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Abstract

Methods for solving the hydrologic-optics inverse problem, i.e., estimating the
inherent optical properties of a water body based solely on measurements of the
apparent optical properties, are reviewed in detail. A new method is developed for
the inverse problem in water bodies in which fluorescence is important. It is shown
that in principle, given profiles of the spectra of up- and downwelling irradiance,
estimation of the coefficient of inelastic scattering from any wave band to any other
wave band can be effected.
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1. Introduction: marine optics and radiative transfer

In this paper I examine the various methods that have been proposed
and developed for estimating the inherent optical properties (IOPs) of water
bodies from measurements of the apparent optical properties (AOPs). (See
Appendix 1 for a list of acronyms, such as IOP, used in this work.) This is
the so-called inverse problem of hydrologic optics: given measurements of
the natural light field in a water body determine the fundamental optical
characteristics of the medium. It is to be distinguished from the direct
(or forward) problem of radiative transfer: calculating the AOPs given the
IOPs. I will limit the discussion to measurements of the natural light field,
i.e., illumination of the water by only the sun and sky. I will not address
inverse problems in which artificial light sources are introduced into the
medium for the purpose of estimating the IOPs (e.g., Maffione et al. 1993);
however, I will discuss one inversion technique in which a primary goal
is to detect the presence of artificial internal sources (Tao et al. 1994),
but which also yields IOPs. I will further limit the analysis to methods
that are based on rigorous solutions to the radiative transfer equation,
e.g., I will not examine ‘two-flow’ methods (Preisendorfer & Mobley 1984),
which have been shown to require additional assumptions, e.g., constant
backscattering ‘shape factors’ (Aas 1987), to remove parameters that are
difficult to estimate (Stavn & Weidemann 1989, Mobley 1994). An analog
of the inverse problem problem in atmospheric optics is the estimation
of aerosol properties (scattering phase function, single scattering albedo,
etc.) from measurements of sky radiance (Gordon & Zhang 1995, Zhang
& Gordon 1997, Cattrall 2001). Finally, I regret that because of my own
ignorance of works published in languages other than my own, I must confine
my discussion mostly to those published in English.

We begin in this section by reviewing basic marine optics and radiative
transfer. Next, several methods for effecting solutions to the inverse problem,
conveniently divided in time at 1994, are described in detail. Then, I provide
a new inverse approach for fluorescent media in which the AOPs at a given
wavelength also depend on the IOPs at all shorter wavelengths. Finally,
I discuss and compare the various methods for inversion in realistic natural
water settings.

1.1. Fundamental radiometric quantities

Here, I provide a very brief definition of two fundamental radiometric
quantities. We assume the existence of a detector of electromagnetic
radiation in the visible that can measure the radiant power P (λ) in a narrow
spectral region (∆λ) around a central wavelength λ. (See Appendix 2 for
a list of symbols that are used frequently in this work.) There are two
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fundamental quantities that we will be concerned with. In the case of an
extended source, e.g., the sky, the quantity is called the radiance. If the
detector has an area ∆A and measures a radiant power ∆P (�r, ξ̂, λ) when
its normal is pointed in the direction −ξ̂ with its field of view limited to
a set of directions specified by the solid angle ∆Ω, then radiance L(�r, ξ̂, λ),
where �r is the spatial position and the unit vector ξ̂ is in the direction of
the propagation, is defined through

L(�r, ξ̂, λ) def=
∆P (�r, ξ̂, λ)
∆A∆Ω∆λ

.

The quantity ∆P (�r, ξ̂, λ) divided by ∆A∆λ is called the spectral irradiance
(or just the irradiance) falling on the detector from ξ̂ in ∆Ω.

In contrast to radiance, if the source of radiation is confined to a small
(compared to the viewing distance) region of space, e.g., a star or planet in
the night sky, the radiometric quantity of importance is called the radiant
intensity. If the detector is oriented normal to the direction of propagation
(along the line from the source to the detector) and records a power
∆P (�r, ξ̂, λ), then the intensity I(�r, ξ̂, λ) defined to be

I(�r, ξ̂, λ) def=
∆P (�r, ξ̂, λ)
∆Ωd∆λ

,

where ∆Ωd is the solid angle subtended by the detector at the source (area
of the detector divided by the square of the distance between the source and
detector). It is understood that in the definitions above, the independent
quantities (∆λ, ∆Ω, ∆Ωd, and ∆A) are sufficiently small that reducing their
size further would result in a negligible change in the radiometric quantities.
In what follows, I will assume the existence of instrumentation capable of
measuring both L(�r, ξ̂, λ) and I(�r, ξ̂, λ).

1.2. The inherent optical properties

Consider a parallel beam of irradiance E(λ), where λ is the wavelength. If
∆E(λ) is the irradiance having left the beam (by absorption and scattering)
after traversing a length ∆� of the medium, then the beam attenuation
coefficient c(λ) is defined through

c(λ) def=
∆E(λ)
E(λ)∆�

.

If the parallel beam is incident on a small volume of medium ∆v and an
intensity ∆I(Θ, λ) is measured at an angle Θ from the direction of the beam,
the volume scattering function for elastic scattering is defined by

β(Θ, λ) def=
∆I(Θ, λ)
E(λ)∆v

.
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Similarly, if a parallel beam of irradiance E(λe), within a narrow band of
wavelengths between λe and λe +∆λe, where λe < λ, is incident on a small
volume of medium ∆v and an intensity ∆I(Θ, λ) is measured at an angle Θ
from the direction of the beam, the volume scattering function for inelastic
scattering is defined by

βin(Θ, λe → λ) def=
∆I(Θ, λ)

E(λe)∆v∆λe
.

Note that the elastic and inelastic volume scattering functions do not have
the same units. The elastic and inelastic scattering coefficients are defined,
respectively, by

b(λ) def=
∫ ∫

Ω
β(Θ, λ) dΩ,

bin(λe → λ) def=
∫ ∫

Ω
βin(Θ, λe → λ) dΩ,

where the element of solid angle dΩ = 2π sinΘ dΘ. The absorption coeffi-
cient a(λ) is defined in terms of the lost irradiance from a parallel beam at
wavelength λ that is not associated with elastic or inelastic scattering, i.e.,

a(λ) def= c(λ)− b(λ)−
∫
λ′>λ

bin(λ→ λ′) dλ′.

The inelastic term represents the scattering of radiant power at λ to all
wavelengths > λ, i.e., the loss from λ to all other wavelengths. This term
can sometimes be related to the absorption by some constituent of the
medium, e.g., in the case of fluorescence a photon must be absorbed before
it is fluoresced (Gordon 1979), and if one used an instrument that truly
measured absorbed photons, the associated

∫
λ′>λ bin(λ→ λ′) dλ′ would be

included implicitly in a(λ). However, as we will treat all inelastic processes
as scattering (with a change of wavelength), it is consistent to include the
integral term explicitly in the definition of a(λ). Thus, by ‘a’ we refer to
the absorption of radiant energy that is converted into another form in
the medium and not re-radiated at a longer wavelength. The quantities
c(λ), β(Θ, λ), and βin(Θ, λe → λ) are usually referred to as inherent optical
properties (IOPs). In media such as natural waters, the IOPs are all
dependent on position within the medium.

1.3. The apparent optical properties

We assume here that the radiance in natural waters L(�r, ξ̂, λ) depends
only on the depth. Also, we specify the unit vector ξ̂ by the angles θ
and φ (ξx = sin θ cosφ, ξy = sin θ sinφ, ξz = cos θ) in a spherical coordinate
system centered on the sea surface with the z axis directed into the ocean,
i.e., L(�r, ξ̂, λ) def= L(z, θ, φ, λ). It is observed that the downwelling Ed(z, λ),
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upwelling Eu(z, λ), and scalar E0(z, λ) irradiances defined by

Ed(z, λ)
def=
∫ φ=2π

φ=0

∫ θ=π/2

θ=0
| cos θ | L(z, θ, φ, λ) sin θ dθ dφ,

Eu(z, λ)
def=
∫ φ=2π

φ=0

∫ θ=π

θ=π/2
| cos θ | L(z, θ, φ, λ) sin θ dθ dφ,

E0(z, λ)
def=
∫ φ=2π

φ=0

∫ θ=π

θ=0
L(z, θ, φ, λ) sin θ dθ dφ,

respectively, decay approximately exponentially with depth in the water.
It is therefore tempting to characterize as ‘properties’ of the medium the
(almost depth-independent) exponential decay coefficients,

Kx(z, λ)
def= −d�n[Ex(z, λ)]

dz
,

where x = d, u, or 0. Similarly the irradiance ratio or irradiance reflectance

R(z, λ) def=
Eu(z, λ)
Ed(z, λ)

is often almost independent of z and might also be considered to be
a ‘property’ of the water body. However, these ‘properties’ are dependent on
the illumination at the water’s surface, e.g., the solar zenith angle and the
cloud cover. Because of this they are referred to a apparent optical properties
(AOPs) (Preisendorfer 1961).

Treating L(z, θ, φ, λ) as a probability density for photon directions,
another important AOP is the mean cosine (µ) of the radiance distribution:

µ(z, λ) def=

∫ φ=2π
φ=0

∫ θ=π
θ=0 cos θL(z, θ, φ, λ) sin θ dθ dφ∫ φ=2π

φ=0
∫ θ=π
θ=0 L(z, θ, φ, λ) sin θ dθ dφ

=
Ed(z, λ)−Eu(z, λ)

E0(z, λ)
.

In a manner similar to Kx and R, µ is a weak function of depth, but is
dependent on the surface illumination.

1.4. The radiative transfer equation

The radiative transfer equation (RTE) governs the propagation of
radiance in the ocean-atmosphere system:

cos θ
dL(z, θ, φ, λ)

dz
= −c(z, λ)L(z, θ, φ, λ)

+
∫

Ω′
β(z, θ′ → θ, φ′ → φ, λ)L(z, θ′, φ′, λ) dΩ′

+
∫ ∫

Ω′
βin(z, θ′ → θ, φ′ → φ;λe → λ)×

× L(z, θ′, φ′, λe) dΩ′ dλe, (1)
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where β(z, θ′ → θ, φ′ → φ, λ) is the volume scattering function describing
the elastic scattering of radiance of wavelength λ from direction (θ′, φ′) to
direction (θ, φ), etc. The subscript Ω′ on the integrals implies integration
over the full range of solid angle (4π). To derive the light field at λ, eq. (1)
must be solved subject to the boundary conditions that the radiance incident
at the top of the atmosphere (TOA) is that due to the sun, or equivalently,
with prescribed radiance from the sun and sky incident on the sea surface.
Here, we use the RTE to compute only the irradiances or the nadir-viewing
radiance, so it is sufficient to solve only the azimuthly averaged RTE for the
azimuthly averaged radiance L(0):

cos θ
dL(0)(z, θ, λ)

dz
=−c(z, λ)L(0)(z, θ, λ)

+
∫ π

0
β(0)(z, θ′ → θ, λ)L(0)(z, θ′, λ) sin θ′ dθ′

+
∫ π

0
β

(0)
in (z, θ′ → θ, λe → λ)L(0)(z, θ′, λe) sin θ′ dθ′ dλe, (2)

where

L(0)(z, θ, λ) def=
1
2π

∫ 2π

0
L(z, θ, φ, λ) dφ,

β(0)(z, θ′ → θ, λ) def=
1
2π

∫ 2π

0
β(z, θ′ → θ, φ′ → φ, λ) dφ,

β
(0)
in (z, θ′ → θ, λe → λ) def=

1
2π

∫ 2π

0
βin(z, θ′ → θ, φ′ → φ;λe → λ) dφ.

The last term in eq. (2) is called the inelastic ‘source function’ indicated
by Jin. Expressions for the Jin have been given by Ge et al. (1993) for
fluorescence, Jf , and for Raman scattering, Jr:

Jf (z, θ, λ) =
1
4π

∫
bf (z;λe → λ)E0(z, λe) dλe, (3)

and

Jr(z, θ, λ) =
1
4π

∫
br(z;λe → λ)E0(z, λe)×

×
[
1 +

1
2

(
1− ρ(λe)
1 + 2ρ(λe)

)
E2(z, λe)
E0(z, λe)

P2(cos θ)
]
dλe, (4)

where ρ(λe) is the Raman depolarization factor. In these expressions,

E�(z, λ) = 2π
∫ π

0
P�(cos θ′)L(0)(z, θ′, λ) sin θ′ dθ′, (5)

and P� is the Legendre polynomial of order �. E0 is the scalar irradiance
and E1 is often called the vector (or net) irradiance. E1 is easily seen to be
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Ed −Eu, i.e., the difference between the downwelling and upwelling irradi-
ance at depth z. Note that that the mean cosine can be written

µ(z, λ) =
E1(z, λ)
E0(z, λ)

.

Based on the discussion thus far, the inverse problem can be suc-
cinctly stated: given the external sources and measurements of L(z, θ, φ, λ)
or its moments, e.g., E1(z, λ), E0(z, λ), Ed(z, λ), Eu(z, λ), etc., esti-
mate a(z, λ), b(z, λ), bin(z, λe → λ), β(z, θ′ → θ, φ′ → φ, λ), and βin(z, θ′ →
θ, φ′ → φ;λe → λ).

1.5. The raison d’être of inverse methods

Several methods exist for solving the RTE given the IOPs, and
instrumentation exists for measuring the IOPs (although not routinely for
β and βin), therefore one might reasonably ask why bother with the inverse
problem? There are in fact three very valid reasons for considering it.

First, the AOPs are far easier to measure than the complete IOP
suite. The AOP instrumentation is simpler (cheaper) and readily available.
Because of this there are far more measurements of the AOPs than the
IOPs. Historical AOP data can be subjected to inversion yielding IOPs for
time periods prior to the existence of modern instrumentation (providing
additional value to such data). The important endeavor of interpretation
of the AOPs for other applications, e.g., relating them to constituent
concentrations for remote sensing ocean color (Gordon & Morel 1983), is
best accomplished with the IOPs, as they are linearly additive over the
concentrations.

Second, inverse methods provide IOPs that are characteristic of different
(larger) sampling volumes than can be addressed with conventional instru-
ments. For example, it is argued in Gordon & Boynton (1997) that inverse
methods provide the IOPs at the proper sampling scale for remote sensing
(an inverse problem in its own right). When IOPs are used with the RTE
to develop interpretative algorithms for remote sensing, these IOPs should
be measured at a scale (∼ a few m3) significantly larger than presented by
typical IOP-measuring instruments (∼ a few cm3).

Third, the inverse methods of finding IOPs provide an alternate route to
closure — the estimation of IOP-measuring instrument accuracies through
comparison with IOPs determined by other means (with due caution
required by the sampling volume mismatch).

2. Initial inversion algorithms (1939–1994)

Following McCormick (1992) and Mobley (1994) inverse problems can be
classified as explicit, where formulas are used to provide IOPs given AOPs,
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and implicit, where IOPs are estimated, inserted in the RTE to assess their
efficacy in providing the AOPs, and then updated in an iterative manner.

2.1. Explicit algorithms – rigorous methods

Explicit algorithms can be divided into those that use rigorous or exact
relationships between AOPs and IOPs, and those that use approximate
relationships (usually, but not always, based on simulations). In the absence
of inelastic processes, rigorous relationships can be developed to estimate
the absorption coefficient given E0(z) and E1(z), or all of the IOPs given
L0(z). We review these now.

2.1.1. The absorption coefficient

The best known example of an explicit rigorous method is the use of the
so-called Gershun equation (Gershun 1939). This can be derived directly
from the RTE in the following manner. Multiplying eq. (1) by dΩ and
integrating over all directions, noting that∫

Ω

∫
Ω′
β(z, θ′ → θ, φ′ → φ, λ)L(z, θ′, φ′, λ) dΩ′ dΩ

= b(z, λ)
∫

Ω′
L(z, θ′, φ′, λ) dΩ′ = b(z, λ)E0(z, λ)

and ∫
Ω

∫ ∫
Ω′
βin(z, θ′ → θ, φ′ → φ;λe → λ)L(z, θ′, φ′, λe) dΩ′ dλe dΩ

=
∫
bin(z, λe → λ)

∫
Ω′
L(z, θ′, φ′, λe) dΩ′ dλe

=
∫
bin(z, λe → λ)E0(z, λe) dλe,

it is easy to see that

dE1(z, λ)
dz

= −a(z, λ)E0(z, λ) +
∫
bin(z, λe → λ)E0(z, λe) dλe. (6)

This can be rearranged to

a(z, λ) = µ(z, λ)K1(z, λ)−
1

E0(z, λ)

∫
bin(z, λe → λ)E0(z, λe) dλe,

where we have used the notation

K1(z, λ)
def= −d�n[E1(z, λ)]

dz
.

This relationship, which to my knowledge was first derived by Højerslev
(1975), is exact; however, it is not simple to solve because it requires
information from λe as well as λ. We will return to this equation later
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(Section 4); however, if inelastic processes are ignored, we have an explicit
equation for a(z, λ) as a function of the AOPs:

a(z, λ) = µ(z, λ)K1(z, λ).

This shows that at least one IOP can be estimated from AOPs in a rigorous
manner.

Use of the Gershun equation for the direct estimation of a has been
limited because of the difficulty of measuring the scalar irradiance E0,
although examples of its direct application in estimating a can be found
in Højerslev (1973), Pegau et al. (1995), Tyler (1960), and Voss (1989).
More usefully, a is estimated from E1 through approximations to µ, e.g.,
Højerslev (1996) shows that 0.62 < µ < 0.93 for a wide range of solar zenith
angles, wavelengths, and water types.

2.1.2. The absorption coefficient and volume scattering function

The only other rigorous explicit method of inverting the RTE is that
proposed by Zaneveld (1974). This is based on expanding the azimuthally
averaged volume scattering functions (elastic and inelastic) and radiance in
a series of Legendre polynomials, to wit:

L(0)(z, θ, λ) =
1
2π

∞∑
n=0

(2n+ 1)
2

Pn(cos θ)En(z, λ),

β(0)(z, θ′ → θ, λ) =
b(z, λ)
2π

∞∑
n=0

(2n+ 1)
2

#n(z, λ)Pn(cos θ)Pn(cos θ′),

β
(0)
in (z, θ′ → θ, λe → λ)=

b(z, λe → λ)
2π

×

×
∞∑
n=0

(2n+ 1)
2

εn(z, λe → λ)Pn(cos θ)Pn(cos θ′),

where #0 = 1 and ε0 = 1. Inserting these into eq. (2) and using the
orthogonality properties of the Legendre polynomials provides a set of
equations that can in principle be solved for the unknowns. These are

(n+ 1)
dEn+1(z, λ)

dz
+n

dEn−1(z, λ)
dz

=(2n+ 1)[−c(z, λ) + b(z, λ)#n(z, λ)] ×

×En(z, λ) + (2n+ 1)
∫
bin(z, λe → λ)εn(z, λe → λ)En(z, λe) dλe,

where E−1(z, λ) and E−1(z, λe) are taken to be zero. It is easy to see that
the En’s in this equation are identical to those defined in the previous
section. In an inverse procedure, the En’s are known and the #n’s and
εn’s are the unknowns. Clearly, n = 0 yields Gershun’s law. For the two
inelastic processes of importance in natural waters, fluorescence and Raman
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scattering, the ε coefficients are εn(z) = 0 for all n > 0 for fluorescence and
εn(z) = 0 for all n > 0, excluding n = 2, for Raman scattering. Thus, for
most values of n, the last term above is zero.

Ignoring the inelastic contribution, we see that these equations can be
used to find a(z, λ), b(z, λ), and #n(z, λ), i.e., they show that solution of
the inverse problem by explicit methods is formally possible. However, as
pointed out by Mobley (1994), except for n = 0, they are virtually useless.
To represent a typical volume scattering function, e.g., similar to those
measured by Petzold (1972), with reasonable accuracy requires n ∼ 1000
or more. Recall that Pn(cos θ) has n zeros approximately equally spaced in
θ between 0 and π. Thus, to evaluate the integrals required to form the
En’s requires measurements of radiance at very fine increments in θ, e.g.,
< 0.1◦. Furthermore, the oscillatory nature of Pn(cos θ) causes significant
cancellation in the integrations, so as the light field becomes more diffuse
(as with increasing z) a small amount of random noise will disrupt the
cancellation and result in significant errors in En for large n. Thus, even
given measurements of radiance at fine increments in θ, this sensitivity to
random noise makes the inversion unstable. Holl & McCormick (1995) have
examined the performance of these equations (elastic scattering only) and
conclude that they are not ‘expected to be of practical use in ocean-optics
applications.’ However, these difficulties are not present in Gershun’s law
(n = 0).

Two important conclusions result from the above analysis of Zaneveld’s
solution: (1) explicit inversion for the volume scattering function is possible
in principle; but (2) explicit inversion with these exact formulas derived
from the RTE is likely to be unsuccessful. The difficulty was realized early
in research on inversion methods, and most work on explicit methods was
based on inversion with approximate formulas that were developed from
analysis of direct (or forward) solutions of the RTE for the AOPs in terms
of the IOPs. As inelastic processes usually make small contributions to the
AOPs, initial work was centered on deriving AOPs for elastically scattering
media only.

2.2. Explicit algorithms – approximate methods

Morel & Prieur (1975b) provide one of the earliest applications of using
Gershun’s law to estimate a in the absence of E0, i.e., from E1 alone (see
also Prieur & Sathyendranath (1981)). In the absence of inelastic scattering,
Gershun’s law can be rewritten

a(z) = Kd(z)
[
1−R(z) + 1

Kd(z)
dR(z)
dz

]
Ed(z)
E0(z)

.
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It is easy to show that
E0(z)
Ed(z)

=
1

µd(z)
+

R(z)
µu(z)

,

where

µd(z) =
Ed(z)
E0d(z)

, µu(z) =
Eu(z)
E0u(z)

,

and

E0d =
∫ φ=2π

φ=0

∫ θ=π/2

θ=0
L(z, θ, φ, λ) sin θ dθ dφ,

E0u =
∫ φ=2π

φ=0

∫ θ=π

θ=π/2
L(z, θ, φ, λ) sin θ dθ dφ.

Note that E0d and E0u are the same as E0+ and E0− defined in Section 3
below. The quantities Ed, Eu, E0d, and E0u are often referred to as the
‘irradiance quartet’ (Mobley 1994). Thus, when only Ed and Eu are available
from measurements, it is necessary to estimate µu and µd to find a. Noting
that 1/µu is multiplied by R, which is � 1, it is clearly of much lesser
importance than µd. Through examination of previous measurements (Tyler
& Preisendorfer 1962) and their own radiative transfer simulations (Prieur
& Morel 1971), they settled on µu = 2.5. In the case of µd, if sky light is
ignored one would expect a good approximation (at least near the surface)
to be µw ≡ cos θw, where θw is the solar zenith angle in the water. This is
the value µd would have if there were no scattering in the water. However,
as sky light can make an important contribution to the light field incident
on the sea surface, they estimated µd for diffuse illumination by computing
it for a cardioidal radiance distribution incident on the sea surface with no
scattering in the water. The diffuse source µd was 0.859. They then combined
the contribution for the sun and sky to estimate µd as

1
µd
≈ 0.6
µw

+
0.4
0.859

,

and noted that for sun angles between 8◦and 62◦, the variation in µw is
from 0.99 to 0.75, so 1.005 ≤ 1/µw ≤ 1.33 and 1/µd varies only from 1.069
to 1.265. Because of the small variation in µw the relative weights given to
the sun and the sky in µd (0.6 and 0.4, respectively) are not critical. From
400 to 700 nm, the variation in the estimated µd caused by variations in the
relative contributions of sunlight and skylight is ∼ 7%.

One of the first exercises in developing approximate methods over and
above Gershun’s law was that of Gordon et al. (1975) based on earlier studies
of the diffuse reflectance of the ocean (Gordon 1973, Gordon & Brown 1973).
They solved the RTE for a homogeneous ocean (sun in a black sky) with
realistic IOPs using Monte Carlo methods. They showed that the AOPs
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depended on the scattering phase function (P = β/b) of the ocean mostly
through the probabilities of backscattering (b̃b) and forward scattering (b̃f )
defined by

b̃b
def=

2π
b

∫ π

π/2
β(Θ) sinΘ dΘ,

and b̃f
def= 1− b̃b. The backscattering coefficient bb is bb̃b, etc. Explicitly, their

relationships were

R(τ) ∼=
3∑

n=0

rn(τ)

[
ω0b̃b

1− ω0b̃f

]n
(7)

and

µ0(τ)
Kd(τ)
c
∼=

3∑
n=0

kn(τ)[ω0b̃f ]n, (8)

where τ was the optical depth τ = cz, ω0 the single scattering albedo
(ω0 = b/c), and µ0(τ) the value of µ(τ) at the given depth computed in
the absence of scattering (this involves only the distribution of radiance
on the sea surface and the surface roughness, and should not be confused
with µw, which is independent of depth). Values of the coefficients rn(τ)
and kn(τ) were provided in tabular form for a medium illuminated with
the sun at the zenith in a black sky and a completely overcast sky. The
µ0(τ) term in the Kd equation removed nearly all of the dependence of
the relationship on the incident illumination, but illumination effects were
included in the R equation only through the parameters rn that were derived
for specific illumination conditions. It is easy to see that the parameter in
the R equation can be rewritten

ω0b̃b

1− ω0b̃f
=

bb
a+ bb

,

which shows that the diffuse reflectance of the ocean is a function of only a
and bb. Later, Gordon (1989b) carried out a much larger set of simulations
(for a homogeneous water body) and replaced eq. (8) with

µ0(0)
Kd(0)
c
∼=

2∑
n=1

kn[1− ω0b̃f ]n, (9)

and

µ0(0)
〈Kd〉
c
∼=

3∑
n=1

〈k〉n[1− ω0b̃f ]n, (10)

where 〈Kd〉 def= −�n[Ed(z10)/Ed(0)]/z10 ≈ 2.3/z10, with z10 the depth at
which the downwelling irradiance falls to 10% of its value at the surface.
These papers also provided the inverse of the relationships, i.e., explicit
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formulas for IOP combinations in terms of the AOPs, which could be used
in explicit inversions.

In eq. (9) k1 ≈ 1� k2, so

µ0(0)Kd(0) ≈ a+ bb,

and we see that both R(0) and Kd(0) appear to be functions only of a
and bb and the incident water surface illumination. Although illuminating,
relationships involving Kd(0) are of little practical use because of the
near impossibility of measuring this quantity in natural waters with
surface waves. However, we shall see later that this relationship is helpful
in developing a useful expression for bb. In the equation for 〈Kd〉 the
approximate dependence on a+ bb seen for Kd(0) is not valid because of the
larger contribution of the n > 1 terms. This is a serious shortcoming in using
〈Kd〉 if c is not measured simultaneously with the irradiances. As commercial
instruments for measuring c were not widely used until the mid 1980’s,
most AOP data acquired prior to that time would not be accompanied by
c measurements.

Gordon (1989a) removed the influence of the incident illumination on
R(0) by showing that R(0) ∝ 1/µ0(0). This allowed a reformulation of the
equation for R(0) in terms of the value the reflectance would have with the
sun at the zenith Rµw=1(0) (Gordon 1991). The latter was to be estimated
by measuring R(0) as a function of the solar zenith angle and using the
1/µ0(0) dependence of R(0). Although this required measurement of R(0)
as a function of the solar zenith angle, it was shown that it provided the
possibility of also estimating the volume scattering function over a limited
range of angles.

Morel & Prieur (1975b) applied the first-order approximation to the
Gordon et al. (1975) equation for R, i.e., R ≈ bb/3(a+ bb), to estimate the
spectral backscattering coefficient of a number of different waters. They
inverted this to give

bb ≈ a
3R

1− 3R
. (11)

They also used a relationship for R that they had developed earlier (Prieur
& Morel 1971, Morel & Prieur 1975a),

R = 0.33
bb
a
(1 + ∆),

where ∆ depends on the incident radiance distribution and the phase
function. When molecular scattering is unimportant, they reduce this to

R ≈ bb
3(a− bb)

,
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which gives

bb ≈ a
3R

1 + 3R
. (12)

For waters with bb/a� 1, eqs. (11) and (12) converge to bb ≈ 3aR. They
applied these formulas to the analysis of the same irradiance data for which
they derived a in Section 2.1.1. They used the resulting two values of bb as
a measure of the order of magnitude of the uncertainty in the retrieved bb.
They stipulate that eq. (11) is more appropriate for clear water (molecular
scattering important) and eq. (12) is more appropriate for turbid water
(molecular scattering unimportant).

During roughly the same time Gordon and coworkers were developing
the approximate explicit relationships above for application to the marine
environment, Kirk was developing relationships along the same lines
focusing on turbid lakes. Kirk’s work is documented in a series of papers
from 1981 to 1994 (Kirk 1981a, 1981b, 1984, 1991, 1994a, 1994b) and in his
book (Kirk 1983). His approach was to use the diffuse reflectance R(0) and
the mean attenuation coefficient for downwelling irradiance at the midpoint
of the euphotic zone (same as 〈Kd〉) or averaged over the entire euphotic

zone. The latter is 〈Kd〉e def= −�n[Ed(ze)/Ed(0)]/ze ≈ 4.6/ze, where ze is the
euphotic depth. As he was interested in turbid lakes, Kirk fixed the phase
function (β/b) to be that measured by Petzold (1972) in very turbid water.
He then carried out simulations varying a and b, but keeping the same phase
function. He wrote the expression for either 〈Kd〉 or 〈Kd〉e as

Kd =
a

µw

√
1 +G(µw)

b

a

for the sun in a black sky. Kirk’s simulations show that G(µw) is approxi-
mately a linear function of µw, i.e., G(µw) ∼= g1µw + g2, with the parameters
g1 and g2 depending on whether one is considering 〈Kd〉e (g1 = 0.425 and
g2 = −0.190) or 〈Kd〉 (g1 = 0.473 and g2 = −0.218).

It is clear that this relationship (with the given g1 and g2) cannot be
applied to all waters because the attenuation of irradiance must depend
on the phase function. Clearly, for given values of a and b, if scattering is
almost all in the near-forward direction its effect on Kd will be smaller than
if it is more isotropic. Kirk looked for a quantity that would parameterize
the effect of the phase function on Kd, and settled on the mean cosine of
scattering µs (Kirk 1994a) defined by

µs
def=
∫ π
0 β(Θ) cos Θ sinΘ dΘ∫ π

0 β(Θ) sinΘ dΘ
.
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Then he found that the average downwelling irradiance attenuation coeffi-
cient could be written

〈Kd〉 =
a

µw

√
1 +G(µw, µs)

b

a
, (13)

where

G(µw, µs) ∼= µw

[
2.127
µs
− 1.895

]
− 0.618

µs
+ 0.490.

Thus, given the IOPs, 〈Kd〉 can be estimated with good accuracy from
these expressions. Note that this is essentially equivalent to the Gordon
(1991) expression (eq. (10)), where b̃b or b̃f is used to parameterize the
phase function rather than µs.

Kirk also studied the diffuse reflectance R(0) as a function of the IOPs.
Rather than relating R to bb/(a+ bb), following Morel & Prieur (1975a) he
related it to bb/a:

R(0) = C(µw)
bb
a
, (14)

where C(µw) ∼= −0.629µw + 0.975. The linear variation of C with µw is close
to the inverse variation given by Gordon (1989a), which for Petzold’s turbid
water phase function with ω0 ≤ 0.8 (b/a ≤ 4) can be written as

Rµw(0) ∼=
[
1.6
µ0
− 0.6

]
Rµw=1(0).

It is important to note that Gordon, Morel and Prieur, and Kirk all
followed the same approach: carry out a large number of forward radiative
transfer simulations using realistic values of the IOPs for the waters of
interest and develop semi-empirical relationships between the IOPs and
AOPs. These relationships then become the explicit equations to be used in
the inversions.

Given measurement of only the irradiances Ed(z, λ) and Eu(z, λ), neither
Gordon’s nor Kirk’s relationships can be inverted because there are more
unknowns than the two equations (Gordon: a, bb, and b̃b; and Kirk: a, b, and
µs). However, if the phase function is assumed to be known, i.e., a specific
phase function is chosen to effect the inversion, this eliminates b̃b and/or
µs. Then the inversion is straightforward. The R equation can be used to
provide b/a with the 〈Kd〉 equation then providing a or c. Unfortunately,
the results for both b and c depend strongly on the assumed phase function.

Gordon was able to circumvent somewhat the need for assuming a phase
function. Noting that µ0(0)Kd(0) ≈ a+ bb and Rµw=1(0) ≈ bb/(a + bb),
he suggested that Rµw=1(0) ≈ bb/(µ0(0)Kd(0)) or more usefully,
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≈ bb/(µ0(0)〈Kd〉). Thus Gordon (1991) expanded Rµw=1(0) as follows:

bb
µ0(0)〈Kd〉

∼=
3∑

n=1

r′n[Rµw=1(0)]n.

This would give bb directly if Rµw=1(0) could be found. Gordon suggested
measuring Rµw(0) by making irradiance measurements for a range of µw,
e.g., as the sun sets or rises, and using this to estimate Rµw=1(0) by
extrapolation. In addition, if one picks a functional form for the volume
scattering function, e.g., the Beardsley & Zaneveld (1969) formula

β(Θ) =
β(90◦)

(1− ef cosΘ)4(1 + eb cosΘ)4
,

where ef and eb are unknown parameters, he showed that the dependence of
Rµw(0) on µw can be used to estimate the unknown parameters. Then the
retrieved bb can be used to estimate β(90◦); however, the derived volume
scattering function would be realistic only for Θ >∼ 50◦.

If it is further assumed that c is known, i.e., if c is measured along
with the irradiances, it can be used in the 〈Kd〉 equation to estimate ω0b̃f .
However, ω0b̃b is bb/c, and this is known, as bb was estimated above. Thus,

ω0 = ω0b̃f + ω0b̃b = ω0b̃f +
bb
c
,

and b = ω0c and a = (1− ω0)c. Thus measurement of the irradiances and
c allow estimation of both a and b, without any assumption regarding the
phase function. Note that the cmeasurement is critical here – without it only
bb and the Θ >∼ 50◦ volume scattering function could be directly estimated.

In Kirk’s formulation even knowing c does not allow an inversion without
assuming the correct phase function because of the dependence of G on µs
in eq. (13). Given c, and assuming a phase function, one uses eq. (13) to
estimate a, and then eq. (14) to estimate bb. From bb and c− a, b̃b can be
estimated, and if b̃b turns out to be the same as that for the assumed phase
function, then the IOPs will form a consistent set. If the estimated b̃b is not
in agreement with that assumed, then a new phase function must be tried.
The difficulty with this approach is that, although for a given phase function
both b̃b and µs can be determined, there is only weak correlation between
the two: b̃b depends on the volume scattering function in the backward
direction, while µs depends mostly on the volume scattering function in the
forward direction. Both µs and b̃b are needed for Kirk’s inversion algorithm,
but only b̃b for Gordon’s; however, Gordon’s requires measurements of R(0)
as a function of µw.

It should be obvious from analysis of the Gordon and Kirk equations that
it is impossible to estimate the scattering coefficient from the irradiances
alone without guessing at the scattering phase function. This suggests that c



Inverse methods in hydrologic optics 25

has little influence on Kd(z) and R(0). Gordon (1993) explicitly showed
this by computing the irradiances using truncated forms of the volume
scattering function. Specifically, the Petzold (1972) turbid water volume
scattering function β(Θ) was truncated by replacing it by β(Θ0) for Θ ≤ Θ0

(but without changing the absorption coefficient or the backscatttering
coefficient) and the RTE solved for a homogeneous ocean to give the
irradiances as a function of Θ0. Note that as Θ0 increases, the corresponding
scattering coefficient (and therefore c as well) decreases because small angles
contribute most to b. The results indicated that the irradiances were almost
independent of Θ0, suggesting that if irradiances are inverted, it is possible
to estimate a and bb, but not b or c.

Finally, Zaneveld (1989) developed a method to estimate bb from
a solution to the RTE that involved parameters similar to the Aas (1987)
two-flow shape factors. This will not be discussed, as Weidemann et al.
(1995) show that these unknown factors are variable enough to induce
significant error in bb (−20% to +40%). So, accurate inversion required
some knowledge of β in backward directions.

3. Modern inversion algorithms (1994–2001)

In the mid 1990’s a major advancement in the improvement of empirical
relationships was the development of the radiative transfer code ‘Hydrolight’
(Mobley et al. 1993, Mobley 1994). This computer code allowed rapid
computation of AOPs given IOPs, replacing the time-consuming Monte
Carlo methods used by Kirk and Gordon. It allowed orders of magnitude
more cases (including some inelastic processes) to be used as input to
empirical relationships for explicit algorithms. In addition, more powerful
computation tools enabled relating the AOPs to the IOPs in the asymptotic
light field with relative ease. These developments led to explicit inversion
methods that are described in this section, and provide a convenient
demarcation between the initial and more modern inversion algorithms.

3.1. Explicit algorithms based on asymptotic theory

McCormick (1996) shows that away from the surface, for an infinitely
deep homogeneous medium, the azimuthally-averaged radiance can be
expanded in a series of eigenfunctions of the source-free RTE and written

L(z, µ) =
N∑
j=1

C(νj)φ(νj , µ) exp[−cz/νj ], (15)

where µ = cos θ, C(νj) are constants, φ(νj , µ) are the eigenfunctions, and
the νj are the associated eigenvalues. The νj are roots of a transcendental
equation involving the phase function and ω0. The number N of roots
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depends in a simple manner in the phase function. All the νj’s are > 1.
If the νj’s are arranged in decreasing order, i.e., ν1 > ν2 > ν3 · · ·, then as
z →∞

L(z, µ)→ φ(ν1, µ) exp[−cz/ν1].

Note that in this state, the depth dependence and angular dependence of
the radiance decouple and all moments of the radiance distribution E0,
E1, etc., decay with depth exponentially with decay coefficient c/ν1 ≡ K∞.
This demonstrates the existence of what is called the asymptotic regime (see
also Højerslev & Zaneveld 1977, Preisendorfer 1959, and McCormick 1992),
and given P (Θ) and ω0, provides a way to compute its properties. In this
regime the reflectance R(z) = Eu(z)/Ed(z) becomes R∞ and is independent
of depth. It is important that this condition is independent of the radiance
distribution incident on the sea surface (although the rate of approach to it
is not), and hence all quantities with the subscript ∞ are IOPs. Given the
usual IOPs, a and β, the RTE is relatively simple to solve for R∞ and K∞,
and vice versa (Prieur & Morel 1971, Kattawar 1975, McCormick 1992).
(Gordon & Xu (1996) developed the properties of the asymptotic light field
in the presence of inelastic processes.)

Tao et al. (1994) use asymptotic theory directly to effect an approximate
inversion of the RTE. Their method is also capable of handling internal
sources. Rather than describing their method in detail (complete with
internal sources), I will demonstrate the basis of their inversion by providing
a source-free, inelastic-free, homogeneous-medium example. We assume that
both E1 and E0 are measured, and consider the Zaneveld (1974) equations
for n = 0 and n = 1:

dE1

dz
+ aE0 = 0

2
dE2

dz
+
dE0

dz
= 3(−c+ b#1)E1,

where we have left off all of the arguments on the En’s. The first equation
gives a directly. To use the second we must relate E2 to E1 and/or E0. This
is effected through asymptotic theory, from which

En = C(ν1) exp[−cz/ν1]
∫ 1

−1
Pn(µ)φ(ν1, µ) dµ

= C(ν1) exp[−cz/ν1]gn(ν1).

They show that gn(ν1) satisfies the recursion relationship

(n+ 1)gn+1 − hnν1gn + ngn−1 = 0,
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where g−1 = 0, g0 = 1 and hn = (2n+ 1)(1 − ω0#n). Therefore, we see that

E2 = g2(ν1)E0 =
1
2
[3(1 − ω0)(1− ω0#1)ν2

1 − 1]E0,

so the second Zaneveld equation becomes

(1− ω0)ν2
1
dE0

dz
+ cE1 = 0.

ν1 is a function of ω0 and the phase function. Assuming a particular phase
function for the medium (as all inverse algorithms must) provides ν1(ω0).
Then the equation can be solved numerically for ω0, which after having
already found a, yields b. The value of b will depend strongly on the phase
function, but bb = bb̃b should not. This algorithm should provide a and bb
and should perform best in the near-asymptotic regime. Tao et al. (1994)
show that this method is equivalent to using asymptotic theory to estimate
the Aas (1987) two-flow shape factors.

Although we are not treating inversion methods with artificial sources,
natural internal sources, e.g., bioluminescence, do exist and they have been
incorporated into the Tao et al. (1994) algorithm when the source is isotropic
and the source function depends only on z. They add to the Zaneveld (1974)
equations an equation for E�+(z, λ)−E�−(z, λ), where

E�+(z, λ) = 2π
∫ π/2

0
P�(cos θ′)L(0)(z, θ′, λ) sin θ′ dθ′,

and

E�−(z, λ) = 2π
∫ π

π/2
P�(cos θ′)L(0)(z, θ′, λ) sin θ′ dθ′,

are downward and upward partial moments of the radiance distribution.
(Note E�+(z, λ) +E�−(z, λ) = E�(z, λ).) They use asymptotic theory to
estimate all of the moments of the radiance distribution E�±(z) for � ≥ 2,
and estimate the IOPs and source density given the irradiance quartet,
E0±(z) and E1±(z). Simulations show that an explicit version of this
formulation works well as the depth increases and the asymptotic regime is
approached, but works poorly near the surface. Note that in the application
with sources, both E0+ and E0− must be measured individually rather than
only their sum.

Leathers et al. (1999) used asymptotic theory to derive IOPs from the
Eu(z) and Ed(z) combination or from the Lu(z) and Ed(z) combination,

where Lu(z)
def= L(0)(z, θ = π). This approach differs from the Tao et al.

(1994) algorithm in that E0 is not used. Explicit empirical relationships are

not obtained, rather at every depth R(z), RL(z)
def= Lu(z)/Ed(z), Kd(z),

or KL(z)
def= −d�n[Lu(z)]/dz, are equated to the asymptotic values R∞,

K∞, etc. The latter are computed in the absence of inelastic processes.



28 Howard R. Gordon

Gordon et al. (1993) have shown that under many circumstances Kd(z) in
a homogeneous medium approaches its asymptotic value rapidly. For diffuse
illumination, e.g., from a completely overcast sky, Kd is within 5% of K∞
at a depth ∼ 1/Kd or less for ω0 ≥ 0.4. The situation for R and RL is
not as clear, although R does not change rapidly with depth anywhere in
the medium except possibly near the surface (at least for a homogeneous,
infinitely deep water body). Given the scattering phase function and ω0,
R∞ and K∞ are not difficult to compute. Leathers et al. (1999) use the
singular eigenvalue approach (Leathers & McCormick 1997) to compute
them as a function of the IOPs. Because asymptotic relationships are used,
no knowledge of the surface illumination is required. Of course, the AOPs
are functions of the surface illumination, so this will lead to error, and one
would assume that the quality of the retrievals of IOPs would be degraded
near the surface.

Leathers et al. (1999) compared their retrieval of a(z) profiles with direct
measurements in situations where the water was strongly stratified. Good
agreement was found; however, there was a consistent offset between the two,
with the retrievals lower than the direct determinations. Large variations
in a with depth were well recovered in the inversions from the AOPs, even
though the asymptotic light field exists only for a homogeneous medium.
This is attributable to the fact that, in Gershun’s law, µ varies slowly with
IOPs and depth, so variations in the retrieved a closely follow variations in
Kd, which are directly observed. No measurements were available to examine
the quality of the bb(z) retrieval.

An extension of the asymptotic method was also developed by Mc-
Cormick (1996) inspired by the empirical approximation developed by
Zaneveld (1989) to describe the approach of µ to the asymptotic value (also
see McCormick 1995). The goal was to get a better approximation to the
values of R∞ and K∞ than those generated by simply equating them to
R(z) and Kd(z). McCormick’s idea was that a better approximation to the
asymptotic quantities could be obtained by keeping the second largest term
in the radiance expansion eq. (15) as well as the first, i.e.,

L(z, µ)→ C(ν1)φ(ν1, µ) exp[−cz/ν1] +C(ν2)φ(ν2, µ) exp[−cz/ν2].

Using this, and estimates of the relative magnitudes of the C(νj)’s and νj’s,
he suggested that

Q(z) = Q(∞) + [Q(zr)−Q(∞)] exp[−P (z − zr)], (16)

where z > zr, Q is any one of the quantities 1/µ, R, K0, K1, and Kd,
and P = c(1/ν2 − 1/ν1). The depth zr is a reference depth below which the
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two-eigenfunction expansion of the radiance is valid. Given measurement of
Q(z) at three depths z0, z2 and z1 = (z0 + z2)/2, one can readily show that

Q(∞) =
Q(z0)Q(z2)−Q2(z1)

Q(z0) +Q(z2)− 2Q(z1)
. (17)

This equation was first derived by Zaneveld (1989) for Q = K1. Thus,
measuring these quantities at three depths provides estimates of the
asymptotic values without measurements in the asymptotic regime. Leathers
& McCormick (1997) show that for a homogeneous medium, these relation-
ships provide a much better estimate of R∞ and K∞ than are obtained by
approximating them as R(z) and Kd(z), respectively.

Zaneveld (1989) was one of the first to use the notion of the asymptotic
light field to estimate AOPs from IOPs. He referred to this as ‘asymptotic
closure.’ He started from eq. (16) as an assumption (P unknown). Then
from measurements of E0 and E1, and an empirical relationship linking
K∞/c to ω0, he was able to estimate a, b, and c. Of course, the results
depend critically on the K∞/c to ω0 relationship, which in turn can be
valid only within a limited range of phase functions.

3.2. Explicit algorithms based on numerical simulations

Stramska et al. (2000) were the first to use Hydrolight for the purpose
of developing empirical formulas for use in explicit algorithms. They carried
out a large number of homogeneous-ocean simulations using models relating
the IOPS to the water’s chlorophyll a concentration (Gordon & Morel
1983, Morel 1988, Morel & Gentili 1991) and the Petzold (1972) scattering
phase function. They also used additional parameter values to break the
covariation between a and b built into the models. As it is now apparent
that Raman scattering can significantly affect the upwelling light field in
clear waters in the green and red portions of the spectrum (Sugihara
et al. 1984, Stavn & Weidemann 1988, Marshall & Smith 1990, Stavn
1990, Kattawar & Xu 1992, Ge et al. 1993, Waters 1995, Hu & Voss
1997, Gordon 1999), and can cause significant error in the retrieved IOPs,
particularly bb(z), Raman scattering was included using the Morel & Gentili
(1991) optical properties. However, the analysis was limited to λ < 560 nm
to avoid Raman contamination in the upper layers as much as possible.
Because they wanted to use Gershun’s law to estimate a, they focussed
on estimating the mean cosine from the measured AOPs. They used the
observation that the reflectance is roughly proportional to 1/µ(z) (Gordon
1989a), while in contrast the radiance reflectance, RL(z) = Lu(z)/Ed(z), is
almost independent of µ(z). They developed a relationship between RL and
bb/a, and tried to find a simple relationship between µ(z) and RL/R that
was good for all wavelengths, optical parameters, sun angles and depth.
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This led to a relationship that showed significant error in the estimation of
µ(z), considering its total range of variation. They tried to improve on µ(z)
by writing

µ(z) ∼= slope× Lu

Eu
+ intercept,

and relating the slope and intercept to ω0 and b̃b. As before, in the analysis,
all solar zenith angles, depths, and wavelengths are lumped together, so their
relationships can in some sense be considered to be independent of these
quantities, but since in reality they are not, this leads to increased scatter
in the relationships. To estimate µ(z) the two unknown quantities ω0 and b̃b
must be estimated. They use two methods. In the first, they assume a phase
function providing b̃b directly. Then using their coarse estimate of µ(z), a is
found from Gershun’s law, and bb from RL. The resulting bb is combined with
b̃b to give an estimate of b, which with a gives ω0. The estimates of ω0 and b̃b
are then used to improve the estimate of µ(z), providing a better estimate
of a, etc. If c is measured, then one can estimate b (and thus ω0) from c− a
using the coarse estimate of a. This is averaged with the b found by assuming
a phase function and the procedure is carried out as before. They try to make
a case that the algorithm will work in a stratified medium; however, in the
examples that are provided, the reflectances are weak functions of IOPs and
the vertical variations are nearly all in the asymptotic field, so µ does not
vary much across the structure.

There are two basic differences between the Stramska et al. (2000)
algorithm and those of Kirk and Gordon: (1) the use of Lu along with
Eu and Ed; and (2) the combining of various sun angles, depth, and
wavelengths in a single analysis for µ(z). The measurement of all three
quantities (Lu, Eu, and Ed) are not typically carried out, and the pooling
of quantities that would normally be known in the analysis must lead to
error in the final relationships. However, it is difficult to argue with success,
comparison of retrievals in the blue (minimum Raman contribution) with
direct measurements of a and bb show excellent correlation between the two
(see Section 5).

Loisel & Stramski (2000), building on a series of Monte Carlo simulations
by Morel & Loisel (1998), extended Kirk’s formulation by including
significantly more simulations, and by including Raman scattering in
Hydrolight simulations. In the Morel & Loisel (1998) simulations (no
inelastic processes), the elastic scattering phase function was decomposed
into that due to particles Pp(Θ) and that due to the water itself Pw(Θ),
according to

P (Θ) = ηPw(Θ) + (1− η)Pp(Θ), (18)
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where η is the fraction of total scattering due to the water, bw/b, and bw
is the scattering coefficient of water. They use the Petzold (1972) turbid
water phase function for Pp, and the Morel (1974) determinations for Pw
and bw. They carried out simulations for a homogeneous medium with
a = 1 m−1 and b/a from 0 to 10. The variation allowed in η was 0 ≤ η ≤ 0.2.
These simulations were analyzed in a manner similar to Kirk (1994b);
however, rather than using 〈Kd〉 or 〈Kd〉e, they studied 〈Kd〉1, the mean
attenuation coefficient over the first irradiance optical depth z1, where
Ed(z1)/Ed(0) = 1/e. In their formulation, they write

b

a
= g(η, µw)

R(0)
1−R(0)

and

〈Kd〉1 =
a

µw

√
1 +

b

a
Γ(η, µw).

The first equation was suggested by an equation developed by Kirk (1994b)
showing that at the depth z10, b/a is proportional to R/(1−R). Note
the similarity between the 〈Kd〉1 equation and Kirk’s 〈Kd〉 equation. In
essence, they replaced µs in Kirk’s G(µs, µw) with η in Γ(η, µw) to represent
the variation of Kd with the scattering phase function. They determined
relationships for Γ(η, µw) and for h(η, µw) ≡ g(η, µw)Γ(η, µw). The result
was for 0.03 ≤ η ≤ 0.2, h(η, µw) depended almost entirely on µw and could
be replaced by an average value h that depends only on µw, i.e.,

h(µw) ∼= 2.54 − 6.54µ+ 19.89µ2
w .

The parameter g(η, µw) was also studied alone and found to be

g(η, µw) ∼=
1

(0.0215 − 0.0149µw) + (0.1652 − 0.0358µw)η
.

Thus, the Loisel and Stramski equations can be combined to give a from
measurements of R(0) and 〈Kd〉1,

a =
µw〈Kd〉1√

1 + h(µw)R(0)/(1 −R(0))
,

and b = bw/η, from either the b/a or 〈Kd〉1 equation (their analysis shows
the b/a equation is better). However, it must be noted that the value of b is
completely dependent on the assumed Pp(Θ). At this point, η is known, so
b̃b is as well. Therefore bb could be determined as bb = b̃bb. This bb should be
almost independent of Pp(Θ), as Kd(z) and R(0) depend mostly on a and
bb (Gordon 1993).

Loisel and Stramski preferred to derive bb from an equation similar to
that developed by Gordon (1991) for bb/〈Kd〉 as a function of Rµw=1(0).
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However, rather than using the measurement of R(0) at several values of
µw as suggested by Gordon, they chose to make an empirical fit involving
η and µw, i.e.,

bb
〈Kd〉1

= 10α [R(0)]δ ,

with

α ∼= [−0.83 + 5.34η − 12.26η2] + µw[1.013 − 4.124η + 8.088η2]

and

δ ∼= 0.871 + 0.40η − 1.83η2.

Because of η, this equation cannot be used without an estimate of b. The b
estimate is determined from the earlier relationships for a and b.

Tests of this algorithm suggest that a and bb can be obtained with
excellent accuracy, while the error in b is significantly larger and totally
dependent on the assumptions for Pp. In the opinion of this author, the
weakest part of the Loisel and Stramski algorithm is the reliance on b in
the derivation of bb; however, it is shown that the correct bb can be found
even in the presence of large errors in b, e.g., ∼ 100%. The algorithm has
a significant advantage over others in that all of the required quantities can
be estimated from space borne ocean color sensors (Gordon & Morel 1983).

The equations above for the Loisel-Stramski algorithm were developed
in the absence of inelastic processes, i.e., 〈Kd〉 and R(0) do not include
any effects of inelastic processes. Loisel and Stramski included Raman
scattering in their algorithm by estimating its contribution using Hydrolight.
As Raman scattering has little effect on 〈Kd〉, they chose to correct only
R(0) for the presence of Raman scattering. The procedure they used was

to compute the reflectance ratio κ
def= RElastic/RTotal, where ‘Elastic’ and

‘Total’ refer to the absence and presence of Raman scattering, respectively.
κ was determined as a function of bb/a and wavelength using the Morel
& Gentili (1991) model of the IOPs as a function of chlorophyll a as provided
in the subroutines in Hydrolight. Note that in the Morel and Gentili model,
specifying the chlorophyll a concentration specifies all of the IOPs except
Pp. Loisel and Stramski again used the Petzold (1972) turbid water phase
function for Pp. The correction scheme they used was iterative: first, take
κ(λ) = 1 and find the IOPs to form bb/a, use this bb/a to find a new κ(λ),
which gives a new bb/a, etc.

In Loisel et al. (2001) IOPs estimated this inversion method were
compared with direct measurements. Good agreement was found for a and
bb measured in waters ranging from oligotrophic to turbid. In contrast, the
retrievals of b were quite poor, indicating that the Petzold (1972) turbid
water phase function was not appropriate for their data set. An important
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aspect of the Loisel et al. (2001) paper is the development of a way of using
their algorithm with remote sensing data. Their idea is that 〈Kd〉1 can
be estimated at 490 nm from current remote sensing algorithms using the
reflectances at 443 and 555 nm (Mueller & Trees 1997), and that 〈Kd〉1 at
any wavelength can be estimated (empirically) given that at 490 nm (Austin
& Petzold 1981, Kishino et al. 1996). Thus, R(0, λ) provides the required
〈Kd(λ)〉1. This method was tested in the data set and the retrievals of a
and bb were found to be only slightly degraded.

3.3. Implicit algorithms

Tao et al. (1994) presented a quasi-implicit version of their asymptotic-
based algorithm. Thus, the exact RTE is not solved, but an approximation to
it is. They construct an objective functional that depends on the IOPs, the
measured AOPs, and the source function, and minimize it using standard
minimization techniques (Press et al. 1992). In reality they simply used
minimization techniques to solve a complicated set of non-linear equations
that are nearly impossible to solve analytically. The implicit version of their
algorithm was better than the explicit version (which uses the same physics,
but a simplified source function to make the solution tractable) in retrieving
the absorption coefficient and the internal source function, but did not
improve the estimates of the scattering coefficient. Their resultant solution
would not be expected to be a solution to the RTE, except at great depth,
where asymptotic theory is valid.

At this time, the only truly implicit algorithms known to the author
are those developed by Gordon and Boynton (Gordon & Boynton 1997,
1998; Boynton & Gordon 2000). The Gordon and Boynton algorithms are
based on trying to achieve the following goal: given the illumination on
the sea surface and measurements of depth profiles of either Eu(z) and
Ed(z) or Lu(z) and Ed(z), find IOPs which, when inserted into the RTE,
reproduce the measured AOP profiles exactly (actually, within experimental
error). This is really the ultimate goal of inverse methods as the incident
illumination and the RTE are the only links between the AOPs and IOPs.

In Gordon & Boynton (1997) an implicit algorithm is presented for the
inverse problem in a homogeneous water body that is infinitely deep or of
finite depth with a reflecting bottom. The basic procedure is very simple.
Consider the case where Eu(z) and Ed(z) are measured. The algorithm
starts with an initial guess for the absorption coefficient, a(0)(z) = µwK1(z).
This is averaged over depth according to

a(0) =
∫ zm
0 a(0)(z) f(z) dz∫ zm

0 f(z) dz
, (19)
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where zm is the maximum depth of the measurements. Gordon & Boynton
(1997) used a weighting in which f(z) = �n[Ed(z)], yielding a near-linear
weighting with depth, but found the results were not sensitive to the form
of f . Then recalling R(0) ≈ 0.33bb/a, they estimated the initial bb from
b
(0)
b (z) = 3R(z)a(0) averaged over depth in a manner identical to a(0)(z). As
in all inverse algorithms, an assumption must be made for the scattering
phase function, and this provides b̃b, and b(0) = b

(0)
b /b̃b. These guesses for the

IOPs are then inserted into the RTE, which is solved for E(0)
u (z), E(0)

d (z),

and E
(0)
0 (z), yielding an estimate for the µ profile, µ(0)(z). The estimated

µ provides a new estimate of a(z), i.e., a(1)(z) = µ(0)(z)K1(z). The crucial
part is the revised estimate of bb(z). Calling the computed value of R(z)
after the initial iteration R(0)(z), ∆R(z) = R(z)−R(0)(z) is formed, and
the change in bb(z) is taken to be ∆bb(z) = 3∆R(z)a(1)(z). However, since
the relationship R(z) ≈ bb(z)/3a(z) is not precise, the revised estimate for
bb is taken to be

b
(1)
b (z) = b

(0)
b (z) + ε∆bb(z)

where ε < 1. This has the property that it pushes bb in the right direction,
but with ε ≈ 0.5, there is little possibility of overshoot. These are then
averaged over depth as before and b

(1)
b is combined with b̃b to provide b(1).

The revised IOPs are then inserted into the RTE and its solution provides
the quantities required for the next step in the iteration: E(1)

u (z), E(1)
d (z),

and E
(1)
0 (z). This is then repeated many times. The algorithm is stopped

when the residual error after n iterations, defined as

δ(n) def=
1
N

N∑
i=1

|�n[E(n)
d (zi)]− �n[Ed(zi)]| +

1
N

N∑
i=1

|�n[E(n)
u (zi)]− �n[Eu(zi)]|,

where the superscripted irradiances are those computed in the nth iteration
and zi are the depths at which the irradiance data are given, reaches
a minimum. The radiative transfer in the algorithm is determined by
a coupled ocean-atmosphere model and the RTE is solved by Monte Carlo
methods.

Gordon & Boynton (1997) tested the inversion using simulated data
and showed that the retrieved a and bb values were only weakly dependent
on the assumed particle phase function. For example, when the correct
phase function (b̃b = 0.036) was used in the inversion of simulated data the
errors in a and bb were < 1%; however, when an incorrect phase function
(b̃b = 0.011) was used to invert the same data, the error in a was still ≤ 1%,
and the error in bb was < 11%. Thus a factor of 3 error in b̃b did not lead to
an unmanageably large error in bb. Gordon & Boynton (1997) also inverted
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Tyler’s Lake Pend Oreille data (Tyler & Preisendorfer 1962) and retrieved
excellent values of a compared to measurements.

Gordon & Boynton (1997) applied a similar algorithm to measurements
of Lu(z) and Ed(z). This was effected by estimating and updating the
‘Q-factor,’ Q = Eu/Lu at each iteration, and at the nth iteration using
Q(n)(z) to estimate E(n)

u (z) = Q(n)(z)Lu(z). This E
(n)
u (z) is combined with

measured Ed(z) and used as in the earlier Eu and Ed algorithm. The
performance of the Lu(z) and Ed(z) is only slightly degraded compared
to the Eu(z) and Ed(z) algorithm.

When applied to a finite depth medium with bottom albedo A, the
algorithm functions as before, except the initial value of b is taken to
be equal to a(0) because the initial estimate of bb from R(z) is likely to
be strongly influenced by the presence of the bottom. Also, the radiative
transfer code now includes the bottom reflection with the correct albedo
placed at the correct depth. Tests of the algorithm using simulated data
show that the error in the retrieved a, although remaining small, is larger
than the infinitely deep ocean. The error in bb can be very large, particularly
when bb is small and the bottom albedo is large, i.e., ∼ 1. If the incorrect
bottom albedo is used, the resulting Lu(z) or Eu(z) from the RTE provides
a poor fit to the measured profiles.

Gordon & Boynton (1998) applied these ideas to a vertically stratified
medium. In a medium in which the IOPs change with depth, Gordon (1980)
showed that Kd(z) (and therefore K1(z)) depended mostly on the IOPs at
depth z. Since µ is not as strong a function of depth as Kd even in the
presence of stratification, Gershun’s law is still useful for estimating a(z).
In contrast to the simple R(0) ≈ bb/3a for a homogeneous water body, in
a stratified water body, Gordon & Clark (1980) showed that R(0) depends
on a depth-weighted average of bb/a over the water column, i.e.,

R(0) ≈ 〈X(0)〉
3

,

with

〈X(0)〉 def=
∫ z90

0 X(z) g(z) dz∫ z90
0 g(z) dz

,

g(z) def= [Ed(z)/Ed(0)]2,

X(z) def= bb(z)/a(z),

and z90 is the depth over which the downwelling irradiance falls to 1/e of
its value at the surface. In the same manner as assuming R(z) ≈ bb/3a in
the homogeneous case, Gordon & Boynton (1998) assumed

R(z) ≈ 〈X(z)〉
3

, (20)
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with

〈X(z)〉 def=
∫ z′90
z X(z′)g(z, z′) dz′∫ z′90

z g(z, z′) dz′
,

g(z, z′) def= [Ed(z′)/Ed(z)]2,

z′ ≥ z, and z′90 is the depth over which Ed(z′) falls to 1/e of its value at
z = z′. To simplify the numerical computations, they extended the integra-
tion to the maximum depth at which irradiance data is obtained (zMax).
The equation for R(z) can then be inverted for X(z) given the R(z) profile:

X(z) ≈ 3

[
R(z)− dR(z)

dz

∫ zMax

z
dz′
[
Ed(z′)
Ed(z)

]2]
. (21)

This provides an avenue for obtaining bb(z)/a(z) from the irradiance profiles.
In the stratified case, the algorithm proceeds as before. In going from

the nth to (n+ 1)th iteration, a(z) and bb(z) are changed according to

a(n+1)(z) = µ(n)(z)K1(z),

and

b
(n+1)
b (z) = b

(n)
b (z) + ε∆b(n)

b (z),

where

∆b(n)
b (z) = ∆X(n)(z)a(n+1)(z),

and

∆X(n)(z) = X(z)−X(n)(z),

with X(n)(z) the profile of X(z) computed from R(n)(z), the computed re-
flectance profile after the nth iteration. Thus, the new absorption coefficient
profile is always determined by the previous estimate of the average cosine,
and the new backscattering profile by the new absorption coefficient and
reflectance profiles. The only real difference between the homogeneous and
stratified algorithms is the dR/dz term in X(z). In a manner completely
analogous to the homogeneous case, the algorithm can be structured to
operate with Lu(z) and Ed(z) rather than Eu(z) and Ed(z). Gordon
& Boynton (1998) thoroughly tested the algorithm using simulated data
and found that it was capable of resolving vertical structure in the IOPs to
the extent that Kd could be accurately computed. When the derivatives of
Eu and Ed could be computed accurately, the algorithm performance was
similar to the homogeneous case. The weak dependence of the retrievals
on the assumed scattering phase function was also similar to the earlier
algorithm.

The Gordon & Boynton (1998) algorithm has the attribute that it
provides IOPs that exactly reproduce the AOPs; however, if the physics
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used to relate the AOPs and IOPs is incomplete, the retrieved IOPs will be
incorrect although the reconstructed irradiances will be essentially perfect.
As Raman scattering is important, particularly at longer wavelengths, it
cannot be ignored, so Boynton & Gordon (2000) developed a version of the
Gordon & Boynton (1998) algorithm that included Raman scattering. In
their algorithm, they proposed using measurements of the light field at the
excitation wavelength to estimate the Raman source function Jr(z, θ, λ) at
the wavelength of interest, λ. Their procedure is straightforward: the Raman
contribution to the irradiances at λ are estimated and removed leaving the
elastic contribution. The irradiance profiles resulting from elastic scattering
are then inserted into the Gordon & Boynton (1998) algorithm for inversion.

Evaluation of Jr(z, θ, λ) is relatively simple. The inversion algorithm is
applied to the irradiance data at λe to retrieve the IOPs along with the
profiles of E0(z, λe) and E2(z, λe) that are required for Jr. In this procedure
it is assumed that the Raman correction is not required at λe (if it is
required, then the full Raman algorithm we are describing must be used
at λe as well). The main difficulty is in computing the Raman generated
light field at λ because it depends on the unknown IOPs at λ as well as on
Jr. This is overcome by first assuming IOP profiles for a(z) and bb(z) at
λ and computing the Raman light field. The Raman contribution is then
subtracted, and the Gordon & Boynton (1998) algorithm (henceforth called
the ‘elastic algorithm’) is used to provide new estimates for the IOPs at λ.
The new IOP estimates are used recompute the Raman light field, which
is subtracted from the measurements, and the elastic portion is inverted to
give new IOPs etc., i.e.,

· · · Jr + IOPs(n)→ RLF→ ELF→ IOPs(n+1)→ Jr + IOPs(n+1)→ RLF · · · ,

where RLF and ELF refer to the Raman light field and elastic light field,
respectively.

Boynton & Gordon (2000) studied the efficacy of this algorithm and
presented an example for a stratified water body in which the error in a(z)
and bb(z) reached 20% and a factor of 10, respectively, before the Raman
correction, and 2% and 10%, respectively, after the Raman correction. It
should be mentioned that in the absence of measurements of the light field
at λe, a method similar to that used by Loisel & Stramski (2000) to remove
Raman effects could be employed; however, the Boynton & Gordon (2000)
procedure is preferable because no additional assumptions are required (e.g.,
relationships between the chlorophyll concentration and the IOPs), although
it does require the light field at λe.

Finally, in trying to apply the Gordon & Boynton (1998) algorithm to
irradiance data measured in very clear water it was found that occasionally
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the retrieved bb was less than that of pure sea water (bbw) in the blue.
Although the error in bb was not excessive (∼ 20%), it was large enough to
render bb(z) < bbw for some depths. This problem was traced to the fact that
the retrievals become more dependent on the phase function as the water
clarity increases. In the Gordon-Boynton algorithms, the retrievals were
made using either Henyey-Greenstein phase functions (g = 0.85 or 0.90) or
the Petzold (1972) turbid water phase function. These are realistic for most
waters, but under very clear conditions, they are a poor approximation in the
backscattering direction. Boynton & Gordon (2002) resolved this difficulty
by using a two component phase function identical to Morel & Loisel (1998)
and Loisel & Stramski (2000), i.e., eq. (18). The particle component assumes
a particular Pp(Θ) (e.g., Henyey-Greenstein or Petzold), and the fraction
of water scattering η(z) is treated as a variable. (Note that if η is fixed
at some value, we have a fixed phase function for the medium, which is
exactly the Gordon & Boynton (1998) assumption.) The algorithm works
as follows: (1) a profile of η(z) is assumed, and the IOPs are estimated by an
algorithm similar to the elastic algorithm (e.g., Gordon & Boynton 1998);
(2) the resulting bp(z) is used to estimate η(z), and if the η(z) profile differs
significantly from that assumed, η(z) is updated, etc., i.e.,

· · · η(n)(z)→ elastic algorithm→ IOPs(n) → η(n+1)(z) · · ·
This algorithm considerably improves the retrievals in very clear waters,
and is essentially the same as Gordon & Boynton (1998) in more turbid
waters. It should be noted that the correct b(z) profile can only be obtained
if the particle phase function is correct; in essence only a(z) and bb(z) can be
retrieved in general.

4. Inversion of fluorescent light fields

The fact that the Raman scattering cross section is known allowed
inclusion of this inelastic process in the inversion algorithms. The other
inelastic process of importance in natural waters is fluorescence. There are
at present only two ways to assess directly the importance of fluorescence
in the in-water light field. In the first, the fluorescence has a spectral
character that allows it to be distinguished from the elastic scattering.
An example is the natural fluorescence of phytoplanktonic chlorophyll,
which has a spectrally narrow emission peak at 683 nm (Gordon 1979).
The second is to measure the in-water light field with sufficient spectral
resolution (∆λ <∼ 0.1 nm) that the solar Fraunhofer lines can be resolved.
Solar Fraunhofer absorption lines will become shallower (less absorption)
due to light generated by inelastic processes (Kattawar & Xu 1992, Ge
et al. 1993, Waters 1995, Hu & Voss 1997). By measuring the ‘depth’ of the
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lines, the light field can be portioned between elastic and inelastic scattering.
Unfortunately, there are few instruments with sufficient spectral resolution
for the latter, and there are fluorescence processes that are not manifest in
narrow easily-identifiable spectral features. Thus, it is of interest to try to
understand how fluorescent light fields might fit into the inverse methods of
radiative transfer. Preisendorfer & Mobley (1988) have presented a theory of
fluorescent light fields based on the two-flow model; however, their inversion
method suffers from the same defect as the Preisendorfer & Mobley (1984)
inversion method for elastic processes. The Tao et al. (1994) algorithm can
operate in the presence of fluorescence, but in its present formulation can
only be used to estimate the total contribution of all natural internal sources
(from all excitation wavelengths) at a given wavelength. It cannot separate
the contribution from individual spectral regions, although it could likely be
reformulated to do so. Here I briefly discuss a new approach for inversion in
the presence of inelastic processes which can provide a partial decomposition
of bin.

4.1. Estimation of a and bin

Central to all of the inversion algorithms is Gershun’s law, which in the
presence of inelastic processes can be written

dE1(z, λ)
dz

= −a(z, λ)E0(z, λ) +
∫
bin(z, λe → λ)E0(z, λe) dλe.

We will assume that the fluorescence emission and excitation are both broad
band, e.g., as with the fluorescence of CDOM (Hawes et al. 1992). Following
Preisendorfer & Mobley (1988), it will be useful to divide the excitation
spectrum into a large number (N) of spectral intervals, the ith being denoted
as ∆λi centered at λi. Then, we write for a particular emission wavelength λj∫

bin(z, λe → λj)E0(z, λe) dλe =
N ′∑
i=1

bin(z, λi → λj)E0(z, λi)∆λi,

where N ′ < N is the number of intervals required to fill the spectrum
between λe and λj . Then we can rewrite Gershun’s law as

i<j∑
i=1

bin(z, λi → λj)E0(z, λi)∆λi =
dE1(z, λj)

dz
+ a(z, λj)E0(z, λj).

Assume for the moment that both E1(z, λ) and E0(z, λ) are measured for
all λ, so all of the irradiances in Gershun’s law are known. For a given
z, assuming that bin(z, λj → λj) = 0, this equation has j − 1 unknown bin’s
and one unknown a for a total of j unknowns. For example, for j = 1, a(z, λ1)
is unknown, for j = 2, bin(z, λ1 → λ2) and a(z, λ2) are unknown, etc. Thus,
even when the light field is measured at all wavelengths and depths, there
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are always more unknowns than the single Gershun equation at each depth.
Some way is needed to restrict the number of unknowns.

The simplest restriction on the number of unknowns is to assume that
IOPs are depth independent, i.e., we restrict ourselves to homogeneous
media. Then, writing bin(z, λi → λj)∆λi as B(i, j), E0(z, λi) as E0(z, i),
and a(z, λj) as −B(j, j), we have

i≤j∑
i

E0(z, i)B(i, j) =
dE1(z, j)

dz
.

By using measurements of the light field at j depths, in principle we can find
a solution for the IOPs. Writing the unknowns B(i, j) as a column vector
with rows labeled λi, i.e.,

B =



B(1, j)
B(2, j)

...
B(j, j)


 ,

and E0(zk, i), where k = 1, · · · j, as a square matrix,

E0 =



E0(z1, 1) E0(z1, 2) · · · E0(z1, j)
E0(z2, 1) E0(z2, 2) · · · E0(z2, j)

...
...

. . .
...

E0(zj , 1) E0(zj , 2) · · · E0(zj , j)


 ,

and E1(zk, j) as a column vector

E1 =



E1(z1, j)
E1(z2, j)

...
E1(zj , j)


 ,

we have

E0B =
dE1

dz
.

The solution is of course

B = E−1
0
dE1

dz
.

One should note that the columns of E0 are just the scalar irradiance profiles
for each waveband. These are similar in that they all display essentially
exponential decay. This means that the matrix may be nearly singular
(i.e., ill-conditioned) in which case one may not be able to find an accurate
inverse.
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It is important to understand the source of ill-conditioned situations and
how to deal with them. Consider a medium for which E0(z, k1) = E0(z, k2),
i.e., two wavelength intervals have the same E0(z). Clearly, E0 is singular;
however, from Gershun’s law we see that it is impossible to separate the
individual contributions from ∆λk1 and ∆λk2 to Jin. One can only determine
the contribution of ∆λk1 ∪∆λk2 , i.e., bin(k1 → j)∆λk1 + bin(k2 → j)∆λk2 .
Thus, ∆λk1 and ∆λk2 must be considered together as a single (disjoint)
spectral interval, removing the singularity from E0 .

4.2. Estimation of bb

There is no way to use Gershun’s law to estimate the backscattering
coefficient. For this we need to solve the inverse problem completely.
However, given E1 and E0, this is possible assuming that the medium is
homogeneous. From the Gershun equations and the procedure described
above, we already have a(λj) and bin(λi → λj) for all λi < λj . To determine
bb(λj), we could start with an initial estimate bb(λj) = 3R(0, λj)/a(λj). This
should be a good initial estimate for situations where the fluorescence is
weak at the surface. Next, choose either P (Θ) or Pp(Θ) and solve the RTE
at λj using the inelastic source functions determined from bin(λi → λj). This
gives estimated profiles of E1(z, λ1) and E0(z, λ1) that can be compared with
the measured data. Based on the results of the comparison, an improved
estimate of bb(λj) can be made as in Gordon & Boynton (1997). It is
important to note that in this case (E1 and E0 measured in a homogeneous
medium) the estimate of bb(λj) requires solving the RTE only at λj. This
procedure is identical to the inversion in the presence of Raman scattering
(Boynton & Gordon 2000), i.e., the inelastic cross sections are already known
at the start of the bb inversion process.

4.3. Inversion when only E1 is measured

The immediate question now is, what if only Eu(z, λ) and Ed(z, λ) are
measured as in the Gordon and Boynton algorithms? In this case, we write
E0 in terms of E1, i.e.,

E0=



µ(z1, 1)−1E1(z1, 1) µ(z1, 2)−1E1(z1, 2) · · · µ(z1, j)−1E1(z1, j)
µ(z2, 1)−1E1(z2, 1) µ(z2, 2)−1E1(z2, 2) · · · µ(z2, j)−1E1(z2, j)

...
...

. . .
...

µ(zj , 1)−1E1(zj , 1) µ(zj , 2)−1E1(zj , 2) · · · µ(zj , j)−1E1(zj , j)


.

Now, assume that we have by some means completed the inversion for
wave bands up through j − 1 and are looking for the solution in the jth

waveband. The j − 1 inversions provided estimates of µ(z, λi) with i = 1
to j − 1. Thus, in the above equation, only µ(z, λj) is unknown. As in
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Boynton & Gordon (2000), we consider an iterative set of solutions to the
RTE in which after the kth iteration, the µ’s are labeled µ(k). (Note: the
µ(k) required here is for the entire light field — elastic plus inelastic.) Then
we estimate E0 as

E(k)
0 =



µ(z1, 1)−1E1(z1, 1) µ(z1, 2)−1E1(z1, 2) · · · µ(k)(z1, j)−1E1(z1, j)
µ(z2, 1)−1E1(z2, 1) µ(z2, 2)−1E1(z2, 2) · · · µ(k)(z2, j)−1E1(z2, j)

...
...

. . .
...

µ(zj , 1)−1E1(zj , 1) µ(zj , 2)−1E1(zj , 2) · · · µ(k)(zj , j)−1E1(zj , j)


,

and use this to obtain a new estimate (B(k)) of the absorption coefficient at
j and the inelastic scattering coefficients from i into j,

B(k) = [E(k)
0 ]−1dE1

dz
.

This allows us to obtain a new estimate of bb(λj) in the manner described
above. This iterative procedure continues until the measured and computed
Eu(z, λ) and Ed(z, λ) agree. Schematically,

· · · Jin + IOPs(n)→ ILF→ ELF→ IOPs(n+1)→ Jin + IOPs(n+1)→ ILF · · · ,

where ILF refers to the inelastically-induced light field, and the IOPs include
bin(λi, λj). Note that the only difference between the procedure when only
E1 is provided, compared to the procedure when both E1 and E0 are
provided, is that in the former inelastic scattering-absorption vector B (and
thus the inelastic source functions) is reevaluated at each iteration, while in
the latter these quantities are computed only once. The solution for i < j
must have been carried out first; however, that can be effected in the same
manner as the solution presented above for i = j. Thus, to effect a complete
solution, one sequentially solves the inverse problem within each wave band
from i = 1 to i = N . The result is a(j), bb(j), and bin(i→ j) (with i < j),
j = 1, to N .

We note also that, in a homogeneous medium such as we have been
discussing, it is straightforward to include the Raman scattering as well
as fluorescence into the procedure. All that is required is that the inverse
problem has been solved at the Raman excitation wavelength, which is
already a necessity in the fluorescence problem. That solution would then
be used to provide an additional source function (Jr) along with Jf in the
RTE at λj . Thus, in principle a complete solution to the inverse problem in
the presence of inelastic processes can be effected in a homogeneous water
body.

One obvious avenue for including vertical structure in the analysis is
to approximate the vertical structure by a set of homogeneous layers. The
above analysis could then be carried out separately for each layer. A possible
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difficulty is that it may not be clear how to assign the position of layers
based on the irradiance profiles alone, because the principal absorber may
not be responsible for, or related to, the fluorescence. Another difficulty is
that irradiance measurements must be carried out at a sufficient number of
depths in each layer to provide the necessary number of equations to carry
out the inversion.

5. Discussion

It is important to keep in mind a few relevant facts. First, in the
absence of inelastic processes, given the irradiance quartet, it is a relatively
simple matter to estimate a (Gershun’s law). However, as E0 is only rarely
measured, a can be determined only if µ can be estimated. From the
analysis provided by Morel & Prieur (1975b) the range of variation in
1/µd (1.069-1.265) is only ∼ 20%. This means that estimating 1/µd by
∼ 1.16 will result in ∼ ±10% uncertainty in the retrieval of a. Therefore,
given E1, estimation of a within ±10% is not difficult even in the presence
of vertical stratification. The addition of the difficult E0 measurement
to the measurement suite would only reduce the uncertainty below 10%.
Second, given a, estimation of bb from equations like eqs. (11) and (12) is
straightforward; however, errors due to stratification could be important.
Putting this in perspective, to be more useful than the crudest estimates,
algorithms must retrieve a with an uncertainty significantly less that 10%
and be able to address stratification. Third, Ed data are extremely noisy
near the surface due to wave-induced focusing of the solar beam (Dera
& Olszewski 1967, Dera & Gordon 1968, Stramski 1986, Stramski & Dera
1988), which Zaneveld et al. (2001) show can be generated even in ‘calm’
seas. This means that accurate Ed data can be obtained only below some
depth, e.g., ∼ 10− 20 m, that is dependent on the sea state. Fourth, thin
(∼ few cm) persistent layers are sometimes observed in the IOPs (e.g., see
Cowles et al. (1998) and other papers in the same issue of Oceanography).
The presence of such layers could be easily missed or be considered to
be noise in the AOP measurements. Thus, the first two observations
suggest that inversion is not too difficult, while the last two suggest that
the environment itself presents significant challenges to inversion. The
relevant question is, how do the various algorithms described earlier perform
considering these observations?

As we have described, AOP inversion algorithms are based on either
explicit or implicit schemes that fit the observed irradiances to solutions
of the RTE, either carried out earlier (explicit) or developed during the
inversion process using trial IOPs (implicit). In either type of scheme, one
aspect of AOP inversion that should be clear is that the only quantities
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Table 1. Comparison of several inverse methods in oceanic optics

Gordon (1991) Kirk (1994) Gordon & Boynton Leathers et al. Loisel & Stramski
(1998, 1999, 2000) (1999) (2000)

Input Data R(0, –) and 〈Kd〉 R(0, –) and 〈Kd〉 Lu(z) & Ed(z) Lu(z) & Ed(z) R(0, –) and 〈Kd〉
or or

Eu(z) & Ed(z) Eu(z) & Ed(z)
Assumptions

General1 1-d Scalar RT 1-d Scalar RT 1-d Scalar RT 1-d Scalar RT 1-d Scalar RT

Atmosphere2 Clear sky None Clear sky NA Clear sky
(coupled) or (coupled) or (Hydrolight) or

overcast overcast coupled

Water3 Homogeneous Homogeneous None Asymptotic Homogeneous
P (Θ) P (Θ) or Pp(Θ) P (Θ) Pp(Θ)

Surface4 Smooth and Smooth Smooth Smooth Smooth and
rough (C & M) rough (C & M)

Inelastic Processes None None Raman through None Raman through
measurement at λe a bio-optical model

Bottom Reflection No No Yes No (but can be No
included)

Recovered Quantities Mean a and bb Mean a and bb a(z) and bb(z) a(z) and bb(z) Mean a and bb
Retrieves Vertical No No Yes Yes No
Structure

1‘1-d Scalar RT’ means that the IOPs are assumed to be independent of horizontal position (they depend only on depth) and the polarization
of the radiation is ignored. 2‘Coupled’ refers to a coupled ocean-atmosphere model. In contrast, ‘Hydrolight’ means that the standard
Hydrolight atmospheric input is assumed. Leathers et al. (1999) use asymptotic theory, so the atmosphere and sea surface do not enter into
the computation (‘NA’ means not applicable). 3‘Homogeneous’ means that the IOPs are independent of depth. ‘P (Θ)’ means that a phase
function is assumed for the medium, etc. 4‘C & M’ means that the surface roughness follows that developed in Cox & Munk (1954).
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that one can expect to accurately retrieve at a given λ are a(λ) and bb(λ),
and bin(λ′ → λ). Any inversion algorithm that purports to retrieve b(λ)
or c(λ) solely from irradiance measurements must have made the retrieval
based on assuming a phase function for the medium (or at least for the
particle component of the medium), and the retrieved values will depend
directly (and strongly) on the assumed phase function. In contrast, in most
inversion schemes the retrieval of bb is only weakly dependent on the assumed
phase function. Table 1 compares several of the algorithms described in
the text, providing their assumptions regarding the atmosphere, the water
surface, vertical structure, inelastic processes, etc. I have excluded from
Table 1 the algorithm of Tao et al. (1994), as it requires the seldom-measured
irradiance quartet, and the algorithm of Stramska et al. (2000) because
it requires both Eu and Lu, which are rarely measured simultaneously.
All of the algorithms in Table 1 (as well as the excluded Tao et al.
(1994) and Stramska et al. (2000)) perform well within the limitations
set by the assumptions used in their development (e.g., asymptotic theory,
homogeneous water bodies, etc.).

In comparing the various inversion algorithms in Table 1, it is useful to
divide the algorithms into two classes: a structure-resolving class consisting
of those algorithms that either can, or purport to be able to, perform
well in retrieving vertical structure in the absorption and scattering and
a structure-averaging class consisting of those that attempt to retrieve
only average quantities over a defined surface layer from the surface
to some prescribed depth. All of the structure-averaging algorithms are
essentially the same, differing only in the details of developing the empirical
relationships, and in the scope of the radiative transfer computations used
in deriving them. For example, Gordon (1991) uses b̃b to characterize the
influence of the phase function on Kd, Kirk (1994b) uses µs, and Loisel
& Stramski (2000) use η. Clearly, the Loisel & Stramski (2000) algorithm is
preferred over the other two because it is based on a much larger simulation
set and because it includes Raman scattering. The structure-resolving
algorithms differ significantly even in their basic assumptions.

As mentioned above, given accurate irradiance measurements, all of
the algorithms perform reasonably well within the range of validity of
the assumptions used in the derivation. However, given that surface
waves prevent accurate measurements, does this limit the validity of any
algorithm? The answer is to a certain extent no. Several of the algorithms
use a mean Kd (or K1) from the surface to some depth zd, along with
the reflectance just beneath the surface R(0). As long as zd is below the
region of significant wave-induced irradiance fluctuations, and the surface
Ed is measured above the surface to avoid fluctuations (and then propagated
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through the surface to form the appropriate mean Kd and R(0)), such
algorithms should perform well as long as there is little vertical structure
between the surface and zd. However, in the presence of highly absorbing
thin layers between the surface and zd these algorithms will overestimate
Kd over most of the depth range and, as such, overestimate a and bb.
Examples of the effect of vertical structure on the Loisel & Stramski
(2000) algorithm are provided in Loisel et al. (2001). They show that
large errors in both a (10-15%) and bb (as much as 40%) are sometimes
possible with realistic profiles of IOPs in the surface layer. Concerning the
structure-resolving algorithms, the Gordon and Boynton algorithms will
work in the same manner as the structure-averaging algorithms, because
they implicitly assume the absence of vertical structure between the surface
and the first depth at which Ed data become useful. The Leathers et al.
(1999) algorithm, based on asymptotic theory, will yield a realistic a because
µ is never too far from the asymptotic value, but could display large error
in bb because of the possibility of significant differences between R(0) and
R∞. Thus, both classes of algorithms should produce realistic retrievals as
long as the water is clear enough that their working depth is below the level
significantly influenced by fluctuations, and as long as there is little vertical
structure between that depth and the surface; however, the Leathers et al.
(1999) will likely yield poor estimates for bb.

Considering the structure-resolving algorithms in the region free of
fluctuations, the Gordon and Boynton algorithms must be superior as they
represent essentially an exact solution to the RTE and can adequately deal
with vertical structure. Gordon & Boynton (1998) show that the principal
source of error in a(z) is the error in the determination of K1(z) from
the experimental data, i.e., if a thin absorbing layer were not adequately
sampled in Ed and Eu significant error would result, so the limitation of
their algorithm is adequate irradiance sampling. Similar comments apply
to the estimate of a using asymptotic methods, as K1 must be computed
in these as well. In cases where there is little variation in ω0 with depth,
there should be little difference between the exact solution and one based on
asymptotic theory, particularly if the McCormick (1996) method (eq. (17))
is used to estimate the asymptotic values. One must be aware, however, that
as the depth increases, the inelastic processes can become relatively more
important, and thus must be included in order to retrieve realistic IOPs.
Boynton & Gordon (2000) explicitly includes Raman scattering; however,
it requires measurements of the AOPs at the Raman excitation wavelength
as well. Fluorescence can be included as well, as described in Section 4,
but requires spectral measurements (and inversion) of the AOPs for all
wavelengths less than λ.
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Some of the modern inversion algorithms that I have reviewed have
been applied to AOP data for which the IOPs were directly measured
(Leathers et al. 1999, Stramska et al. 2000, Loisel et al. 2001). To assess
the agreement between the inversion-derived (IOPinv) and the directly
measured (IOPmeas) the authors performed the following regression:

IOPinv = S × IOPmeas + I,

where the IOPs were a (Leathers et al. 1999, Stramska et al. 2000),
a− aw (Loisel et al. 2001), bb (Stramska et al. 2000), and bb − bbw
(Loisel et al. 2001). The values of S and I along with the r2 for
the regressions are provided in Table 2. The data range for each of
the studies was 0.02 ≤ a ≤ 0.16 m−1 for Stramska et al. (2000), 0.1 ≤
a ≤ 0.7 m−1 for Leathers et al. (1999), and 0.002 ≤ a− aw ≤ 0.8 m−1

for Loisel et al. (2001). The results generally show good agreement
between the measured and retrieved IOPs. Interestingly, of the three,
the model I consider to be the best (Loisel & Stramski 2000) shows
the largest deviation in S from unity. The general nearness of S to
unity suggests that the sampling scale mismatch between inverted and
measured IOPs may not be as serious as it could be. However, the small
slope (S ≈ 0.9) observed by Loisel et al. (2001) is confusing, because one
would expect a− aw measured at large scale to be greater than that
measured at the smaller scale (S > 1) because the small scale measurement
will leave some large particles unsampled. Similar comments apply to
bb − bbw.

Table 2. Comparison between inverse and measured a and bb (I is in m−1)

IOP Leathers et al. (1999) Stramska et al. (2000) Loisel et al. (2001)

a S 1.03 0.99 0.903
or I 0.007 –0.0046 0.008

a− aw r2 0.98 0.94 0.98

bb S – 0.97 0.87
or I – 0.0005 0.00015

bb − bbw r2 – 0.86 0.87

6. Concluding remarks

We have reviewed several methods for inverting natural in-water light
field measurements (providing AOPs) to yield the IOPs a(z, λ), bb(z, λ) and
bin(z, λ). The review has been limited by omitting two-flow estimates as
well as those employing artificial internal sources. In addition, methods
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for retrieving bio-optical parameters from above the sea surface using
reflectance models (Bricaud & Morel 1987, Gordon et al. 1988, Lee et al.
1996, Garver & Siegel 1997), although extremely important in remote
sensing, have been omitted as well.

The history shows a systematic progression in the development of
explicit algorithms culminating with Loisel & Stramski (2000). Truly
implicit algorithms are rather new, the first being that of Gordon & Boynton
(1997). The Loisel and Stramski algorithm seeks to estimate the mean a(λ)
and bb(λ) over a depth 1/Kd(λ) from measurement of R(0) and 〈Kd〉1 at
λ, while the Gordon and Boynton algorithms (Gordon & Boynton 1998,
Boynton & Gordon 2000, 2002) seek vertical profiles for a(λ) and bb(λ),
given irradiance profiles, and therefore is significantly more computationally
intense. The interference of Raman scattering is handled differently in the
two algorithms: Loisel and Stramski correct the irradiances for Raman
scattering by estimating its contribution using a bio-optical model that
relates the IOPs to the chlorophyll concentration; Boynton & Gordon (2000)
require AOP measurements in the Raman excitation band to estimate the
Raman correction. In the absence of significant wave-induced light field
fluctuations, both algorithms achieve their goals well. Their performance is
similarly degraded in the fluctuation zone. Fluorescence can be added to the
Gordon and Boynton algorithm in a straightforward manner as described
in Section 4; however, as the fluorescence-induced component of the light
field is usually weak (except possibly at great depth), it remains to be seen
whether such a formulation will be useful in the presence of environmental
and sensor noise.

It is now possible to make a(z) and c(z) measurements simultaneously
with the AOPs (Zaneveld & Bartz 1984, Zaneveld et al. 1990, 1992), and
direct a measurements show good agreement with AOP-a retrievals. This
suggests that the scale mismatch between the AOP retrievals and IOP
measurements may not be as serious as one could imagine. Thus, one
must ask what, if any, additional information can result from inversion,
given measurement of c(z), at least at a single wavelength. The answer
is that, given c(z, λ), it would be possible to compute b(z, λ), from which
b̃b(z, λ) could be determined after retrieving bb. This would provide some
limited information on the scattering phase function. In addition, direct
measurement of a(z, λ) would provide an indication of the strength of the
inelastic contribution (particularly fluorescence) to the light field at λ using
Gershun’s law. Also, such measurements (a and/or c) even at a single
wavelength would provide a direct measure of the stratification of the IOPs,
and this would be helpful in effecting an AOP inversion in the wave-induced
fluctuation zone.
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In this writer’s opinion, the greatest shortcoming of the inverse methods
described here is that only the total a, bb, and bin can be estimated. No
information is obtained concerning the decomposition of any of the IOPs
into their component parts.
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Appendix 1
List of acronyms

Acronym Meaning

AOP apparent optical property

ELF elastic light field

ILF inelastic light field

IOP inherent optical property

RLF Raman light field

RT radiative transfer

RTE radiative transfer equation

TOA top of the atmosphere
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Appendix 2
List of frequently used symbols∗

Symbol Name

a total absorption coefficient

b total elastic scattering coefficient

bin(λ′ → λ) total inelastic scattering coefficient from λ′ to λ

bb total elastic backscattering coefficient

B column vector of bin(λe → λ)∆λe and a(λ) for a given depth

b̃b total elastic backscattering probability

b̃f total elastic forward scattering probability (1− b̃b)
bp particle scattering coefficient

bw water elastic scattering coefficient

β total volume scattering

βp particle volume scattering function

βw water elastic volume scattering function

βin(λ′ → λ) inelastic volume scattering function from λ′ to λ

β(0), β(0)in azimuthly averaged β and βin
c total attenuation coefficient (a+ b+

∫
bin(λ→ λ′) dλ′)

E irradiance

Ed downwelling irradiance

Eu upwelling irradiance

E0 scalar irradiance

E0d downwelling scalar irradiance

E0u upwelling scalar irradiance

E1 vector (or net) irradiance (Ed −Eu)
En nth moment of L(0)(Section 2.1.2)

E0 matrix of E0 (rows, wavelength; columns, depth)

E1 matrix of E1 (rows, wavelength; columns, depth)

E−10 inverse of E0

εn expansion coefficient of β(0)in (Section 2.1.2)

η bw/b

θ propagation polar angle

θ0 solar zenith angle

θw0 refracted (or in-water) solar zenith angle

Θ scattering angle

I radiant intensity
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List of frequently used symbols∗ (continued)

Symbol Name

Jf source function for fluorescence (eq. 3)

Jr source function for Raman scattering (eq. 4)

Jin general inelastic source function

Kx −d�n(Ex)/dz, where x = d, u, 0, 1, etc.

KL −d�n(Lu)/dz
K∞ asymptotic value of Kd, Ku, K0, etc.

〈Kd〉 mean Kd from the surface to z10
〈Kd〉e mean Kd from the surface to z1
〈Kd〉1 mean Kd from the surface to ze
L radiance

L(0) azimuthly averaged radiance

Lu radiance measured by a nadir-viewing radiometer

λ wavelength

λe exicitation wavelength for inelastic scattering

µ average cosine of the radiance (E1/E0)

µd average cosine of the downwelling radiance (Ed/E0d)

µu average cosine of the upwelling radiance (Eu/E0u)

µ0 average cosine of the radiance when b = bin = 0

µs average cosine of β

µw cos θ0w
ν1 largest eigenvalue of the source-free RTE

ξ̂ direction of propagation of radiation

#n expansion coefficient of β(0) (Section 2.1.2)

P elastic scattering phase function (β/b); radiant power

Pp particle scattering phase function (βp/bp)

Pw water elastic scattering phase function (βw/bw)

�r position vector of a point in space

R irradiance reflectance (Eu/Ed)

Rµw=1 R when the sun is at the zenith

Rµw R for a general solar position

R∞ asymptotic value of R for given IOPs

RL radiance factor (Lu/Ed)

τ optical depth (τ =
∫
c(z) dz)
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List of frequently used symbols∗ (continued)

Symbol Name

φ propagation azimuth angle

φ(·) eigenfunction of the source-free RTE

X bb/a

ω0 single scattering albedo (b/c)

Ω solid angle

z depth

z10 depth at 10% of surface irradiance

z1 depth at 1% of surface irradiance

ze depth at 1/e of surface irradiance

≈ approximately equal to
def= definition, e.g., ω0

def= b/c
∼= approximate equality in a relationship developed

through curve fitting, e.g., least-squares

∼ of the order of
<∼ less than approximately
>∼ greater than approximately

∗Many of these quantities depend on depth, wavelength,
direction, etc. Such dependencies are included here only as required
for clarity, e.g., bin(λ′ → λ).


