
Papers
Conformal mapping of
the Gulf of Gdańsk onto
a canonical domain

OCEANOLOGIA, 44 (2), 2002.
pp. 179–207.

2002, by Institute of
Oceanology PAS.

KEYWORDS

Shoreline
Conformal mapping
Domain of solution

Computational domain
Inversion

Schwarz-Christoffel function
Inverse of a function

Paweł P. Cześnik

Włodzimierz J. Prosnak

Institute of Oceanology,
Polish Academy of Sciences,
Powstańców Warszawy 55, PL–81–712 Sopot, Poland;
e-mail: czesiek@iopan.gda.pl

Manuscript received 7 February 2002, reviewed 15 April 2002, accepted 8 May 2002.

Abstract

The paper deals with the conformal mapping of a plane, finite, simply connected
domain, representing the southern segment of the Gulf of Gdańsk, enclosed from
the North by a parallel, tangential to Cape Rozewie. The segment contains the
Hel Peninsula.

The method of double decomposition, presented in Prosnak & Cześnik (2001),
is applied to the transformation of such an original domain onto a canonical one,
which consists of two separate unit discs.

The first decomposition concerns the domain which is split into two adjacent
subdomains by means of a segment of a straight line.

The second decomposition involves two holomorphic functions, each one
mapping a subdomain onto a separate disc. The decomposition consists in replacing
the function by a sequence of simple ones, so that the mapping is performed
step-wise. Each sequence starts with the Schwarz-Christoffel function, the last step
consisting in an inversion that transforms an infinite circular domain onto a disc.

The data for the problem is contained in the Annex, and is represented by two
sets of rectangular coordinates defining consecutive discrete points of the contours
bounding the subdomains.

The solution to the problem consists of:



180 P.P. Cześnik, W. J. Prosnak

– two sets of functions, consecutively transforming each of the subdomains;
– the numerical values of the parameters of these functions;
– a set of figures illustrating the consecutive transformations.

The accuracy of the first, and of the penultimate transformation are given,
because only in the case of these two functions do the unknown coefficients have to
be determined by means of a suitable iterative process. The coefficients of all the
remaining functions are evaluated from exact formulae.

It should be recalled that the depth of the Gulf of Gdańsk varies considerably
– from a few to 110 metres – the gradients of the bottom being rather large.
Therefore, the domain of the solution for any mathematical problem describing
the hydrodynamical phenomena occurring in the Gulf is usually taken to be
three-dimensional. Nevertheless, the paper deals with the transformation of the free
surface of the Gulf, assumed as plane. It should be emphasized that this assumption
does not mean that the whole domain of the solution has to be regarded as plane.

1. Motivation

There are two motives for undertaking, within the framework of this
paper, the task of transforming the free surface of the Gulf of Gdańsk onto
a canonical domain consisting of two separate unit discs.

The first motive stems from our wish to obtain a convenient, universal
‘battle field’ for several partial differential problems describing various flows
in the Gulf, problems that differ with respect to their physical models, and,
consequently, in the sets of differential equations as well as in the bound-
ary and initial conditions. It is hoped that arriving at the solutions
of all such problems may be simplified and systematized if all domains of
solutions possess a common feature, represented by a regular free surface
consisting of discs.
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Fig. 1. The part of the Gulf of Gdańsk considered, and its decomposition into two
subdomains
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The second motive stems from our intention to check whether the
method of transformation published earlier in Prosnak & Cześnik (2001)
could also be applied to domains with deep indentations, such as the Hel
Peninsula (Fig. 1).

The method to be applied in the paper is based on two kinds of decom-
position. The first one involves decomposition of the given, original domain
into subdomains, which are then transformed independently onto discs.
The second kind of decomposition concerns every mapping function which
performs a conformal transformation of a single subdomain. The function is
regarded as a sequence of simple auxiliary mapping functions, performing
step-by-step the transformation of the subdomain under consideration onto
the unit disc.

Application of the method to the domain representing the Vistula
Lagoon (Prosnak & Cześnik 2001) yielded quite satisfactory results. It is
obvious, however, that this solitary success does not suffice to formulate
general conclusions as far as the method is concerned. Further applications,
differing in geometrical shape of the domains, are needed for this purpose.

2. Definition of the primitive domain

The plane, finite, simply connected domain considered in this paper
(Fig. 1) represents the free surface of the Gulf of Gdańsk, bounded by the
shoreline, and – in the North – by a parallel, tangential to Cape Rozewie.

Such a definition of the domain can be found in Druet & Jankowski
(1983).

The domain has to be defined by discrete points distributed along its
boundary.
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Fig. 2. The two subdomains shown separately
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We have prepared the set of such points with the aid of the map
published in Ciołkosz & Ostrowski (1995), which is based on satellite
photographs. The number of points defining the segment of the shoreline
is equal to 334. There are 100 points distributed on the parallel. Finally,
the dashed rectilinear segment (Fig. 1) dividing the domain into two
subdomains, is defined by means of 50 equidistant points. Eventually, the
numbers of the points defining the two contours shown in Fig. 2 turn out
to be 227 and 310 respectively. The values of the rectangular coordinates of
these points are set out in the Annex, for each subdomain separately.

The five characteristic points A, B, C, D, E denoted in Figs. 1 and 2 can
be identified by means of the numbers contained in the Tables, namely:

A – No. 209 in Table A-II

B – No. 1 in Table A-II

C – No. 63 in Table A-II, and No. 1 in Table A-I

D – No. 114 in Table A-II, and No. 176 in Table A-I

E – No. 56 in Table A-I.

The sets of points defining the boundaries of the subdomains are stored
in the files ZGNpuck.dan and ZGNgda.dan – as indicated in the Annex.

3. The background of the method of transformation

The method of transformation applied in this paper is identical with the
one introduced in Prosnak & Cześnik (2001), where the general features of
the method as well as its most important details are presented. Nevertheless,
for the sake of completeness they should be briefly recalled in this section.

3.1. Existence, univalence and standard representations
of the mapping functions

Let us consider in the complex z-plane a given finite, simply connected
domain, bounded by a Jordan curve. Let us consider also – in another
complex plane denoted ζ – a disc with a given radius A. The theory of
conformal mapping ensures the existence and univalence of a holomorphic
function

z = fin(ζ), (1)

which conformally transforms the disc onto the given domain.
The theory also ensures that the mapping function (1) can always be

represented by the power series

z = fin(ζ) =
∞∑
n=0

Cn

(
ζ

A

)n
, (2)
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where

Cn; n = 0, 1, 2, ... (3)

stand for complex coefficients of the series. If A = 1, then the disc is called
the unit disc. The series (2) is convergent in the whole disc as well as on
the bounding circle. The series (2) will be called the standard form of the
function (1) in further considerations.

Analogous properties concern an infinite, simply connected domain,
represented by the whole z-plane with a cut-out, also bounded by a Jordan
curve. In this case, the standard mapping function has the following form:

z = fex(ζ) = G−1ζ +
∞∑
n=0

Gn

(
a

ζ

)n
, (4)

where a denotes the radius of the circle, bounding the ‘hole’ in the ζ-plane.
The symbols

Gn; n = −1, 0, 1, 2, 3, ... (5)

denote complex coefficients of the series (4), the series being convergent in
the whole, simply connected, infinite exterior of the circle, and on the circle
itself. It should be recalled that the point ζ =∞ belongs to the ζ-domain
as well as the circle. Its image z =∞ belongs, consequently, to the z-plane
as well as the Jordan curve.

3.2. General remarks on the determination of the coefficients

Effective conformal mapping of the interior or exterior of the circle onto
a given corresponding domain may be thought of as determination of the
complex coefficients (3) or (5), respectively. Unfortunately, the theory of
conformal mapping disappoints us at this crucial point: it does not deliver
a general algorithm performing this task for domains of arbitrary shapes.
True, such algorithms do exist, but as a rule they work satisfactorily only
for particular classes of domains, e.g. for the exteriors of airfoil sections.

We will confine ourselves in the further considerations to two algorithms
for determining coefficients (3) and (5), respectively, developed by ourselves,
and published in Prosnak & Klonowska (1996). The experience with the
application of these algorithms leads to the following conclusions.

I. The series (4) pertaining to infinite domains converge – under
comparable conditions – more quickly than the series (2), which
pertain to finite domains. Moreover, the same accuracy of mapping
may be obtained with fewer coefficients.

II. Both the series (2) and (4) are unsuitable for describing boundaries
possessing discontinuities of the tangent. In such cases a large number
of terms in the corresponding series has to be retained in order to
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obtain sufficient accuracy of the mapping. Moreover, the convergence
is usually poor, and very often the series diverge. Cusps pointing
towards the outside of the domain are particularly difficult in this
respect.

III. Determination of coefficients (3) of the series (2) is rather troublesome
in cases where the domain is elongated. Again, a large number of terms
must be retained, which may lead to unacceptable numerical errors.
On the other hand, determination of the coefficients (5) is equally easy
(or equally difficult) for elongated boundary contours as well as for the
ones not differing too much from a circle.

The conclusion to be drawn from these facts is very simple: the
efforts to determine ‘by force’ the coefficients (3) or (5) for geometrically
rather complicated shorelines, characteristic of natural bodies of water, are
pointless. ‘By force’ means here ‘by retaining more and more terms’ in the
series.

The theoretical explanation of the behaviour presented in I, II, III is
fairly obvious, and will be left aside.

In any case, the need arises for a means of circumventing the difficulties
just outlined.

The general idea of such a means has already been presented in our
earlier paper (Prosnak & Cześnik 2001): it consists precisely of two kinds of
decomposition.

The first kind is applied to a given finite domain, which is replaced
– by means of suitable cuttings – by a sum of subdomains, every one of
them being geometrically simpler than the originally given one. This means
that the boundary line of any subdomain approximates a circle better than
the given one. A typical example of such a decomposition is shown in Figs. 1
and 2.

Next, every subdomain is regarded as entirely separate from the
remaining ones, and a complex mapping function is sought which transforms
a disc onto the selected subdomain. Assuming that the subdomain and the
disc are located in complex planes z and ζ, respectively, the general form of
the unknown mapping function can be written as

z = f(ζ). (6)

The function, inverse with respect to (6), i.e.:

ζ = f−1(z) = F (z) (7)

will be also taken into account in further considerations.
Usually, the subdomain is still too complicated geometrically – in

order to be transformable directly onto the interior or exterior of a circle
– by means of the series (2) or (4), respectively. Hence, the task of



Conformal mapping of the Gulf of Gdańsk onto a canonical domain 185

determining the function (7) has to be performed step-wise. In other words
– it has to be decomposed. In such a manner one arrives at the second kind
of decomposition, which – unlike the first kind – consists in determining
a set of intermediate transformations:

ζ1 = F1(z); ζ2 = F2(ζ1); ...; ζ = FK(ζK−1), (8)

where successive approximations of the considered subdomain appear in the
complex planes:

ζ1; ζ2; ...; ζK−1; ζ. (9)

It should be understood that the considered subdomain belongs to the
z-plane, and the disc – to the ζ-plane.

In the present paper it is assumed that all functions (8) except two are
represented by simple, exact formulae, containing complex constants, which
are either known, or can be evaluated from known relations. One of the
two remaining functions is represented by the series (4), and its unknown
coefficients have to be determined by means of the iterative process governed
by the algorithm published in Prosnak & Klonowska (1996). The second
one of the two functions is identical with the Schwarz-Christoffel function
(Prosnak & Cześnik 2001), and it will be recalled in the next subsection.

The remaining, exact auxiliary mapping functions are discussed in
Prosnak & Cześnik (2001), and the reader is referred to this source. In
any case, the functions are very simple, and they consist mainly in shifting,
turning, and scaling of the considered intermediate subdomain as well as
of its inversion. Also the Joukowski and the Kármán-Trefftz functions are
exact intermediate functions. They will be not recalled – for the sake of
brevity.

Just one of the auxiliary functions was not presented in our former paper
(Prosnak & Cześnik 2001): it corresponds to the simple problem, illustrated
in Fig. 3, which can be formulated as follows.
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Fig. 3. Transforming a chord (z1, z2) into a given one (ζ1, ζ2)
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Two points – z1 and z2 – of a domain situated in the complex z-plane are
given. A formula is sought to transform the domain – by the use of shifting,
turning and scaling – into another one which is located in the ζ-plane in
such a manner that the segment (z1, z2) maps into another one (ζ1, ζ2),
which is also given.

By introducing the auxiliary notation

D = |z2 − z1|; α = Arg(z2 − z1);

d = |ζ2 − ζ1|; β = Arg(ζ2 − ζ1),
one can easily arrive at the relation

ζ2 − ζ1 =W (z2 − z1),
where

W =
d

D
ei(β−α).

Hence, the sought-for image ζ of an arbitrary point z will be given by the
formula

ζ = ζ1 +W (z − z1). (10)

Subdomains transformed by means of (10) can easily be made to
comply with subroutines for the auxiliary functions of Joukowski and
Kármán-Trefftz.

3.3. The set of functions performing the step-wise
transformation of a finite subdomain

In order to simplify the references, which will be used in the description
of the step-wise transformation of any one of the two subdomains shown
in Fig. 2, the corresponding formulae for the functions, representing
consecutive steps of the transformation, will be recollected in the present
subsection. Explanations of the formulae will be as concise as possible, the
reader interested in details being referred to Prosnak & Cześnik (2001) and
to Prosnak & Klonowska (1996).

(1) The Schwarz-Christoffel function

z = K0 +K1

ζ∫
ζd

N∏
n=1

(
1− ζe−iθn

)pn
dζ (11)

conformally maps the closed unit disc onto the closed interior of a given
polygon containing N vertices, which are defined by means of the given
complex numbers:

z1, z2, ..., zN . (12)
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Fig. 4. Conformal mapping of a disc onto the interior of a polygon

The exponents pn depend on the inner angles αn of the polygon:

pn =
αn
π
− 1; n = 1, 2, ..., N, (13)

and have to be considered as known. The remaining exponents:

θn; n = 1, 2, ..., N (14)

represent images of the vertices on the circle bounding the unit disc, and
are referred to as parameters of the Schwarz-Christoffel function (11). In the
case of regular polygons they can be evaluated very easily. Otherwise, they
have to be determined as a solution of a nonlinear ‘parameter problem’ by
means of an iterative process (Prosnak & Klonowska 1996). The function
(11) can be developed into a series:

z =
K∑
k=0

Bkζ
k, (15)

where the coefficients Bk depend explicitly on the constants of (11)
– in particular on the parameters (14). The respective relations have been
derived in the book just cited.

The inverse of the function (15) can be written formally as

ζ =
K∑
k=0

B̃kz
k. (16)

It plays an important role as one of the auxiliary functions (8). In the present
paper as well as in the previous one (Prosnak & Cześnik 2001) it is evaluated
as a numerical solution of (15) with respect to ζ, so that computation of
the coefficients B̃ is not necessary.

(2) The Joukowski function

z = ζ +
c2

ζ
; c− real (17)

transforms circles onto ellipses or onto so-called Joukowski profiles. Very
often, the function
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ζ =
z

2
±
√(

z

2

)2
− c2, (18)

inverse with respect to (17), is applied. The Joukowski profiles possess one
or two cusps, characterized by the angle δ = 0 between tangents.

Only two particular forms of the Joukowski profile have been applied in
calculations pertaining to the present paper, viz. the rectilinear segment,
and the arc of the circle. These two cases will be distinguished in further
considerations by means of the indices s or a, respectively, following the
symbol of the Joukowski function – see Tables 2, and 4.

(3) The Kármán-Trefftz function

z − 2c
z + 2c

=
(
ζ − c
ζ + c

)m
; 0 < m < 2; c− real, (19)

represents a generalization of (17). It reduces to this particular function
when m = 2. The relation between the exponent m and the angle δ at the
cusp between the two tangents has the following form:

m =
2π − δ
π

. (20)

For m = 2, the angle δ at the cusp is equal to zero. For m = 0, the angle
δ equals 2π.

More exactly, the profile is convex (see Fig. 7 – left) or ‘indented’
(see Fig. 13 – left), if

0 < δ ≤ π; π < δ ≤ 2π,

respectively.
The Kármán-Trefftz function is applied in the present paper for the task

of ‘unbending’ the boundary of the considered domain. Such ‘unbending’
may also be necessary in the case when – instead of the cusp – a very large
curvature of the contour appears.

(4) Inversion is defined by means of the following function:

z =
1
ζ

(21)

or by its inverse:

ζ =
1
z
. (22)

It is usually applied to transform a finite domain onto an infinite one or
vice versa – in order to enable one to use the series (4) instead of (2)
– in such a particular step of the whole set of consecutive mappings, which
corresponds to the transformation of the contour bounding the approximate
domain onto a circle. The advantage stemming from such an approach was
explained in the previous subsection.
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(5) Turning the contour by the angle α:

z = ζei α; α− real. (23)

(6) Shifting the contour:

z = c+ ζ; c− complex. (24)

(7) Scaling the contour:

z = c ζ; c− real. (25)

(8) Locating a given chord of the contour into a desired position is
performed by means of the function (10), and will be referred to by the use
of this symbol.

It should be stressed that – besides the functions (10)–(25), each one
corresponding to a single step of the whole mapping (6) – some operations
usually have to be performed which stem from the following properties of
the boundary of the domain:

I. The boundary is defined by means of separate points which are
numbered consecutively, starting from a properly selected one. The
results of such definitions are given in Tables A-I and A-II.

II. The boundary represents a contour. Therefore, the direction assumed
on the boundary has to comply with the direction in which numbers
of the consecutive points increase.

The first operation consists in changing the number of the first point of
the contour, and as a consequence, ‘renumbering’ the remaining ones. It will
be referred to as

changing the origin. (26)

The direction of the contour is not changed during this operation.
On the other hand, if the direction of a contour is reversed, which

happens as a ‘by-product’ of inversion, the proper direction has to be
restored. This second operation will be referred to as:

changing the direction. (27)

Suitable procedures of the computer programs perform both operations
(26), (27) automatically – for values of parameters introduced by the user
from the keyboard.

4. Results of conformal mapping of the Gulf of Gdańsk

The results consist of two parts, corresponding to two subdomains,
denoted I and II in Figs. 1 and 2. In accordance with the applied method,
each domain is transformed independently of the other one. Consequently,
the results are presented in two independently subsections.
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Each subsection contains three elements pertaining to the applied
computer programs.

The first element consists of a Table containing values of vertices, and
the parameters of a polygon circumscribing the domain under consideration.
The parameters represent the solution of the corresponding parameter
problem for the Schwarz-Christoffel function. The values of the errors are
given in the Table, too.

The parameter problem is solved by means of the program denoted
B II 5n.pas. The same program applies the function, inverse with respect
to (15), and denoted (16) – to transform an original subdomain onto one
circumscribed by the unit circle.

The second element of any one of the two following subsections consists
of another Table, which contains the list of functions and operations
describing consecutively all the auxiliary transformations of the subdomain.
The Table has been prepared by means of the program VisBay78. One row
of the Table refers to a single transformation, which is indicated by its
symbol, and by the symbols ζn, ζn+1 of two complex planes that contain
the subdomain before and after the transformation, respectively. Some of
the transformations are illustrated by means of Figures, each one showing
two such consecutive approximations of the subdomain under consideration.
The Table starts with the approximation, representing the finite subdomain,
circumscribed by the unit circle, as shown on the right-hand side of Fig. 5.
It terminates with the infinite one, which will be dealt with by the program
VE2.pas.

Hence, the third element of the subsection contains final transformations
and results, delivered by the program just mentioned, which performs the
following tasks.

I. Conformal mapping of the last, approximate, infinite domain, onto
the infinite exterior of a circle; this task reduces to the determination
of the radius a of the circle as well as of the coefficients (5) of the
function (4).

II. Inversion (21) of the exterior thus obtained onto the quasi-disc.

III. Rescaling of this result in order to arrive at a contour resembling the
unit circle.

IV. Change of direction (27) of the contour, i.e. ascribing new numbers
to the points defining the contour. The results contain values of
the coefficients (5); the data applied for arriving at these values is
also given. The final result, however, is presented in graphical form.
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It shows the unit circle as well as the contour delivered by the
program VE2.pas. The difference between these two lines illustrates
the cumulative error of the whole set of consecutive conformal
mappings.

4.1. Subdomain No. 1

Subdomain I, shown in Figs. 1 and 2, is rotated by means of the function
(23) through the angle α = −30◦, and a nonagon is selected, circumscribing
the so-turned subdomain. The situation is illustrated at the left-hand side
of Fig. 5, wherein the subdomain is shaded, and the nonagon is denoted by
means of the thin solid line.

z1
z

Fig. 5. Transforming of the initial subdomain No. 1 by means of the series (16),
which is inverse with respect to the series (15), stemming from the development of
the Schwarz-Christoffel function (11)

The third contour visible in this Figure represents the approximate
nonagon, calculated by means of the function (15), which represents the
development of the Schwarz-Christoffel function (11) into a series. Only
K = 150 terms have been retained in the series.

Rectangular coordinates of the vertices of the nonagon as well as solution
to the corresponding parameter problem are given in Table 1. The errors
of the solution refer to the ratios of consecutive sides of the polygon and
its circumference. They are defined as the differences between two ratios
corresponding to the given polygon and to its approximation, respectively.

The relatively small errors concerning the parameters are worthy of
notice.
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Table 1. Vertices and parameters of the nonagon

n 1 2 3 4 5
xn 0.1500 0.0160 –0.0500 –0.0220 –0.0644

yn –0.3000 –0.0700 –0.1320 –0.1951 –0.2583

θn 152.1◦ 199.8◦ 200.6◦ 203.7◦ 213.3◦

error –3.2×10−4 –6.3×10−5 –1.7×10−4 –7.9×10−4 –7.8×10−4
n 6 7 8 9
xn –0.0289 –0.1250 0.0320 0.0740

yn –0.2674 –0.4850 –0.6800 –0.6760

θn 219.7◦ 339.8◦ 359.7◦ 0.0◦

error –7.3×10−4 –1.2×10−3 –2.3×10−3 1.1×10−16

It should be stressed that the number of vertices, and their positions
with respect to the considered subdomain, depend on the researcher.

The result of transformation of the shaded domain, shown in the
left-hand-side of Fig. 5, and obtained by means of the inverse (16)
with respect to the series (15), appears in the right-hand side of this
Figure. The circle represents the exact counter-image of the nonagon: it
could be determined only by means of exact inversion with respect to
the function (11).

The consecutive approximate subdomains are listed in Table 2. Some
of them are illustrated by means of Figures 6–9. The symbols L and H
in the Table define the arc to be transformed into the ‘full’ circle. The
fundamental transformation of the finite subdomain onto the infinite one is
shown in Fig. 6.

z1 � 2

Fig. 6. Transformation of the finite domain onto the infinite one by means of
inversion (22)
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Table 2. List of consecutive transformations of subdomain No. 1

No. Function or operation Complex planes Given values of parameters Figure
independent dependent

1 inversion (22) ζ1 ζ2 —————————– Fig. 6.
2 changing the direction (27) ———— ———— —————————– ——–
3 changing the origin (26) ———— ———— [133] = [1] ——–
4 locating a chord (10) ζ2 ζ3 [204,1]→[(–30,0), (2,0)] ——–
5 turning the contour (23) ζ3 ζ4 α = –0.8203488◦ ——–
6 shifting the contour (24) ζ4 ζ5 [1]→(2,0) ——–
7 Kármán-Trefftz function (19) ζ5 ζ6 δ = 72.874598◦ Fig. 7.
8 locating a chord (10) ζ6 ζ7 [94,6]→[(–200,0), (2,0)] ——–
9 turning the contour (23) ζ7 ζ8 α = 1.0350294◦ ——–

10 shifting the contour (24) ζ8 ζ9 [6]→(2,0) ——–
11 Kármán-Trefftz function (19) ζ9 ζ10 δ = 273.4949638◦ ——–
12 changing the origin (26) ———— ———— [211] = [1] ——–
13 locating a chord (10) ζ10 ζ11 [16,84]→[(–2,–0.6), (2,–0.6)] ——–
14 Joukowski function (18)s ζ11 ζ12 —————————– Fig. 8.
15 locating a chord (10) ζ12 ζ13 [213,224]→[(–1,–0.05), (1,–0.05)] ——–
16 Joukowski function (18)a ζ13 ζ14 L = 1.4, H = 0.2 Fig. 9.
17 locating a chord (10) ζ14 ζ15 [16,33]→[(–1,–0.05), (1,–0.05)] ——–
18 Joukowski function (18)a ζ15 ζ16 L = 1.6, H = 0.4 ——–
19 locating a chord (10) ζ16 ζ17 [105,3]→[(–0.5,0), (0.5,0)] ——–
20 changing the origin (26) ———— ———— [3] = [1] ——–
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Application of the Kármán-Trefftz function (19) to the local unbending
of the contour can be seen in Fig. 7.

z5 z6

Fig. 7. Unbending by means of the Kármán-Trefftz function (11)

z11 z12

Fig. 8. Stretching by means of the Joukowski function (18)

Figures 8 and 9 show local ‘rectifications’ of the contour, performed by
means of the Joukowski function (17).

The final element of the transformations applied to the subdomain No. 1
is shown in Fig. 10. The unit circle is denoted in the Figure by means of the
dashed line.

The quasi-disc corresponding to the subdomain is bounded by the solid
line, and its interior is shaded. The maximal distance between the two lines,
i.e. the cumulative error of the set of transformations Er = 0.0058.
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z13 z14

Fig. 9. Unbending by means of the Joukowski function (18)

zC

D

Fig. 10. Final result: the
unit disc representing sub-
domain No. 1

One rather important detail of the computations should be mentioned.
It concerns the determination of the constants of the standard function (4).
The relevant data are

N = 198; m = 1000; prec = 10−9; it = 30, (28)

where N denotes the number of terms in the series; m – number of nodes
appearing during integration; prec – index of ‘accuracy’, controlling the
termination of the iterative process; it – number of iterations. The numerical
values of the coefficients

a; Gn; n ∈ [−1, 198] (29)

are not included in the present paper for the sake of conciseness. However,
they can be obtained from the first author, at the Institute of Oceanology
PAS.
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4.2. Subdomain No. 2

The preliminary transformation of the subdomain, denoted by the
number II in Figs. 1 and 2, involves the application of the function (10) to
the points numbered 1 and 209 in Table A-II. These points are translated
to the following ones:

(−0.5, 0.2) (0.5, 0.2). (30)

The result can be seen on the left-hand-side of Fig. 11.

zz

Fig. 11. Transforming the initial subdomain No. 2 by means of the series (16),
which is inverse with respect to the series (15), stemming from the development of
the Schwarz-Christoffel function (11)

Similarly, as in the former subsection, a hexagon is selected, circumscrib-
ing the domain, as shown in Figure just referred to. Vertices, and parameters
of the hexagon are collected in Table 3.

Table 3. Vertices and parameters of the hexagon

n 1 2 3 4 5 6
xn 0.540 –0.540 –0.480 –0.133 0.250 0.470

yn 0.210 0.250 0.040 –0.360 –0.280 –0.025

θn 5.5◦ 97.0◦ 102.4◦ 184.7◦ 317.7◦ 0.0◦

error –4.0×10−4 –6.3×10−3 3.8×10−4 –2.5×10−3 –1.0×10−3 –2.2×10−16

This fundamental result does not need any comment: it is wholly
analogous to Table 1.
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The domain, representing the transformation of the domain located
inside the polygon, is shown on the right-hand-side of Fig. 11 together
with its circumscribing circle. As before, the finite domain so obtained is
transformed into an infinite one by means of inversion (21), as illustrated
in Fig. 12.

z2 z3

Fig. 12. Transformation of the finite domain onto the infinite one by means of
inversion (22)

z9 z10

Fig. 13. Local rectification by means of the Kármán-Trefftz function (19)

The consecutive transformations yielding more and more regular approx-
imations of the subdomain under consideration are collected in Table 4.
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Table 4. List of consecutive transformations of subdomain No. 2

No. Function or operation Complex planes Given values of parameters Figure
independent dependent

1 shifting the contour (24) ζ1 ζ2 [1]→(–0.3, 0.3) ——–
2 inversion (22) ζ2 ζ3 —————————– Fig. 12.
3 changing the direction (27) ———— ———— —————————– ——–
4 locating a chord (10) ζ3 ζ4 [1,50]→[(–2,0), (150,0)] ——–
5 turning the contour (23) ζ4 ζ5 α = 5◦ ——–
6 shifting the contour (24) ζ5 ζ6 [1]→(–2,0) ——–
7 Kármán-Trefftz function (19) ζ6 ζ7 δ = 320◦ ——–
8 turning the contour (23) ζ7 ζ8 α = –5◦ ——–
9 shifting the contour (24) ζ8 ζ9 [1]→(–2.1,0) ——–

10 Kármán-Trefftz function (19) ζ9 ζ10 δ = 240◦ Fig. 13.
11 locating a chord (10) ζ10 ζ11 [270,248]→[(–50,0), (2,0)] ——–
12 turning the contour (23) ζ11 ζ12 α = 0.21838558◦ ——–
13 shifting the contour (24) ζ12 ζ13 [248]→(2,0) ——–
14 Kármán-Trefftz function (19) ζ13 ζ14 δ = 277.8985515◦ ——–
15 locating a chord (10) ζ14 ζ15 [27,264]→[(–2,0.52), (2,0.52)] ——–
16 Joukowski function (18)s ζ15 ζ16 —————————– Fig. 14.
17 locating a chord (10) ζ16 ζ17 [262,43]→[(–0.5,0), (0.5,0)] ——–
18 changing the origin (26) ———— ———— [43] = [1] ——–
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Some of them are illustrated by means of the corresponding Figures,
e.g., the unbending of a contour by means of the Kármán-Trefftz function
(19) is shown in Fig. 13. Similarly, application of the Joukowski function
(17) in order to remove an indentation of the contour is shown in Fig. 14.

z15 z16

Fig. 14. Stretching by means of the Joukowski function (18)

The final result of the set of transformations, presented in this subsec-
tion, is shown in Fig. 15.

z

C

D

Fig. 15. Final result: the unit disc in the ζ-plane

As in Fig. 10, the unit circle is shown by means of the dashed line.
The contour of the quasi-disc is denoted by means of the solid line, and
its interior is shaded. The maximal cumulative error of the transformation
Er = 0.0050, i.e. even slightly less than in the case of subdomain No. 1.



200 P.P. Cześnik, W. J. Prosnak

The data concerning the intermediate mapping function (4), analogous
to (28), consist of the following numbers:

N = 198; m = 1000; prec = 10−8; it = 25. (31)

The constants of this function, like (29), are also available at the Institute
of Oceanology, from the first author.

5. Comments

I. Three computer programs, designated B II 5n.pas, VisBay78 and
VE2.pas, were used in order to arrive at the presented results. The
first one solves the parameter problem of the Schwarz-Christoffel
function, and was borrowed from Prosnak & Klonowska (1996). All
three programs can be obtained by e-mail from the first author of this
paper.

The computer program VisBay78 is written in Delphi. Therefore,
the structure of its name differs from that of the other two programs
– B II 5n.pas and VE2.pas – which are written in Borland Pascal.

Data for the latter two programs have to be introduced by the user
from the keyboard. Afterwards, the programs run automatically from
start to finish.

On the other hand, the program VisBay78 is designed as a ‘con-
versational’ one. It needs continual intervention on the part of the
user, who has to determine again and again the kinds of consecutive
transformations, and the values of the pertinent parameters.

II. In order to avoid any misunderstanding, it should be emphasized again
that confinement of our considerations to a transformation of the
plane domain, representing the water level of the Gulf of Gdańsk,
definitely does not mean that the domain of a solution to a problem
posed in the Gulf also has to be plane. Such a restriction is neither
meant nor implied in any way. It should be rather understood that
the original, three-dimensional domain of the Gulf transforms into two
circular cylinders with uneven bottoms – accordingly to the shape of
the bottom of the Gulf.

III. Tables A-I and A-II, containing coordinates of discrete points which
define the boundaries of the two subdomains may seem superfluous.
However, without these data our results could not be checked by
an independent researcher, either by the use of our method or of
a different one, such as that by Driscoll (1996).

IV. It should be kept in mind that the two discs representing images of
the subdomains remain interconnected. Namely, in the circumference
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of each circle bounding the disc, an arc can be distinguished, which
represents the image of the rectilinear segment (CD in Figs. 1 and 2)
separating the subdomains. Hence, any point of the set defining
one arc has its known, corresponding ‘twin’ which belongs to the
set defining the second arc. This allows one to formulate – in the
canonical domain consisting of the two discs – the necessary continuity
conditions which will occur e.g. in differential problems posed in this
domain.

V. The described conformal mapping is not aimed at the construc-
tion of grids. It has been derived rather with the application of
analytical-numerical methods in view, where the grid does not appear
at all. Nevertheless, after mapping the obtained discs onto squares, one
can easily arrive at the rectangular grid, so convenient when a discrete
method of solution has to be applied, in particular, the method of finite
differences.

The additional transformation of the disc onto the square can
be performed by a number of mapping functions, the obvious one
being the Schwarz-Christoffel formula. In this case the solution
of the parameter problem follows instantaneously from geometrical
properties of the square – cf. (11).
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Annex
Coordinates of discrete points which define the contours
bounding the subdomains

Table A-I. Subdomain No. 1
file: ZGNpuck.dan; number of points: 227.

No. x y No. x y
1 0.300200000000 –0.289300000000 50 0.084443939919 –0.090369830439
2 0.297775998661 –0.287405690250 51 0.078518049398 –0.085925412549
3 0.294813053401 –0.282467448150 52 0.072098334668 –0.082468643079
4 0.293825404981 –0.277529206049 53 0.067160092567 –0.077530400978
5 0.291356283930 –0.271109491318 54 0.062715674677 –0.075555104138
6 0.287405690250 –0.269134194478 55 0.058760000000 –0.071960000000
7 0.282961272360 –0.269134194478 56 0.057000000000 –0.071700000000
8 0.280985975519 –0.263208303958 57 0.056000000000 –0.072900000000
9 0.278023030259 –0.255800940807 58 0.055802135736 –0.076542752558
10 0.275060084999 –0.248887401866 59 0.053826838896 –0.081480994659
11 0.272590963949 –0.242961511345 60 0.053826838896 –0.088394533599
12 0.269628018688 –0.238023269245 61 0.054320663106 –0.095308072540
13 0.266665073428 –0.233578851354 62 0.049876245215 –0.100740138851
14 0.264195952378 –0.228640609254 63 0.045431827325 –0.107653677791
15 0.259257710277 –0.223208542943 64 0.041975057854 –0.114567216732
16 0.252837995546 –0.213825882952 65 0.040493585224 –0.121974579883
17 0.248393577656 –0.206912344012 66 0.040493585224 –0.128888118823
18 0.245430632396 –0.202467926121 67 0.041481233644 –0.135307833554
19 0.242467687135 –0.196048211391 68 0.043456530485 –0.139258427235
20 0.240492390295 –0.192591441920 69 0.048888596795 –0.142221372495
21 0.236047972405 –0.188147024030 70 0.055308311526 –0.144690493545
22 0.232097378724 –0.184690254559 71 0.059258905206 –0.147159614595
23 0.228146785044 –0.182221133509 72 0.063703323097 –0.152097856696
24 0.223208542943 –0.178764364039 73 0.068641565197 –0.159011395637
25 0.218270300843 –0.175801418778 74 0.072592158878 –0.165431110367
26 0.213825882952 –0.175307594568 75 0.077530400978 –0.169875528258
27 0.208887640852 –0.174319946148 76 0.080987170448 –0.171850825098
28 0.203455574541 –0.172838473518 77 0.086913060969 –0.176295242988
29 0.199998805071 –0.170863176678 78 0.087900709389 –0.178764364039
30 0.197035859811 –0.165431110367 79 0.084443939919 –0.183208781929
31 0.194566738760 –0.159505219847 80 0.083950115709 –0.190616145080
32 0.189134672450 –0.154566977746 81 0.085431588339 –0.199998805071
33 0.185184078769 –0.150616384066 82 0.083950115709 –0.204937047171
34 0.179258188249 –0.146171966175 83 0.082962467289 –0.211356761902
35 0.173332297728 –0.142715196705 84 0.083950115709 –0.218270300843
36 0.166912582997 –0.139752251445 85 0.088394533599 –0.224196191363
37 0.160986692477 –0.136295481974 86 0.091357478860 –0.228146785044
38 0.152591680906 –0.130863415664 87 0.089876006229 –0.235554148195
39 0.146665790385 –0.128394294613 88 0.088888357809 –0.240492390295
40 0.140739899865 –0.126418997773 89 0.088394533599 –0.246418280816
41 0.132838712504 –0.122962228303 90 0.087900709389 –0.248887401866
42 0.127406646193 –0.118517810412 91 0.093332775700 –0.248887401866
43 0.121480755673 –0.115061040942 92 0.099258666220 –0.246912105026
44 0.116048689362 –0.111110447262 93 0.104690732531 –0.245924456606
45 0.111110447262 –0.108147502001 94 0.109628974631 –0.243455335555
46 0.105678380951 –0.105678380951 95 0.114406623220 –0.241265668015
47 0.100246314640 –0.102221611481 96 0.114666048669 –0.244897624308
48 0.094814248330 –0.098271017800 97 0.113579568312 –0.250862698706
49 0.088888357809 –0.093826599910 98 0.113579568312 –0.254813292387
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Coordinates of discrete points which define the contours
bounding the subdomains (continued)

No. x y No. x y
99 0.113085744102 –0.261726831327 151 0.244442983976 –0.519503068974
100 0.114567216732 –0.268146546058 152 0.251356522916 –0.522466014235
101 0.116542513572 –0.274072436579 153 0.256294765017 –0.524935135285
102 0.119505458832 –0.279998327099 154 0.261726831327 –0.527898080545
103 0.122962228303 –0.285924217620 155 0.268146546058 –0.529379553175
104 0.127406646193 –0.289874811300 156 0.274072436579 –0.529379553175
105 0.131357239874 –0.296294526031 157 0.279504502889 –0.530861025806
106 0.135307833554 –0.301232768131 158 0.284442744990 –0.531354850016
107 0.138270778814 –0.305677186022 159 0.290368635510 –0.531848674226
108 0.140246075655 –0.312590724963 160 0.297282174451 –0.534317795276
109 0.140739899865 –0.321479560744 161 0.302714240762 –0.536786916326
110 0.142715196705 –0.476046538490 162 0.308146307072 –0.540737510007
111 0.143702845125 –0.330862220735 163 0.313084549173 –0.545675752107
112 0.144196669335 –0.335800462835 164 0.319010439693 –0.549626345787
113 0.144690493545 –0.342714001776 165 0.326417802844 –0.551601642628
114 0.144690493545 –0.347158419666 166 0.332837517575 –0.554564587888
115 0.145184317755 –0.352590485977 167 0.339751056516 –0.555552236308
116 0.146171966175 –0.357034903867 168 0.344689298616 –0.556046060518
117 0.147159614595 –0.362960794388 169 0.351109013347 –0.558021357358
118 0.145678141965 –0.369380509119 170 0.357034903867 –0.557033708938
119 0.140739899865 –0.371849630169 171 0.363948442808 –0.559009005778
120 0.140246075655 –0.377281696479 172 0.371355805959 –0.559996654199
121 0.143209020915 –0.382219938580 173 0.380244641740 –0.559009005778
122 0.146665790385 –0.387158180680 174 0.384689059630 –0.553576939468
123 0.148641087226 –0.393084071201 175 0.388639653311 –0.550120169998
124 0.151110208276 –0.397034664882 176 0.390614950151 –0.544688103687
125 0.152097856696 –0.403454379612 177 0.388842107991 –0.539680493811
126 0.151110208276 –0.408392621713 178 0.387069265831 –0.534672883935
127 0.149134911436 –0.414318512233 179 0.385296423672 –0.529665274058
128 0.147159614595 –0.421725875384 180 0.383523581512 –0.524657664182
129 0.149134911436 –0.429133238535 181 0.381750739352 –0.519650054306
130 0.150122559856 –0.435552953266 182 0.379977897192 –0.514642444430
131 0.151604032486 –0.441478843786 183 0.378205055032 –0.509634834553
132 0.154566977746 –0.447898558517 184 0.376432212872 –0.504627224677
133 0.158517571427 –0.453824449037 185 0.374659370713 –0.499619614801
134 0.162468165107 –0.458268866928 186 0.372886528553 –0.494612004925
135 0.165431110367 –0.462713284818 187 0.371113686393 –0.489604395049
136 0.170369352468 –0.467651526919 188 0.369340844233 –0.484596785172
137 0.173826121938 –0.471602120599 189 0.367568002073 –0.479589175296
138 0.178270539829 –0.476046538490 190 0.365795159913 –0.474581565420
139 0.183208781929 –0.480490956380 191 0.364022317754 –0.469573955544
140 0.188147024030 –0.484935374271 192 0.362249475594 –0.464566345668
141 0.192097617710 –0.487404495321 193 0.360476633434 –0.459558735791
142 0.197529684021 –0.490367440581 194 0.358703791274 –0.454551125915
143 0.203949398751 –0.490861264791 195 0.356930949114 –0.449543516039
144 0.210862937692 –0.490367440581 196 0.355158106955 –0.444535906163
145 0.217776476633 –0.489873616371 197 0.353385264795 –0.439528296286
146 0.226171488204 –0.493330385842 198 0.351612422635 –0.434520686410
147 0.232591202934 –0.496293331102 199 0.349839580475 –0.429513076534
148 0.237529445035 –0.500737748992 200 0.348066738315 –0.424505466658
149 0.237035620825 –0.509132760563 201 0.346293896155 –0.419497856782
150 0.239010917665 –0.515058651084 202 0.344521053996 –0.414490246905
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Coordinates of discrete points which define the contours
bounding the subdomains (continued)

No. x y No. x y
203 0.342748211836 –0.409482637029 216 0.319701263758 –0.344383708638
204 0.340975369676 –0.404475027153 217 0.317928421598 –0.339376098762
205 0.339202527516 –0.399467417277 218 0.316155579438 –0.334368488886
206 0.337429685356 –0.394459807401 219 0.314382737279 –0.329360879010
207 0.335656843196 –0.389452197524 220 0.312609895119 –0.324353269134
208 0.333884001037 –0.384444587648 221 0.310837052959 –0.319345659257
209 0.332111158877 –0.379436977772 222 0.309064210799 –0.314338049381
210 0.330338316717 –0.374429367896 223 0.307291368639 –0.309330439505
211 0.328565474557 –0.369421758019 224 0.305518526479 –0.304322829629
212 0.326792632397 –0.364414148143 225 0.303745684320 –0.299315219752
213 0.325019790238 –0.359406538267 226 0.301972842160 –0.294307609876
214 0.323246948078 –0.354398928391 227 0.300200000000 –0.289300000000
215 0.321474105918 –0.349391318515

Table A-II. Subdomain No. 2
file: ZGNgda.dan; number of points: 310.

Coordinates of discrete points which define the contours
bounding the subdomains (continued)

No. x y No. x y
1 0.019752968402 –0.040493585224 29 0.169875528258 –0.136295481974
2 0.027160331553 –0.043950354695 30 0.176295242988 –0.140246075655
3 0.032098573653 –0.046913299955 31 0.182221133509 –0.142715196705
4 0.037530639964 –0.051851542055 32 0.187653199820 –0.146665790385
5 0.042468882064 –0.054814487316 33 0.193085266130 –0.149628735646
6 0.047900948375 –0.057777432576 34 0.199998805071 –0.153579329326
7 0.050370069425 –0.060246553626 35 0.205924695592 –0.157036098796
8 0.054814487316 –0.062715674677 36 0.211850586112 –0.162468165107
9 0.059752729416 –0.065678619937 37 0.216788828213 –0.165431110367
10 0.065184795727 –0.069629213617 38 0.223702367153 –0.170863176678
11 0.070123037827 –0.073579807298 39 0.229628257674 –0.173826121938
12 0.075061279928 –0.076048928348 40 0.236541796615 –0.178764364039
13 0.080493346238 –0.079999522028 41 0.241480038715 –0.183702606139
14 0.086419236759 –0.082962467289 42 0.245430632396 –0.187159375610
15 0.092838951490 –0.087406885179 43 0.249875050286 –0.191109969290
16 0.098764842010 –0.092345127280 44 0.255307116597 –0.195554387180
17 0.102715435691 –0.095308072540 45 0.262220655537 –0.200986453491
18 0.109135150421 –0.099752490430 46 0.267652721848 –0.205924695592
19 0.113579568312 –0.101233963061 47 0.273578612369 –0.211356761902
20 0.118517810412 –0.103703084111 48 0.279504502889 –0.217776476633
21 0.121480755673 –0.106666029371 49 0.284936569200 –0.222714718733
22 0.127406646193 –0.110122798842 50 0.292343932351 –0.229134433464
23 0.132344888294 –0.113579568312 51 0.297775998661 –0.235060323985
24 0.140246075655 –0.117530161992 52 0.303701889182 –0.240986214505
25 0.146171966175 –0.122468404093 53 0.307652482862 –0.247899753446
26 0.152097856696 –0.125925173563 54 0.310615428122 –0.252837995546
27 0.159011395637 –0.130863415664 55 0.313578373383 –0.258270061857
28 0.164443461947 –0.133332536714 56 0.314072197593 –0.265183600798
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Coordinates of discrete points which define the contours
bounding the subdomains (continued)

No. x y No. x y
57 0.315059846013 –0.268640370268 109 0.381750739352 –0.519650054306
58 0.315059846013 –0.273578612369 110 0.383523581512 –0.524657664182
59 0.314072197593 –0.278516854469 111 0.385296423672 –0.529665274058
60 0.311109252333 –0.281973623939 112 0.387069265831 –0.534672883935
61 0.307158658652 –0.285430393410 113 0.388842107991 –0.539680493811
62 0.304689537602 –0.288393338670 114 0.390614950151 –0.544688103687
63 0.300200000000 –0.289300000000 115 0.397034664882 –0.544194279477
64 0.301972842160 –0.294307609876 116 0.400985258562 –0.548144873157
65 0.303745684320 –0.299315219752 117 0.406417324872 –0.555058412098
66 0.305518526479 –0.304322829629 118 0.412343215393 –0.558515181568
67 0.307291368639 –0.309330439505 119 0.416293809074 –0.560984302619
68 0.309064210799 –0.314338049381 120 0.423701172224 –0.562959599459
69 0.310837052959 –0.319345659257 121 0.428639414325 –0.563947247879
70 0.312609895119 –0.324353269134 122 0.436046777476 –0.563453423669
71 0.314382737279 –0.329360879010 123 0.442960316416 –0.561971951039
72 0.316155579438 –0.334368488886 124 0.449873855357 –0.563453423669
73 0.317928421598 –0.339376098762 125 0.457775042718 –0.562465775249
74 0.319701263758 –0.344383708638 126 0.465182405869 –0.562959599459
75 0.321474105918 –0.349391318515 127 0.472095944809 –0.561478126829
76 0.323246948078 –0.354398928391 128 0.480984780590 –0.560984302619
77 0.325019790238 –0.359406538267 129 0.491355089001 –0.560490478409
78 0.326792632397 –0.364414148143 130 0.504194518463 –0.558515181568
79 0.328565474557 –0.369421758019 131 0.516540123714 –0.556539884728
80 0.330338316717 –0.374429367896 132 0.529379553175 –0.556046060518
81 0.332111158877 –0.379436977772 133 0.538268388956 –0.554070763678
82 0.333884001037 –0.384444587648 134 0.546663400527 –0.553576939468
83 0.335656843196 –0.389452197524 135 0.555058412098 –0.551601642628
84 0.337429685356 –0.394459807401 136 0.567897841559 –0.550120169998
85 0.339202527516 –0.399467417277 137 0.579749622601 –0.548638697367
86 0.340975369676 –0.404475027153 138 0.592589052062 –0.546663400527
87 0.342748211836 –0.409482637029 139 0.603947008893 –0.544194279477
88 0.344521053996 –0.414490246905 140 0.616292614144 –0.540737510007
89 0.346293896155 –0.419497856782 141 0.625675274135 –0.538268388956
90 0.348066738315 –0.424505466658 142 0.639008527807 –0.536786916326
91 0.349839580475 –0.429513076534 143 0.647403539378 –0.533330146856
92 0.351612422635 –0.434520686410 144 0.658761496209 –0.529873377385
93 0.353385264795 –0.439528296286 145 0.670119453040 –0.525428959495
94 0.355158106955 –0.444535906163 146 0.681971234081 –0.520984541604
95 0.356930949114 –0.449543516039 147 0.692341542492 –0.517033947924
96 0.358703791274 –0.454551125915 148 0.704687147744 –0.512589530034
97 0.360476633434 –0.459558735791 149 0.713575983525 –0.509132760563
98 0.362249475594 –0.464566345668 150 0.726909237196 –0.503206870043
99 0.364022317754 –0.469573955544 151 0.737279545607 –0.498268627942
100 0.365795159913 –0.474581565420 152 0.747649854018 –0.492342737421
101 0.367568002073 –0.479589175296 153 0.759501635059 –0.486416846901
102 0.369340844233 –0.484596785172 154 0.769378119260 –0.479009483750
103 0.371113686393 –0.489604395049 155 0.779254603461 –0.473083593229
104 0.372886528553 –0.494612004925 156 0.788637263452 –0.465676230079
105 0.374659370713 –0.499619614801 157 0.800489044494 –0.456787394298
106 0.376432212872 –0.504627224677 158 0.809871704485 –0.449380031147
107 0.378205055032 –0.509634834553 159 0.820735837106 –0.440985019576
108 0.379977897192 –0.514642444430 160 0.829130848677 –0.433083832215



206 P.P. Cześnik, W. J. Prosnak

Coordinates of discrete points which define the contours
bounding the subdomains (continued)

No. x y No. x y
161 0.835550563407 –0.425676469065 213 0.978720469533 –0.034328116622
162 0.842957926558 –0.418269105914 214 0.968834206635 –0.034391678154
163 0.849871465499 –0.410367918553 215 0.958947943736 –0.034455239686
164 0.854809707599 –0.403454379612 216 0.949061680838 –0.034518801218
165 0.861229422330 –0.395553192251 217 0.939175417940 –0.034582362750
166 0.865180016010 –0.390614950151 218 0.929289155042 –0.034645924282
167 0.871599730741 –0.384689059630 219 0.919402892143 –0.034709485814
168 0.879500918102 –0.373824927009 220 0.909516629245 –0.034773047346
169 0.887402105463 –0.363454618598 221 0.899630366347 –0.034836608878
170 0.895797117034 –0.352096661767 222 0.889744103449 –0.034900170410
171 0.902216831764 –0.342220177566 223 0.879857840550 –0.034963731942
172 0.910118019125 –0.331849869155 224 0.869971577652 –0.035027293474
173 0.918019206486 –0.321973384954 225 0.860085314754 –0.035090855006
174 0.924932745427 –0.311603076543 226 0.850199051856 –0.035154416538
175 0.930858635947 –0.302714240762 227 0.840312788957 –0.035217978070
176 0.938265999098 –0.294813053401 228 0.830426526059 –0.035281539602
177 0.945179538039 –0.286911866040 229 0.820540263161 –0.035345101134
178 0.952093076980 –0.277529206049 230 0.810654000263 –0.035408662666
179 0.957525143290 –0.270121842898 231 0.800767737364 –0.035472224198
180 0.964438682231 –0.263208303958 232 0.790881474466 –0.035535785730
181 0.970364572751 –0.255800940807 233 0.780995211568 –0.035599347262
182 0.973821342222 –0.248393577656 234 0.771108948670 –0.035662908794
183 0.973821342222 –0.248393577656 235 0.761222685771 –0.035726470325
184 0.972339869592 –0.238517093455 236 0.751336422873 –0.035790031857
185 0.972339869592 –0.238517093455 237 0.741450159975 –0.035853593389
186 0.976784287482 –0.231603554514 238 0.731563897077 –0.035917154921
187 0.983204002213 –0.224196191363 239 0.721677634178 –0.035980716453
188 0.987154595893 –0.218270300843 240 0.711791371280 –0.036044277985
189 0.990611365364 –0.208887640852 241 0.701905108382 –0.036107839517
190 0.996043431674 –0.199504980861 242 0.692018845484 –0.036171401049
191 0.999994025355 –0.191603793500 243 0.682132582585 –0.036234962581
192 1.003450794825 –0.183208781929 244 0.672246319687 –0.036298524113
193 1.005426091665 –0.175307594568 245 0.662360056789 –0.036362085645
194 1.008389036925 –0.166418758787 246 0.652473793890 –0.036425647177
195 1.010364333766 –0.156542274586 247 0.642587530992 –0.036489208709
196 1.015302575866 –0.146665790385 248 0.632701268094 –0.036552770241
197 1.019746993757 –0.134814009344 249 0.622815005196 –0.036616331773
198 1.023697587437 –0.120986931463 250 0.612928742297 –0.036679893305
199 1.024191411647 –0.111604271472 251 0.603042479399 –0.036743454837
200 1.023697587437 –0.103703084111 252 0.593156216501 –0.036807016369
201 1.024191411647 –0.092838951490 253 0.583269953603 –0.036870577901
202 1.024191411647 –0.082468643079 254 0.573383690704 –0.036934139433
203 1.024685235857 –0.075061279928 255 0.563497427806 –0.036997700965
204 1.023697587437 –0.066666268357 256 0.553611164908 –0.037061262497
205 1.022216114807 –0.058271256786 257 0.543724902010 –0.037124824029
206 1.018265521126 –0.050370069425 258 0.533838639111 –0.037188385561
207 1.016290224286 –0.042962706274 259 0.523952376213 –0.037251947093
208 1.017277872706 –0.037530639964 260 0.514066113315 –0.037315508625
209 1.018265521126 –0.034073870494 261 0.504179850417 –0.037379070157
210 1.008379258228 –0.034137432026 262 0.494293587518 –0.037442631689
211 0.998492995329 –0.034200993558 263 0.484407324620 –0.037506193221
212 0.988606732431 –0.034264555090 264 0.474521061722 –0.037569754753
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Coordinates of discrete points which define the contours
bounding the subdomains (continued)

No. x y No. x y
265 0.464634798824 –0.037633316285 288 0.237250752164 –0.039095231520
266 0.454748535925 –0.037696877817 289 0.227364489265 –0.039158793052
267 0.444862273027 –0.037760439349 290 0.217478226367 –0.039222354584
268 0.434976010129 –0.037824000881 291 0.207591963469 –0.039285916116
269 0.425089747231 –0.037887562413 292 0.197705700571 –0.039349477648
270 0.415203484332 –0.037951123945 293 0.187819437672 –0.039413039180
271 0.405317221434 –0.038014685477 294 0.177933174774 –0.039476600712
272 0.395430958536 –0.038078247009 295 0.168046911876 –0.039540162244
273 0.385544695638 –0.038141808541 296 0.158160648978 –0.039603723776
274 0.375658432739 –0.038205370073 297 0.148274386079 –0.039667285308
275 0.365772169841 –0.038268931605 298 0.138388123181 –0.039730846840
276 0.355885906943 –0.038332493137 299 0.128501860283 –0.039794408372
277 0.345999644044 –0.038396054669 300 0.118615597385 –0.039857969904
278 0.336113381146 –0.038459616201 301 0.108729334486 –0.039921531436
279 0.326227118248 –0.038523177733 302 0.098843071588 –0.039985092968
280 0.316340855350 –0.038586739265 303 0.088956808690 –0.040048654500
281 0.306454592451 –0.038650300797 304 0.079070545792 –0.040112216032
282 0.296568329553 –0.038713862329 305 0.069184282893 –0.040175777564
283 0.286682066655 –0.038777423861 306 0.059298019995 –0.040239339096
284 0.276795803757 –0.038840985393 307 0.049411757097 –0.040302900628
285 0.266909540858 –0.038904546924 308 0.039525494199 –0.040366462160
286 0.257023277960 –0.038968108456 309 0.029639231300 –0.040430023692
287 0.247137015062 –0.039031669988 310 0.019752968402 –0.040493585224


