuvoje], Lithuanian Soc. Hydrobiol., Vilnius, 143-154,(in Lithuanian with English summary).

Martin G., 1999, Distribution of phytobenthos biomass in the Gulf of Riga (1984-1991), Hydrobiologia, 393 (0), 181-190. http://dx.doi.org/10.1023/A:1003517427506

Middelboe A. L., Sand-Jensen K., 2004, Patterns of species number and abundance in macroalgal communities in coastal wasters, Hydrobiologia, 511 (1), 173-183.

Müller-Karulis B., Jermakovs V., Aigars J., 2007, Modeling habitats shaped by Furcellaria lumbricalis along the Latvian Baltic Proper coast, Latvian Inst. Aquat. Ecology, BALANCE Proj. Rep., 23 pp.

Olenin S., Daunys D., 2004, Coastal typology based on benthic biotope and community data: the Lithuanian case study, [in:] Baltic Sea typology, G. Schernewski & M. Wielgat (eds.), Coastline Rep., 4, 65-83.

Olenin S., Daunys D., Labanauskas V., 1996,C lassification principles of the Lithuanian coastal biotopes, Ann. Geogr., 29, 218-231, (in Lithuanian).

Olenin S., Daunys D., Leinikki J., 2003, Biodiversity study and mapping of marine habitats in the vicinity of the Butingė Oil Terminal, Lithuanian coastal zone, Baltic Sea, Joint Finnish-Lithuanian Proj. Rep., Coast. Res. Plann. Inst., Klaipėda Univ.

Olenin S., Labanauskas V., 1994, Mapping of the underwater biotopes and spawning grounds in the Lithuanian coastal zone, [in:] Fishery and aquaculture in Lithuania [Zuvininkystė Lietuvoje], Lithuanian Soc. Hydrobiol., Vilnius, 70-76, (in Lithuanian with English summary).

Petersson M., 2007, Inventering av makrofyter i Gotlands kustvatten. Underlag fùr upprättande av regionalt miljùùvervakningsprogram , Rapp. No. 2007:6, 72 pp.

Sandman A., Isaeus M., Bergstrùm U., Kautsky H., 2008, Spatial predictions of Baltic phytobenthic communities: Measuring robustness of Generalized Additive Models based on transect data, J. Marine Syst., 74 (S1), S86-S96. http://dx.doi.org/10.1016/j.jmarsys.2008.03.028

Sibson R., 1981, A brief description of natural neighbor interpolation, [in:] Interpreting multivariate data, V.Barnett (ed.), John Wiley & Sons, Chichester, 21-36.

Snoeijs P., 1999, Marine and brackish waters, [in:] Swedish plant geography, H. Rydin, P. Snoeijs & M. Diekmann (eds.), Acta Phytogeogr. Suec., 94, 187-212.

Sokal R.R., Rohlf F.J., 1995, Biometry: the principles and practice of statistics in biological research, 3rd edn., Freeman W. H. & Co., New York, 887 pp.

Torn K., Krause-Jensen D., Martin G., 2006, Present and past depth distribution of bladder wrack (Fucus vesiculosus) in the Baltic Sea, Aquat.Bot., 84 (1), 53-62. http://dx.doi.org/10.1016/j.aquabot.2005.07.011

Urbański J.A., Szymelfenig M., 2003, GIS-based mapping of benthic habitats, Estuar. Coast. Shelf Sci., 56 (1), 99-109. http://dx.doi.org/10.1016/S0272-7714(02)00125-7

Wallentinus I., 1991, The Baltic Sea gradient, [in:] Ecosystems of the World 24 Intertidal and Littoral Ecosystems, A. C. Mathieson & P. H. Nienhuis (eds.), Elsevier, Amsterdam, 83-108.

Wallin A., 2005, Biotic interactions and environmental factors determining the vertical zonation patterns on sublittoral boulders, Ph. D. thesis, Univ. Stockholm, 34 pp.

Žaromskis R., 1982, Storm effects upon the Lithuania coast, Ann. Geogr., 20, 93-100, (in Lithuanian).

full, complete article (PDF - compatibile with Acrobat 4.0), 227.4 kB

Feeding ecology of the American crab Rhithropanopeus harrisii (Crustacea, Decapoda) in the coastal waters of the Baltic Sea
Oceanologia 2009, no. 51(3), pp. 361-375

Joanna Hegele-Drywa*, Monika Normant
Department of Experimental Ecology of Marine Organisms,
Institute of Oceanography, University of Gdańsk,
al. Marszałka Piłsudskiego 46, PL-81-378 Gdynia, Poland;
e-mail: asiahd@ocean.univ.gda.pl
*corresponding author

Keywords: Rhithropanopeus harrisii, non-native species, feeding ecology, stomach content, Baltic Sea

Received 12 September 2008, revised 16 January 2009, accepted 19 August 2009.

This research was funded by the Department of Experimental Ecology of Marine Organisms, grant No. DS/1350-4-0150-8.
The feeding ecology of the American crab Rhithropanopeus harrisii Gould, 1841 from brackish waters of the Baltic Sea was studied by analyses of the stomach repletion index (SRI) and stomach content with regard to sex, size and habitat (Dead Vistula River and the Gulf of Gdańsk). Neither the sex nor the size of an individual crab had a significant (P > 0.05) influence on the SRI or on the diversity of food items found in the stomachs of R. harrisii. But the type of food consumed was significantly (P < 0.05) dependent on the locality inhabited: the greater the biodiversity of the habitat, the richer the dietary composition. In Baltic coastal waters this species feeds on detritus, and also on animal and plant matter. Remains of Chlorophyta, Amphipoda, Ostracoda, Polychaeta, Gastropoda and Bivalvia were found in the stomachs of the specimens analysed.

  References ref

Albertoni E. F., Palma-Silva C., de Assis Esteves F., 2003, Natural diet of three species of shrimp in a tropical coastal lagoon, Braz. Arch. Biol. Techn., 46 (3), 395-403. http://dx.doi.org/10.1590/S1516-89132003000300011

Barki A., Karplus I., Khalaila I., Manor R., Sagi A., 2003, Male-like behavioral patterns and physiological alterations induced by androgenic gland implantation in female cray fish, J. Exp. Biol., 206 (11), 1791-1797. http://dx.doi.org/10.1242/jeb.00335

Bax N., Williamson A., Aguero M., Gonzalez E., Geeves W., 2003, Marine invasive alien species: a threat to global biodiversity, Mar. Policy, 27 (4), 313-323. http://dx.doi.org/10.1016/S0308-597X(03)00041-1

Bomirski A., Kl.k E.,1974, Action of the eyestalks on the ovary in Rhithropanopeus harrisii and Crangon crangon (Crustacea:Decapoda), Mar. Biol., 24 (4), 329-337. http://dx.doi.org/10.1007/BF00396099

Bourdeau P. E., OʻConnor N. J., 2003, Predation by the Nonindigenous Asian Shore Crab Hemigrapsus sanguineus on Macroalgae and Molluscs, Northeast. Nat., 10 (3), 319-334.

Bridges C. R.,Brand A. R., 1980, The effect of hypoxia on oxygen consumption and blood lactate levels of some marine Crustacea, Comp. Biochem. Phys. A, 65 (4), 399-409. http://dx.doi.org/10.1016/0300-9629(80)90051-1

Buck T. L., Breed G. A., Pennings S. C., Chase M. E., Zimmer M., Carefoot C. H., 2003, Diet choice in an omnivorous salt-marsh crab: different food types, body size and habitat complexity, J. Exp. Mar. Biol. Ecol., 292 (1), 103-116. http://dx.doi.org/10.1016/S0022-0981(03)00146-1

Bzoma S., Meissner W., 2005, Some results of long-term counts of waterbirds wintering in the western part of the Gulf of Gdańsk (Poland), with special emphasis on the increase in the number of cormorants (Phalacrocorax carbo), Acta Zool. Lituanica, 15 (2), 105-108.

Chande A. I.,Mgaya Y.D.,2004,Food Habits of the Blue Swimming Crab Portunus pelagicus along the Coast of Dar es Salaam, Tanzania, WIO J. Mar. Sci., 3 (1), 37-42.

Choy S. C., 1986, Natural diet and feeding habits of the crabs Liocarcinus puber and L holsatus (Decapoda, Brachyura, Portunidae), Mar. Ecol.-Prog. Ser., 31, 87-99. http://dx.doi.org/10.3354/meps031087

Cotton S., Fowler K., Pomiankowski A., 2004, Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis?, Proc. Roy. Soc. Lond. B, 271 (1541), 771-783. http://dx.doi.org/10.1098/rspb.2004.2688

Czerniejewski P., Rybczyk A., 2008, Body weight,morphometry,and diet of the mud crab Rhithropanopeus harrisii tridentatus (Maitland, 1874) in the Odra Estuary, Poland, Crustaceana, 81 (11), 1289-1299. http://dx.doi.org/10.1163/156854008X369483

Dahdouh-Guebas F., Giuggioli M., Oluoch A., Vannini M., Cannicci S., 1999, Feeding habits of non-ocypodid crabs from two mangrove forests in Kenya, Bull. Mar. Sci., 64 (2), 291-297.

De Man J. G., 1892, Carcinological studies in the Leyden Museum, Notes Leyden Mus., 14, 225-264.

Demel K., 1953, New species of Baltic Sea fauna, Kosmos, Ser. Biol. 2, 1 (2), 105-106, (in Polish).

Elner R. W., 1978, The mechanics of predation by the shore crab Carcinus maenas (L.) on the edible mussel Mytilus edulis L., Oecologia, 36 (3), 333-344. http://dx.doi.org/10.1007/BF00348059

Emmerson W. D., 1985, Oxygen consumption in Palaemon paci .cus (Stimpson) (Decapoda:Palaemonidae) in relation to temperature,size and season, Comp. Biochem. Phys. A, 81 (1), 71-78. http://dx.doi.org/10.1016/0300-9629(85)90269-5

Filuk J., Żmudziński L., 1965, Feeding of the ichthyofauna of the Vistula Lagoon, Pr. MIR, 14A,121-147, (in Polish).

Flimlin G. F., Beal B. F., 1993, Major predators of cultured shell fish, NRAC Bull., 180, 6 pp.

Gollasch S., Lepp Nakoski E., 1999, Initial risk assessment of alien species in Nordic coastal waters, 1-124, [in:] Initial risk assessment of alien species in Nordic coastal waters, S. Gollasch & E. Leppäkoski (eds.), Nord 8, Nord. Counc. Min., Copenhagen, 244 pp.

Gollasch S., Rosenthal H., 2006, The Kiel Canal, 5-90, [in:] Maritime canals as invasion corridors, S. Gollasch, B. S. Galil & A. Cohen (eds.), Bridging divides. Maritime canals as invasion corridors, Springer, Dordrecht, The Netherlands, 315 pp.

Grabda E.(ed.), 1985, Zoology, II. Invertebrates, Vol. 2, PWN, Warszawa, 366 pp., (in Polish).

Hill B. J., 1976, Natural food,foregut clearance rate and activity of the crab Scylla serrata, Mar. Biol., 34 (1),109-116. http://dx.doi.org/10.1007/BF00390752

Hughes R. N., Seed R., 1981, Size selection of mussels by the Blue Crab, Callinectes sapidus: Energy maximizer or time minimizer?, Mar. Ecol.-Prog. Ser., 6, 83-89. http://dx.doi.org/10.3354/meps006083

Janas U., 2005, Distribution and individual characteristics of the prawn Palaemon elegans (Crustacea, Decapoda) from The Gulf of Gdańsk and the Dead Vistula River, Oceanol. Hydrobiol. Stud., 34 (Suppl.1), 83-91.

Janas U., Wocial J., Szaniawska A., 2004,Seasonal and annual changes in the macrozoobenthic populations of the Gulf of Gdańsk with respect to hypoxia and hydrogen sulphide, Oceanologia, 46 (1), 85-102.

Janta A., 1996, Recovery of the crab Rhithropanopeus harrisii (Gould) tridentatus (Maitland) population in the Dead Vistula Estuary (Baltic Sea,Poland), [in:] Crangon, Iss. Mar. Biol. Centre, Gdynia, Proc. 2nd Estuary Symp., Gdańsk, October 1993, 37-41.

Jażdżewski K., Konopacka A., 1995, Crustacea,excluding terrestrial isopods (Malacostraca excl. Oniscoidea), [in:] Catalogus faunae Poloniae, 13 (1), Dz. Wyd. Muz. Inst. Zool. PAN,Warszawa, 165 pp., (in Polish).

Jensen K. R., Knudsen J., 2005, A summary of alien marine benthic invertebrates in Danish waters,Oceanol. Hydrobiol. Stud., 34 (Suppl. 1), 137-162.

Jęczmień W., Szaniawska A., 2000a, Changes in species composition of the genus Gammarus Fabr.in Puck Bay, Oceanologia, 42 (1), 71-87.

Jęczmień W.,Szaniawska A.,2000b, Quantitative studies on Gammarus Fabr. in Puck Bay (the Baltic Sea), Pol. Arch. Hydrobiol., 47 (3-4), 561-568.

Juanes F., 1992, Why do decapod crustaceans prefer small-sized molluscan prey?, Mar. Ecol.-Prog. Ser., 87, 239-249. http://dx.doi.org/10.3354/meps087239

Karlson A. M. L., Almqvist G., Skóra K. E., Appelberg M., 2007, Indications of competition between non-indigenous round goby and native flounder in the Baltic Sea, ICES J. Mar. Sci., 64 (3), 479738211;486.

Kennish R., Williams G. A., 1997, Feeding preferences of the herbivorous crab Grapsus albolineatus: the differential influence of algal nutrient content and morphology, Mar. Ecol.-Prog. Ser., 147, 87-95. http://dx.doi.org/10.3354/meps147087

Kidawa A., Markowska M., Rakusa-Suszczewski S., 2004, Chemosensory behaviour in the mud crab Rhithropanopeus harrisii tridentatus from Martwa Wisła Estuary (Gdańsk Bay,Baltic Sea), Crustaceana, 77 (8), 897738211;908.

Kneib R. T., Weeks C. A., 1990, Intertidal distribution and feeding habits of the Mud Crab, Eurytium limosum, Estuaries, 13 (4), 462-466. http://dx.doi.org/10.2307/1351790

Kołodziejczyk A., Koperski P., 2000, Polish freshwater invertebrates, Key to determine species and bases of macrofaunal biology and ecology, Wyd. Uniw. Warsz., Warszawa, 250 pp., (in Polish).

Kruk-Dowgiałło L., 1994, Distribution patterns and biomass of the phytobenthos from inner Puck Bay, Summer 1987, 109-121, [in:] Puck Bay;renewal possibilities, L.Kruk-Dowgiałło & P. Ciszewski (eds.), IOŚ, Warszawa, 216 pp., (in Polish).

Kruk-Dowgiałło L., Szaniawska A., 2008, Gulf of Gdańsk and Puck Bay, [in:] Ecology of Baltic coastal waters, Ecol. Stud. No. 197, U. Schiewer (ed.), Springer-Verlag, Berlin-Heidelberg, 139-165.

Kujawa S., 1957, Biology and culture of the crab Rhithropanopeus harrisii (Gould) subsp tridentatus (Maitland) from Vistula Lagoon, Wszechświat, 2, 57-59, (in Polish).

Kujawa S., 1963, Some remarks on the biology of the crab Rhithropanopeus harrisii subsp tridentatus (Maitland), Ann. Biol. Copenh., 20, 103-104.

Lee S. Y., 1995, Cheliped size and structure: the evolution of a multi-functional decapod organ, J. Exp. Mar. Biol. Ecol., 193 (1-2), 161-176. http://dx.doi.org/10.1016/0022-0981(95)00116-6

Leppäkoski E.,1984,Introduced species in the Baltic Sea and its coastal ecosystems, Ophelia, Suppl. 3, 123-135.

Leppäkoski E., 2004, Living in a sea of exotics-the Baltic Sea, [in:] Aquatic invasions in the Black, Caspian and Mediterranean Seas, H. Dumont (ed.), Kluwer Acad. Publ., The Netherlands, 237-255.

Leppäkoski E.,2005,The .rst twenty years of invasion biology in the Baltic Sea area, Oceanol. Hydrobiol. Stud., 34 (Suppl.1), 5-17.

Leppäkoski E., Gollash S., Gruszka P., Ojaveer H., Olenin S., Panov W., 2002a, The Baltic- a sea of invaders, Can. J. Fish. Aquat. Sci., 59 (7), 1175-1188. http://dx.doi.org/10.1139/f02-089

Leppäkoski E., Olenin S., 2000, Non-native species and rates of spread: lessons from the brackish Baltic Sea, Biol. Invasions, 2 (2), 151-163. http://dx.doi.org/10.1023/A:1010052809567

Leppäkoski E., Olenin S., Gollasch S., 2002b, The Baltic Sea- a field laboratory for invasion biology, [in:] Invasive aquatic species of Europe, E.Leppäkoski, S. Olenin & S. Gollasch (eds.), Kluwer Acad. Publ., The Netherlands, 253-259.

Łapucki T., Normant M., Feike M., Graf G., Szaniawska A., 2005, Comparative studies on the metabolic rate of Idotea chelipes (Pallas) inhabiting different regions of the Baltic Sea, Thermochim. Acta, 435 (1), 6-10. http://dx.doi.org/10.1016/j.tca.2005.04.013

Ławiński L., Pautsch F., 1969, A successful trial to rear larvae of the crab Rhithropanopeus harrisii (Golud) subsp. tridentatus (Maitland)under laboratory conditions, Zool. Poloniae, 19, 495-508.

Łysiak-Pastuszak E., Osowiecki A., Filipiak M., Olszewska A., Sapota G., Woroń J., Krzymiński W., 2006, Preliminary assessment of the eutrophication status of selected areas in the Polish sector of the Baltic Sea according to the EU Water Framework Directive ,Oceanologia,48 (2),213-236.

Maitland R. T., 1874, Naamlijst van Nederlandsche Schaaldieren, Tijdschr. Nederl. deirk. Ver., 1, 228-269.

Michalski K., 1957, Rhithropanopeus harrisii subsp tridentata (Mtl.) in the Rivers Vistula and Motława, Prz. Zool., 1 (1), 68-69, (in Polish).

Morales C., Antezana T., 1983, Diet selection of the Chilean stone crab Homalaspis plana, Mar. Biol., 77, 79-83. http://dx.doi.org/10.1007/BF00393212

Mordukhay-Boltovskoy F. D., 1952, O wseleni nowogo vida kraba v bassein Dona, Priroda, 1, 113.

Nehring S., Leuchs H., 1999, Rhithropanopeus harrisii (Gould, 1841)(Crustacea: Decapoda)–ein amerikanisches Neozoon im Elbeästuar, Lauterbornia, 35, 49-51.

Normant M., Gibowicz M., 2008, Salinity induced changes in haemolymph osmolality and total metabolic rate of the mud crab Rhithropanopeus harrisii Gould, 1841 from Baltic coastal waters, J. Exp. Mar. Biol. Ecol., 355 (2), 145-152.

Normant M., Miernik J., Szaniawska A., 2004, Remarks on the morphology and the life cycle of Rhithropanopeus harrisii tridentatus (Maitland)from the Dead Vistula River, Oceanol. Hydrobiol. Stud., 33 (4), 93-102.

O'Brien C. J., 1994, Ontogenetic changes in the diet of juvenile brown tiger prawns Penaeus esculentus, Mar. Ecol.-Prog. Ser., 112, 195-200.

Occhipinti-Ambrogi A., Savini D., 2003, Biological invasions as a component of global change in stressed marine ecosystems, Mar. Pollut. Bull., 46 (5), 542-551.

Osowiecki A., 1998, Macrozoobenthos distribution in the coastal zone on the Gulf of Gdańsk-autumn 1994 and summer 1995, Oceanol. Stud., 27 (4),123-136.

Osowiecki A., 2000, Directions of multiannual changes in the structure of Puck Bay macrozoobenthos, Ph. D. thesis, UG, Gdynia, 133 pp., (in Polish).

Ostrowski J., 1997, Diet of flounder [Pleuronectes flesus L.] in the southern Baltic in 1996 and 1997, Rep. Sea fish. Inst., 237-247, (in Polish).

Parslow-Williams P., Goodheir C., Atkinson R. J. A., Taylor A. C., 2002, Feeding energetics of the Norway lobster Nephrophs norvegicus in the Firth of Clyde, Scotland, Ophelia, 56 (2), s101-120.

Pautsch F., Ławiński L., Turoboyski K., 1969, Zur Ökologie der Krabbe Rhithropanopeus harrisii (Gould) (Xanthidae), Limnologia, 7 (1), 63-68.

Pliński M.,1980a, Algae of the Gulf of Gdańsk: Key to species determination V Green algae, Class: Euchlorophyceae, Skr. Uczeln., Wyd. UG, Gdańsk, 56 pp., (in Polish).

Pliński M., 1980b, Algae of the Gulf of Gdańsk: Key to species determination VI Green algae, Class: Ulothrichophyceae, Zygophyceae, Charophyceae, Skr. Uczeln., Wyd.UG,Gdańsk, 83 pp., (in Polish).

Pliński M., 1999, Hydrobiology backgrounds, Wyd. Ocean, Sopot, 138 pp., (in Polish).

Ruiz-Tagle N., P örtner H. O., Fernández M., 2002, Full time mothers: daily rhythms in brooding and nonbrooding behaviors in Brachyuran crabs, J. Exp. Mar. Biol. Ecol., 276 (1-2) ,31-47. http://dx.doi.org/10.1016/S0022-0981(02)00238-1

Rychter A., 1997, Effect of anoxia on the behaviour, haemolymph lactate and glycogen concentrations in the mud crab Rhithropanopeus harrisii ssp tridentatus (Maitland)(Crustacea:Decapoda), Oceanologia, 39 (3), 325-335.

Rychter A.,1999,Energy value and metabolism of the mud crab Rhithropanopeus harrisii tridentatus (Crustacea, Decapoda) in relation to ecological conditions, Ph. D. thesis, UG, Gdynia, (in Polish).

Ryer C. H., 1987, Temporal patterns of feeding by blue crabs (Callinectes sapidus) in a tidal-marsh creek and adjacent seagrass meadow in the lower Chesapeake Bay, Estuaries, 10 (2), 136-140. http://dx.doi.org/10.2307/1352178

Schmidt-Nielsen K., 1997, Animal physiology: Adaptation and environment, PWN, Warszawa, 730 pp., (in Polish).

Streftaris N., Zenetos A., Papathanassiou E., 2005, Globalisation in marine ecosystems: The story of non-indigenous marine species across European seas, Oceanogr. Mar. Biol. Annu. Rev., 43, 419-453.

Sumpton W. D., Smith G. S., 1990, Effect of temperature on the emergence,activity and feeding of male and female sand crabs (Portunus pelagicus), Aust. J. Mar. fresh. Res., 41 (4), 545-550.

Szudarski M., 1963, Distribution of the crab Rhithropanopeus harrisii (Golud) subsp tridentatus (Maitland) in Poland, ICES, Baltic-Belt Seas Comm. No. 73.

Takahashi K., Kawaguchi K., 2001, Nocturnal occurrence of the swimming crab Ovalipes punctatus in the swash zone of sandy beach in northeastern Japan, Fish. Bull.,99 (3), 510-515.

Takeuchi T., Murakami K., 2007, Crustacean nutrition and larval feed, with emphasis on Japanese spiny lobster, Panulirus japonicus, Bull. Fish. Res. Agen., 20, 15-23.

Thessalou-Legaki M., Zenetos A., Kambouroglou V., Corsini-Foka M., Kouraklis P., Dounas C., Nicolaidou A., 2006,The establishment of the invasive crab Percnon gibbesi (H. Milne Edwards, 1853)(Crustacea:Decapoda:Grapsidae) in Greek waters, Aquat. Invasions, 1 (3), 133-136. http://dx.doi.org/10.3391/ai.2006.1.3.6

Turoboyski K., 1973, Biology and ecology of the crab Rhithropanopeus harrisii ssp. tridentatus, Mar. Biol., 23 (4), 303-313. http://dx.doi.org/10.1007/BF00389338

Turra A., Denadai M. R., 2003, Daily activity of four tropical intertidal hermit crabs from southeastern Brazil, Braz. J. Biol., 63 (3), 537-544. http://dx.doi.org/10.1590/S1519-69842003000300020

Wandzel T., 2003, The food and feeding of the round goby (Neogobius melanostomus Pallas, 1811) from the Puck Bay and the Gulf of Gdańsk, Bull. Sea Fish. Inst., 1,23-39.

Wiktor K., 1990, The role of the common mussel Mytilus edulis L.in the biocenosis of the Gulf of Gdańsk, Limnologica, 20 (1), 187-190.

Williams M. J., 1981, Methods for analysis of natural diet in Portunid Crabs (Crustacea:Decapoda:Portunidae), J. Exp. Mar. Biol. Ecol., 52 (1), 103-113. http://dx.doi.org/10.1016/0022-0981(81)90174-X

Wiszniewska A., Rychter A., Szaniawska A., 1998, Energy value of the mud crab Rhithropanopeus harrisii ssp tridentatus (Crustacea,Decapoda) in relation to season,sex and size, Oceanologia, 40 (3), 231-241.

Wolff T., 1954, Occurrence of two east American species of crabs in European waters, Nature, 174 (4421), 188-189. http://dx.doi.org/10.1038/174188a0

Złoch I., Sapota M., Fijałkowska M., 2005, Diel food composition and changes in the diel and seasonal feeding activity of common goby, sand goby and young flounder inhabiting the inshore waters of Gulf of Gdańsk, Poland, Oceanol. Hydrobiol. Stud., 34 (3), 69-84.

Żmudziński L., 1957, The Firth of Vistula zoobenthos, Pr. MIR, 9, 454-485, (in Polish).

Żmudziński L., 1961, Decapods of the Baltic Sea, Prz. Zool., 5 (4), 352-360, (in Polish).

Żmudziński L., 1967, Zoobenthos of the Gulf of Gdańsk , Pr. MIR, 14A,47-80, (in Polish).

Żmudziński L., 1997, Resources and bottom macrofauna structure in Puck Bay in the 1960 and 1980, Oceanol. Stud., 26 (1), 59-73.

full, complete article (PDF - compatibile with Acrobat 4.0), 159.1 KB

Adsorption of natural surfactants present in sea waters at surfaces of minerals: contact angle measurements
Oceanologia 2009, no. 51(3), pp. 377-403

Adriana Mazurek1, Stanisław J. Pogorzelski1,*, Katarzyna Boniewicz-Szmyt2
1 Institute of Experimental Physics,
University of Gdańsk,
Wita Stwosza 57, PL-80-952 Gdańsk, Poland;
e-mail: dokama@ug.edu.pl
e-mail: fizsp@ug.edu.pl
* corresponding author
2 Physics Department,
Gdynia Maritime University,
Morska 81-87, PL-81-225 Gdynia, Poland;
e-mail: kbon@am.gdynia.pl

Keywords: solid-liquid interface, film-covered surface, sea water, contact angle hysteresis, film pressure, work of spreading

Received 18 March 2009, revised 8 June 2009, accepted 15 July 2009.

The study was supported by grants BW/5200-5-0214-06 and 828/BW/GU/2008 (provided to K. B-Sz.) from the Polish Council for Scientific Research (KBN), and carried out in part within the framework of the scientific activity of the University of Gdańsk (supported from DS/5200-4-0024-09).
The wetting properties of solid mineral samples (by contact angles) in original surfactant-containing sea water (Gulf of Gdańsk, Baltic) were characterised under laboratory conditions on a large set (31 samples) of well-classified stones of diverse hydrophobicity using the sessile drop (ADSA-P approach), captive bubble and inclined plate methods. An experimental relation between the static contact angle θeq and stone density ρ was obtained in the form θeq = Bρ + C, where B = 12.23 ± 0.92, C = - (19.17 ± 0.77), and r2 = 0.92. The histogram of θeq distribution for polished stone plates exhibited a multimodal feature indicating that the most abundant solid materials (hydrophilic in nature) have contact angles θeq = 7.2, 10.7, 15.7 and 19.2º, which appear to be applicable to unspecified field stones as well. The contact angle, a pH-dependent quantity, appears to be a sensitive measure of stone grain size, e.g. granite. The captive bubble method gives reproducible results in studies of porous and highly hydrophilic surfaces such as stones and wood.
    The authors consider the adsorption of natural sea water surfactants on stone surfaces to be the process responsible for contact angle hysteresis. In the model, an equation was derived for determining the solid surface free energy from the liquid's surface tension γLV it also enabled the advancing θA and receding θR contact angles of this liquid to be calculated. Measurements of contact angle hysteresis Δθ (=θA - θR) with surfactant-containing sea water and distilled water (reference) on the same stone surfaces allowed the film pressure ΔΠ (1.22 to 8.80 mJ m-2), solid surface free energy ΔγS (-17.03 to -23.61 mJ m-2) and work done by spreading ΔWS (-1.23 to -11.52 mJ m-2) to be determined. The variability in these parameters is attributed to autophobing, an effect operative on a solid surface covered with an adsorptive layer of surfactants.
    The wetting behaviour of solid particles is of great importance in numerous technological processes including froth flotation, demulgation, anti-foaming procedures and the coal industries. It is believed that the approach presented here and the examples of its application to common sea water/solid mineral systems could be successfully adapted to optimise several surfactant-mediated adsorption processes (see below) of practical value in natural water ecology.

  References ref

Adamson A. W., Gast A. P., 1997, Physical chemistry of surfaces, 6th edn., Wiley & Sons, New York, 784 pp.

Afsar-Siddiqui A. B., Luckham P. F., Matar O. K., 2003, The spreading of surfact nt solutions on thin liquid films, Adv. Colloid Interfac., 106 (1), 183-236. http://dx.doi.org/10.1016/S0001-8686(03)00111-8

Amirfazli A., Neumann A. W., 2004, Status of the three-phase line tension, Adv. Colloid Interfac., 110 (3), 121-141. http://dx.doi.org/10.1016/j.cis.2004.05.001

Chibowski E., 2003, Surffce free energy of solid from contact angle hysteresis, Adv. Colloid Interfac., 103 (2), 149-172. http://dx.doi.org/10.1016/S0001-8686(02)00093-3

Chibowski E., Terpilowski K., 2008, Surface free energy of sulfur - Revisited: I. Yellow and orange samples solidified against glass surface, J. Colloid Interfac. Sci., 319 (2), 505-513. http://dx.doi.org/10.1016/j.jcis.2007.10.059

Churaev N. V., Sobolev V. D., 1995, Prediction of contact angles on the basis of the Frumkin-Derjaguin approach, Adv. Colloid Interfac., 61, 1-16. http://dx.doi.org/10.1016/0001-8686(95)00257-Q

Decker E. L., Frank B., Suo Y., Garoff. S., 1999, Physics of contact angle measurement, Colloid. Surface. A, 156 (1-3), 177-189. http://dx.doi.org/10.1016/S0927-7757(99)00069-2

Drelich J., Miller J. D., Good R. J., 1996, The effect of drop (bubble) on advancing and receding contact angles for heterogeneous and rough solid surfaceses observed with sessile-drop and captive-bubble techniques, J. Colloid Interf. Sci., 179 (1), 37-50. http://dx.doi.org/10.1006/jcis.1996.0186

Erbil H. Y., Mc Hale G., Rowan S. M., Newton M. I., 1999, Determination of the receding contact angle of sessile drops on polymer surfaces by evaporation, Langmuir, 15 (21), 7378-7385. http://dx.doi.org/10.1021/la9900831

Extrand Ch. W., Kumagi Y., 1995, Liquid drops on an inclined plate: the relation between contact angles, drop shape, and retentive force, J. Colloid Interf. Sci., 170 (2), 515-521. http://dx.doi.org/10.1006/jcis.1995.1130

Gence N., 2006, Wetting behavior of magnesite and dolomite surfaces, Appl. Surf. Sci., 252 (10), 3744-3750. http://dx.doi.org/10.1016/j.apsusc.2005.05.053

Gennes de P. G., 1985, Wetting: statics and dynamics, Rev. Mod. Phys., 57 (3), 827-834. http://dx.doi.org/10.1103/RevModPhys.57.827

Gentien P., Lunven M., Lehaitre M., Dunvent J. L., 1995, In-situ depth profiling of particle sizes, Deep-Sea Res. Pt. I, 42 (8), 1297-1312. http://dx.doi.org/10.1016/0967-0637(95)00058-E

Gindl M., Sinn G., Gindl W., Reiterer A., Tschegg S., 2001, A comaprison of different methods to calculate the surface free energy of wood using contact angle measurements, Colloid. Surface. A, 181 (1), 279-287. http://dx.doi.org/10.1016/S0927-7757(00)00795-0

Gokhale S. J., Plawsky J. L., Wayner P. C. Jr., 2005, Spreading, evaporation, and contact line dynamics of surfactant-laden microdrops, Langmuir, 21 (18), 8188-8197. http://dx.doi.org/10.1021/la050603u

Grundke K., Bogumil T., Werner C., Janke A., Pöoschel K., Jacobasch H.-J., 1996, Liquid-fluid contact angle measurements on hydrophilic cellulosic materials, Colloid. Surface. A, 116 (1-2), 79-87. http://dx.doi.org/10.1016/0927-7757(96)03587-X

Hörvolgyi Z., Mate M., Daniel A., Szalma J., 1999, Wetting behaviour of silanized glass microspheres at water-air interfaces: a Wilhelmy film balance study, Colloid. Surface. A, 156 (1), 501-508. http://dx.doi.org/10.1016/S0927-7757(99)00107-7

Hunter K .A. ,Liss P. S., 1981, Orgnicse surfce films, [in:] Marine organic chemistry, E. K. Duursma & R. Dawson (eds.), Elsevier, New York, 259-298.

Israelachvili J., 1992, Intermolecular and surface forces, 2nd edn., Acad. Press, San Diego, 450 pp.

Johnson B. D., Wangersky P. J., 1987, Microbubbles: stabilization by monolayers of adsorbed particles, J. Geophys. Res., 92 (C13), 14 641-14 647.

Karagüzel C., Can M. F., Sönmez E., Çelik M. S., 2005, Effect of electrolyte on surface free energy components of feldspar minerals using thin-layer wicking method, J. Colloid Interf. Sci., 285 (1), 192-200. http://dx.doi.org/10.1016/j.jcis.2004.11.018

Lam C. N. C., Wu R., Li D., Hair M. L., Neumann A. W.,2002, Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis, Adv. Colloid Interfac., 96 (1), 169-191. http://dx.doi.org/10.1016/S0001-8686(01)00080-X

Li D., 1996, Drop size dependence of contact angles and line tensions of solid-liquid systems, Colloid. Surface. A, 116 (1-2), 1-23. http://dx.doi.org/10.1016/0927-7757(96)03582-0

Lucassen J., 1992, Dynamic dilational properties of composite surfaces, Colloid. Surface., 65 (2-3), 139-149. http://dx.doi.org/10.1016/0166-6622(92)80269-8

Mohammed-Ziegler I., Oszlanczi A., Somfai B., Horvƪlgyi Z.,Paszli I.,Holmgren A., Forsling W., 2004, Surface free energy of natural and surface-modified tropic l nd European wood species, J. Adhes. Sci. Technol., 18 (6), 687-713. http://dx.doi.org/10.1163/156856104839338

Paria S., Khilar K., 2004, A reviewon experimental studies of surfactant adsorption at the hydrophilic solid-water interface, Adv. Colloid Interfac., 110 (3), 75-95. http://dx.doi.org/10.1016/j.cis.2004.03.001

Prokop R. M., Jyoti A., Eslamian M., Garg A., Michaila M., del Rio O. I., Susnar S. S., Policova Z., Neumann A. W., 1998, A study of captive bubbles with axisymmetric drop shape analysis, Colloid. Surface. A, 131 (1), 231-242. http://dx.doi.org/10.1016/S0927-7757(96)03940-4

Radelczuk H., Ho ysz L., Chibowski E., 2002, Comparison of the Lifshits-Van der Waals/acid base and contact angle hysteresis approaches to determination of the solid surface free energy, J. Adhes. Sci. Technol., 16 (12), 1547-1568. http://dx.doi.org/10.1163/15685610260255215

Rodrígues-Valverde M. A., Cabrerizo-Vílches M. A., Rosales-López P., Páez-Duñeas A., Hidalgo-Álvarez R., 2002, Contact angle measurements on two (wood and stone)non-ideal surfaces, Colloid. Surface. A, 206 (1-3), 485-495. http://dx.doi.org/10.1016/S0927-7757(02)00054-7

Sakorafa V., Michailidis K., Burragato F., 1996, Mineralogy, geochemistry and physical properties of fly fish from the Megalopolis lignite fields, Peloponnese, Southern Greece, Fuel, 75 (4), 419-423. http://dx.doi.org/10.1016/0016-2361(95)00273-1

Starov V. M., Kostvintsev S. R., Sobolev V. D., Velarde M. G., Zhdanov S. A., 2000, Spreading of liquid drops over dry porous layers: complete wetting case, J. Colloid Interf. Sci., 252 (2), 397-408. http://dx.doi.org/10.1006/jcis.2002.8450

Tavana H., Lam C. N. C., Grundke K., Friedel P., Kwok D. Y., Hair M. L., 2004, Contact angle measurements with liquids consisting of bulky molecules, J. Colloid Interf. Sci., 279 (2), 493-502. http://dx.doi.org/10.1016/j.jcis.2004.06.090

Toscioglu C., Goodell B., Lopez-Anido R., Gardner D., 2004, Surface energy characterization of preservative-treated wood and E-glass/phenolic composites, Forest Prod. J., 54, 262-268.

Ulman A., 1991, Ultrathin organic films, Acad. Press, New York, 442 pp.

Van Oss C. J., Chaudhurry M. K., Good R. J., 1988, Interfacial Lifshitz-van der Waals nd polar interactions in macroscopic systems, Chem. Rev., 88 (6), 927-936. http://dx.doi.org/10.1021/cr00088a006

Wenzel R. N., 1936, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28 (8), 988-994. http://dx.doi.org/10.1021/ie50320a024

full, complete article (PDF - compatibile with Acrobat 4.0), 279.3 kB

Light scattering in Baltic crude oil - seawater emulsion
Oceanologia 2009, no. 51(3), pp. 405-414

Adam Stelmaszewski*, Tadeusz Król, Henryk Toczek
Physics Department,
Gdynia Maritime University,
Morska 81-87, PL-81-225 Gdynia, Poland;
e-mail: stel@am.gdynia.pl
*corresponding author

Keywords: emulsion, light scattering, petroleum, seawater

Received 18 March 2009, revised 14 July 2009, accepted 31 July 2009.
The paper discusses the scattering of radiation by a Baltic crude oil - seawater emulsion. The scattering spectrum calculated using the Mie solution in the spectral range from 380 nm to 730 nm is compared with the measured spectrum of light scattered through a right angle. Spectra in the wavelength range from 210 nm to 730 nm were measured using a spectrofluorimeter for fresh and stored samples of the Baltic crude oil emulsion. Scattering increases with wavelength in the UV range and then decreases slightly with the wavelength of visible light. The result of the calculation is similar to the measured spectra. Both the calculated and measured spectra display numerous relative extremes throughout the spectral area. Light scattering in the emulsion decreases during storage as the oil concentration in the medium diminishes. The results also demonstrate that the single scattering model describes the phenomenon correctly.

  References ref

Bohren C. F., Huffman D. R., 1983, Absorption and scattering of light by small particles, Wiley, New York, 530 pp.

IAPWS (The International Association for the Properties of Water and Steam), 1997, Release on the refractive index of ordinary water substanc as a function of wavelength, temperature and pressure, http://www.iapws.org/relguide/rindex.pdf.

Kaniewski E., Otremba Z., Stelmaszewski A., Toczek H., 2003, Optical properties of th Baltic crude oil, Gd. Maritime Univ. Trans., 49, 174-180, (in Polish).

Król T., 1984, A simple computational model of light scatt ring function for spherical particles, Stud. Mater. Oceanol., 45, 97-119, (in Polish).

Król T., 1985, Computational model of Mie coefficients for spherical absorbing scattering particles, Stud. Mater. Oceanol., 49, 43-62, (in Polish).

Król T., Stelmaszewski A., Freda W., 2006, Variability in the optical properties of a crude oils awater emulsion, Oceanologia, 48 (S), 203-211.

Mikłaszewicz B., 2006, Self-purification of Odra estuary and Pomeranian Bay waters polluted with crud oil derivative emulsions, Ph. D. thesis, Inst. Oceanol. PAS, Sopot, 118 pp., (in Polish).

Quan X., Fry E. S., 1995, Empirical quation for th index of refraction of seawater, App. Optics, 34 (18), 3477-480. http://dx.doi.org/10.1364/AO.34.003477

Stelmaszewski A., Toczek H., 2007, Preliminary studies of optical properties of oil-water emulsion particles, [in:] Physicochemical problems of natural waters ecology, Vol. 5, Gd. Maritime Univ. Publ., Gdynia, 40-44.

Van de Hulst H. C., 1957, Light scattering by small particles, Wiley, New York, 470 pp.

full, complete article (PDF - compatibile with Acrobat 4.0), 141.0 kB

Biological valorisation of the southern Baltic Sea (Polish Exclusive Economic Zone)
Oceanologia 2009, no. 51(3), pp. 415-435

Jan Marcin Węsławski1,*, Jan Warzocha2, Józef Wiktor1, Jacek Urbański3, Katarzyna Bradtke3, Lucyna Kryla3, Agnieszka Tatarek1, Lech Kotwicki1, Joanna Piwowarczyk1
1 Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland;
e-mail: weslaw@iopan.gda.pl
* corresponding author
2 Sea Fisheries Institute,
Kołłątaja 1, PL-81-332 Gdynia, Poland
3 Institute of Oceanography, University of Gdańsk,
al. Marszałka Piłsudskiego 46, PL-81-378 Gdynia, Poland

Keywords: valuation, biodiversity, Baltic, marine habitats

Received 24 March 2009, revised 8 June 2009, accepted 15 June 2009.

This project was supported by the Norwegian Financial Mechanism Grant 2007-08 (Habitat mapping in Polish Marine Areas with special reference to Natura 2000 areas).

A biological valuation system to assess the value associated with ecosystem stability and richness (and not that from the point of view of users) is proposed to provide scientific decision support for marine protected areas and marine spatial planning. The system is based on the assessment of individual species and habitat/species assemblages. An extensive set of recently collected (2007-08) and archival (1970-2000) data on the occurrence of marine benthos was analysed for the Polish Marine Areas. Based on matching data sets of sediments, the euphotic zone, temperature and salinity, as well as fetch and sea current values, a GIS model was used to visualise the results; a map indicates the two areas which are considered to be biologically the most valuable (Puck Bay and the stony shallows of the central coast).

  References ref

Aarup T., 2002, Transparencyofthe North Seaand Baltic Sea - a Secchi depth data mining study, Oceanologia, 44 (3), 323-337.

Beaumont N. J., Austen M. C., Atkins J. P., Burdon D., Degraer S., Dentinho T. P., Derous S., Holm P., Horton T., van Ierland E., Marboe A. H., Starkey D. J., Townsend M., Zarzycki T., 2007, Identification, definition and quantification of goods and services provided by marine biodiversity: implications for the ecosystem approach, Mar. Pollut. Bull., 54 (3), 253-265.

Bonsdorff E., Pearson T. H., 1999, Variation in the sublittoral macrozoobenthos of the Baltic Sea along environmental gradients: a functional-group approach, Aust. J. Ecol., 24 (4), 312-326.

Costanza R., 1999, The ecological, economic and social importance of the oceans, Ecol. Econ., 31 (2), 199-213.

Costanza R., D'Arge R., de Groot R., Farber S., Grasso M., Hannon B., Limburg K., Naem S., O 'Neil R. V., Paruelo J., Raskin R. G., Sutton P., van den Belt M., 1997, The value of the world's ecosystem services and natural capital, Nature, 387 (6630), 253-260.

Derous S., Agardy T., Hillewaert H., Hostens K., Jamieson G., Liebe knecht L., Mees J., Moulaert I., Olenin S., Paelinckx D., Rabaut M., Rachor E., Roff J., Stienen E. W. M., van der Wal J. T., van Lancke V., Verfaillie E., Vincx M., Węsławski J. M., Steven D., 2007, A concept for biological valuation in the marine environment, Oceanologia, 49 (1), 99-128.

Jennings M., 2009, The next big ideas in conservation. Are all species equal?, The Nature Conservancy, http://www.nature.org/tncscience/bigideas/people/art23931.html

Kotwicki L., Węsławski J. M., Grzelak K., Wiktor J., Zajączkowski M., 2007, Island biogeography theory in coastal ecosystem protection: the Baltic sandy shores, [in:] Coastal development: the Oder estuary and beyond, G. Schernewski, B. Glaeser, R. Scheibe, A. Sekścińska & R. Thamm (eds.), Coastal Rep. 8, 257-263, ISSN 0928-2734, ISBN 978-3-9811839-0-0.

Krężel A., 1997, A model of solar energy input to the sea surface, Oceanol. Stud., 26 (4), 21-34.

Linde D. O., 1988, 'Are all species created equal?' and other questions shaping wildlife law, Harvard Environ. Law, 12 (1), 157-200.

Maindonald J., Braun J., 2005, Data analysis and graphics using R, Cambridge Univ. Press, Cambridge, 362 pp.

Natura 2000, http://natu a2000.mos.gov.pl/natu a2000/pl/.

Pliński M., Florczyk I., 1984, Changes in the phytobenthos resulting from eutrophication of the Puck Bay, Limnologica, 15, 325-329.

Rönnbäck P., Kautsky N., Pihl L., Troell M., Söoderqvist T., Wennhage H, 2007, Ecosystem goods and services from Swedish coastal habitats: identification, valuation and implications of ecosystem shifts, AMBIO, 36 (7),534-544.

Schmidtz D.,2002, Are all species equal?, J. Appl. Philos., 15 (1), 57-67.

Singer P., 1989, All animals are equal, [in:] Animal rights and human obligations, T. Regan & P. Singer (eds.), Prentice Hall, Engelwood Cliffs, NJ, 148-162.

Urbański J. A., Grusza G., Chlebus N., Kryla L., 2008, A GIS-based WFD oriented typology of shallow micro-tidal soft bottom using wave exposure and turbidity mapping, Estuar. Coast. Shelf Sci., 78 (1), 27-37.

Urbański J. A., Kryla L., 2006, Mapping sea ice distribution in the Puck Bay from MODIS satellite data, Oceanol. Hydrobiol. St., 35 (4), 285-293.

Urbański J. A., Szymelfenig M., 2003, GIS-based mapping of benthic habitats, Estuar. Coast. Shelf Sci., 56 (1), 99-109.

Vincx M., Degraer S., 2008, Biological valuation map of the Belgian shelf, http://www.vliz.be/projects/bwzee/MBV.php.

Wallmo K., Edwards S., 2008, Estimating non-market values of marine protected areas: a latent class modeling approach, Mar. Resour. Econ., 23 (3), 301-323.

Warzocha J., 1995, Classification and structure of macrofaunal communities in the southern Baltic, Arch. Fish. Mar. Res., 42 (3), 225-237.

Węsławski J. M., Andrulewicz E., Kotwicki L., Kuzebski E., Lewandowski A., Linkowski T., Massel S. R., Musielak S., Olańczuk-Neyman K., Pempkowiak J., Piekarek-Jankowska H., Radziejewska T., Różyński G.,Sagan I., Skóra K. E., Szefler K., Urbański J., Witek Z., Wołowicz M., Zachowicz J., Zarzycki T., 2006, Basis for a valuation of the Polish Exclusive Economic Zone of the Baltic Sea: rationale and quest for tools, Oceanologia, 48 (1), 145-167.

full, complete article (PDF - compatibile with Acrobat 4.0), 193.0 kB

Comparative studies on the morphometry and physiology of European populations of the lagoon specialist Cerastoderma glaucum (Bivalvia)
Oceanologia 2009, no. 51(3), pp. 437-458

Katarzyna Tarnowska1,2,*, Maciej Wołowicz1, Anne Chenuil2, Jean-Pierre Féral2
1 Laboratory of Estuarine Ecology,
Institute of Oceanography, University of Gdańsk
al. Marszałka Piłsudskiego 46, PL-81-378 Gdynia, Poland;
e-mail: katarzyna.tarnowska@univmed.fr
*corresponding author
2 CNRS-Université de la Méditerranée,
UMR 6540 DIMAR, COM-Station Marine d`Endoume,
13007 Marseille, France

Keywords: ecophysiology, morphometry, Bivalve, lagoon, adaptation

Received 13 May 2009, revised 30 July 2009, accepted 6 August 2009.

This research was supported by research grants BW/13AO-5-0089-6 from the University of Gdańsk in Poland and N304 047 32/2162 from the Ministry of Science and Higher Education in Poland.
Seasonal changes in the morphometric and physiological parameters of the cockle Cerastoderma glaucum (Bivalvia) from the Baltic Sea (GD), the North Sea (LV), and the Mediterranean Sea (BL) were investigated. The cockles from GD were much smaller than those from other populations due to osmotic stress. The female to male ratios did not differ significantly from 1:1. The northern populations (GD, LV) had a monocyclic reproductive pattern, whereas the southern population (BL) seemed to reproduce throughout the year. Seasonal changes in the contents of biochemical components appeared to be correlated with changes in trophic conditions and the reproductive cycle. Protein content was the highest in spring for all the populations. The highest lipid contents and lowest carbohydrate contents were noted in GD and BL in spring, while no marked differences were noted among seasons in LV (probably because the data from both sexes were pooled). Respiration rates in GD were the highest among the populations, which could have been due to osmotic stress. High metabolic rates expressed by high respiration rates in GD and LV in spring and autumn could have resulted from gamete development (in spring) and phytoplankton blooms (in spring and autumn).

  References ref

Akberali H. B., Trueman E. R., 1985, Effects of environmental stress on marine bivalve molluscs, Adv. Mar. Biol., 22,101-136. http://dx.doi.org/10.1016/S0065-2881(08)60051-6

Allen J. R., Wilkinson S. B., Hawkins S. J., 1995, Redeveloped docks as artificial lagoons: the development of brackish-water ommunities and potential for onservation of lagoon species, Aquat. Conserv., 5 (4), 299-309.

Bachelet G., 1980, Growth and recruitment of the tellinid bivalve Macoma balthica at the southern limit of its geographical distribution, the Gironde estuary (SW France), Mar. Biol., 59 (2), 105-117. http://dx.doi.org/10.1007/BF00405460

Bamber R. N., Batten S. D., Sheader M., Bridgewater N. D., 1992, On the ecology of brackish water lagoons in Great Britain, Aquat. Conserv.,2 (1), 65-94. http://dx.doi.org/10.1002/aqc.3270020105

Barber B. J., Blake N. J., 1981, Energy storage and utilisation in relation to gametogenesis in Argopecten irradians on entricus (Say), J. Exp. Mar. Biol. Ecol., 52 (2-3), 121-134.

Bawazir A. S., 2000, Comparative study on biology and ecology of mussels Perna perna, Linnaeus 1758, from tropical region (Gulf of Aden) and Mytilus trossulus, Gould 1850, from boreal region (Gulf of Gdańsk), Ph. D. thesis, Univ. Gdańsk, Gdańsk, 154 pp.

Bayne B. L., 1976, Aspects of reproduction in bivalve mollusks, [in:] Estuarine pro esses, Vol. 1. Uses, stresses and adaptation to the estuary, M. Wiley (ed.), Acad. Press, London, 432-448.

Bayne B. L., Newell R. C., 1983, Physiological energetics of marine mollusks [in:] The Mollusca. Vol.4. Physiology. Part I, A. S. M. Saleudin & K. M. Wilbur (eds.), Acad. Press, New York, 407-515.

Beninger P. G., Lucas A., 1984, Seasonal variations in condition, reproductive activity, and gross biochemical omposition of two species of adult clam reared in ommon habitat: tapes decussatus L. (Jeffreys) and Tapes philippinarum (Adams Reeve), J. Exp. Mar. Biol. Ecol., 79 (1), 19-37. http://dx.doi.org/10.1016/0022-0981(84)90028-5

Beukema J. J., Cadée G. C., 1996, Consequences of the sudden removal of nearly all mussels and cockles from the Dutch Wadden Sea, Mar. Ecol., 17 (1-3), 279-289. http://dx.doi.org/10.1111/j.1439-0485.1996.tb00508.x

Beukema J. J., De Bruin W., 1977, Seasonal changes in dry weight and chemical composition of the soft parts of the tellinid bivalve Macoma balthica L. in the Dutch Wadden Sea, Neth. J. Sea Res., 11 (1), 42-55. http://dx.doi.org/10.1016/0077-7579(77)90020-5

Beukema J. J., De Bruin W., 1979, Calorific values of the soft parts of tellinid bivalve Macoma balthica (L.) as determined by two methods, J. Exp. Mar. Biol. Ecol., 37 (1), 19-30. http://dx.doi.org/10.1016/0022-0981(79)90023-6

Bligh E. G., Dyer W. J., 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37 (8), 911-917. http://dx.doi.org/10.1139/o59-099

Bowers E. A., Bartoli P., Russell-Pinto F., James B. L., 1996, The metacer ariae of sibling species of Meiogymnophallus, including M. rebecqui comb. nov. (Digenea:Gymnophallidae), and their Effects on closely related Cerastoderma host species (Mollusca:Bivalvia), Parasitol. Res., 82 (6), 505-510. http://dx.doi.org/10.1007/s004360050153

Brock V., 1979, Habitat selection of two ongeneric bivalves, Cardium edule and C. glaucum in sympatric and allopatri populations, Mar. Biol., 54 (2), 149-156. http://dx.doi.org/10.1007/BF00386594

Brock V., 1987, Genetic relations between the bivalves Cardium (Cerastoderma) edule, Cardium lamarcki and Cardium glaucum, studied by means of crossed immunoele trophoresis, Mar. Biol., 93 (4), 489-498. http://dx.doi.org/10.1007/BF00392786

Brock V., Wołowicz M., 1994, Comparisons of European populations of the Cerastoderma glaucum/C. lamarcki complex based on reproductive physiology and biochemistry, Oceanol. Acta, 17 (1), 97-103.

Brokordt K. B., Guderley H. E., 2004, Energetic requirements during gonad maturation and spawning in scallops:sex differences in Chlamys islandica (Muller 1776), J. Shellfish Res., 23 (1), 25-32.

Calow P., 1975, The respiratory strategies of two species of freshwater gastropods (Ancylus fluviatilis Mull. and Planorbis ontortus Linn.)in relation to temperature, oxygen on entration, body size and season, Physiol.Zool., 48 (2), 114-129.

Chipperfield P. N. J., 1953, Observations on the breeding and settlement of Mytilus edulis (L.) in British waters, J. Mar. Biol. Assoc. U.K., 32 (2), 449-476. http://dx.doi.org/10.1017/S002531540001465X

Clarke A., 1991, What is old adaptation and how should we measure it?, Am. Zool., 31 (1), 81-92.

Cloern J. E., 2001, Our evolving on eptual model of oastal eutrophication problem, Mar. Ecol.-Prog. Ser., 210, 223-253. http://dx.doi.org/10.3354/meps210223

Dame R. F., 1996, Ecology of marine bivalves: an ecosystem approach, CRC Mar. Sci. Ser., Boca Raton, 254 pp. http://dx.doi.org/10.1201/9781420049787

De Vooys C. G. N., 1976, The influence of temperature and time of the year on the oxygen uptake of the sea mussel Mytilus edulis, Mar. Biol., 36 (1), 25-30. http://dx.doi.org/10.1007/BF00388425

Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F., 1956, Colorimetric method for determination of sugars and related substances ,Anal. Chem., 28 (3), 350-356. http://dx.doi.org/10.1021/ac60111a017

Eisma D., 1965, Shell haracteristics of Cardium edule L. as indicators of salinity, Neth. J. Sea Res., 2 (4), 493-540. http://dx.doi.org/10.1016/0077-7579(65)90001-3

Engel D. W., Ferguson R. L., Eggert L. D., 1975, Filtration rates and ATP on entrations in the excised gills of the blue crab as a function of salinity, Co p. Biochem. Phys.A, 52 (4), 669-673. http://dx.doi.org/10.1016/S0300-9629(75)80021-1

Gabbott P. A., 1975, Storage ycle in marine bivalve mollusks: a hypothesis on erning the relationship between glycogen metabolism and gametogenesis, Proc. 9th Europ. Mar. Biol. Symp., Univ. Press, Aberdeen, 191-211.

Gili J. M., Coma R., 1998, Benthic suspension feeders:their paramount role in littoral marine food webs, Trends Ecol. Evol., 13 (8), 316-321. http://dx.doi.org/10.1016/S0169-5347(98)01365-2

Gouze E., Raimbault P., Garcia N., 2005, Ecological survey of the Berre Lagoon. Chemical analysis, Report,GIPREB, COM, Univ. Méditerranée, France, 21 pp., (in French).

Griffiths R. J., 1977, Reprodu tive cycles in littoral populations of Choromytilus meridionalis (Kr.) and Aulacomya ater (Molina) with a quantitative assessment of gamete production in the former,J. Exp. Mar. Biol. Ecol., 30, 53-71. http://dx.doi.org/10.1016/0022-0981(77)90027-2

Holland D. L., 1978, Lipid reserves and energy metabolism in the larvae of benthic marine invertebrates, [in:] Biochemical and biophysical perspectives in marine biology, D. C. Malins & J. R. Sargent (eds.), Acad. Press, London, 85-123.

Honkoop P. J. C., Beukema J. J., 1997, Loss of body mass in winter in three intertidal bivalve species: an experimental and observational study of the interacting effects between water temperature, feeding time and feeding behaviour, J. Exp. Mar. Biol. Ecol., 212 (2), 277-297. http://dx.doi.org/10.1016/S0022-0981(96)02757-8

Honkoop P. J. C., Van der Meer J., 1998, Experimentally indu ed Effects of water temperature and immersion time on reproductive output of bivalves in the Wadden Sea, J. Exp. Mar. Biol. Ecol., 220 (2), 227-246. http://dx.doi.org/10.1016/S0022-0981(97)00107-X

Houlihan D. F., 1991, Protein turnover in ectotherms and its relationships to energetics, [in:] Advances in comparative and environmental physiology, Vol. 7, R. Gilles (ed.), Springer-Verlag, Berlin, 1-43.

Hughes L., 2000, Biological consequences of global warming: is the signal already apparent?, Trends Ecol. Evol., 15 (2), 56-61. http://dx.doi.org/10.1016/S0169-5347(99)01764-4

Hummel H., Bogaards R. H., Bachelet G., Caron F., Sola J. C., Amiard-Triquet C., 2000a, The respiratory performance and survival of the bivalve Macoma balthica (L.) at the southern limit of its distribution area: a translocation experiment, J. Exp. Mar. Biol. Ecol., 251 (1), 85-102. http://dx.doi.org/10.1016/S0022-0981(00)00208-2

Hummel H., Sokołowski A., Bogaards R. H.,Wołowicz M., 2000b, Ecophysiological and genetic traits of the Baltic lam Macoma balthica in the Baltic:di .eren es between populations in the Gdańsk Bay due to acclimatization or genetic adaptation?, Int. Rev. Hydrobiol., 85 (5-6), 621-637. http://dx.doi.org/10.1002/1522-2632(200011)85:5/6<621::AID-IROH621>3.3.CO;2-6

Hummel H., Wołowicz M., Bogaards R. H., 1994, Genetic variability and relationships for populations of Cerastoderma edule and of the C. glaucum complex, Neth. J. Sea Res., 33 (1), 81-89. http://dx.doi.org/10.1016/0077-7579(94)90053-1

Iglesias J. I. P., Navarro E., 1991, Energetics of growth and reproduction in cockles (Cerastoderma edule): seasonal and age-dependent variations, Mar. Biol., 111 (3), 359-368. http://dx.doi.org/10.1007/BF01319407

IMGW, 2009, The Balti Sea, Inst.Meteorol. Gosp. Wod., Gdynia, (available at http://www.imgw.pl).

Ivell R., 1979, The biology and ecology of the brackish lagoon bivalve, Cerastoderma glaucum Bruguiere in Lago Lungo, Italy, J. Mollus. Stud., 45 (3), 364-382.

Jansen J. M., Pronker A. E., Kube S., Sokolowski A., Sola J. C., Marquiegui M. A., Scheidek D., Bonga W. S., Wołowicz M., Hummel H., 2007, Geographic and seasonal patterns and limits on the adaptive response to temperature of European Mytilus spp. and Macoma balthica populations, Oecologia, 154 (1), 23-34. http://dx.doi.org/10.1007/s00442-007-0808-x

Kautsky N., 1982, Quantitative studies on the gonad cycle, fecundity, reproductive output and recruitment in a Baltic Mytilus edulis population, Mar. Biol., 68 (2), 143-160. http://dx.doi.org/10.1007/BF00397601

Kennedy W. J., Taylor J. D,cHall A., 2008, Environmental and biological controls on bivalve shell mineralogy, Biol. Rev., 44 (4), 499-530. http://dx.doi.org/10.1111/j.1469-185X.1969.tb00610.x

Kingston P. F., 1974, Studies on the reproductive cycles of Cardium edule and C. glaucum, Mar. Biol., 28 (4), 317-323. http://dx.doi.org/10.1007/BF00388500

Lasiak T., Dye A., 1989, The ecology of the brown mussel Perna perna in Transkei,Southern Africa: Implications for the management of a traditional food resource, Biol. Conserv., 47 (4), 245-257. http://dx.doi.org/10.1016/0006-3207(89)90068-2

Lelong P., Riva A., 1976, Relations between bivalve growth and phytoplankton in lagoons and closed basins, Haliotis,7, 104-111, (in French).

Liu L. L., Stickle W. B., Gnaiger E., 1990, Normoxic and anoxi energy metabolism of the southern oyster drill Thais haemastoma during salinity a limation. A direct alorimetri study, Mar. Biol., 104 (2), 239-245. http://dx.doi.org/10.1007/BF01313264

Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J., 1951, Protein measurement with folin phenol reagent, J. Biol. Chem.,193 (1), 265-275.

Lucas A., Beninger P. G., 1985, The use of physiological condition indices in marine bivalve aquaculture, Aquaculture, 44 (3), 187-200. http://dx.doi.org/10.1016/0044-8486(85)90243-1

Lyons C., Dowling V., Tedengren M., Gardeström J., Hartl M. G. J., O'Brien N., Van Pelt F. N. A. M., O'Halloran J., Sheehan D., 2003, Variability of heat shock proteins and glutathione S-transferase in gill and digestive glands of blue mussel, Mytilus edulis, Mar. Environ. Res., 56 (5), 585-597. http://dx.doi.org/10.1016/S0141-1136(03)00044-8

Machado M. M., Costa A. M., 1994, Enzymati and morphological criteria for distinguishing between Cardium edule and C. glaucum of the Portuguese coast, Mar. Biol., 120 (4), 535-544. http://dx.doi.org/10.1007/BF00350073

Mariani S., Ketmaier V., De Matthaeis E., 2002, Genetic structuring and gene flow in Cerastoderma glaucum (Bivalvia:Cardiidae): evidence from allozyme variation at different geographic scales, Mar. Biol., 140 (4), 687-697. http://dx.doi.org/10.1007/s00227-001-0753-x

Marsh J. B., Weinstein D. B., 1966, Simple charring method for determination of lipids, J. Lipid Res., 7 (4), 574-576.

McMahon R. F., Wilson J. G., 1981, Seasonal respiratory responses to temperature and hypoxia in relation to burrowing depth in three intertidal bivalves, J. Therm. Biol., 6 (4), 267-277. http://dx.doi.org/10.1016/0306-4565(81)90015-2

Najdek M., Sapunar J., 1987, Total and methyl-mercury ontent in bivalves, Mytilus galloprovincialis Lamarck and Ostrea edulis Linnaeus: relationship of biochemical composition and body size, Bull. Environ. Contam. Tox., 39 (1), 56-62. http://dx.doi.org/10.1007/BF01691789

Navarro E., Iglesias J. I. P., Larrañaga A., 1989, Interannual variation in the reproductive cycle and biochemical composition of the cockle Cerastoderma edule from Mundaca Estuary (Biscay, North Spain), Mar. Biol., 101 (4), 503-511. http://dx.doi.org/10.1007/BF00541652

Nevo E., 1978, Genetic variation in natural populations:patterns and theory, Theor. Popul. Biol., 13 (1), 121-177. http://dx.doi.org/10.1016/0040-5809(78)90039-4

Newell R. C., 1979, Biology of intertidal animals, Mar. Ecol. Surv. Ltd., Faversha, 781 pp.

Newell R. I. E., 2004, Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review, J. Shell fish Res., 23 (1), 51-61.

Newell R. I. E., Bayne B. L., 1980, Seasonal changes in the physiology, reproductive condition and arbohydrate content of the cockle Cardium (=Cerastoderma) edule (Bivalvia:Cardiidae), Mar. Biol., 56 (1), 11-19. http://dx.doi.org/10.1007/BF00390589

Newell R. I. E., Hilbish T. J., Koehn R. K., Newell C. J., 1982, Temporal variation in the reproductive ycle of Mytilus edulis L. (Bivalvia,Mytilidae)from localities on the east coast of the United States, Biol. Bull., 162 (3), 299-310. http://dx.doi.org/10.2307/1540985

Nienhuis P. H., 1992, Ecology of oastal lagoons in the Netherlands (Veerse Meer and Grevelingen), Vie Milieu, 42 (2), 59-72.

Nikula R., Väinölä R., 2003, Phylogeography of Cerastoderma glaucum (Bivalvia:Cardiidae) across Europe:a major break in the Eastern Mediterranean, Mar. Biol., 143 (2), 339-350. http://dx.doi.org/10.1007/s00227-003-1088-6

Nowacki J., 1993, Temperature, salinity and density of water, [in:]Bay of Puck, K. Korzeniowski (ed.), Wyd. UG, Gdańsk, 416-421, (in Polish).

Oeschger R., 1990, Long-term anaerobiosis in sublitoral marine invertebrates from the western Baltic Sea:Halicryptus spinulosus (Priapulida), Astarte borealis and Arctica islandica (Bivalvia), Mar. Ecol.-Prog. Ser., 59, 133-143. http://dx.doi.org/10.3354/meps059133

Pazikowska G., Szaniawska A., 1988, Variations in energy and lipid content in Mytilus edulis from the Gulf of Gdańsk, Oceanologia, 25, 99-107.

Pazos A. J., Roán G., Acosta C. P., Abad M., Sánchez J. L., 1997, Seasonal changes in condition and biochemi al omposition of the scallop Pecten maximus L. from suspended culture in the Ria de Arousa (Galicia, N. W. Spain) in relation to environmental conditions, J. Exp. Mar. Biol. Ecol., 211 (2), 169-193. http://dx.doi.org/10.1016/S0022-0981(96)02724-4

Pearson C., 2003, The genetic population structure of the lagoon spe ialists Nematostella vectensis, Cerastoderma glaucum and Gammarus insensibilis from populations along the southern and eastern coasts of the United Kingdom, Ph.D. thesis, Univ. Southampton, Southampton, 229 pp.

Pickard G. L., Emery W. J., 1990, Descriptive physical oceanography. An introduction, 5th edn., Pergamon Press, Oxford, 320 pp.

Pieters H., Kluytmans J. H., Zandee D. I., Cadée G. C., 1980, Tissue omposition and reproduction of Mytilus edulis in relation to food availability, Neth. J. Sea Res., 14 (3-4), 349-361. http://dx.doi.org/10.1016/0077-7579(80)90008-3

Pieters H., Kluyt ans J. H., Zurburg W., Zandee D. I., 1979, The influence of seasonal changes on energy metabolism in Mytilus edulis (L.). 1. Growth rate and biochemical omposition in relation to environmental parameters and spawning, [in:] Cyclic phenomena in marine plants and animals, E. Naylor & R. G. Hartnoll (eds.), Pergamon Press, New York,285-293.

Pliński M., 1995, Phytoplankton of the Gulf of Gdańsk in 1992 and 1993, Oceanologia, 37 (1), 123-135.

Porter J., Dyrynda P., Ryland J., Carvalho G., 2001, Morphological and genetic adaptation to a lagoon environment:a ase study in the bryozoan genus Alcyonidium , Mar.Biol., 139 (3), 575-585. http://dx.doi.org/10.1007/s002270100607

Riisgård H. U., Kittner C., Seerup D. F., 2003, Regulation of opening state and filtration rate in filter-feeding bivalves (Cardium edule, Mytilus ediuls, Myacarenaria)in response to low algal on entration, J. Exp. Mar. Biol. Ecol., 284 (1-2), 105-127. http://dx.doi.org/10.1016/S0022-0981(02)00496-3

RIKZ, RIZA, 2009, Waterbase, National Institute for Coastal and Marine Management, Institute for Inland Water Management and Waste Water Treatment, The Netherlands, (available at http://www.waterbase.nl/index.cf ?taal=en).

Ruiz C., Martinez D., Mosquera G., Abad M., Sánchez J. L., 1992, Seasonal variations in condition, reproductive activity and biochemical omposition of the flat oyster, Ostrea edulis, from San Cibran (Galicia, Spain), Mar.cBiol., 112 (1),c67-74.

Russell P.cJ.cC.,c1972,cBiological studies on Cardium glaucum,cbased on some Baltic and Mediterranean populations, Mar. Biol., 16 (4), 290-296.

Rygg B., 1970, Studies on Cerastoderma edule (L.) and Cerastoderma glaucum (Poiret), Sarsia, 43, 65-80.

Sarà G., 2007, Sedimentary and particulate organic matter:mixed sources for cockle Cerastoderma glaucum in a shallow pond, Western Mediterranean, Aquat. Living Resour., 20 (3), 271-277. http://dx.doi.org/10.1051/alr:2007040

Sastry A. N., 1979, Pelecypoda (excluding Ostreidae), [in:] Reprodu tion of marine invertebrates. Vol. V. Molluscs:pelecypods and lesser classes, A. C. Giese & J. S. Pearse (eds.), Acad. Press, New York, 113-292.

Schmidt-Nielsen K., 1990, Animal physiology. Adaptation and environment, Cambridge Univ. Press, Cambridge, 601 pp.

Smaal A.C., Stralen M. R., 1990, Average annual growth and ondition of mussel as a function of food source , Hydrobiologia, 195 (1), 179-188. http://dx.doi.org/10.1007/BF00026822

Stora G., Arnoux A., Galas M., 1995,Time and spatial dynamics of Mediterranean lagoon macrobenthos during an exceptionally prolonged interruption of freshwater inputs, Hydrobiologia, 300-301 (1), 123-132. http://dx.doi.org/10.1007/BF00024454

Stora G., Gilbert F., Duport E., Ré C., Picon P., 2004, The dynamics of macrobenthic populations in the central and coastal parts of the Berre Lagoon, Report, GIPREB, COM, Univ. Mé diterranée, France, 19 pp., (in French).

Sukhotin A. A., Lajus D. L., Lesin P. A., 2003, Influence of age and size on pumping activity and stress resistance in the marine bivalve Mytilus edulis L., J. Exp. Mar. Biol. Ecol., 284 (1-2), 129-144. http://dx.doi.org/10.1016/S0022-0981(02)00497-5

Tarnowska K., Chenuil A., Nikula R., Féral J.-P., Wołowicz M., 2009, Complex genetic population structure of bivalve (Cerastoderma glaucum) living in highly fragmented lagoon habitat, Mar. Ecol.-Prog. Ser., (in revision).

Taylor A. C., Venn T. J., 1979, Seasonal variations in weight and biochemical composition of the tissues of the queen scallop, Chlamys oper ularis from the Clyde Sea area , J. Mar. Biol. Assoc. U. K., 59 (3), 605-621. http://dx.doi.org/10.1017/S0025315400045628

Wasmund N., Nausch G., Matthäus W., 1998, Phytoplankton spring blooms in the southern Balti Sea - spatio-temporal development and long-term trends, J. Plankton Res., 20 (6), 1099-1117. http://dx.doi.org/10.1093/plankt/20.6.1099

Wenne R., Klusek Z., 1985, Longevity,growth and parasites of Macoma balthica L. in the Gdańsk Bay (South Baltic), Pol. Arch. Hydrobiol., 32 (1),31-45.

Wenne R., Styczyńska-Jurewicz E., 1985, Age-dependence of condition and lipid and carbohydrate contents in Macoma balthica (L.) from the Gdańsk Bay (South Baltic), Pol. Arch. Hydrobiol., 32, 65-70.

Wenne R., Styczyńska-Jurewicz E., 1987, Gross biochemical omposition of the bivalve Macoma balthica from the Gulf of Gda73324;sk (Southern Baltic), Mar. Biol., 96 (1), 73-78. http://dx.doi.org/10.1007/BF00394839

Wilson J. G., 1990, Effects of temperature hanges on infaunal cir alittoral bivalves, particularly T. tenuis and T. fibula, [in:] Expected Effects of climatic changes on marine coastal ecosystems, J. J. Beukema (ed.), Kluwer Acad., Amsterdam, 93-97.

Wilson J. G., Davis J. P., 1984, The effect of environmental variables on the oxygen consumption of the protobranch bivalve Nucula turgida (Leckenby & Marshall), J.Mollus.Stud., 50 (2), 73-77.

Wilson J. G., Elkai B., 1991, Tolerances to high temperature of infaunal bivalves and the Effect of geographical distribution,position on the shore and season, J. Mar. Biol. Assoc. U. K., 71 (1), 169-177. http://dx.doi.org/10.1017/S0025315400037486

Wilson J. G., Elkai B., 1997, Seasonal and geographical differen es in oxygen consumption with temperature of Cerastoderma glaucum (Poiret)and a comparison with C. edule (L.), Estuar. Coast. Shelf Sci., 45 (5), 571-577. http://dx.doi.org/10.1006/ecss.1996.0230

Wołowicz M., 1987, A comparative study of the reprodu tive cycle of cockles Cardium glaucum (Poiret 1789) and C. hauniense (Petersen, Russell 1971) - (Bivalvia) from the Gdańsk Bay, Pol. Arch. Hydrobiol., 34 (1), 91-105.

Wołowicz M. ,1991, Geographical differentiation of Cerastoderma glaucum Bruguiere (Bivalvia)populations. Hypothesis on erning the origin and migration pathways , Wyd. UG, Gdańsk, 151 pp., (in Polish).

Wołowicz M., Sokołowski A., Bawazir A. S., Lasota R., 2006, Effect of eutrophication on the distribution and ecophysiology of the mussel Mytilus trossulus (Bivalvia) in southern Baltic Sea (the Gulf of Gdańsk), Limnol. Oceanogr., 51 (1, part 2), 580-590.

Yukihira H.,Klumpp D. W., Lucas J. S., 1998, Effects of body size on suspension feeding and energy budgets of the pearl oysters Pin tada margaritifera and P. maxima, Mar. Ecol.-Prog. Ser., 170, 119-130. http://dx.doi.org/10.3354/meps170119

Zandee D. I., Kluyt ans J. H., Zurburg W., Pieters H., 1980, Seasonal variations in bio hemical omposition of Mytilus edulis with referen e to energy metabolism and gametogenesis, Neth. J. Sea Res., 14 (1), 1-29. http://dx.doi.org/10.1016/0077-7579(80)90011-3

Zaouali J., 1974, The malacological fauna of the Lake of Tunis (northern and southern parts) and its channels, Haliotis, 4, 179-186, (in French).

full, complete article (PDF - compatibile with Acrobat 4.0), 300.3 kB