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Abstract

In this Part 2 of the paper (Part 1 was published by Massel et al. 2004) an exact
close-form solution for the pore-water pressure component and velocity circulation
pattern induced by surface waves is developed. This comprehensive theoretical
model, based on Biot’s theory, takes into account soil deformations, volume change
and pore-water flow. The calculations indicate that for the stiffness ratio G

E′
w
≥ 100,

the vertical distribution of the pore pressure becomes very close to the Moshagen
& Tørum (1975) approach, when the soil is rigid and the fluid is incompressible.
The theoretical results of the paper have been compared with the experimental

data collected during the laboratory experiment in the Large Wave Channel
in Hannover (see Massel et al. 2004) and showed very good agreement. The
apparent bulk modulus of pore water was not determined in the experiment but
was estimated from the best fit of the experimental pore-water pressure with the
theoretical one. In the paper only a horizontal bottom is considered and the case
of an undulating bottom will be dealt with in another paper.

The complete text of the paper is available at http://www.iopan.gda.pl/oceanologia/
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1. Introduction

Permeable sands are most common in the coastal environment and relict
sands cover approximately 70% of the continental shelves. In particular,
large volumes of sea water, driven by wave energy, are filtered by sandy
beaches, and during this process the microfauna of the porous sand body
mineralize organic materials in the water and recycle nutrients. High
nutrient concentrations boost phytoplankton growth to generate about 30%
of the total oceanic primary production in a zone covering less than 10% of
the World Ocean (Huettel & Rusch 2000). Although the biodiversity and
biomass of organisms within the beach body are low, it has been shown that
marine sands transfer energy very effectively (Węsławski et al. 2000).
The velocity of flow as well as the amount of water circulating within the

permeable beach body is important for the biological status of the organisms
inhabiting the beach sand. Wave-induced pressure and stresses in seabeds
are also important with regard to beach protection, design of foundations
for gravity-type breakwaters and offshore oil storage tanks. They are the
key elements when one considers the problem of flotation of buried pipelines
and the burial of rubble mounds, tetrapods and other blocks by waves.
This paper presents a theoretical model of pore pressure attenuation

within a sandy bottom and wave-induced groundwater circulation, initiated
in Part 1 of the paper (Massel et al. 2004). There it was shown experimen-
tally that there are two types of pore pressure induced by surface waves.
At a water depth greater than the wave breaking depth, an instantaneous
reaction of pore pressure (the so-called phase-resolving component) to wave
motion is observed. To model this pressure component, Moshagen & Tørum
(1975) described pressure attenuation in porous media, assuming the water
to be compressible and the grain skeleton to be rigid. Using the special
linearization technique for the Forchheimer equation for motion in porous
media, Massel (1976) developed closed expressions for the geometry of
the free surface, velocity components and pressure at any point in the
flow, under the assumption of the potential theory. Recently, Li & Barry
(2000) presented a numerical study of the instantaneous, phase-resolved
wave motion and resulting groundwater flow in a beach zone as a result of
a progressive bore.
In the surf zone, where waves break, the mean on-shore pressure gradient

due to wave set-up drives a groundwater circulation within the beach body.
This effect, though small, produces effects cumulative in time in the form of
a slowly increasing pressure from an initial zero value to some asymptotic
value (Longuet-Higgins 1983, Massel 2001, Massel et al. 2004). This
pressure component is called the phase-averaged pressure, which depends
on the gradient of the excess static pressure induced at the sea bottom due



Attenuation of wave-induced groundwater pressure in shallow water . . . 293

to the wave set-up in the surf zone. However, this part of the pore pressure
is not considered in the present paper.
The objective of the present study is to examine theoretically and

experimentally the basic features of the instantaneous pore pressure (the
phase-resolving component) and the wave-induced groundwater flow. This
approach is based on Biot’s linearized theory (Biot 1941, 1956), which takes
into account soil deformations, volume change and pore-water flow. Some
modifications of this theory have been discussed by Yamamoto et al. (1978),
Madsen (1978), and Mei & Foda (1980, 1981).
To provide some reference for a physical understanding of the mechanism

of groundwater circulation induced by wave motion, the model based on
the assumptions that the soil skeleton obeys the laws of linear elasticity
and the fluid obeys Darcy’s law is used. This means that the case of low
permeability is studied. The case of high permeability, when Darcy’s law
cannot be applied, should be treated by different methods.
The paper is organized as follows. Section 2 discusses the governing

equations for groundwater pressure and its circulation. In particular,
the attenuation of the phase-resolving pressure component and the water
circulation pattern for constant water depth with a horizontal bottom and
limited thickness of porous media is discussed. Section 3 compares the
theoretical results with the experimental data obtained during laboratory
measurements in the Large Wave Channel (GWK) in Hannover (Germany)
and described in detail in Part 1 of this paper (Massel et al. 2004). Section 4
develops the coupled type model in which the boundary conditions at the sea
bottom are described more precisely. Finally, Section 5 gives the summary
and main conclusions.

2. Governing equations for wave-induced pressure and
groundwater circulation

2.1. Biot’s equations of linear poro-elasticity

In this Section we summarize briefly the wave-induced flow and stresses
in a porous elastic medium using Biot’s theory. So let us assume that the
sand is isotropic and the flow is two-dimensional in the plane (0, x, z). The
origin of the Cartesian coordinates (x, z) is fixed on the mean free surface
(z = 0) and z is positive upwards – see Fig. 1. The water depth is h and
the depth of the nonpermeable bottom is hn. Thus, the thickness of the
permeable layer is (hn − h). We assume that the coefficient of permeability
and the porosity of sand are Kf and n, respectively.
We are interested in the small strains in soils, and particular soil grains

are assumed to be incompressible, i.e. density of soil ρs = constant.
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z = -h

z = -hn

porous layer

non-permeable bottom

water layer

x

0

z

Fig. 1. Definition scheme

However, the soil matrix can still be compressible. In shallow water, due to
possible wave breaking and the entrance of gases into the porous media and
the production of gases by the organisms living in the sand, the apparent
bulk modulus of the pore water E′

w depends on the degree of saturation by
water S. In the relationship proposed by Verruijt (1969) we write:

1
E′
w

=
S

Ew
+
1− S

p0
, (1)

where Ew is the true bulk modulus of pore water without air and is equal
to 1.9 × 109 N m−2, (1− S) is the degree of saturation by air, usually less
than one, and p0 is the absolute pressure. For example, when S = 95% (5%
air content) and p0 = 105 N m−2, the apparent bulk modulus of water is
only E′

w = 2 × 106 N m−2.
Many theoretical and experimental results indicate that the influence

of the bottom permeability on sea surface elevation is rather small. This
influence increases when the point under consideration approaches the
permeable sea bottom, where the following boundary conditions should be
satisfied:

p1(x,−h) = p2(x,−h)

∂Φ1

∂z
= nuz


 , (2)

in which p1 and p2 are the dynamic pressures in the water column and
porous media, respectively, Φ1 is the velocity potential of wave motion in
the water body, uz is the vertical component of the pore water velocity and
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n is the sand porosity. Since the governing equations are valid only for
materials finer than gravel, the vertical velocity uz is very small and the
second condition is taken to be ∂Φ1

∂z = 0. So the motion in the water column
and the porous media are connected only by the continuity of the dynamic
pressure. This type of model is known as an uncoupled model. The coupled
model, when both boundary conditions (2) are taken into account, will be
discussed in Section 4.
Assuming now that E′

w is constant, we can represent the mass conser-
vation equation in the form of the so-called storage equation (Mei & Foda
1981):

n
∂

∂x
(ux − vx) +

∂vx
∂x

= − n

E′
w

∂p

∂t
, (3)

n
∂

∂z
(uz − vz) +

∂vz
∂z

= − n

E′
w

∂p

∂t
, (4)

in which the sand porosity n is assumed to be constant, (ux, uz) are
components of the velocity of the fluid, (vx, vz) are the components of the
velocity of the soil matrix, and p is the pore pressure.
We adopt the linearized dynamic equations of momentum for fluid and

soil in the following form (Mei & Foda 1981, Massel & Manzenrieder 1983,
Massel 1985):

soil:

(1− n)ρs
∂vx
∂t

=
∂σxz
∂z

− (1− n)
∂p

∂x
+

n2γ

Kf
(ux − vx), (5)

(1− n)ρs
∂vz
∂t

=
∂σzx
∂x

− (1− n)
∂p

∂z
+

n2γ

Kf
(uz − vz); (6)

fluid:

nρw
∂ux
∂t

= −n
∂p

∂x
− n2γ

Kf
(ux − vx), (7)

nρw
∂uz
∂t

= −n
∂p

∂z
− n2γ

Kf
(uz − vz), (8)

where σxz and σzx are the effective stresses in the soil, ρs and ρw are the
densities of soil and water, respectively, γ = ρwg, and Kf is the coefficient of
filtration [m s−1]. It should be noted that the frictional resistance between
soil and fluid is proportional to the local relative velocity, which is in
agreement with Darcy’s law. Thus, the model obeys the cases when laminar
flow predominates.
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Adopting Hooke’s law for the effective stress and strain of the soil we
obtain (Yamamoto 1977)

σx = 2G
[
∂ξ

∂x
+

ν

1− 2ν
ε

]
, (9)

σz = 2G
[
∂η

∂z
+

ν

1− 2ν
ε

]
, (10)

τxz = G

[
∂ξ

∂z
+

∂η

∂x

]
, (11)

in which ν is the Poisson ratio, ξ and η are the x and z components of
the soil displacement, respectively, σx is the effective normal stress in the
x-direction, σz is the effective normal stress in the z-direction, and τxz is
the shearing stress in the z-direction on the plane with the normal in the
x-direction, and ε is the volume strain for the two-dimensional problem, i.e.

ε =
∂ξ

∂x
+

∂η

∂z
. (12)

The shear modulus of the soil G takes the form

G =
Es

2(1 + ν)
, (13)

in which Es is the Young’s modulus of the soil.
From the effective stress concept and Hooke’s law we obtain the following

equations of equilibrium

G∇2ξ +
G

1− 2ν
∂ε

∂x
=

∂p

∂x
, (14)

G∇2η +
G

1− 2ν
∂ε

∂z
=

∂p

∂z
, (15)

where the pore water pressure satisfies the continuity equation

∇2p =
γ

Kf

[
n

E′
w

∂p

∂t
+

∂ε

∂t

]
. (16)

Eqs. (14), (15) and (16) form a system of three partial differential equations
for three unknowns: p, ξ and η. To solve them we need to formulate
appropriate boundary conditions. Since all the equations are linear, we
employ complex variables in the analysis. However, it is implicitly assumed
that only the real part of any complex quantity constitutes a solution to
our problem. The linearity of the governing equations for propagating
surface waves suggests that all variables will depend on x and t in the
form exp[i(kx − ωt)].
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2.2. Boundary conditions

At the sea bottom line (z =−h), the boundary conditions should express
the physical fact that the effective vertical stress is zero, the shear stress is
negligible and that wave-induced pressure fluctuations exists. Therefore at
z = −h we have:

σz = 2G
[
∂η

∂z
+

ν

1− 2ν

(
∂ξ

∂x
+

∂η

∂z

)]
= 0, (17)

τxz = G

[
∂ξ

∂z
+

∂η

∂x

]
= 0, (18)

p = P0 exp [i(kx− ωt)] , (19)

where P0 is the pressure amplitude at the bottom line, k is the wave number
satisfying the dispersion relation

ω2 = gk tanh(kh), (20)

in which ω is the surface wave frequency.
For simplicity the linear wave theory is used and the dynamic pressure

in the water column (−h ≤ z ≤ 0) takes the form

p(x, z, t) = γ
H

2
cosh k(z + h)
cosh(kh)

exp[i(kx − ωt)], (21)

in whichH is the surface wave height. Therefore, at the sea bottom (z=−h)
we have

p(x,−h, t) = γ
H

2
1

cosh(kh)
exp[i(kx− ωt)]; (22)

thus

P0 = γ
H

2
1

cosh(kh)
. (23)

We assume that the bed rock at z = −hn is impermeable and rigid. Thus,
soil displacements at this boundary are zero and no flow across the boundary
is allowed, i.e.

ξ = η = 0, (24)

∂p

∂z
= 0. (25)

2.3. Harmonic solution

To solve the boundary value problem for a system of three partial
differential equations (14), (15) and (16) satisfying boundary conditions
(17), (18), (19), (24) and (25), we use Yamamoto’s (1977) approach.
However, for the purpose of the present paper this approach has been
modified substantially and misprints in his paper have been corrected. For
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the boundary condition (19), periodic both in time and space, we assume
that the soil displacements ξ, η and pore pressure p are also periodic in time
and space, i.e.

ξ(x, z, t) = �{X(z) exp[i(kx − ωt)]} , (26)

η(x, z, t) = �{Z(z) exp[i(kx− ωt)]} , (27)

p(x, z, t) = �{P (z) exp[i(kx− ωt)]} , (28)

in which � denotes the real part of the complex quantity.
After substituting representations (26)–(28) in the governing equations

(14)–(16) we obtain three simultaneous ordinary differential equations of
the second order

G
d2X

dz2
− 2(1− ν)G

1− 2ν
k2X + i

kG

1− 2ν
dZ

dz
− ikP = 0, (29)

i
Gk

1− 2ν
dX

dz
+
2(1− ν)G
1− 2ν

d2Z

dz2
−Gk2Z − dP

dz
= 0, (30)

−kωX + iω
dZ

dz
+

Kf

γ

d2P

dz2
−
[
Kfk

2

γ
− i

nω

E′
w

]
P = 0. (31)

As the characteristic equation corresponding to the system (29)–(31) has
repeated roots, we assume the general solution in the form

X(z) = a1h
cosh k(z + hn)

cosh khn
− a2h

sinhk(z + hn)
sinhkhn

− a3(z + h)
cosh k(z + hn)

cosh khn
+ a4(z + h)

sinh k(z + hn)
sinh khn

+ a5h
coshψ(z + hn)

coshψhn
− a6h

sinhψ(z + hn)
sinhψhn

, (32)

Z(z) = b1h
cosh k(z + hn)

cosh khn
− b2h

sinhk(z + hn)
sinhkhn

− b3(z + h)
cosh k(z + hn)

cosh khn
+ b4(z + h)

sinh k(z + hn)
sinh khn

+ b5h
coshψ(z + hn)

coshψhn
− b6h

sinhψ(z + hn)
sinhψhn

, (33)

P (z) = c1P0
cosh k(z + hn)

cosh khn
− c2P0

sinh k(z + hn)
sinhkhn

− c3P0
z + h

h

cosh k(z + hn)
cosh khn

+ c4P0
z + h

h

sinh k(z + hn)
sinh khn

+ c5 P0
coshψ(z + hn)

coshψhn
− c6P0

sinhψ(z + hn)
sinhψhn

, (34)
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in which

ψ2 = k2

{
1− i

ωγ

k2Kf

[
n

E′
w

+
1
G

1− 2ν
2(1− ν)

]}
. (35)

It should be noted that the coefficients an, bn, cn(n = 1....6) are not
independent. Their dependence was determined by the substitution of
eqs. (32), (33) and (34) in eqs. (29)–(31), from which the following
relationships were obtained

b1 = i

[
coth(khn) a2 − A1

h
a3

]
b2 = i

[
tanh(khn) a1 − A1

h
a4

]
b3 = i coth(khn) a4 b4 = i tanh(khn) a3

b5 = i

(
ψ

k

)
coth(ψhn)a6 b6 = i

(
ψ

k

)
tanh(ψhn)a5




(36)

and

c1 = −i
A2 coth(khn)

P0
a4 c2 = −i

A2 tanh(khn)
P0

a3

c3 = 0 c4 = 0

c5 = −A3h

P0
a5 c6 = −A3h

P
a6



, (37)

where

A1 =
1
k

1 +
3− 4ν
1− 2ν

nG

E′
w

1 +
1

1− 2ν
nG

E′
w

, (38)

A2 =
2G

1 +
1

1− 2ν
nG

E′
w

, (39)

A3 =
2(1− ν)
1− 2ν

ωG

kc
, (40)

in which

c =
Kf

γ

[
n

E′
w

+
1− 2ν

2(1− ν)G

]−1

. (41)

Now we have to determine the six constants an(n=1....6) from the boundary
conditions (17)–(19) and (24)–(25). Thus we obtain:

at the sea bottom (z = −h):

1− ν

1− 2ν
dZ

dz
+

ν

1− 2ν
ikX = 0, (42)
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dX

dz
+ ikZ = 0, (43)

P = P0; (44)

at a non-porous bottom (z = −hn):

X = 0

Z = 0
dP

dz
= 0



. (45)

After substituting eqs. (32)–(34) in the boundary conditions (42)–(45) and
using the relationships (36)–(37), we obtain the following system of six
simultaneous equations for coefficients aj:

dij aj = ei; i = 1, 6, j = 1, 6, (46)

where

ei =

{
P0 for i = 1,

0 for i > 1.
(47)

The matrix coefficients dij are given in Appendix (A).
The solution of the system of equations (46) provides the coefficients aj

and subsequently, the amplitudes of the excess pore water pressure P (z)
and soil displacements X(z) and Z(z).

2.4. Specific cases

2.4.1. Soil completely saturated with water

As follows from the definitions of coefficients A1, A2 and A3, the leading
quantity controlling the behaviour of solutions (32)–(34) is the stiffness
ratio, G

E′
w
. When the soil is completely saturated with water and the pore-

water does not contain gases, the stiffness G
E′

w
→ 0. In this case, the apparent

modulus of elasticity E′
w is equal to the true modulus of elasticity of water,

Ew = 1.9 × 109 N m−2 and the value of G for soils varies from about
108 N m−2 for very dense sand to 105 N m−2 for silt and clay.
To examine the governing equation for pore-pressure, let us introduce

the following non-dimensional variables:

x̃ =
x

L
, z̃ =

z

L
, t̃ = ωt (48)

and

p̃ =
p

P0
,

[
ṽx
ṽz

]
=

G

P0 ωL

[
vx
vz

]
, (49)

in which L is the length of the surface wave.
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After substituting in the non-dimensional variables (16) we obtain

∇2p̃− γnωL2

Kf E′
w

∂p̃

∂t̃
− γωL2

KfG

(
∂ṽx
∂x̃

+
∂ṽz
∂z̃

)
= 0 (50)

or

∇2p̃− γωL2

KfG

[
nG

E′
w

∂p̃

∂t̃
+
(
∂ṽx
∂x̃

+
∂ṽz
∂z̃

)]
= 0. (51)

For G
E′

w
→ 0, eq. (51) simplifies as follows:

∇2p̃− γωL2

KfG

(
∂ṽx
∂x̃

+
∂ṽz
∂z̃

)
= 0. (52)

It should be noted that for fully saturated gravel and coarse sand, when Kf

is rather high, eq. (52) is further simplified to the Laplace equation

∇2p̃ = 0 and ∇2p = 0. (53)

Hence, the pore-water pressure response for completely saturated coarse
soils

(
G
E′

w
→ 0

)
is the same as that obtained by Putman (1949), who

assumed that soil is rigid and water is incompressible. The pressure atten-
uation for this case is very small and independent of the soil permeability.
However, when Kf is very small, as is the case for fully saturated fine sand,
the pressure attenuation is associated with the soil deformation (see eq. (52)).
To find the solution of eq. (53), we use the expressions (37)–(40) for

G
E′

w
→ 0. Hence we get A1 = k−1, A2 = 2G, A3 = 0, and

c1 = −i
2G
P0

coth(khn)a4, c2 = −i
2G
P0

tanh(kh)a3;

c3 = c4 = c5 = c6 = 0. (54)

From the last equation of the system (46) we obtain a3 = 0, thus c2 = 0.
On the other hand, the first equation of this system gives a4

= i P0 sinh(khn)
A2 cosh k(hn−h) and c1 = cosh khn

cosh k(hn−h) . Hence, for the pore pressure from
eq. (34) we get

P (z) = P0
cosh k(z + hn)
cosh k(hn − h)

. (55)

When the porous layer becomes a semi-infinite half-plane, i.e. hn → ∞,
eq. (55) yields

P (z) = P0 exp[k(z + h)]. (56)

2.4.2. Soil saturated with a mixture of liquid and gas

In the other extreme case, when dense sand is saturated with a mixture
of liquid and gas, the stiffness of the soil becomes much larger than that
of the pore fluid, i.e. G

E′
w

→ ∞. As follows from eq. (1), for sand 95%
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saturated with water at atmospheric pressure, the apparent modulus of
elasticity equals E′

w ∼ 2 × 106 N m−2. Therefore, for dense sand, when
G ∼ 108 N m−2, the stiffness ratio G

E′
w
≈ 100.

The governing equation for pore pressure for this extreme case can be
obtained from eq. (50) which we rewrite in a slightly different form:

∇2p̃− γnωL2

KfE′
w

[
∂p̃

∂t̃
+

E′
w

nG

(
∂ṽx
∂x̃

+
∂ṽz
∂z̃

)]
= 0. (57)

Thus, for G
E′

w
→ ∞ we get

∇2p̃− γnωL2

KfE′
w

∂p̃

∂t̃
= 0 (58)

or in dimensional form

∇2p− nγ

KfE′
w

∂p

∂t
= 0. (59)

Using representation (28), eq. (59) becomes

d2P (z)
dz2

− k2

(
1− i

nγω

k2KfE′
w

)
P (z) = 0. (60)

When G
E′

w
→ ∞, from eqs. (38)–(40) we obtain

A1 =
3− 4ν

k
, A2 = 0, A3 → ∞. (61)

The last equation of the set (46) and relationships (37) give a6 = 0 and
c6 = 0. On the other hand, from the fifth equation of the set (46) we have
a5 = −P0

h
cosh(ψhn)

coshψ(hn−h) and c5 = P0
coshψ(z+hn)
coshψ(hn−h) . After substituting the above

relationships in eq. (34) and using the fact that c1 = c2 = c3 = c4 = 0, we
obtain

P (z) = P0
coshψ(z + hn)
coshψ(hn − h)

. (62)

For G
E′

w
→ ∞, the wave number ψ defined by eq. (35) becomes

ψ2 ≈ ψ2
1 = k2

[
1− i

nγω

k2KfE′
w

]
(63)

and

P (z) = P0
coshψ1(z + hn)
coshψ1(hn − h)

, (64)

which for hn → ∞, becomes
P (z) = P0 exp[ψ1(z + h)]. (65)

Depending on the stiffness ratio, G
E′

w
, the soil permeability and the

gas content in the pore water, the transmission of pressure stresses and
deformation in the sediment falls somewhere in between the above two
extreme cases.
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2.5. Velocities of groundwater circulation and water particle
displacements

2.5.1. Groundwater velocity components

Gradients of pore-water pressure induce a pore-water circulation in
porous media. The flow velocities can be derived from eqs. (7) and (8).
First of all, using the definitions of the soil displacements ξ and η, we have

vx =
∂ξ

∂t
= −iωX(z) exp[i(kx− ωt)], (66)

vz =
∂η

∂t
= −iωZ(z) exp[i(kx − ωt)]. (67)

As the boundary condition (19) is periodic both in time and space, we
assume the pore water velocity to take the form

ux(x, z, t) = �{Ux(z) exp[i(kx− ωt)]} ,

uz(x, z, t) = �{Uz(z) exp[i(kx− ωt)]} .


 (68)

After substituting eqs. (66)–(68) in eqs. (7)–(8) we obtain

Ux(z) =
k P (z)Kf + nωγX(z)

ρwωKf + inγ
, (69)

Uz(z) =
nωγZ(z)− i

dP (z)
dz

Kf

ρwωKf + inγ
. (70)

The term ρwωKf in the denominator of eqs. (69) and (70) is usually much
smaller than nγ; therefore, ρwωKf + inγ ≈ inγ.
Now, the above equations can be rewritten as follows:

Ux(z) = |Ux(z)| exp[i(ϕUx − π/2)], (71)

Uz(z) = |Uz(z)| exp[i(ϕUz + π)], (72)

where

|Ux(z)| =
∣∣∣∣∣kP (z)nγ

+
ωX(z)
Kf

∣∣∣∣∣Kf , (73)

|Uz(z)| =
∣∣∣∣∣
dP (z)
dz
nγ

+ i
ωZ(z)
Kf

∣∣∣∣∣Kf (74)

and
ϕUx(z) = arg(Ux(z)) and ϕUz(z) = arg(Uz(z)).

Therefore, from eqs. (68) we obtain

ux(x, z, t) = |Ux(z)| sin(kx− ωt+ ϕUx) (75)
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and

uz(x, z, t) = −|Uz(z)| cos(kx− ωt+ ϕUz). (76)

The absolute total pore water velocity becomes

u(x, z, t) =
√
u2
x(x, z, t) + u2

z(x, z, t). (77)

Assuming that we can ignore the soil displacements i.e. X(z) = Z(z) = 0,
from eqs. (73) and (74), we get

|Ux(z)| ≈
∣∣∣∣∣kP (z)nγ

∣∣∣∣∣Kf =
k

nγ
|P (z)|Kf (78)

and

|Uz(z)| ≈
∣∣∣∣∣
dP (z)
dz
nγ

∣∣∣∣∣Kf =
1
nγ

∣∣∣∣∣dP (z)dz

∣∣∣∣∣Kf . (79)

Moreover, for phase lags ϕUx(z) and ϕUz(z), we obtain

ϕUx(z) = arg(P (z)) and ϕUz(z) = arg
(
dP (z)
dz

)
. (80)

2.5.2. Pore water particle velocity versus soil skeleton velocity

For surface waves of sufficiently high frequency almost all the fluid in
the interior of the soil is strongly resisted by viscosity and usually cannot
have a significant velocity, when comparing to the soil skeleton velocity.
Therefore, the difference between the pore fluid and the soil becomes
negligibly small. However, in the layer close to the sea bottom, drainage is
much easier and relative motion can be appreciable within this thin layer.
In order to examine the attenuation of pore water velocity components

ux and uz, and the soil velocities vx and vz, let us write the differences of
the corresponding components in the form

∆ux = ux − vx = �
{
kP (z)
inγ

Kf exp[i(kx− ωt)]
}

(81)

or

∆ux =
k|P (z)|
nγ

Kf exp
[
i

(
kx− ωt+ ϕUx(z)−

π

2

)]
(82)

and

∆uz = uz − vz = �
{
−dP (z)

dz

Kf

nγ
exp [i (kx− ωt)]

}
(83)

or

∆uz =

∣∣∣∣∣dP (z)dz

∣∣∣∣∣ Kf

nγ
exp[i(kx− ωt+ ϕUz(z) + π)]. (84)
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The vertical attenuation of the differences between pore water velocity and
soil skeleton velocity ∆ux and ∆uz is driven by the attenuation of the pore
water pressure P (z) and its gradient dP (z)

dz . Mei & Foda (1980, 1981) used
the differences ∆ux and ∆uz to develop a boundary layer theory in the
porous media similar to the approach well known in the dynamics of viscous
fluids. They showed that the poro-elastic problem may be reduced first by
solving a conventional elastostatic problem, when ∆ux = ∆uz (fluid and
solid move together), and then making a boundary layer correction near the
sea bottom when ∆ux �= 0 and ∆uz �= 0.

2.5.3. Displacements of pore water particles

Consider now the pore water particle, whose position is denoted by
(x0, z0). The particle orbits are determined by assuming that the motion
around a fixed point (x0, z0) is small, so that one can consider x and z
constant in the integration. Hence, we have

x =
∫ t

0
ux dt and z =

∫ t

0
uz dt. (85)

Substituting (75) and (76) in (85) we obtain

x = x0 +
1
ω
|Ux| cos (kx− ωt+ ϕUx) , (86)

z = z0 +
1
ω
|Uz| sin (kx− ωt+ ϕUz) . (87)

Eqs. (86) and (87) can be rewritten in the form
(x− x0)2

A2
+
(z − z0)2

B2
+ 2

(x− x0)(z − z0)
C2

sin(∆ϕ) = 1.0, (88)

in which

A =
(
1
ω

)
|Ux| cos(∆ϕ), (89)

B =
(
1
ω

)
|Uz| cos(∆ϕ), (90)

C =
(
1
ω

)√
|Ux| |Uz| cos(∆ϕ), and (91)

∆ϕ = ϕUx − ϕUz . (92)

In fact eq. (88) represents an elliptical contour with its centre at point
(x0, z0). In order to confirm that, let us present this equation in traditional
form

(x− x0)2

A2
1

+
(z − z0)2

B2
1

= 1.0, (93)

where the semi-axes become

A1 = 2
(
1
ω

) |Ux| |Uz| cos(∆ϕ)√
Ua

, (94)
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B1 = 2
(
1
ω

) |Ux| |Uz | cos(∆ϕ)√
Ub

, (95)

Ua = 2(|Ux|2 + |Uz|2)
−
√
4(|Ux|4 + |Uz|4)− 2(3 + cos(2∆ϕ))|Ux|2 |Uz|2, (96)

Ub = 2(|Ux|2 + |Uz|2) +

+
√
4(|Ux|4 + |Uz|4)− 2(3 + cos(2∆ϕ))|Ux|2 |Uz|2. (97)

The quantities A1 and B1 represent the large and small semi-axes of the
ellipse contour, respectively. When G

E′
w
→ 0, the phase lags ϕUx and ϕUz are

both equal to zero. Therefore, from eqs. (96) and (97) we get

A1 =
(
1
ω

)
|Ux|

and

B1 =
(
1
ω

)
|Uz|



. (98)

Eq. (93), with A1 and B1 given by (98), represents the closed elliptical
contour with axes parallel to the corresponding coordinate axes.

3. Comparison with experimental data

During a controlled large-scale laboratory experiment carried out in
Large Wave Channel in Hannover (see Part 1 of this paper for details), an
extensive data set was collected. For comparison with the theoretical model
developed in this paper, a total of 23 tests were selected. They are related to
the pressure gauge system 4 located on the beach at water depth h = 2 m.
The incident wave height and wave period vary as 0.2m < Hin < 0.8m and
5.0 s < T < 10.0 s. To obtain the water pressure at the sea bottom the
incident wave height was transferred to the water depth h = 2 m at the
pressure gauge system position using the linear wave theory.
As follows from the sand sample characteristics given in Part 1 of this

paper, the beach body was formed from fine-grained, well sorted sand of
porosity n = 0.26 and Young’s modulus Es ≈ 108 N m−2. The coefficient
Kf was estimated in the laboratory test using sand from the channel. This
procedure gives the value of the intrinsic permeability K ≈ 3.1 × 10−11 m2

(K. Czerniak, personal communication). To obtain the filtration coefficient
Kf , a known relationship between K and Kf was used

Kf = K
g

ν1
, (99)

in which ν1 is the kinematic coefficient of viscosity. For sea water
of salinity S = 35 ppm and of temperature T = 20◦C, the coefficient
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ν1 = 1.064 × 10−6 m2 s−1 (Massel 1999); therefore, the coefficient of
filtration Kf becomes Kf = 2.9 × 10−4 m s−1.
This value corresponds closely to the filtration coefficient Kf resulting

from the well-known Hazen formula (Massel 2001)

Kf ≈ 0.5 D2
10, (100)

in which Kf is in metres per second and the characteristic diameter D10 is
in centimetres. Using D10 = 2.1 × 10−2 cm (Massel et al. 2004), we obtain
Kf ≈ 2.2 × 10−4 m s−1, which is very close to the value obtained in the
laboratory test.
The degree of saturation of air in the pore water was not measured

directly in the experiments, but the apparent bulk modulus of water E′
w

was estimated from the best fit of the experimental pore pressures to the
theoretical ones. The comparison made for all 23 tests showed that 4
× 105 Nm−2 ≤ E′

w ≤ 1.6 × 106 Nm−2.
Using these values in eq. (1) yields a very high degree of saturation by

air. However, there is serious doubt about the applicability of eq. (1) to the
sandy beach artificially formed in the wave channel. In fact the sand used
in the experiment cannot be regarded as natural sand as was assumed in
Verruijt’s (1969) formula. It is very probable that during sand layering in
the wave channel, some pores within the beach body will be saturated by
air/gas microbubbles.
From extensive field measurements of wave-induced pore pressure for

water depths of approximately 5–10 m and to a depth of approximately
18 m below the sea bottom carried out by de Rouck & Troch (2002), it
follows that there was approximately 3% gas in the soil pores. However,
in laboratory conditions, the air/gas content can be in the range 3–10%
(Tørum, submitted).
As follows from eq. (1), for an isotropic sand layer, the E′

w value should
be approximately constant as the variation in ambient pressure p with
submergence in the beach sand is insignificant. In order to check this fact,
we determined the E′

w values which yield a minimal difference between
the theoretical and experimental values of the pore pressure for particular
pressure gauge levels. For illustration, the resulting values of E′

w for Tests 2
and 10 are given in Table 1.
TheE′

w values are different for particular levels and attenuate with gauge
submergence in the porous layer. This result suggests that the apparent bulk
modulus E′

w of pore water depends not only on the air content, as follows
from eq. (1), but also on other factors which are unknown at present.
During the Hannover experiment, the stiffness ratio G

E′
w
varied between

50 and 400. It was shown that for G
E′

w
≥ 50, the vertical distribution of the

pore pressure was very close to the distribution given by eq. (64), identical
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Table 1. The apparent bulk modulus of pore water E′
w at different submergence

of pressure gauges

Submergence of
pressure gauges

Test 2 Test 10
(Hin = 0.5 m, T = 8 s) (Hin = 0.3 m, T = 5 s)

[m] E′
w(z) mean value E′

w(z) mean value

z1 = −2.1 5.9 × 105

2.4 × 105

3.2 × 105

2.2 × 105




2.8 × 105

9.8 × 105

4.2 × 105

6.0 × 105

3.6 × 105




4.8 × 105z2 = −2.205
z3 = −2.195
z4 = −2.3

to the solution obtained by Moshagen & Tørum (1975) when the soil is rigid
and the fluid is compressible. This is illustrated in Figs 2 and 3. In Fig. 2
the vertical distribution of the amplitude of the pore-water pressure for
both special cases resulting from eqs. (55) and (64) are shown for short
waves (Test 10: period T = 5 s, incident wave height Hin = 0.3 m).
The attenuation of pore-water pressure for the case of fully saturated soils
(eq. (55)) is small and independent of the soil permeability. When the soil
is partly saturated with a mixture of water and gas (eq. (64)), pore pressure
attenuates very rapidly. In the same figure, the full solution (34) for Test

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-2.0
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eq. 34

eq. 55
eq. 64
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z
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]

normalized pressure amplitude
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Test 10 (short surface waves)

T = 5 s
H = 0.3 m
h = 2.0 m
h = 4.0 m
n = 0.26
E' = 4.8 × 10 N m
E = 10 N m
K = 2.9 × 10 m s

in

n

w
5 -2

s
8 -2

f
-4 -1

Fig. 2. Comparison between experiment and theory with respect to pore pressure
for Test 10 (short surface waves)
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Test 2 (long surface waves)

T = 8 s
H = 0.5 m
h = 2.0 m
h = 4.0 m
n = 0.26
E' = 2.8 × 10 N m
E = 10 N m
K = 2.9 × 10 m s

in
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-4 -1

eq. 34

eq. 55

eq. 64
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experimental data

normalized pressure amplitude

non-porous sea bottom

Fig. 3. Comparison between experimental and theory with respect to pore
pressure for Test 2 (long surface waves)

10 with the stiffness ratio G
E′

w
≈ 78 is shown. Solution (34) is very close to

the solution for a partly saturated soil when G
E′

w
→ ∞ and compares very

well with the experimental data.
The results for the case of longer waves (Test 2: period T = 8 s and

incident wave height Hin = 0.5 m) is demonstrated in Fig. 3. Now the
stiffness ratio G

E′
w
≈ 134 and the pore pressures resulting from solutions (34)

and (64) are almost identical.
Figs 4a, 4b and 4c compare the theoretical and experimental absolute

values of pore pressure for different submergences of the pressure gauges
for 24 tests. The theoretical values were calculated using the mean bulk
modulus of the pore water E′

w resulting from the best fit of the experimental
and theoretical pore pressures for all the gauges used in the experiment.
In other words, the selected E′

w values correspond to the average degree of
saturation by air in a porous layer extending from sea bottom to 0.3 m below
the bottom. The figures illustrate the approximately linear dependence of
the absolute pore pressure on the local wave height. At levels z1 = −2.1 m
and z2 = −2.195 m, the experimental pore pressure is slightly higher than
the theoretical one. The opposite tendency is observed at level z3 =−2.3 m.
In all cases the difference between the theoretical and experimental values
is smaller than 200 N m−2. In the figures, the lines (solid and broken)
present the best fit of the theoretical and experimental data, respectively.
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theoretical data experimental data

data for 24 experiments were used in the figure
z = -2.1 m (submergence 0.1 m below sea bottom)
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data for 24 experiments were used in the figure
z = -2.195 m (submergence 0.205 m below sea bottom)
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Fig. 4. Comparison of experimental and theoretical data with respect to pore
pressure: (a) gauge at level z = −2.1 m (submergence 0.1 m below sea bottom);
(b) gauge at level z = −2.195 m (submergence 0.195 m below sea bottom); (c)
gauge at level z = −2.3 m (submergence 0.3 m below sea bottom)
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data for 24 experiments were used in the figure
z = -2.3 m (submergence 0.3 m below sea bottom)
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Fig. 4. (continued)

The slight scattering of the data around the best fit lines indicates that
the pore water pressure depends not only on the incident wave height but
also on the mechanical properties of the soil and liquid, which should be
expected.
Fig. 5 presents the vertical distribution of the phase lag for pore pressure

when measured against the wave crest (Test 2). For completely saturated
soil the phase lag is equal to zero. However, for pore water containing air,
the phase lag increases almost linearly with distance from the sea bottom,
except in the vicinity of the non-porous bottom. Fig. 6 gives the absolute
values of the corresponding vertical displacements of both components of
soil displacements, i.e. ξ (in the x-direction) and η (in the z-direction).
Fig. 7 shows the normalized velocity components ux(0, z, t)/Kf and

uz(0, z, t)/Kf resulting from eqs. (75)–(76) for Test 10 at level z = −2.1 m
(0.1 m below the sea bottom). The figure demonstrates that the horizontal
velocity component is very small when compared with the vertical velocity
component. Additionally, Fig. 8 gives the vertical distribution of the
differences ∆ux and ∆uz between the pore water and soil skeleton velocities
for Test 10. The difference between the horizontal velocity components
ux and vx becomes negligibly small 1 m below the sea bottom, while the
difference between the vertical velocity components are larger and only 1.5 m
below the sea bottom does this difference become practically zero.
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Test 2 (long surface waves)

T = 8 s
h = 2.0 m
h = 4.0 m
water and soil parameters are the same as in Fig. 3
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Fig. 5. Vertical distribution of phase lag for pore pressure

Test 2 (long surface waves)

T = 8 s
h = 2.0 m
h = 4.0 m
water and soil parameters are the same as in Fig. 3
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Fig. 6. Vertical and horizontal displacements of soil displacements for Test 2

As follows from eqs. (73)–(79), the pressure gradients dP
dx and

dP
dz are

the leading terms for determining the pore water velocities. The theoretical
velocities with approximate velocities calculated using the experimental
pore pressure gradients for the point located 0.2 m below the sea bottom
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Fig. 7. Velocity components and total velocity for Test 10 (short surface waves)

Test 10 (short surface waves)
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Fig. 8. Vertical distribution of the differences between horizontal and vertical
components of the pore water and soil skeleton velocities

(z = −2.2 m) are compared in Fig. 9. The approximate velocities are cal-
culated as follows:

ux(x, z, t) ≈ 1
nγ

p(x+ 0.1, z, t) − p(x− 0.1, z, t)
2∆x

(101)
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Fig. 9. Comparison of theoretical and approximate normalized velocities at level
z = −2.2 m for Test 10

and

uz(x, z, t) ≈ 1
nγ

p(x, z + 0.1, t) − p(x, z − 0.1, t)
2∆z

(102)

in which ∆x = ∆z = 0.1 m, x = 0, z = −2.2 m.
As the wave motion and pore pressure were not recorded in the same

profile, the zero value of the theoretical time series of the vertical velocity
was fitted with the zero value of the approximate vertical velocity. From
the figure it follows that the approximate vertical velocity agrees with the
theoretical one except in the regions of positive maximum velocity. This
is probably a demonstration of the nonlinear effects in the wave motion.
In Test 10, the ratio L

h = 10, which corresponds to nonlinear Stokes waves
rather than to the linear waves used in the model. The approximate values
of the horizontal velocity components are higher than those resulting from
the theory. This is a slightly surprising result as the two points used for
calculating the horizontal gradient are only 0.2 m apart and are located at
the same level z = −2.2 m.
Finally, using relationships (86) and (87), the water particle orbits at

0.1 m below the sea bottom (z = −2.1 m) are shown in Fig. 10. The
water particles move along inclined closed elliptical contours owing to the
assumption of periodic wave motion. The inclination of the elliptical contour
reflects the phase lag between wave surface oscillation and pore pressure.
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Fig. 10. Pore water particle circulation pattern for the sea bottom level (Test 10,
z = −2.1 m)

4. Coupled model for pore pressure attenuation in the
porous layer

4.1. The boundary value problem and its solution

In the model developed in Section 2, the solutions in the water and
porous layers are subject to boundary conditions (17)–(19) at z = −h.
Therefore, the continuity is restricted to the pore pressure only, and
the vertical and horizontal components of the water velocity become
discontinuous. This kind of model is considered to be an uncoupled model.
It would be interesting to check the extent to which the pore pressure
and pore water circulation depend on the boundary conditions at z = −h.
Therefore, let us formulate a model when the full boundary conditions (2)
are satisfied. In particular, in the water layer we assume an irrotational flow
represented by the Laplace equation for the potential function Φ1. Hence,
we have

∂2Φ1

∂x2
+

∂2Φ1

∂z2
= 0; −∞ < x < ∞; −h ≤ z ≤ 0 (103)

with the linearized water surface conditions as follows:
∂2Φ1

∂t2
+ g

∂Φ1

∂z
= 0

∂Φ1

∂t
+ gζ1 = 0


 z = 0. (104)

At the sea surface, a regular wave train is assumed, hence



316 S.R. Massel, A. Przyborska, M. Przyborski

ζ1 = �H

2
exp[i(kx− ωt)]. (105)

The boundary conditions (2) should be satisfied at the sea bottom.
Let us represent the velocity potential Φ1 as follows (Massel 1976):

Φ1(x, z, t) = [A cosh k(z + h) +B sinh k(z + h)] exp[i(kx− ωt)]. (106)

In the porous layer we assume that the stiffness ratio G
E′

w
� 1. Hence the

pore pressure and pore water velocity components become (see eqs. (64)
and (68))

p2(x, z, t) = �P (z) exp[i(kx − ωt)], (107)

ux(x, z, t) = �
{
−i

Kf k

nγ
P (z) exp[i(kx− ωt)]

}
(108)

and

uz(x, z, t) = �
{
−Kf

nγ

dP (z)
dz

exp[i(kx− ωt)]
}
. (109)

The continuity of the dynamic pressure and vertical velocity component
at z = −h requires that

A = −i
P0

ρω
and B = −Kf

γ

(
ψ1

k

)
tanh[ψ1(hn − h)]P0, (110)

in which the wave number ψ1 is defined by eq. (63).
After substituting the above values in the second condition (104) we

obtain

P0 =
i
gH

2ω
i

ρω
cosh(kh) +

Kf

γ

(
ψ1

k

)
tanh[ψ1(hn − h)] sinh(kh)

(111)

or

P0 =
iρgH

2
[
i cosh(kh) +

Kfω

g

(
ψ1

k

)
tanh[ψ1(hn − h)] sinh(kh)

] . (112)

If the porous media are non-porous (Kf = 0), the above equations simplify
considerably. Thus, we have:

A = −i
P0

ρω
= −i

gH

2ω cosh(kh)
; B = 0

Φ1 =
−igH

2ω
cosh k(z + h)

cosh kh
exp[i(kx− ωt)]

ω2 = gk tanh(kh)



. (113)

Eqs. (113) represent the classical boundary value problem for regular waves
propagating in a water layer of constant depth h over a non-porous bottom.



Attenuation of wave-induced groundwater pressure in shallow water . . . 317

4.2. Dispersion relation

The unknown complex wave number k is described by the dispersion
relation, which can be obtained from the first condition (104). Hence, we
have

ω2 = gk
A tanh(kh) +B

A +B tanh(kh)
(114)

or

ω2 = gk
tanh(kh) + B

A

1 + B
A tanh(kh)

(115)

in which
B

A
= −i

ωKf

g

(
ψ1

k

)
tanh[ψ1(hn − h)]. (116)

The solution of the dispersion relation (115) is given by the complex
wave number k = kr + iki. For example, for Test 2 (Hin = 0.5 m, T
= 8 s), the wave number becomes k = 0.181415 +0.000298 i, while when the
uncoupled model is used, the wave number k=0.181116 (see eq. (20)). Also,
the calculations for all tests carried out during the Hannover experiment
showed that the real value of the wave number kr is almost identical with
the wave number k resulting from the uncoupled model, while the imaginary
part of the wave number ki is of the order of 0.0001–0.0003. Substituting
these values in eq. (105) we obtain

ζ1 =
H

2
exp[i(kr + iki)x] exp(−ωt) =

=
H

2
exp(−kix) exp[i(krx− ωt)]. (117)

From eq. (117) it follows that the wave amplitude attenuates by 1% over
a distance of about 50 m for ki = 0.0002 m−1.
The above estimate of the wave number k in the coupled model suggests

that the permeability of the sea bottom does not substantially influence the
length of the surface wave.

4.3. Pore water velocity components

In contrast to the wavelength, there is a difference in the velocities at
the sea bottom predicted by both models. In the uncoupled model the
vertical velocity uz(x,−h, t) = 0 when approaching the sea bottom in the
water layer, while in the coupled model we have

uz(x,−h, t) =
∂Φ1

∂z
= k B exp[i(kx− ωt)] (118)

or

uz(x,−h, t) = −ψ1 Kf

γ
tanh[ψ1(hn − h)]P0. (119)
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For the cases tested in the Hannover experiment, the vertical velocity is of
the order of 1 mm s−1 (see, for example, Figs 7 and 8).
The horizontal velocity components in water and porous layers, pre-

dicted by the uncoupled model for z = −h (sea bottom), are also different;
hence, we have

∆ux = u(1)
x − u(2)

x =
kP0

ρω
exp[i(kx− ωt)] +

+ i
kP0

γ
Kf exp[i(kx− ωt)] (120)

or

∆ux =
(
g

ω
+ iKf

)
kP0

γ
exp [i(kx − ωt)], (121)

in which u
(1)
x and u

(2)
x are the horizontal velocity components in the water

and porous layer, respectively.
The first term in the parentheses is simply the phase velocity of the

surface waves in deep water and is much higher than the coefficient of
permeability Kf . Thus, the velocity difference becomes approximately

∆ux ≈ gkP0

ωγ
=

1
2

ωH

sinh(kh)
exp [i(kx− ωt)]. (122)

4.4. Horizontal velocity component within the boundary layer at
the sea bed

It should be noted that the horizontal component of velocity in the water
layer follows from the assumption of the irrotational motion in this layer.
However, in the close proximity of the porous bed, a viscous boundary layer
of thickness δ of the order (O

√
ν1/ω) forms; ν1 is the kinematic coefficient of

viscosity. The flow inside the boundary layer can be essentially considered
as horizontal. If we neglect the non-linear, convective acceleration term,
the equation of motion within the boundary layer can be written as follows
(Kaczmarek 1999):

∂u
(b)
x

∂t
− ν

∂2u
(b)
x

∂z2
=

∂ux,∞
∂t

, (123)

in which u
(b)
x is the horizontal velocity within the boundary layer, ux,∞ is

the ambient flow at the upper limit of the boundary layer and ν is the
kinematic viscosity coefficient. Thus, at the boundary layer limit we have

ux,∞ =
1
2

ωH

sinhkh
exp[i(kx− ωt)]. (124)

Let

u(b)
x (x, z, t) = U (b)

x (z) exp[i(kx − ωt)]. (125)
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After substituting eqs. (124) and (125) in (123) we obtain

d2U
(b)
x

dz2
+ ψ2

0U
(b)
x = D0, (126)

in which

ψ2
0 = i

ω

ν
(127)

and

D0 = i
ω2H

2ν sinh(kh)
. (128)

The solution of eq. (126) becomes

U (b)
x (z) = C1 cos(ψ0z) +C2 sin(ψ0z) +

+
D0

ψ2
0

{1− cos[ψ0(z + h)]} . (129)

The constants C1 and C2 should be determined from the boundary
conditions at z = −h (sea bottom) and z = −h + δ (upper limit of the
boundary layer), i.e.

U (b)
x =




1
2

ωH

sinh(kh)
at z = −h+ δ,

−i

2
kHKf

cosh(kh)
at z = −h.

(130)

The calculations yield

C1 =
R1 sin(ψ0h)−R2 sin[ψ0(h− δ)]

sin(ψ0δ)
(131)

and

C2 =
R1 cos(ψ0h)−R2 cos[ψ0(h− δ)]

sin(ψ0δ)
, (132)

in which

R1 =
1
2

ωH

sinh(kh)
− D0

ψ2
0

[1− cos(ψ0δ)], (133)

R2 =
−i

2
kHKf

cosh(kh)
. (134)

It should be noted that the boundary layer thickness δ is of the order of√
ν
ω . Thus for the typical wave frequency, it can be obtained δ ≈ 1 mm.
Conditions (17) and (18) indicate that the boundary layer in the porous
media was neglected when approaching the sea bottom (z → −h) for
g
E′

w
� 1. Therefore, in the calculations, the continuity of horizontal velocity

is presented in the form of the second equation (130).
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5. Summary and conclusion

In this paper an exact close-form solution has been obtained for the
pore-water pressure and velocities induced by surface waves in the elastic
porous layer. This solution is related to the so-called phase-resolving pore
pressure component when the pore pressure responds instantaneously to the
sea surface variation and the slowly varying pressure component is neglected.
This means that the solution is valid for coastal waters outside the breaker
zone. The analytical solution taking into account soil deformations, volume
change and pore-water flow is based on Biot’s theory.
Comparison of the theoretical results with laboratory measurements

in the Large Wave Channel (GWK) in Hannover, described in Part 1
of the paper, shows very good agreement. In particular, the differences
between the theoretical and experimental pore pressures are < ca 200 Pa.
The theoretical calculations for the experimental cases indicate that the
horizontal component of the pore-water velocity is smaller than the vertical
one. On the assumption of periodic wave motion, the water particles
circulate along closed, inclined elliptical contours.
The stiffness ratio G

E′
w
is the parameter controlling pore-water behaviour

under surface wave loading. When G
E′

w
≥ 100, the vertical distribution of

the pore pressure becomes very close to the Moshagen & Tørum (1975)
solution when the soil is rigid and the fluid is compressible. Almost all the
cases treated during the GWK experiment resulted in a stiffness ratio of
G
E′

w
> 100 when the simple heat transfer type equation (59) was applied.
The value of the apparent bulk modulus of pore water E′

w was not
determined in the experiments but was estimated from the best fit of the
experimental pore-water pressure with the theoretical one. The fit showed
that the modulus E′

w is of the order of 105–106 N m−2. When this value
is used in (1), a high air content of the order of 10% is obtained. This is
probably due to the fact that eq. (1) is not applicable to the case of a beach
body artificially formed in the wave channel, which is not the case with
natural sand.
In this paper, only the case of a horizontal bottom was studied. The

case of the non-horizontal bottom will be dealt with in a separate paper.
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Appendix (A)

The matrix dij coefficients for the system of simultaneous equations (46):

d11 = 0; d21 = 2kh
sinhk(hn − h)

cosh khn
(A.1)

d31 = ikh(1 − 2ν)
cosh k(hn − h)

cosh khn
; d41 =

h

cosh khn
(A.2)

d51 = 0; d61 = 0 (A.3)

d12 = 0; d22 = −2kh cosh k(hn − h)
sinhkhn

(A.4)

d32 = ikh(2ν − 1)
sinhk(hn − h)

sinhkhn
; d42 = 0 (A.5)

d52 = i
h

sinhkhn
; d62 = 0 (A.6)

d13 = i
A2 sinh k(hh − h)

cosh khn
; d23 = (kA1 − 1)

cosh k(hn − h)
cosh khn

(A.7)

d33 = i (kA1 − 1)(1 − ν)
sinhk(hn − h)

cosh khn
; d43 =

(hn − h)
cosh khn

(A.8)

d53 = −i
A1

cosh khn
; d63 = i

kA2

cosh khn
(A.9)

d14 = −i
A2 cosh k(hn − h)

sinhkhn
; d24 =

(1− kA1) sinh k(hn − h)
sinh khn

(A.10)

d34 = i
(kA1 − 1)(ν − 1) cosh k(hn − h)

sinhkhn
; d44 = 0 (A.11)

d54 = i
hn − h

sinhkhn
; d64 = 0 (A.12)

d15 = −A3h coshψ(hn − h)
coshψhn

; d25 = 2hψ
sinhψ(hn − h)

coshψhn
(A.13)

d35 = −i
h[νk2 + (ν − 1)ψ2] coshψ(hn − h)

k coshψhn
; d45 =

h

coshψhn
(A.14)

d55 = 0; d65 = 0 (A.15)

d16 =
A3h sinhψ(hn − h)

sinhψhn
; d26 = −2hψ coshψ(hn − h)

sinhψhn
(A.16)

d36 = i
h[νk2 + (ν − 1)ψ2] sinhψ(hn − h)

k sinhψhn
; d46 = 0 (A.17)

d56 =
ihψ

k sinhψhn
; d66 =

A3hψ

sinhψhn
. (A.18)


