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Abstract

The paper deals with the conformal mapping of a plane, finite, simply connected
domain, representing the southern segment of the Gulf of Gdansk, enclosed from
the North by a parallel, tangential to Cape Rozewie. The segment contains the
Hel Peninsula.

The method of double decomposition, presented in Prosnak & Czesnik (2001),
is applied to the transformation of such an original domain onto a canonical one,
which consists of two separate unit discs.

The first decomposition concerns the domain which is split into two adjacent
subdomains by means of a segment of a straight line.

The second decomposition involves two holomorphic functions, each one
mapping a subdomain onto a separate disc. The decomposition consists in replacing
the function by a sequence of simple ones, so that the mapping is performed
step-wise. Each sequence starts with the Schwarz-Christoffel function, the last step
consisting in an inversion that transforms an infinite circular domain onto a disc.

The data for the problem is contained in the Annex, and is represented by two
sets of rectangular coordinates defining consecutive discrete points of the contours
bounding the subdomains.

The solution to the problem consists of:
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— two sets of functions, consecutively transforming each of the subdomains;
— the numerical values of the parameters of these functions;
— a set of figures illustrating the consecutive transformations.

The accuracy of the first, and of the penultimate transformation are given,
because only in the case of these two functions do the unknown coefficients have to
be determined by means of a suitable iterative process. The coefficients of all the
remaining functions are evaluated from exact formulae.

It should be recalled that the depth of the Gulf of Gdansk varies considerably
— from a few to 110 metres — the gradients of the bottom being rather large.
Therefore, the domain of the solution for any mathematical problem describing
the hydrodynamical phenomena occurring in the Gulf is usually taken to be
three-dimensional. Nevertheless, the paper deals with the transformation of the free
surface of the Gulf, assumed as plane. It should be emphasized that this assumption
does not mean that the whole domain of the solution has to be regarded as plane.

1. Motivation

There are two motives for undertaking, within the framework of this
paper, the task of transforming the free surface of the Gulf of Gdansk onto
a canonical domain consisting of two separate unit discs.

The first motive stems from our wish to obtain a convenient, universal
‘battle field’ for several partial differential problems describing various flows
in the Gulf, problems that differ with respect to their physical models, and,
consequently, in the sets of differential equations as well as in the bound-
ary and initial conditions. It is hoped that arriving at the solutions
of all such problems may be simplified and systematized if all domains of
solutions possess a common feature, represented by a regular free surface
consisting of discs.

Fig. 1. The part of the Gulf of Gdansk considered, and its decomposition into two
subdomains
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The second motive stems from our intention to check whether the
method of transformation published earlier in Prosnak & Cze$nik (2001)
could also be applied to domains with deep indentations, such as the Hel
Peninsula (Fig. 1).

The method to be applied in the paper is based on two kinds of decom-
position. The first one involves decomposition of the given, original domain
into subdomains, which are then transformed independently onto discs.
The second kind of decomposition concerns every mapping function which
performs a conformal transformation of a single subdomain. The function is
regarded as a sequence of simple auxiliary mapping functions, performing
step-by-step the transformation of the subdomain under consideration onto
the unit disc.

Application of the method to the domain representing the Vistula
Lagoon (Prosnak & Czesnik 2001) yielded quite satisfactory results. It is
obvious, however, that this solitary success does not suffice to formulate
general conclusions as far as the method is concerned. Further applications,
differing in geometrical shape of the domains, are needed for this purpose.

2. Definition of the primitive domain

The plane, finite, simply connected domain considered in this paper
(Fig. 1) represents the free surface of the Gulf of Gdansk, bounded by the
shoreline, and — in the North — by a parallel, tangential to Cape Rozewie.

Such a definition of the domain can be found in Druet & Jankowski
(1983).

The domain has to be defined by discrete points distributed along its
boundary.

Fig. 2. The two subdomains shown separately
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We have prepared the set of such points with the aid of the map
published in Ciotkosz & Ostrowski (1995), which is based on satellite
photographs. The number of points defining the segment of the shoreline
is equal to 334. There are 100 points distributed on the parallel. Finally,
the dashed rectilinear segment (Fig. 1) dividing the domain into two
subdomains, is defined by means of 50 equidistant points. Eventually, the
numbers of the points defining the two contours shown in Fig. 2 turn out
to be 227 and 310 respectively. The values of the rectangular coordinates of
these points are set out in the Annex, for each subdomain separately.

The five characteristic points A, B, C, D, E denoted in Figs. 1 and 2 can
be identified by means of the numbers contained in the Tables, namely:

A — No. 209 in Table A-IT

B — No. 1 in Table A-II

C — No. 63 in Table A-II, and No. 1 in Table A-I

D — No. 114 in Table A-II, and No. 176 in Table A-I
E — No. 56 in Table A-I.

The sets of points defining the boundaries of the subdomains are stored
in the files ZGNpuck.dan and ZGNgda.dan — as indicated in the Annex.

3. The background of the method of transformation

The method of transformation applied in this paper is identical with the
one introduced in Prosnak & Cze$nik (2001), where the general features of
the method as well as its most important details are presented. Nevertheless,
for the sake of completeness they should be briefly recalled in this section.

3.1. Existence, univalence and standard representations
of the mapping functions

Let us consider in the complex z-plane a given finite, simply connected
domain, bounded by a Jordan curve. Let us consider also — in another
complex plane denoted ¢ — a disc with a given radius A. The theory of
conformal mapping ensures the existence and univalence of a holomorphic
function

z=f in(C)v (1)
which conformally transforms the disc onto the given domain.

The theory also ensures that the mapping function (1) can always be
represented by the power series
n

J

2= Q) = Ticn (5) 2)
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where
Ch; n=0,1,2,... (3)

stand for complex coefficients of the series. If A = 1, then the disc is called
the unit disc. The series (2) is convergent in the whole disc as well as on
the bounding circle. The series (2) will be called the standard form of the
function (1) in further considerations.

Analogous properties concern an infinite, simply connected domain,
represented by the whole z-plane with a cut-out, also bounded by a Jordan
curve. In this case, the standard mapping function has the following form:

n

2= fuxl) = G1C+ gjOGn (g) (4)

where a denotes the radius of the circle, bounding the ‘hole’ in the (-plane.
The symbols

Gn; n=-1,0,1,2,3,... (5)

denote complex coefficients of the series (4), the series being convergent in
the whole, simply connected, infinite exterior of the circle, and on the circle
itself. It should be recalled that the point ( = co belongs to the (-domain
as well as the circle. Its image z = oo belongs, consequently, to the z-plane
as well as the Jordan curve.

3.2. General remarks on the determination of the coefficients

Effective conformal mapping of the interior or exterior of the circle onto
a given corresponding domain may be thought of as determination of the
complex coefficients (3) or (5), respectively. Unfortunately, the theory of
conformal mapping disappoints us at this crucial point: it does not deliver
a general algorithm performing this task for domains of arbitrary shapes.
True, such algorithms do exist, but as a rule they work satisfactorily only
for particular classes of domains, e.g. for the exteriors of airfoil sections.

We will confine ourselves in the further considerations to two algorithms
for determining coefficients (3) and (5), respectively, developed by ourselves,
and published in Prosnak & Klonowska (1996). The experience with the
application of these algorithms leads to the following conclusions.

I. The series (4) pertaining to infinite domains converge — under
comparable conditions — more quickly than the series (2), which
pertain to finite domains. Moreover, the same accuracy of mapping
may be obtained with fewer coefficients.

I1. Both the series (2) and (4) are unsuitable for describing boundaries
possessing discontinuities of the tangent. In such cases a large number
of terms in the corresponding series has to be retained in order to
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obtain sufficient accuracy of the mapping. Moreover, the convergence
is usually poor, and very often the series diverge. Cusps pointing
towards the outside of the domain are particularly difficult in this
respect.

III. Determination of coefficients (3) of the series (2) is rather troublesome
in cases where the domain is elongated. Again, a large number of terms
must be retained, which may lead to unacceptable numerical errors.
On the other hand, determination of the coefficients (5) is equally easy
(or equally difficult) for elongated boundary contours as well as for the
ones not differing too much from a circle.

The conclusion to be drawn from these facts is very simple: the
efforts to determine ‘by force’ the coefficients (3) or (5) for geometrically
rather complicated shorelines, characteristic of natural bodies of water, are
pointless. ‘By force’ means here ‘by retaining more and more terms’ in the
series.

The theoretical explanation of the behaviour presented in I, II, III is
fairly obvious, and will be left aside.

In any case, the need arises for a means of circumventing the difficulties
just outlined.

The general idea of such a means has already been presented in our
earlier paper (Prosnak & Czesnik 2001): it consists precisely of two kinds of
decomposition.

The first kind is applied to a given finite domain, which is replaced
— by means of suitable cuttings — by a sum of subdomains, every one of
them being geometrically simpler than the originally given one. This means
that the boundary line of any subdomain approximates a circle better than
the given one. A typical example of such a decomposition is shown in Figs. 1
and 2.

Next, every subdomain is regarded as entirely separate from the
remaining ones, and a complex mapping function is sought which transforms
a disc onto the selected subdomain. Assuming that the subdomain and the
disc are located in complex planes z and (, respectively, the general form of
the unknown mapping function can be written as

2= 1(0). ©)
The function, inverse with respect to (6), i.e.:
¢=[f"'(2) = F(2) (7)

will be also taken into account in further considerations.

Usually, the subdomain is still too complicated geometrically — in
order to be transformable directly onto the interior or exterior of a circle
— by means of the series (2) or (4), respectively. Hence, the task of
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determining the function (7) has to be performed step-wise. In other words
— it has to be decomposed. In such a manner one arrives at the second kind
of decomposition, which — unlike the first kind — consists in determining
a set of intermediate transformations:

G="r(z); G=RG); - (=Fk((k-), (8)

where successive approximations of the considered subdomain appear in the
complex planes:

S ¢ S S (9)
It should be understood that the considered subdomain belongs to the
z-plane, and the disc — to the (-plane.

In the present paper it is assumed that all functions (8) except two are
represented by simple, exact formulae, containing complex constants, which
are either known, or can be evaluated from known relations. One of the
two remaining functions is represented by the series (4), and its unknown
coefficients have to be determined by means of the iterative process governed
by the algorithm published in Prosnak & Klonowska (1996). The second
one of the two functions is identical with the Schwarz-Christoffel function
(Prosnak & Czesnik 2001), and it will be recalled in the next subsection.

The remaining, ezact auxiliary mapping functions are discussed in
Prosnak & Czeénik (2001), and the reader is referred to this source. In
any case, the functions are very simple, and they consist mainly in shifting,
turning, and scaling of the considered intermediate subdomain as well as
of its inversion. Also the Joukowski and the Kdrmdn-Trefftz functions are
exact intermediate functions. They will be not recalled — for the sake of
brevity.

Just one of the auxiliary functions was not presented in our former paper
(Prosnak & Czesnik 2001): it corresponds to the simple problem, illustrated
in Fig. 3, which can be formulated as follows.

y @ n ©

22 &

7] Cl

Fig. 3. Transforming a chord (z1, 2z2) into a given one ({1, (2)
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Two points — 21 and z — of a domain situated in the complex z-plane are
given. A formula is sought to transform the domain — by the use of shifting,
turning and scaling — into another one which is located in the (-plane in
such a manner that the segment (21, z2) maps into another one ({1, (2),
which is also given.

By introducing the auxiliary notation

D = |z — 21]; a = Arg(zg — 21);

d =[G —C1l; B = Arg(¢2 — (1),

one can easily arrive at the relation
G — G =Wi(z—21),
where
o) .

Hence, the sought-for image ¢ of an arbitrary point z will be given by the
formula

¢=C+W(z—z). (10)

Subdomains transformed by means of (10) can easily be made to
comply with subroutines for the auxiliary functions of Joukowski and
Kdarmadn-Trefftz.

3.3. The set of functions performing the step-wise
transformation of a finite subdomain

In order to simplify the references, which will be used in the description
of the step-wise transformation of any one of the two subdomains shown
in Fig. 2, the corresponding formulae for the functions, representing
consecutive steps of the transformation, will be recollected in the present
subsection. Explanations of the formulae will be as concise as possible, the
reader interested in details being referred to Prosnak & Cze$nik (2001) and
to Prosnak & Klonowska (1996).

(1) The Schwarz-Christoffel function

CN
z =Ko+ K3 /H (I—Ce*i6n>pn d¢ (11)
&=t

conformally maps the closed unit disc onto the closed interior of a given
polygon containing N vertices, which are defined by means of the given
complex numbers:

21, 29, ceey ZN- (12)
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Fig. 4. Conformal mapping of a disc onto the interior of a polygon

The exponents p,, depend on the inner angles «,, of the polygon:

Py =2 n=1,2,.., N, (13)
m
and have to be considered as known. The remaining exponents:
On; n=12 .., N (14)

represent images of the vertices on the circle bounding the unit disc, and
are referred to as parameters of the Schwarz-Christoffel function (11). In the
case of regular polygons they can be evaluated very easily. Otherwise, they
have to be determined as a solution of a nonlinear ‘parameter problem’ by
means of an iterative process (Prosnak & Klonowska 1996). The function
(11) can be developed into a series:

K
2= Bk, (15)
k=0

where the coefficients By depend ezplicitly on the constants of (11)
— in particular on the parameters (14). The respective relations have been
derived in the book just cited.

The inverse of the function (15) can be written formally as

K ~
(=Y B (16)
k=0

It plays an important role as one of the auxiliary functions (8). In the present
paper as well as in the previous one (Prosnak & Czes$nik 2001) it is evaluated
as a numerical solution of (15) with respect to (, so that computation of
the coefficients B is not necessary.

(2) The Joukowski function

c2
-

¢

transforms circles onto ellipses or onto so-called Joukowski profiles. Very
often, the function

z2=(+ ¢ — real (17)
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¢ = g + (g)Q — e, (18)

inverse with respect to (17), is applied. The Joukowski profiles possess one
or two cusps, characterized by the angle § = 0 between tangents.

Only two particular forms of the Joukowski profile have been applied in
calculations pertaining to the present paper, viz. the rectilinear segment,
and the arc of the circle. These two cases will be distinguished in further
considerations by means of the indices s or a, respectively, following the
symbol of the Joukowski function — see Tables 2, and 4.

(3) The Kdrmdn-Trefftz function

z—2c ¢—c\™
= ; 0 2; — 1 19
T2 <C+C) : <m <2 ¢ — real, (19)

represents a generalization of (17). It reduces to this particular function
when m = 2. The relation between the exponent m and the angle § at the
cusp between the two tangents has the following form:

7r
For m = 2, the angle § at the cusp is equal to zero. For m = 0, the angle
d equals 2.
More exactly, the profile is conver (see Fig. 7 — left) or ‘indented’

(see Fig. 13 — left), if
0<dé<my < <2m,

respectively.

The Kdrmdn-Trefftz function is applied in the present paper for the task
of ‘unbending’ the boundary of the considered domain. Such ‘unbending’
may also be necessary in the case when — instead of the cusp — a very large
curvature of the contour appears.

(4) Inversion is defined by means of the following function:

1
R (21)
or by its inverse:
1
= -, 22
(= (22)

It is usually applied to transform a finite domain onto an infinite one or
vice versa — in order to enable one to use the series (4) instead of (2)
— in such a particular step of the whole set of consecutive mappings, which
corresponds to the transformation of the contour bounding the approximate
domain onto a circle. The advantage stemming from such an approach was
explained in the previous subsection.
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(5) Turning the contour by the angle a:

z = (e a — real. (23)
(6) Shifting the contour:
z=c+(; ¢ — complex. (24)

(7) Scaling the contour:
z=c(; ¢ — real. (25)

(8) Locating a given chord of the contour into a desired position is
performed by means of the function (10), and will be referred to by the use
of this symbol.

It should be stressed that — besides the functions (10)—(25), each one
corresponding to a single step of the whole mapping (6) — some operations
usually have to be performed which stem from the following properties of
the boundary of the domain:

I. The boundary is defined by means of separate points which are
numbered consecutively, starting from a properly selected one. The
results of such definitions are given in Tables A-I and A-II.

II. The boundary represents a contour. Therefore, the direction assumed
on the boundary has to comply with the direction in which numbers
of the consecutive points increase.

The first operation consists in changing the number of the first point of
the contour, and as a consequence, ‘renumbering’ the remaining ones. It will
be referred to as

changing the origin. (26)

The direction of the contour is not changed during this operation.

On the other hand, if the direction of a contour is reversed, which
happens as a ‘by-product’ of inversion, the proper direction has to be
restored. This second operation will be referred to as:

changing the direction. (27)

Suitable procedures of the computer programs perform both operations
(26), (27) automatically — for values of parameters introduced by the user
from the keyboard.

4. Results of conformal mapping of the Gulf of Gdansk

The results consist of two parts, corresponding to two subdomains,
denoted I and II in Figs. 1 and 2. In accordance with the applied method,
each domain is transformed independently of the other one. Consequently,
the results are presented in two independently subsections.
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Each subsection contains three elements pertaining to the applied
computer programs.

The first element consists of a Table containing values of vertices, and
the parameters of a polygon circumscribing the domain under consideration.
The parameters represent the solution of the corresponding parameter
problem for the Schwarz-Christoffel function. The values of the errors are
given in the Table, too.

The parameter problem is solved by means of the program denoted
B_II_5n.pas. The same program applies the function, inverse with respect
to (15), and denoted (16) — to transform an original subdomain onto one
circumscribed by the unit circle.

The second element of any one of the two following subsections consists
of another Table, which contains the list of functions and operations
describing consecutively all the auziliary transformations of the subdomain.
The Table has been prepared by means of the program VisBay78. One row
of the Table refers to a single transformation, which is indicated by its
symbol, and by the symbols (,, (,+1 of two complex planes that contain
the subdomain before and after the transformation, respectively. Some of
the transformations are illustrated by means of Figures, each one showing
two such consecutive approximations of the subdomain under consideration.
The Table starts with the approximation, representing the finite subdomain,
circumscribed by the unit circle, as shown on the right-hand side of Fig. 5.
It terminates with the infinite one, which will be dealt with by the program
VE2.pas.

Hence, the third element of the subsection contains final transformations
and results, delivered by the program just mentioned, which performs the
following tasks.

I. Conformal mapping of the last, approximate, infinite domain, onto
the infinite exterior of a circle; this task reduces to the determination
of the radius a of the circle as well as of the coefficients (5) of the
function (4).

II. Inversion (21) of the exterior thus obtained onto the quasi-disc.

III. Rescaling of this result in order to arrive at a contour resembling the
unit circle.

IV. Change of direction (27) of the contour, i.e. ascribing new numbers
to the points defining the contour. The results contain values of
the coefficients (5); the data applied for arriving at these values is
also given. The final result, however, is presented in graphical form.
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It shows the unit circle as well as the contour delivered by the
program VE2.pas. The difference between these two lines illustrates
the cumulative error of the whole set of consecutive conformal
mappings.

4.1. Subdomain No. 1

Subdomain I, shown in Figs. 1 and 2, is rotated by means of the function
(23) through the angle o = —30°, and a nonagon is selected, circumscribing
the so-turned subdomain. The situation is illustrated at the left-hand side
of Fig. 5, wherein the subdomain is shaded, and the nonagon is denoted by
means of the thin solid line.

® ©

Fig. 5. Transforming of the initial subdomain No. 1 by means of the series (16),
which is inverse with respect to the series (15), stemming from the development of
the Schwarz-Christoffel function (11)

The third contour visible in this Figure represents the approximate
nonagon, calculated by means of the function (15), which represents the
development of the Schwarz-Christoffel function (11) into a series. Only
K =150 terms have been retained in the series.

Rectangular coordinates of the vertices of the nonagon as well as solution
to the corresponding parameter problem are given in Table 1. The errors
of the solution refer to the ratios of consecutive sides of the polygon and
its circumference. They are defined as the differences between two ratios
corresponding to the given polygon and to its approximation, respectively.

The relatively small errors concerning the parameters are worthy of
notice.
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Table 1. Vertices and parameters of the nonagon

n 1 2 3 4 5

Ty 0.1500 0.0160 ~0.0500 ~0.0220 ~0.0644

Yn ~0.3000 ~0.0700 -0.1320 -0.1951 -0.2583

6, 152.1° 199.8° 200.6° 203.7° 213.3°

error  —-3.2x107*  -6.3x107° -1.7x107* -7.9x107* -7.8x107¢
n 6 7 8 9

Tn -0.0289 ~0.1250 0.0320 0.0740

Yn -0.2674 ~0.4850 ~0.6800 ~0.6760

6, 219.7° 339.8° 359.7° 0.0°

error ~7.3x107*  -1.2x1073%  -2.3x1073 1.1x1016

It should be stressed that the number of vertices, and their positions
with respect to the considered subdomain, depend on the researcher.

The result of transformation of the shaded domain, shown in the
left-hand-side of Fig. 5, and obtained by means of the inverse (16)
with respect to the series (15), appears in the right-hand side of this
Figure. The circle represents the exact counter-image of the nonagon: it
could be determined only by means of ezact inversion with respect to
the function (11).

The consecutive approximate subdomains are listed in Table 2. Some
of them are illustrated by means of Figures 6-9. The symbols L and H
in the Table define the arc to be transformed into the ‘full’ circle. The
fundamental transformation of the finite subdomain onto the infinite one is
shown in Fig. 6.

©)

Fig. 6. Transformation of the finite domain onto the infinite one by means of
inversion (22)



Table 2. List of consecutive transformations of subdomain No. 1

No. Function or operation Complex planes Given values of parameters Figure
independent dependent
1 inversion (22) (1 Co Fig. 6.
2 changing the direction (27) —
3 changing the origin (26) — — [133] = [1] e
4 locating a chord (10) Ca (3 [204,1]—[(-30,0), (2,0)] —
5 turning the contour (23) (3 (4 a = —0.8203488° —
6 shifting the contour (24) 4 Cs [1]—(2,0) —
7 Karmdn-Trefftz function (19) (s Co 0 = 72.874598° Fig. 7.
8 locating a chord (10) e Cr [94,6]—[(—200,0), (2,0)] S
9 turning the contour (23) Cr (s a = 1.0350294° e
10 shifting the contour (24) Cs o [6]—(2,0) —
11 Kdrmdn- Trefftz function (19) o (10 0 = 273.4949638° —
12 changing the origin (26) e e [211] = [1] e
13 locating a chord (10) C10 C11 [16,84]—[(-2,-0.6), (2,-0.6)]
14 Joukowski function (18)s (11 (12 Fig. 8.
15 locating a chord (10) C12 C13 [213,224]—[(-1,-0.05), (1,-0.05)] —
16 Joukowsk: function (18), (13 C1a L=14,H=02 Fig. 9.
17 locating a chord (10) C14 C15 [16,33]—[(-1,-0.05), (1,-0.05)] —
18 Joukowski function (18), (15 (16 L=16,H =04 S
19 locating a chord (10) C16 Ci7 [105,3]—[(-0.5,0), (0.5,0)] e
20 changing the origin (26) e — 3] = [1] R

UTBWIOP [eJTUOURD ® OJUO suepr) jo jnr) oy} jo Surddewr Jeuriojuo))

61
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Application of the Kdrmdn-Trefftz function (19) to the local unbending
of the contour can be seen in Fig. 7.

@)

N\~ N\

Fig. 7. Unbending by means of the Kdrman-Trefftz function (11)

@) &

N
AL

Fig. 8. Stretching by means of the Joukowski function (18)

Figures 8 and 9 show local ‘rectifications’ of the contour, performed by
means of the Joukowski function (17).

The final element of the transformations applied to the subdomain No. 1
is shown in Fig. 10. The unit circle is denoted in the Figure by means of the
dashed line.

The quasi-disc corresponding to the subdomain is bounded by the solid
line, and its interior is shaded. The maximal distance between the two lines,
i.e. the cumulative error of the set of transformations Er = 0.0058.
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&

Fig. 9. Unbending by means of the Joukowski function (18)

C ©

Fig. 10. Final result: the
unit disc representing sub-
domain No. 1

One rather important detail of the computations should be mentioned.
It concerns the determination of the constants of the standard function (4).
The relevant data are

N = 198; m = 1000; prec =107Y; it = 30, (28)
where N denotes the number of terms in the series; m — number of nodes
appearing during integration; prec — index of ‘accuracy’, controlling the
termination of the iterative process; it — number of iterations. The numerical
values of the coefficients

a; Gp; n € [—1,198] (29)
are not included in the present paper for the sake of conciseness. However,

they can be obtained from the first author, at the Institute of Oceanology
PAS.
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4.2. Subdomain No. 2

The preliminary transformation of the subdomain, denoted by the
number II in Figs. 1 and 2, involves the application of the function (10) to
the points numbered 1 and 209 in Table A-II. These points are translated
to the following ones:

(—0.5,0.2) (0.5,0.2). (30)
The result can be seen on the left-hand-side of Fig. 11.

© ©

-

Fig. 11. Transforming the initial subdomain No. 2 by means of the series (16),
which is inverse with respect to the series (15), stemming from the development of
the Schwarz-Christoffel function (11)

Similarly, as in the former subsection, a hexagon is selected, circumscrib-
ing the domain, as shown in Figure just referred to. Vertices, and parameters
of the hexagon are collected in Table 3.

Table 3. Vertices and parameters of the hexagon

n 1 2 3 4 b 6
Tn 0.540 -0.540 -0.480 -0.133 0.250 0.470
Yn 0.210 0.250 0.040 -0.360 -0.280 -0.025
0 5.5° 97.0° 102.4° 184.7° 317.7° 0.0°

error —4.0x107% —6.3x1073 3.8x107* -2.5x1073 -1.0x107% -2.2x10°16

This fundamental result does not need any comment: it is wholly
analogous to Table 1.
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The domain, representing the transformation of the domain located
inside the polygon, is shown on the right-hand-side of Fig. 11 together
with its circumscribing circle. As before, the finite domain so obtained is
transformed into an infinite one by means of inversion (21), as illustrated
in Fig. 12.

@) @)
™ ]

Fig. 12. Transformation of the finite domain onto the infinite one by means of
inversion (22)
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-
N

Fig. 13. Local rectification by means of the Kdrmdn-Trefftz function (19)

The consecutive transformations yielding more and more regular approx-
imations of the subdomain under consideration are collected in Table 4.



Table 4. List of consecutive transformations of subdomain No. 2

No. Function or operation Complex planes Given values of parameters Figure
independent dependent
1 shifting the contour (24) G G2 [1]—(-0.3, 0.3) —
2 inversion (22) Co (3 Fig. 12
3 changing the direction (27) —
4 locating a chord (10) (3 Ca [1,50]—[(-2,0), (150,0)] —
5 turning the contour (23) C4 (s a=5° —
6 shifting the contour (24) Gs Co [1]—(-2,0) —
7 Kdrmdn-Trefftz function (19) Co Cr 60 = 320° —
8 turning the contour (23) (7 (s a =-5° —
9 shifting the contour (24) s o [1]—(-2.1,0) —
10 Kdrmdn-Trefftz function (19) Co C10 0 = 240° Fig. 13
11 locating a chord (10) C10 C11 [270,248]—[(-50,0), (2,0)] S
12 turning the contour (23) (11 (12 a = 0.21838558° —
13 shifting the contour (24) C12 C13 [248]—(2,0) —
14 Kdrmdn- Trefftz function (19) (13 (14 6 = 277.8985515° e
15 locating a chord (10) C14 C15 [27,264]—[(-2,0.52), (2,0.52)] —
16 Joukowski function (18) (15 C16 Fig. 14
17 locating a chord (10) C16 Ci7 [262,43]—[(-0.5,0), (0.5,0)] e
18 changing the origin (26) —_— E— [43] = [1] —

Q61T

eusord A Nusez) d°d
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Some of them are illustrated by means of the corresponding Figures,
e.g., the unbending of a contour by means of the Kdrmdn-Trefftz function
(19) is shown in Fig. 13. Similarly, application of the Joukowski function
(17) in order to remove an indentation of the contour is shown in Fig. 14.

@ H\

L

Fig. 14. Stretching by means of the Joukowski function (18)

The final result of the set of transformations, presented in this subsec-
tion, is shown in Fig. 15.

®

Fig. 15. Final result: the unit disc in the {-plane

As in Fig. 10, the unit circle is shown by means of the dashed line.
The contour of the quasi-disc is denoted by means of the solid line, and
its interior is shaded. The maximal cumulative error of the transformation
Er = 0.0050, i.e. even slightly less than in the case of subdomain No. 1.
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The data concerning the intermediate mapping function (4), analogous
to (28), consist of the following numbers:

N = 198; m = 1000; prec =108, it = 25. (31)

The constants of this function, like (29), are also available at the Institute
of Oceanology, from the first author.

5. Comments

L.

II.

I11.

IV.

Three computer programs, designated B_II_5n.pas, VisBay78 and
VE2.pas, were used in order to arrive at the presented results. The
first one solves the parameter problem of the Schwarz-Christoffel
function, and was borrowed from Prosnak & Klonowska (1996). All
three programs can be obtained by e-mail from the first author of this
paper.

The computer program VisBay78 is written in Delphi. Therefore,
the structure of its name differs from that of the other two programs
— B_II_5n.pas and VE2.pas — which are written in Borland Pascal.

Data for the latter two programs have to be introduced by the user
from the keyboard. Afterwards, the programs run automatically from
start to finish.

On the other hand, the program VisBay78 is designed as a ‘con-
versational’ one. It needs continual intervention on the part of the
user, who has to determine again and again the kinds of consecutive
transformations, and the values of the pertinent parameters.

In order to avoid any misunderstanding, it should be emphasized again
that confinement of our considerations to a transformation of the
plane domain, representing the water level of the Gulf of Gdansk,
definitely does not mean that the domain of a solution to a problem
posed in the Gulf also has to be plane. Such a restriction is neither
meant nor implied in any way. It should be rather understood that
the original, three-dimensional domain of the Gulf transforms into two
circular cylinders with uneven bottoms — accordingly to the shape of
the bottom of the Gulf.

Tables A-I and A-II, containing coordinates of discrete points which
define the boundaries of the two subdomains may seem superfluous.
However, without these data our results could not be checked by
an independent researcher, either by the use of our method or of
a different one, such as that by Driscoll (1996).

It should be kept in mind that the two discs representing images of
the subdomains remain interconnected. Namely, in the circumference
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of each circle bounding the disc, an arc can be distinguished, which
represents the image of the rectilinear segment (CD in Figs. 1 and 2)
separating the subdomains. Hence, any point of the set defining
one arc has its known, corresponding ‘twin’ which belongs to the
set defining the second arc. This allows one to formulate — in the
canonical domain consisting of the two discs — the necessary continuity
conditions which will occur e.g. in differential problems posed in this
domain.

V. The described conformal mapping is not aimed at the construc-
tion of grids. It has been derived rather with the application of
analytical-numerical methods in view, where the grid does not appear
at all. Nevertheless, after mapping the obtained discs onto squares, one
can easily arrive at the rectangular grid, so convenient when a discrete
method of solution has to be applied, in particular, the method of finite
differences.

The additional transformation of the disc onto the square can
be performed by a number of mapping functions, the obvious one
being the Schwarz-Christoffel formula. In this case the solution
of the parameter problem follows instantaneously from geometrical
properties of the square — cf. (11).
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Annex
Coordinates of discrete points which define the contours
bounding the subdomains

Table A-I.

Z,
e

OO Ut W

O W WNDNDNDNDNDDDNDNN N e e e e s
NP OOOIDNUUR WNFEF OO ULR WNEOO

33

X

0.300200000000
0.297775998661
0.294813053401
0.293825404981
0.291356283930
0.287405690250
0.282961272360
0.280985975519
0.278023030259
0.275060084999
0.272590963949
0.269628018688
0.266665073428
0.264195952378
0.259257710277
0.252837995546
0.248393577656
0.245430632396
0.242467687135
0.240492390295
0.236047972405
0.232097378724
0.228146785044
0.223208542943
0.218270300843
0.213825882952
0.208887640852
0.203455574541
0.199998805071
0.197035859811
0.194566738760
0.189134672450
0.185184078769
0.179258188249
0.173332297728
0.166912582997
0.160986692477
0.152591680906
0.146665790385
0.140739899865
0.132838712504
0.127406646193
0.121480755673
0.116048689362
0.111110447262
0.105678380951
0.100246314640
0.094814248330
0.088888357809

Subdomain No. 1
file: ZGNpuck.dan; number of points: 227.

y
—0.289300000000
—0.287405690250
—0.282467448150
—-0.277529206049
—0.271109491318
—0.269134194478
—0.269134194478
—0.263208303958
—-0.255800940807
—0.248887401866
—0.242961511345
—-0.238023269245
—0.233578851354
—-0.228640609254
—0.223208542943
—0.213825882952
—-0.206912344012
—0.202467926121
—-0.196048211391
—0.192591441920
—0.188147024030
—0.184690254559
—-0.182221133509
—0.178764364039
—0.175801418778
—0.175307594568
—0.174319946148
—0.172838473518
—0.170863176678
-0.165431110367
—0.159505219847
—0.154566977746
—-0.150616384066
—0.146171966175
—0.142715196705
—0.139752251445
—-0.136295481974
—0.130863415664
—0.128394294613
—0.126418997773
—-0.122962228303
—0.118517810412
—0.115061040942
—0.111110447262
—0.108147502001
—0.105678380951
—-0.102221611481
—0.098271017800
—0.093826599910

X

0.084443939919
0.078518049398
0.072098334668
0.067160092567
0.062715674677
0.058760000000
0.057000000000
0.056000000000
0.055802135736
0.053826838896
0.053826838896
0.054320663106
0.049876245215
0.045431827325
0.041975057854
0.040493585224
0.040493585224
0.041481233644
0.043456530485
0.048888596795
0.055308311526
0.059258905206
0.063703323097
0.068641565197
0.072592158878
0.077530400978
0.080987170448
0.086913060969
0.087900709389
0.084443939919
0.083950115709
0.085431588339
0.083950115709
0.082962467289
0.083950115709
0.088394533599
0.091357478860
0.089876006229
0.088888357809
0.088394533599
0.087900709389
0.093332775700
0.099258666220
0.104690732531
0.109628974631
0.114406623220
0.114666048669
0.113579568312
0.113579568312

y
—0.0903698304:39
—0.085925412549
—-0.082468643079
—-0.077530400978
—-0.075555104138
—-0.071960000000
—0.071700000000
-0.072900000000
—0.076542752558
—0.081480994659
—0.088394533599
—-0.095308072540
—-0.100740138851
—-0.107653677791
—0.114567216732
—0.121974579883
—0.128888118823
—-0.135307833554
—0.139258427235
—0.142221372495
—-0.144690493545
—0.147159614595
—0.152097856696
-0.159011395637
-0.165431110367
—0.169875528258
—0.171850825098
—0.176295242988
—0.178764364039
—-0.183208781929
—-0.190616145080
—0.199998805071
—-0.204937047171
-0.211356761902
—-0.218270300843
—0.224196191363
—0.228146785044
—0.235554148195
—-0.240492390295
—0.246418280816
—0.248887401866
—0.248887401866
-0.246912105026
—-0.245924456606
—0.243455335555
—0.241265668015
—0.244897624308
—-0.250862698706
—0.254813292387
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Coordinates of discrete points which define the contours

bounding the subdomains (continued)

No.

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

X

0.113085744102
0.114567216732
0.116542513572
0.119505458832
0.122962228303
0.127406646193
0.131357239874
0.135307833554
0.138270778814
0.140246075655
0.140739899865
0.142715196705
0.143702845125
0.144196669335
0.144690493545
0.144690493545
0.145184317755
0.146171966175
0.147159614595
0.145678141965
0.140739899865
0.140246075655
0.143209020915
0.146665790385
0.148641087226
0.151110208276
0.152097856696
0.151110208276
0.149134911436
0.147159614595
0.149134911436
0.150122559856
0.151604032486
0.154566977746
0.158517571427
0.162468165107
0.165431110367
0.170369352468
0.173826121938
0.178270539829
0.183208781929
0.188147024030
0.192097617710
0.197529684021
0.203949398751
0.210862937692
0.217776476633
0.226171488204
0.232591202934
0.237529445035
0.237035620825
0.239010917665

y
-0.261726831327
—0.268146546058
—0.274072436579
—0.279998327099
—0.285924217620
—0.289874811300
-0.296294526031
—-0.301232768131
—-0.305677186022
—-0.312590724963
—0.321479560744
—0.476046538490
—-0.330862220735
—0.335800462835
—0.342714001776
—0.347158419666
—0.352590485977
—-0.357034903867
—0.362960794388
—-0.369380509119
—-0.371849630169
—0.377281696479
—-0.382219938580
—0.387158180680
—-0.393084071201
—0.397034664882
—0.403454379612
—0.408392621713
—0.414318512233
—0.421725875384
—0.429133238535
—0.435552953266
—0.441478843786
—0.447898558517
—0.453824449037
—0.458268866928
—0.462713284818
—0.467651526919
—-0.471602120599
—0.476046538490
—0.480490956380
—0.484935374271
—0.487404495321
—0.490367440581
—0.490861264791
—0.490367440581
—0.489873616371
—0.493330385842
—0.496293331102
—0.500737748992
—-0.509132760563
—0.515058651084

No.

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

X

0.244442983976
0.251356522916
0.256294765017
0.261726831327
0.268146546058
0.274072436579
0.279504502889
0.284442744990
0.290368635510
0.297282174451
0.302714240762
0.308146307072
0.313084549173
0.319010439693
0.326417802844
0.332837517575
0.339751056516
0.344689298616
0.351109013347
0.357034903867
0.363948442808
0.371355805959
0.380244641740
0.384689059630
0.388639653311
0.390614950151
0.388842107991
0.387069265831
0.385296423672
0.383523581512
0.381750739352
0.379977897192
0.378205055032
0.376432212872
0.374659370713
0.372886528553
0.371113686393
0.369340844233
0.367568002073
0.365795159913
0.364022317754
0.362249475594
0.360476633434
0.358703791274
0.356930949114
0.355158106955
0.353385264795
0.351612422635
0.349839580475
0.348066738315
0.346293896155
0.344521053996

y
—-0.519503068974
—-0.522466014235
—0.524935135285
—-0.527898080545
—0.529379553175
—0.529379553175
—-0.530861025806
—-0.531354850016
—0.531848674226
—0.534317795276
—-0.536786916326
—-0.540737510007
—-0.545675752107
—0.549626345787
-0.551601642628
—0.554564587888
—0.555552236308
-0.556046060518
—0.558021357358
—0.557033708938
—-0.559009005778
—-0.559996654199
—0.559009005778
—0.553576939468
—-0.550120169998
—0.544688103687
—-0.539680493811
—0.534672883935
—0.529665274058
—0.524657664182
—-0.519650054306
—0.514642444430
—0.509634834553
—0.504627224677
—0.499619614801
—-0.494612004925
—0.489604395049
—0.484596785172
—0.479589175296
—0.474581565420
—0.469573955544
—0.464566345668
—0.459558735791
—0.454551125915
—0.449543516039
—0.444535906163
—0.439528296286
—0.434520686410
—0.429513076534
—0.424505466658
—0.419497856782
—0.414490246905
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Coordinates of discrete points which define the contours

bounding the subdomains (continued)

No. X

203  0.342748211836
204  0.340975369676
205  0.339202527516
206  0.337429685356
207  0.335656843196
208  0.333884001037
209 0.332111158877
210 0.330338316717
211  0.328565474557
212 0.326792632397
213  0.325019790238
214 0.323246948078
215 0.321474105918

Table A-II.

y
—0.409482637029
—0.404475027153
—0.399467417277
—0.394459807401
—0.389452197524
—0.384444587648
—0.379436977772
—0.374429367896
—0.369421758019
—0.364414148143
—-0.359406538267
—0.354398928391
—0.349391318515

Subdomain No. 2
file: ZGNgda.dan; number of points: 310.

No.

216
217
218
219
220
221
222
223
224
225
226
227

X

0.319701263758
0.317928421598
0.316155579438
0.314382737279
0.312609895119
0.310837052959
0.309064210799
0.307291368639
0.305518526479
0.303745684320
0.301972842160
0.300200000000

y
—0.344383708638
—-0.339376098762
—0.334368488886
—-0.329360879010
—0.324353269134
—0.319345659257
—0.314338049381
—-0.309330439505
—-0.304322829629
-0.299315219752
-0.294307609876
—-0.289300000000

Coordinates of discrete points which define the contours

bounding the subdomains (continued)

Z,
©

0O Utk WN

X

0.019752968402
0.027160331553
0.032098573653
0.037530639964
0.042468882064
0.047900948375
0.050370069425
0.054814487316
0.059752729416
0.065184795727
0.070123037827
0.075061279928
0.080493346238
0.086419236759
0.092838951490
0.098764842010
0.102715435691
0.109135150421
0.113579568312
0.118517810412
0.121480755673
0.127406646193
0.132344888294
0.140246075655
0.146171966175
0.152097856696
0.159011395637
0.164443461947

y
—0.040493585224
—0.043950354695
—0.046913299955
—0.051851542055
—0.054814487316
—0.057777432576
—-0.060246553626
—0.062715674677
—-0.065678619937
—0.069629213617
—0.073579807298
—0.076048928348
—0.079999522028
—0.082962467289
—0.087406885179
—0.092345127280
—-0.095308072540
—0.099752490430
—0.101233963061
—-0.103703084111
—-0.106666029371
—0.110122798842
—0.113579568312
—0.117530161992
—0.122468404093
—0.125925173563
—0.130863415664
-0.133332536714

No.

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

X

0.169875528258
0.176295242988
0.182221133509
0.187653199820
0.193085266130
0.199998805071
0.205924695592
0.211850586112
0.216788828213
0.223702367153
0.229628257674
0.236541796615
0.241480038715
0.245430632396
0.249875050286
0.255307116597
0.262220655537
0.267652721848
0.273578612369
0.279504502889
0.284936569200
0.292343932351
0.297775998661
0.303701889182
0.307652482862
0.310615428122
0.313578373383
0.314072197593

y
—-0.136295481974
—-0.140246075655
—0.142715196705
—-0.146665790385
—0.149628735646
—0.153579329326
-0.157036098796
-0.162468165107
—-0.165431110367
-0.170863176678
-0.173826121938
—0.178764364039
—-0.183702606139
—-0.187159375610
—-0.191109969290
—-0.195554387180
—-0.200986453491
—-0.205924695592
-0.211356761902
-0.217776476633
—0.222714718733
—0.229134433464
—-0.235060323985
—0.240986214505
—0.247899753446
—0.252837995546
—-0.258270061857
—-0.265183600798
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Coordinates of discrete points which define the contours

bounding the subdomains (continued)

No.

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

X

0.315059846013
0.315059846013
0.314072197593
0.311109252333
0.307158658652
0.304689537602
0.300200000000
0.301972842160
0.303745684320
0.305518526479
0.307291368639
0.309064210799
0.310837052959
0.312609895119
0.314382737279
0.316155579438
0.317928421598
0.319701263758
0.321474105918
0.323246948078
0.325019790238
0.326792632397
0.328565474557
0.330338316717
0.332111158877
0.333884001037
0.335656843196
0.337429685356
0.339202527516
0.340975369676
0.342748211836
0.344521053996
0.346293896155
0.348066738315
0.349839580475
0.351612422635
0.353385264795
0.355158106955
0.356930949114
0.358703791274
0.360476633434
0.362249475594
0.364022317754
0.365795159913
0.367568002073
0.369340844233
0.371113686393
0.372886528553
0.374659370713
0.376432212872
0.378205055032
0.379977897192

y
—0.268640370268
—0.273578612369
—0.278516854469
—-0.281973623939
—0.285430393410
—0.288393338670
—-0.289300000000
—0.294307609876
—0.299315219752
—0.304322829629
—-0.309330439505
—0.314338049381
—0.319345659257
—0.324353269134
—-0.329360879010
—0.334368488886
—0.339376098762
—0.344383708638
—0.349391318515
—0.354398928391
—0.359406538267
—0.364414148143
—-0.369421758019
—0.374429367896
—0.379436977772
—0.384444587648
—0.389452197524
—0.394459807401
—0.399467417277
—0.404475027153
—0.409482637029
—0.414490246905
—0.419497856782
—0.424505466658
—0.429513076534
—0.434520686410
—0.439528296286
—0.444535906163
—0.449543516039
—0.454551125915
—0.459558735791
—0.464566345668
—0.469573955544
—0.474581565420
—0.479589175296
—0.484596785172
—0.489604395049
—0.494612004925
—0.499619614801
—0.504627224677
—0.509634834553
—0.514642444430

No.

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

X

0.381750739352
0.383523581512
0.385296423672
0.387069265831
0.388842107991
0.390614950151
0.397034664882
0.400985258562
0.406417324872
0.412343215393
0.416293809074
0.423701172224
0.428639414325
0.436046777476
0.442960316416
0.449873855357
0.457775042718
0.465182405869
0.472095944809
0.480984780590
0.491355089001
0.504194518463
0.516540123714
0.529379553175
0.538268388956
0.546663400527
0.555058412098
0.567897841559
0.579749622601
0.592589052062
0.603947008893
0.616292614144
0.625675274135
0.639008527807
0.647403539378
0.658761496209
0.670119453040
0.681971234081
0.692341542492
0.704687147744
0.713575983525
0.726909237196
0.737279545607
0.747649854018
0.759501635059
0.769378119260
0.779254603461
0.788637263452
0.800489044494
0.809871704485
0.820735837106
0.829130848677

y
—-0.519650054306
—0.524657664182
—0.529665274058
—-0.534672883935
-0.539680493811
—0.544688103687
—0.544194279477
—0.548144873157
—0.555058412098
—0.558515181568
-0.560984302619
—0.562959599459
—0.563947247879
—0.563453423669
-0.561971951039
—0.563453423669
—0.562465775249
—0.562959599459
—0.561478126829
-0.560984302619
—0.560490478409
—0.558515181568
—0.556539884728
—-0.556046060518
—-0.554070763678
—0.553576939468
-0.551601642628
—-0.550120169998
—0.548638697367
—0.546663400527
—0.544194279477
—-0.540737510007
—0.538268388956
—-0.536786916326
—0.533330146856
—0.529873377385
—0.525428959495
—0.520984541604
—-0.517033947924
—-0.512589530034
-0.509132760563
-0.503206870043
—0.498268627942
—0.492342737421
—0.486416846901
—0.479009483750
—0.473083593229
—-0.465676230079
—0.456787394298
—0.449380031147
—0.440985019576
—-0.433083832215
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Coordinates of discrete points which define the contours

bounding the subdomains (continued)

No.

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

X

0.835550563407
0.842957926558
0.849871465499
0.854809707599
0.861229422330
0.865180016010
0.871599730741
0.879500918102
0.887402105463
0.895797117034
0.902216831764
0.910118019125
0.918019206486
0.924932745427
0.930858635947
0.938265999098
0.945179538039
0.952093076980
0.957525143290
0.964438682231
0.970364572751
0.973821342222
0.973821342222
0.972339869592
0.972339869592
0.976784287482
0.983204002213
0.987154595893
0.990611365364
0.996043431674
0.999994025355
1.003450794825
1.005426091665
1.008389036925
1.010364333766
1.015302575866
1.019746993757
1.023697587437
1.024191411647
1.023697587437
1.024191411647
1.024191411647
1.024685235857
1.023697587437
1.022216114807
1.018265521126
1.016290224286
1.017277872706
1.018265521126
1.008379258228
0.998492995329
0.988606732431

y
—0.425676469065
—0.418269105914
—0.410367918553
—0.403454379612
—0.395553192251
—-0.390614950151
—0.384689059630
—-0.373824927009
—0.363454618598
—-0.352096661767
—-0.342220177566
—0.331849869155
—0.321973384954
—-0.311603076543
—0.302714240762
—0.294813053401
—-0.286911866040
—-0.277529206049
—0.270121842898
—-0.263208303958
—-0.255800940807
—0.248393577656
—0.248393577656
—0.238517093455
—0.238517093455
—-0.231603554514
-0.224196191363
—0.218270300843
—0.208887640852
—0.199504980861
—-0.191603793500
—-0.183208781929
—0.175307594568
—0.166418758787
—0.156542274586
—0.146665790385
—0.134814009344
—0.120986931463
-0.111604271472
—0.103703084111
—0.092838951490
—0.082468643079
—0.075061279928
—0.066666268357
—0.058271256786
—0.050370069425
—0.042962706274
—0.037530639964
—0.034073870494
—0.034137432026
—0.034200993558
—0.034264555090

No.

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

X

0.978720469533
0.968834206635
0.958947943736
0.949061680838
0.939175417940
0.929289155042
0.919402892143
0.909516629245
0.899630366347
0.889744103449
0.879857840550
0.869971577652
0.860085314754
0.850199051856
0.840312788957
0.830426526059
0.820540263161
0.810654000263
0.800767737364
0.790881474466
0.780995211568
0.771108948670
0.761222685771
0.751336422873
0.741450159975
0.731563897077
0.721677634178
0.711791371280
0.701905108382
0.692018845484
0.682132582585
0.672246319687
0.662360056789
0.652473793890
0.642587530992
0.632701268094
0.622815005196
0.612928742297
0.603042479399
0.593156216501
0.583269953603
0.573383690704
0.563497427806
0.553611164908
0.543724902010
0.533838639111
0.523952376213
0.514066113315
0.504179850417
0.494293587518
0.484407324620
0.474521061722

y
—-0.034328116622
—-0.034391678154
—0.034455239686
—-0.034518801218
—0.034582362750
—0.034645924282
—0.034709485814
—0.034773047346
—0.034836608878
—0.034900170410
—0.034963731942
—0.035027293474
—-0.035090855006
—0.035154416538
—-0.035217978070
—-0.035281539602
—0.035345101134
—-0.035408662666
—0.035472224198
—-0.035535785730
—0.035599347262
—-0.035662908794
-0.035726470325
—0.035790031857
—0.035853593389
—0.035917154921
-0.035980716453
—0.036044277985
-0.036107839517
—-0.036171401049
—0.036234962581
—-0.036298524113
—0.036362085645
—0.036425647177
—0.036489208709
—-0.036552770241
-0.036616331773
—0.036679893305
—0.036743454837
—-0.036807016369
—-0.036870577901
—0.036934139433
—-0.036997700965
—-0.037061262497
—-0.037124824029
—0.037188385561
—0.037251947093
—-0.037315508625
—-0.037379070157
—0.037442631689
—-0.037506193221
—0.037569754753
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Coordinates of discrete points which define the contours

bounding the subdomains (continued)

No.

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

X

0.464634798824
0.454748535925
0.444862273027
0.434976010129
0.425089747231
0.415203484332
0.405317221434
0.395430958536
0.385544695638
0.375658432739
0.365772169841
0.355885906943
0.345999644044
0.336113381146
0.326227118248
0.316340855350
0.306454592451
0.296568329553
0.286682066655
0.276795803757
0.266909540858
0.257023277960
0.247137015062

y
—0.037633316285
—0.037696877817
—0.037760439349
—0.037824000881
—0.037887562413
—0.037951123945
—0.038014685477
—0.038078247009
—0.038141808541
—-0.038205370073
—0.038268931605
—0.038332493137
—0.038396054669
—0.038459616201
—0.038523177733
—0.038586739265
—-0.038650300797
—0.038713862329
—0.038777423861
—0.038840985393
—0.038904546924
—0.038968108456
—0.039031669988

No.

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

X

0.237250752164
0.227364489265
0.217478226367
0.207591963469
0.197705700571
0.187819437672
0.177933174774
0.168046911876
0.158160648978
0.148274386079
0.138388123181
0.128501860283
0.118615597385
0.108729334486
0.098843071588
0.088956808690
0.079070545792
0.069184282893
0.059298019995
0.049411757097
0.039525494199
0.029639231300
0.019752968402

y
—0.039095231520
—0.039158793052
—-0.039222354584
—0.039285916116
—0.039349477648
—-0.039413039180
—0.039476600712
—-0.039540162244
—0.039603723776
-0.039667285308
—0.039730846840
—0.039794408372
—0.039857969904
-0.039921531436
—-0.039985092968
—0.040048654500
-0.040112216032
—0.040175777564
—-0.040239339096
—-0.040302900628
—0.040366462160
—-0.040430023692
—0.040493585224



