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Abstract

Conventional methods for the determination of water-wave induced stresses in
seabeds composed of granular soils are based on Biot-type models, in which the soil
skeleton is treated as an elastic medium. Such methods predict effective stresses
in the soil that are unacceptable from the physical point of view, as they permit
tensile stresses to occur near the upper surface of the seabed. Therefore, in this
paper the granular soil is assumed to behave as an elastic-ideally plastic material,
with the Coulomb-Mohr yield criterion adopted to bound admissible stress states
in the seabed. The governing equations are solved numerically by a finite difference
method. The results of simulations, carried out for the case of time-harmonic
water waves, illustrate the depth distributions of the excess pore pressures and
the effective stresses in the seabed, and show the shapes of zones of soil in the
plastic state. In particular, the effects on the seabed behaviour of such parameters
as the degree of pore water saturation, the soil permeability, and the earth pressure
coefficient, are illustrated.

The complete text of the paper is available at http://www.iopan.gda.pl/oceanologia/
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1. Introduction

The mechanics of a seabed, particularly near a mudline, is of great

importance in many fields – coastal engineering, geomorphology, sedimen-
tology and groundwater hydrology, to mention just a few (Massel et al.
2004, 2005). One of the basic problems concerns water-seabed interactions,

including the influence of water waves on the dynamics of the upper part
of the seabed near a mudline. Pressure changes at the mudline caused by
water waves induce corresponding changes in pore pressures and associated
changes in stresses in the soil skeleton, according to the following relations

for plane strain conditions:

σ′

x = σx + u, (1)

σ′

z = σz + u, (2)

where u is pore water pressure (positive in compression), σx and σz denote
global normal stresses treated as negative in compression, and σ′

x and σ′

z

denote effective normal stresses.

Equations (1) and (2) show that the magnitudes of (compressive)
effective stresses in the subsoil decrease as the pore pressure increases.
Our aim is to describe these stress changes, using the methods of applied

mechanics. Researchers have been working on this problem for more
than half a century. Developments in modelling are discussed in Sawicki
& Mierczyński (2006) (see also Sumer & Fredsøe 2002). A wide range of

models have been applied to describe the interactions between water waves
and the seabed, starting with a rigid skeleton and incompressible water, and
ending up with introducing water compressibility and elasticity of the soil
skeleton, etc. For the relevant references, see Sawicki & Mierczyński (2006).

At present, it seems that the model formulated by Yamamoto et al. (1978),
based on the Biot (1941) equations, is used as a kind of standard. This model
takes into account both the soil skeleton elasticity and the compressibility

of the pore water, and assumes that the motion of the latter relative to the
porous skeleton is governed by Darcy’s law. The same assumptions have
been adopted to develop a number of other theories, for instance, those by
Madsen (1978) and Mei & Foda (1981).

However, the approach proposed by Yamamoto et al. (1978) has several
shortcomings that strongly influence the distribution of effective stresses in
the seabed, particularly in a practically important upper layer, e.g. near

a mudline (Sawicki & Mierczyński 2005). The main shortcoming is that the
effective stresses in this region are statically inadmissible, which physically
means that such stress states cannot occur in real granular soils. The
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condition which bounds these effective stresses follows from the well-known
Coulomb-Mohr criterion:

f = (σ′

z − σ′

x)
2 − (σ′

z + σ′

x)2 sin2 ϕ + 4(τxz)
2 = 0, (3)

where ϕ is the angle of internal friction, and τxz is the shearing stress com-
ponent of the effective stress tensor. In this study, a rectangular co-ordinate
system is employed, in which the vertical axis z is directed downwards, and
the horizontal axis x coincides with the mudline. Equation (3) should be
incorporated into the system of the problem-governing equations, such as
the equilibrium/motion and mass balance relations. Sawicki & Staroszczyk
(2008) have shown that inclusion of the Coulomb-Mohr condition in the
analysis leads to a very different distribution of wave-induced excess effective
stresses in a seabed compared to that predicted by the Yamamoto et al.
(1978) theory.

In this paper, attention will focus on the water-wave induced pore
pressures and effective stresses that develop near a mudline. In this region,
sediment transport takes place, and it is therefore important to estimate its
depth, as well as the stress state in this layer. On the other hand, the results
obtained may be of some importance for the interpretation of experiments
performed in wave channels, such as those described by Massel et al. (2004,
2005). For this reason, the numerical results, presented later in Section 4,
correspond to such experiments.

2. Formulation of the problem

The static scheme of the problem considered is shown in Figure 1. The
thickness of the porous seabed is taken to be D. The seabed, consisting of
a granular soil, is based on a rigid and impervious stratum. The depth of
still water is denoted by h.

It is assumed that stresses in the seabed are generated by time-
harmonic standing water waves. Such waves can result from the reflection
of progressive waves from the vertical walls of hydro-engineering structures.
The analysis of standing waves is important, as they are known to be more
conducive to seabed scour than the progressive waves.

If the standing wave height is denoted by H and its length by L, the
pressure which the wave exerts on the seabed at the mudline z = 0 is
described by the relation:

u0 = ub sin(kx) sin(ωt), (4)

where k = 2π/L is the wave number, ω = 2π/T is the angular frequency, t
is the time, T is the wave period, and
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Figure 1.Water wave of height H and length L over a porous seabed of depth D

ub =
γwH

2 cosh(kh)
, (5)

where γw is the unit weight of water.

The water wave pressure (4) is the boundary condition for the pore
pressure in the seabed. Further, the effective stresses in the soil skeleton are
zero at the mudline. Thus, the boundary conditions at the upper surface of
the seabed are expressed by

z = 0 : u = u0, σ′

z = 0, τxz = 0. (6)

At the lower surface of the seabed, owing to the assumed impermeability
and rigidity of the underlying base, the boundary conditions are defined by

z = D :
∂u

∂z
= 0, wx = 0, wz = 0, (7)

where wx and wz denote the respective components of the soil skeleton
displacements. Because of the periodicity of the phenomenon under consid-
eration, the analysis can be confined to a region containing only one, or
a few, water wavelengths. Hence, for any x, z and t, the following periodic
boundary conditions are satisfied:

A(x, z, t) = A(x ± jL, z, t), (j = 1, 2, . . .), (8)

with A representing any of the soil stress or displacement components.
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Within the soil layer, 0 ≤ z ≤ D, the following equilibrium equations,
relating the effective stresses and the excess pore pressure, should be
satisfied:

∂σ′

x

∂x
+

∂τxz

∂z
−

∂u

∂x
= 0, (9)

∂σ′

z

∂z
+

∂τxz

∂x
−

∂u

∂z
+ γsat = 0, (10)

with

γsat = nγw + (1 − n)γg, (11)

where n denotes the porosity of the soil, and γg is the unit weight of solid
grains.
The excess effective stresses, satisfying equations (9) and (10), are

imposed on the initial geostatic stress state, defined by

σ′

x = K0σ
′

z, (12)

σ′

z = −(γsat − γw)z, (13)

where K0 denotes the coefficient of earth pressure at rest.
The equilibrium relations (9) and (10) are supplemented by the storage

equation that takes into account the effects of Darcy’s filtration law and the
mass balance of pore water (Verruijt 1969):

kf

γw

∇2u =
n

K ′

∂u

∂t
+

∂ε

∂t
, (14)

where kf is the filtration coefficient of the soil skeleton, K
′ is the apparent

bulk modulus of pore water, ε = εx + εz (where εx and εz are the axial strain
tensor components) is the volumetric strain, and ∇2 denotes the Laplacian
operator.
The apparent bulk modulus of water depends on the degree of saturation

of the soil pores by water. After Verruijt (1969), the following relation is
adopted here to describe the value of K ′ in terms of the water saturation
coefficient, denoted by S:

1

K ′
=

S

K
+

1 − S

p0

, (15)

whereK is the true bulk modulus of water (that is, without any air bubbles,
S = 1), and p0 is the absolute pressure in the pore water. Assuming that
K = 1.9 × 109 Pa and p0 = 105 Pa, the latter formula gives for S = 0.99
(1% of air content in water) the value of K ′ ≈ 107 Pa, and for S = 0.95
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(5% of air) the value ofK ′ ≈ 2×106 Pa, showing a significant decrease in the
water bulk modulus with even a relatively small amount of gas entrapped
in the pore water.

The system of equations (9), (10) and (14) defines the already classical
approach by Yamamoto et al. (1978), provided that Hooke’s law is ad-
ditionally assumed, implying that the effective stresses cause only elastic
changes in the soil strains. In the present paper a more realistic model of
the soil skeleton behaviour is assumed, as mentioned in the Introduction.
The model is based on the simplest approach of the elastic-ideal plastic
behaviour of the soil skeleton. This means that the total strain tensor, εεε, is
decomposed into elastic, εεεel, and plastic, εεεpl, parts:

εεε = εεεel + εεεpl. (16)

It is assumed that the elastic part of the strain is described by Hooke’s
law. However, in comparison with the classical formulation, an important
modification is introduced, in which the skeleton shear modulus, G, depends
on the mean effective stress, p′. That is,

G = G(p′), (17)

where, in the initial geostatic stress state,

p′ = −
1

3
(1 + 2K0) σ′

z. (18)

A general form of relation (17) follows from experimental observations
that the shear modulus of granular soil strongly depends on the mean
effective stress. For example, Sawicki & Mierczyński (2005) have proposed
the following specific form of this relation:

G = G0

(

1 + 4
p′

p∗

)

, (19)

where G0 is the residual value of the shear modulus, and p∗ = 105 Pa is
a stress unit. Other specific forms of (17) are also possible, depending
on experimental data. In this paper, for simplicity, it is assumed that
G = const, as was done, for instance, by Massel et al. (2005).

The plastic components of the strain tensor are supposed to be governed
by the associated flow rule expressed by

ε̇̇ε̇εpl = λ̇
∂f

∂σσσ′
, (20)

where ε̇̇ε̇εpl is an increment of the plastic strain tensor, and λ̇ is a scalar
multiplier.
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Combination of Hooke’s law and the associated flow rule leads to the
following relations for the total strain increments:

ε̇x =
1

2G

[

(1 − ν)σ̇′

x − νσ̇′

z

]

+ 2λ̇
[

σ′

x cos2 ϕ − σ′

z(1 + sin2 ϕ)
]

, (21)

ε̇z =
1

2G

[

−νσ̇′

x + (1 − ν)σ̇′

z

]

+ 2λ̇
[

−σ′

x(1 + sin2 ϕ) + σ′

z cos2 ϕ
]

, (22)

ε̇xz =
1

2G
τ̇xz + 8λ̇τxz, (23)

where the superimposed dots denote increments of respective strain and
stress quantities, and ν denotes the Poisson ratio of the soil skeleton.

The above equations should be supplemented by a condition, holding
during plastic deformation, that subsequent effective stress increments are
tangential to the yield surface f = 0. In a general form, this condition is
expressed by

∂f

∂σσσ′
dσσσ′ = 0, (24)

which, for the specific situation considered, when the Coulomb-Mohr
condition defined by equation (3) is applied, gives

[

σ′

x cos2 ϕ − σ′

z(1 + sin2 ϕ)
]

σ̇′

x+

+
[

−σ′

x(1 + sin2 ϕ) + σ′

z cos2 ϕ
]

σ̇′

z + 4τxz τ̇xz = 0. (25)

The plane-strain problem considered is described by the system of seven
equations: (9), (10), (14), (21)–(23), and either (3) or (25), but involves
eight unknown functions: σ′

x, σ
′

z, τxz, u, εx, εz, εxz and λ̇. In order to solve
the equations, the number of unknown variables is reduced by a standard
method, that is, by introducing the plane displacement components, wx and
wz, in terms of which the strains, treated here as infinitesimally small, are
expressed by

εx =
∂wx

∂x
, εz =

∂wz

∂z
, εxz =

1

2

(

∂wx

∂z
+

∂wz

∂x

)

. (26)

In this way, the number of unknowns is reduced by one. Further reduction
is achieved by using the constitutive relations (21)–(23) to express the
effective stresses in terms of the skeleton displacements as well. After
inserting the resulting relations for the stresses into equations (9) and (10),
and using (26) to express the volumetric strain ε = εx + εz in (14), the
problem is transformed to the solution of a system of four equations. These
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are: two equilibrium balances, the storage equation, and the plastic yield
condition, and involve four independent variables: two displacements wx

and wz, the excess pore water pressure u, and the function λ̇. The respective
boundary conditions are defined by equations (4)–(8). In the case of a purely
elastic response of the soil, that is when plastic yield does not occur, only
the equilibrium and the storage equations are solved, with λ̇ = 0 set in the
former.

3. Numerical method

The governing equations presented in the previous section have a clear
physical interpretation that simplifies the understanding of the processes
modelled. However, the structure of the system of four equations to be
solved is complex: the two equilibrium and the storage equations are partial
differential equations, which are second-order in spatial and first-order in
temporal variables, and the fourth equation, that expressing the plastic
yield condition, is a non-linear algebraic relation. For this reason, special
numerical techniques need to be applied to ensure the convergence and
stability of the computational algorithm.

The three differential equations, for wx, wz and u, have been solved
numerically by using a finite difference method to discretize the problem
in space. The ensuing set of semi-discrete equations is solved in the
time domain by applying a single-step implicit scheme, the so-called
weighted-average method (also known as the θ-method) – see, for instance,
Zienkiewicz & Taylor (2000a). In the case of purely elastic behaviour, while
the resulting effective stress states lie inside the yield surface (that is, when
f < 0 in equation (3)), the solution procedure does not cause any serious
numerical difficulties. However, when a plastic process is active within the
seabed, then, apart from the above three differential equations, also the
fourth, the yield equation f = 0, must be solved for each discrete point at
which plastic flow occurs. This poses additional numerical problems that
must be treated with care.

Several methods are available for numerical modelling of the elastic-
plastic behaviour of materials. In this work, the most common approach –
the method of increments – was used. At each time step, that is within an
increment of the wave-induced loading, an iterative procedure was applied
to determine the soil stresses corresponding to the current displacement
increments (and hence the current total strains) obtained from the system
of equilibrium and storage equations. For this purpose, a method known
as the return map algorithm was employed (Zienkiewicz & Taylor 2000b).
In this fully implicit method, the three constitutive relations (21)–(23),
combined with the yield condition (3), were solved to calculate the stress
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increments; this ensured that the current total effective stress state was

exactly on the yield surface (alternatively, equation (25) could have been

used instead of (3), but in that case the convergence to the exact solution

would have been much slower). The four, strongly non-linear, equations for

the three stress increments, σ̇′

x, σ̇
′

z and τ̇xz, and the coefficient λ̇, were solved

for each discrete node separately using the Newton-Raphson method.

The effective stresses calculated by the above procedure did not,

in general, satisfy the initial equilibrium equations for a current load

increment, since the occurrence of plastic yield led to the re-distribution

of the stresses in the soil skeleton. Therefore, a series of iterations had to be

executed recurrently, with repeatedly updated plastic strains to calculate

new displacements, then total strains, and finally new stresses, until all

the quantities involved became balanced for a given load increment. These

iterations were carried out by using a direct (or Picard) iteration method

that turned out to be more efficient for this task than the usual Newton-

Raphson method.

The finite difference computations were carried out for the domain of the

length L (that is, equal to the water wavelength), and of the height D, equal

to the seabed thickness. On this domain, a uniform rectangular grid with

51 discrete nodes along the horizontal, and 201 nodes along the vertical,

was imposed. The time integration was conducted with a time step length

∆t = T/100. The stresses during plastic loading were balanced with

a relative error of 10−8, the equilibrium and the storage equations were

solved with a relative error of 10−5 between two successive iterations. For

numerical reasons, to maintain stability of the algorithm, the height of the

water wave was increased in a smooth manner from zero to its prescribed

value H over the time interval of three wave periods. The results presented

in the next section are those calculated for the times of at least five wave

periods, that is, for t ≥ 5T .

Before employing our discrete model in simulations of the elastic-plastic

response of the seabed, it was validated by comparing the model predictions

for the simpler case of the purely elastic response with the results presented

by Sawicki and Mierczyński (2005). The latter were obtained, like the results

of Yamamoto et al. (1978), by applying the Biot equations. Comparison of

the present model predictions with those given by Sawicki & Mierczyński

(2005), obtained for the input data adopted from Hsu & Jeng (1994),

showed good agreement, with the maximum relative differences between

the respective effective stress tensor components and the pore pressures not

exceeding 2%. The correctness of the proposed numerical model was thus

confirmed.
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4. Simulations of seabed behaviour

Simulations of seabed behaviour under the action of water waves have
been performed for the data roughly corresponding to the laboratory
investigations carried out by Massel et al. (2004, 2005). Hence, the following
parameters reported in these two papers were used in numerical calculations:
the mean water depth h = 2 m, the subsoil thickness D = 2 m, the water
wave period T = 5 s, corresponding to a wave length of L = 20.95 m, the
soil porosity n = 0.26, the soil shear modulus G = 3.8 × 107 Pa, and the
soil filtration coefficient kf = 2.9× 10−4 m s−1. Moreover, a few parameters
corresponding to typical sand properties were assumed: the skeleton Poisson
ratio ν = 0.3, the unit weight of grains γg = 2.65 × 104 N m−3, the internal
friction angle ϕ = 30◦, and the coefficient of earth pressure at rest K0 = 0.5.
The simulations were carried out for water wave heights H ranging from 0.2
to 0.8 m.

Figure 2 shows the distribution of pore water pressure amplitudes with
the dimensionless depth z/D for different values of the pore water saturation
degree S. The pressure amplitudes are plotted in normalized forms u/ub,
where ub, defined by (5), is the amplitude of the water-wave induced pressure
at the mudline. Note that the presence of air in pore water considerably
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Figure 2. Depth profiles of normalized wave-induced pore water pressure
amplitudes, u/ub, as a function of the saturation coefficient S. Solid dots show
experimental results measured by Massel et al. (2005)
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influences the rate at which pore pressure attenuates within the seabed.
While in the case of S = 1 (no air in water) the maximum pressure at the

bottom of the seabed layer (z = D) is equal to about 83% of that at the
mudline (z = 0), the presence of, say, 2% of air in pore water (S = 0.98)

leads to a reduction in the maximum pressures at z = D to a value of
about 25% of that at the mudline. The solid circles in the figure present the

experimental results obtained by Massel et al. (2005). These were measured

for a water wave of height H = 0.3 m and the effective bulk modulus of water
K ′ = 4.8 × 105 Pa. This particular value of K ′ was inferred by comparing

the experimental data with the predictions of the theory proposed in the
previously-cited paper. In view of relation (15), the latter magnitude of

K ′ corresponds to a rather high air content in the pore water, equal to
about 20%, that is, to the saturation coefficient S ∼ 0.8. The dashed line

in Figure 2 displays the pressure amplitude depth profile calculated by our
numerical model for K ′ = 4.8 × 105 Pa. This profile is quite similar to that

obtained by Massel et al. (2005) by their analytical solution (see Figure 2
on p. 308 in that paper).

Figures 3 to 6 (see p. 550, 551, 552) illustrate the influence of various soil
parameters and the water wave height H on the maximum extent of zones

in which the soil is in the plastic state, that is, where the Coulomb-Mohr
failure condition (3) has been reached. Accordingly, the depth positions of

the interfaces separating the part of the seabed at plastic flow (occurring
between the respective lines and the mudline) and the part responding

elastically are displayed. The left and right halves of the plots correspond
to the regions under the wave crests and troughs, respectively.

Figure 3 presents the results obtained for a water wave of height 0.5 m,

for a set of various values of the pore water saturation degree S. The
plots in the figure show that the presence of air in the pore water reduces

the depth of soil plastification (see Figure 2). But even for S = 0.9
(10% air content), the plastic zone reaches a depth of some 10 cm. This

result practically means that small amplitude waves in the coastal zone
may lead to the plastic state of the upper layer of the seabed. In such

a state, the saturated soil is very susceptible to additional excitations like,
for example, those caused by water currents. The results obtained may

therefore be of some importance to researchers modelling sediment transport
phenomena.

It is generally accepted that there is usually a few percent of gas

entrapped in pores of natural sandy seabeds — reliable empirical mea-
surements of the gas content in water-saturated soils are still scarce. The

subsequent plots, presented in Figures 4 to 7 (see p. 550, 551, 552), illustrate
the results of numerical simulations conducted for soil containing 2% of air in
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its pore water, that is, for a saturation coefficient S = 0.98. Figure 4 confirms
the intuition that the height of a water wave affects the depth of the plastic
zone in the soil layer: higher waves penetrate the seabed more deeply. It
can also be observed that the maximum extent of the plastic region under
the wave crest is approximately proportional to the wave height: for a wave
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of height 80 cm the depth of the plastic zone is about 30 cm, while for one
of height 20 cm it is about 7 cm.
Figure 5 shows the influence of the coefficient of the earth pressure at

rest, K0, on the size of the plastic zone in the seabed; it will be recalled
that this coefficient is defined in equation (12). The practical determination
of K0 is a difficult problem in geotechnical engineering. Small values of K0

correspond to freshly deposited sands, higher values to compacted subsoils.
It is seen in the figure that even for a high value of K0 there is a small region
in the seabed that is in the plastic state.
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Figure 5. Maximum extent of the soil at plastic yield for different values of the
earth pressure coefficient K0 (H = 0.5 m, S = 0.98)

Figure 6 illustrates the effect of soil permeability on soil behaviour,
showing the shapes of the plastic zones in the seabed for different values
of the filtration coefficient kf . It is seen that for less permeable soils the
plastic regions are shallower. This is due to the fact that in less permeable
soils the depth attenuation of pore pressures applied at the upper surface of
the seabed layer is stronger; hence, the weakening effect of the excess pore
pressures on the effective stresses (see equations (1) and (2)) is limited to
the regions of smaller depth.
Finally, Figure 7 presents the depth profiles of the wave-induced excess

(that is, above the geostatic state) effective stresses in the seabed for a wave
height H = 0.5 m and a pore water saturation coefficient S = 0.98. Shown
are the maximum magnitudes of the σ′

x and σ′

z components of the stress
tensor under the wave crest (Figure 7a) and the wave trough (Figure 7b).
The stresses are normalized in the same way as the pore water pressures
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soil filtration coefficient kf (H = 0.5 m, S = 0.98, K0 = 0.5)
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Figure 7. Depth profiles of wave-induced effective stresses σ′

x and σ′

z : (a) under
the wave crest, (b) under the wave trough; (——) elastic-plastic behaviour,
(– – –) purely elastic behaviour (H = 0.5 m, S = 0.98)

in Figure 2, that is, by using the seabed top surface pressure amplitude
ub, defined by (5), as a unit. The results obtained on the assumption of
the elastic-plastic soil behaviour (solid lines) are compared with those for
the purely elastic soil response (dashed lines). It can be seen that the
elastic-plastic reaction of the seabed to the water wave loading, compared
to this reaction in the elastic case, is distinct under the wave crest and the
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trough. More pronounced differences occur in the subsoil under the crest.
In this region, the assumption of a purely elastic response of the soil skeleton

leads to tensile stresses σ′

x appearing in the upper part of the seabed (the
dashed line). Such tensile stresses cannot develop when the plastic effects are

permitted. Hence, a re-distribution of the stress states, so that the Coulomb-
Mohr condition is fulfilled, takes place within the seabed. As a result, the σ′

x

stress becomes zero at the mudline, and varies roughly linearly between z = 0

and the depth of the plastic zone which, in this particular case, extends to
z ≈ 20 cm, i.e., z/D ≈ 0.1. Further below, that is under the plastic zone, the

response of the seabed is purely elastic; therefore the σ′

x stress distributions
for both types of soil behaviour practically coincide. As regards the σ′

z

distributions under the wave crest, the differences between the elastic and
elastic-plastic responses are practically negligible, which can be attributed

to the fact that these stresses are compressive throughout the seabed layer;
therefore, no re-distribution of stress states takes place. A qualitatively

very similar elastic-plastic behaviour of the seabed near the mudline, with
a significant redistribution of the σ′

x stress and a little change in the σ′

z

stress compared to the purely elastic response, has been predicted by Dunn
et al. (2006).

In the region under the wave trough, the elastic and elastic-plastic
responses of the seabed are similar, with some shifts in the σ′

x and σ′

z

magnitudes observed between the two types of soil behaviour. The re-
distribution of stress states due to the plastic effects is confined to a much

smaller layer just under the mudline — the thickness of the plastic zone
under the trough of the wave of height 50 cm is equal to about 1.5 cm.

As regards the pore pressure distributions for the elastic and elastic-

plastic responses of the water-saturated subsoil, the results of the simula-
tions have shown, for the input conditions applied, very small differences

(not exceeding 2%) along the whole depth profile, between the two cases
of the seabed behaviour. This indicates the rather small influence of the

plastic effects occurring near the mudline on the pore pressure distribution
within the seabed layer. In the light of the above remarks on the effective

stress distributions, it appears that the plasticity of the skeleton practically
affects only the horizontal normal component of the stress, preventing the

latter from becoming tensile near the mudline.

It is worth pointing out that, in spite of the excess effective stresses
σ′

x and σ′

z being tensile in some regions within the seabed, even when the

elastic-plastic behaviour is considered, the Coulomb-Mohr condition is not
violated there, as these stresses are imposed on the geostatic (compressive)

stress field defined by equations (12) and (13). Thus, the resulting total
effective stresses in the subsoil remain compressive all the time.
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5. Conclusions

The problem of water-wave induced pore pressures in the seabed has

attracted the attention of researchers for more than half a century. Most

of the theoretical models proposed so far are based on rather simple

assumptions, which leads to unrealistic results; they include the approach

of Yamamoto et al. (1978), which appears to have become a standard in

marine engineering. The major shortcoming of this approach concerns the

effective stresses in the seabed skeleton. Classical approaches, concentrating

mainly on pore pressures, give rise to solutions which violate certain basic

physical principles; for instance, the effective stress states, associated with

such pore pressure distributions, cannot occur in granular media.

In order to rectify this serious shortcoming, the classical elasto-plastic

model for the soil skeleton behaviour has been incorporated in the theo-

retical analysis instead of the purely elastic one. The results obtained by

applying such an approach differ from the classical ones, particularly in

the region close to the mudline. It has been shown that in this region the

soil skeleton is in the plastic state. This means that various hydrodynamic

forces exerted on the seabed, such as those due to water waves or currents,

may cause extensive deformations of the upper layer of the seabed. These

deformations may be correlated with sediment transport, so our paper

suggests some possible directions for further research.

The investigation presented in this paper is limited to the case of

standing water waves, since such waves, with fixed locations of the wave

crests/troughs, can cause more severe scouring of the bed than comparable

progressive waves. The analysis of the latter waves, in the context of the

elastic-plastic behaviour of the seabed, is much more complex (the time-

harmonic behaviour of the waves does not entail a time-harmonic response

of the underlying subsoil). Preliminary results obtained by applying the

present model have shown that, at a given time, the zones of the soil in the

plastic state are smaller than those created by standing waves of the same

amplitude. However, in the case of progressive waves, the zones of the soil

in the plastic state move, so that the whole near-mudline layer of the seabed

is subject to plastification, but each point at a different time. In order to

fully describe this complex phenomenon, separate research will be required.
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