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Abstract

Transformation of waves on sandy beaches, their breaking, set-up and run-up are
the main factors contributing to fluctuations in the water table and groundwater
flow. In this paper, the run-up mechanisms have been studied using analytical
models. In contrast to the standard models, the waves approaching the shoreline are
assumed to be dispersive and the equivalence of the non-linear and linear solutions
for the extreme characteristics of wave run-up, such as the height of maximum
run-up and the velocity of run-up, are used.

A linear system of equations for the run-up of breaking waves is developed.
This system is based on the application of the mild-slope equation in the deeper
area, where waves are dispersive, while the linear equations of shallow water
are applied close to the shoreline, where the water depth is a linear function of
distance. The dissipation factor in the shallow water equation has been formulated
using its resemblance to the mild-slope equation for a non-permeable sea bottom.
Application of the method is illustrated for various bottom profiles and wave
characteristics, and theoretical results compared well with experimental data. These
solutions of the run-up phenomena will assist future studies on wave-induced beach
groundwater flow.
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1. Introduction

This paper is the first of an intended series of papers on the dynamics
of surface waves on a beach surface and on wave-induced fluctuations of the
groundwater table. This work has been motivated by the research within
the LITUS Project (Interaction of Biodiversity, Productivity and Tourism
in European Sandy Beaches). The basic objectives of the Project are to
assess the vulnerability of a sandy beach’s biodiversity and the functioning
of a beach ecosystem, as well as a better understanding of the interaction
between tourism, natural changes, and physical marine factors of such an
ecosystem. The LITUS Project provides a scientific, socio-economic and
technological basis for understanding changes in European sandy beaches
(Węsławski et al., in press).

Sandy beaches are highly exploited but very dynamic and fragile
environments. The beach system is driven by the physical energy induced
by waves and tides. The water flow through the beach body is of great
importance in introducing water, organic materials and oxygen to the
ground environment. It controls the vertical and horizontal, chemical
and biological gradients, and nutrient exchange in the beach (McLachlan
1989). Further, water filtration through a sandy beach is considered to be
significant for swash-backwash dynamics and accretion-erosion on the beach
face (Turner 1995).

The measurements by McLachlan (1989) showed that the volume of
water filtered through sandy beaches depends on the beach type. In general,
beaches can be classified as reflective, intermediate, or dissipative (Short
1991). For tideless seas, such as the Baltic, the basic dimensionless beach
classification parameter Ω has the form

Ω =
H̄br
wT

, (1)

where H̄br is the mean breaker height, w is the mean fall velocity, and T
is the wave period. Assuming that the typical storm wave parameters are
H̄br ≈ 1m and T = 6 s, and the median size of sand D50 ≈ 0.3mm, the
fall velocity in eq. (1) becomes w = 0.0246m s−1 (SPM 1984). The resulting
value of the dimensionless parameter Ω ≈ 6.8 indicates that the beach under
consideration is of the dissipative type. McLachlan (1989) showed that
dissipative beaches filter low volumes of seawater. However, during strong
storms, the filtered volume can increase by one order of magnitude.

Wave motion on beaches is very complex and the groundwater flow is
different in different beach regions. In Region 3, between points D and E
(see Fig. 1), the wave run-up infiltration contributes mainly to the raising
of the coastal water table. The hypothetical distribution of the infiltration
velocity Uf induced by the run-up is shown in the same figure, and the
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vertical axis niN−1 denotes the ratio of the events when the beach surface is
covered by water to the total number of events. The wave run-up infiltration
process, under the Dupuit-Forchhemer assumption, obeys the Boussinesq
equation. When there is no sink or source landward of the run-up limit, the
water table is horizontal landward of the run-up limit (Li & Barry 2000).
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Fig. 1. Reference scheme and relationships between wave run-up, infiltration and
coastal watertable

The beach groundwater flow in the set-up region, between points Bb
and D (see Fig. 1), induces a groundwater circulation which contributes to
the submarine groundwater discharge (Kang & Nielsen 1996, Li & Barry
2000). Little is known about the groundwater flow in this region. One of
the models of the groundwater flow is the Longuet-Higgins (1983) analytical
solution for the circulation induced by wave set-up. The problem was solved
for a semi-infinite domain, but the free surface boundary conditions at the
water table and the landward boundaries were not included in the solution.

For tideless seas, the groundwater flow is totally controlled by the
dynamics of surface waves on the beach. As waves propagate towards the
shore, they become steeper owing to the shallowing of water depth, and
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at some depth they lose their stability and finally start to break. When
waves break, wave energy is dissipated and the radiation stress is reduced.
Longuet-Higgins & Stewart (1964) proved that shoaling, refraction and
dissipation processes induce spatial changes in the radiation stress, which
give rise to changes in the mean sea level (MSL). The balance of the sea
level gradient and the gradient of radiation stress takes the form

dSxx
dx

+ ρg (h+ η)
dη

dx
= 0, (2)

in which η is the change of MSL due to wave action, and Sxx is the radiation
stress tensor component. The change of η due to wave action is shown in
Fig. 1. The maximum set-down appears close to breaking point (point Bb),
while the maximum set-up ηmax occurs at point D.

The wave run-up height Rmax is defined here as the maximum vertical
height above still water level reached by the wave uprush (point E in Fig. 1).
The run-up height is always greater than the wave set-up. On the other
hand, wave run-down is defined as the lowest vertical height reached by
the backwash of a wave before the uprush of the next wave commences to
run-up the beach face.

There is a considerable literature on the estimation of maximum run-up
on beaches and engineering structures. In particular, experimental studies
on wave run-up for periodic waves were reported by Saville (1958), Savage
(1958), Hunt (1959), Battjes (1974), Kobayashi & Greenwald (1986), Walton
& Ahrens (1989) and Gourlay (1992). In all these studies, the so-called
Iribarren number or surf parameter was used for data presentation (see
Section 2 for more details). This approach yields the values of the possible
maximum wave run-up limit, which is very valuable engineering information,
but provides no information on the dynamics of run-up, namely on the
position of the water surface on the slope, the movement velocity of the
waterline and the time of water residence on the particular beach segments,
which are of great importance for the evaluation of groundwater flow.

On the other hand, in coastal oceanography, run-up is considered a basic
mechanism determining the impact of tsunami waves on a coast. Tsunami
waves belong to the class of very long waves and are usually modelled
through the solitary wave representation (Mazova & Pelinovsky 1982,
Kaystrenko et al. 1985, Titov & Synolakis 1995).

The wave run-up limit and induced water infiltration into a beach body
is a response to the instantaneous flow of the surface water. Therefore,
modelling the surface oscillation should be based on the phase-resolving
wave type model. The key element of the model proposed in this paper is
the proper representation of the wave run-up mechanism for the incident
dispersive waves. It should be noted that available run-up models usually
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assume that waves are non-dispersive and that the phase velocity depends on
the water depth only (Carrier & Greenspan 1958, Carrier 1966, Le Mehaute
et al. 1968, Pelinovsky 1982, Voltzinger et al. 1989, Pelinovsky & Mazova
1992). This assumption is applicable to tsunami and wind-induced waves
very close to the shoreline. However, in deeper water, waves are usually
dispersive. Thus, we need an approach in which the dispersive character of
waves is maintained seawards and the approximation of shallow water is used
close to the waterline. The possibility of developing such a combined model
of the run-up of dispersive waves on a beach was mentioned in another
paper by the authors (Massel et al. 1990). However, in that paper, the
transformation of the deep water waves to the shallow water was represented
in a very approximate way using the linear wave theory. Moreover, energy
dissipation due to wave breaking was totally neglected.

In this paper an attempt is made to develop a more complex approach
for the run-up of dispersive breaking and non-breaking waves. Waves
approaching the shallow water area are modelled by the mild-slope equation
(Berkhoff 1973, Massel 1996, 1999). At very small water depths, the
non-linear and linear equations for shallow water waves are considered
and the dissipation due to wave breaking is included, providing a more
realistic estimation of run-up characteristics. However, the permeability of
the sea bottom is neglected and analytical methods are preferred to a purely
numerical approach.

The paper is organised as follows. The governing equations for Regions 1
and 2 are given in Section 2. The non-linear and linear equations of the
wave motion in Region 3, as well as the dissipation terms are discussed in
Section 3. The solution of the boundary value problem is given in Section 4.
Section 5 contains examples of numerical calculations and comparison with
experiments, while the main conclusions are listed in Section 6.

2. Governing equations for wave motion in Regions 1 and 2

Consider the coordinate system 0(x, y, z) with the z-axis positive
upwards and equal to zero at the still water level (Fig. 1). To facilitate
the analysis, the whole area of interest is divided into regions in which the
governing equations are established. The solutions in particular regions are
matched using the conditions of continuity of the pressure and velocities. We
assume that the water is incompressible, the sea bottom is non-permeable,
and that a monochromatic wave train of a given frequency ω and wave
height Hi is normally incident on the beach. In Region 1 (−∞ < x ≤
−x1), the water depth is assumed constant and equal to h1. In Region 2
(−x1 < x ≤ −xp), the water depth is an arbitrary function of the distance x,
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while in Region 3 (−xp < x <∞), the water depth is a linear function of x,
i.e.

h(x) = −βx, (3)

in which β is the beach slope.

Region 1 (−∞ < x ≤ −x1; z = h1)
In this Region, the wave field consists of the incident and reflected waves,

and the potential Φ1 takes the form (Massel 1989)

Φ1(x, z, t) =
−igHi
2ω

Z1(z) {exp[ik1(x+ x1)]+
+ KR exp[−ik1(x+ x1)]} exp(−iωt), (4)

in which

Z1(z) =
cosh k1(z + h1)

cosh k1h1
, (5)

KR is the unknown complex reflection coefficient, and wave number k1
should satisfy the dispersion relation

ω2 = gk1 tanh(k1h1). (6)

Region 2 (−x1 < x ≤ −xp;−h1 ≤ z ≤ −hp)
In Region 2, the water depth h(x) can vary substantially, and the

refraction and diffraction effects cannot be neglected. In order to account for
these effects an approach based on the mild-slope equation (Berkhoff 1973)
is used. When the dissipation due to breaking is included, the governing
velocity potential Φ2(x, z, t) can be represented in the form (Massel 1996,
Massel & Gourlay 2000)

Φ2(x, y, z, t) =
−igHi
2ω

Z2(z)ϕ2(x) exp(−iωt), (7)

in which

Z2(z) =
cosh k2(z + h2)

cosh k2h2
, (8)

and
d2ϕ2
dx2

+ (CCg)
−1 dCCg

dx

dϕ2
dx

+
(
k22 + iγk2

)
ϕ2 = 0. (9)

The ϕ2(x) function is the non-dimensional wave height H(x)/Hi; C and Cg
are the respective phase and group velocities, and wave number k2 satisfies
the dispersion relation

ω2 = gk2 tanh(k2h2). (10)

In the case of a steeper bottom, more elaborate wave models should be
used (see for example Massel 1993, Athanassoulis & Belibassakis 1999).
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The unknown damping factor γ in eq. (9) consists of two components, i.e.
the dissipation due to wave breaking γb and that due to bottom friction γf
(Massel 1996)

γ = γb + γf , (11)

in which

γb =
8 < εb >
ρgCgH2 , (12)

γf =
8 < εf >
ρgCgH2 , (13)

where < εb > and < εf > represent the average rate of energy dissipation
(per unit area) due to wave breaking and bottom friction respectively. In
the shallow water zone the dissipation due to wave breaking is substantially
greater than that due to bottom friction. This friction is therefore omitted
in the following analysis. Wave breaking is a highly non-linear process and
at present there is no theoretical solution to this problem. However, there
is a wide body of literature aimed at the parameterisation of the breaking
process. In particular, the periodic bore model of Battjes & Janssen (1978)
is used in this paper to account for the rate of energy dissipation, and the
damping factor γb becomes (Massel & Belberova 1990, Massel & Gourlay
2000)

γb =
αω

π

√
gh

CCg

H

h
, (14)

in which α is an experimental parameter of the order of one, and the wave
height H is given by

H = Hi
√
[�ϕ2(x)]2 + [	ϕ2(x)]2, (15)

in which � and 	 are the real and imaginary parts of the complex function
ϕ2.

The initiation of energy dissipation or the extent of the surf zone, in
which equation (2.9) should be used, is controlled by the non-dimensional
maximum allowable wave height

(
Hm
h

)
. In this paper the formula proposed

by Singamsetti & Wind (1980) is applied:

Hm
h

= 0.937
∣∣∣∣dhdx

∣∣∣∣0.155
(
H0

L0

)−0.130
, (16)

where H0 and L0 are the deep water wave height and length respectively.
The wave height attenuation in Region 2 should be supplemented by

the estimation of the wave induced set-up and set-down (see eq. (2)). If we
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neglect the reflected waves and introduce the wave energy E for progressive
waves, the tensor Sxx takes the form (Massel 1989)

Sxx = E
(
2m− 1

2

)
, (17)

where

E =
1
8
ρgH2 (18)

and

m =
1
2

(
1 +

2kh
sin 2kh

)
. (19)

For a gentle bottom slope, the resulting gradient of radiation stress is
affected only by the local gradient of wave height

dSxx
dx

=
1
8
ρg R(x), (20)

in which

R(x) =
∂Sxx
∂H

dH

dx
=

(4m− 1)
8

H
dH

dx
(21)

After substituting eq. (20) into eq. (2) we obtain

dη̄

dx
=

−1
8(h+ η̄)

R(x) = −(4m− 1)
8

H

h

dH

dx
. (22)

Eqs. (9) and (22) form a final set of equations for the unknown non-
dimensional wave height ϕ and set-up η̄. This set of equations is solved
in a recurrent manner, i.e. first the non-dimensional wave height ϕ is
determined for η̄ = 0, then the set-up η̄ is established and a new water depth
(h+ η̄) is used in the calculation of a new value of ϕ. The process is repeated
until the required accuracy is obtained. In this paper Cholesky’s method
(Haggerty 1972) was used for solving eq. (9) and a predictor-corrector
method was applied to eq. (22).

3. Governing equations for wave motion in Region 3

3.1. Non-linear formulation of the problem

In Region 3, close to the shoreline, the water depth is very small.
Therefore, wave motion can be described by the non-linear equations of
shallow water (Kaystrenko et al. 1985, Massel 1989)

∂ū
∂t + ū

∂ū
∂x + g

∂ζ
∂x = 0

∂ζ
∂t +

∂
∂x [(h+ ζ)ū] = 0


, (23)

where ζ is the surface elevation, ū is the horizontal flow velocity (averaged
over the water depth) and the water depth h satisfies eq. (3).
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In order to define the relative importance of the particular terms in
eqs. (23), the following non-dimensional variables are introduced:

t̃ = ωt, x̃ =
βx

Hi
, ζ̃ =

ζ

Hi
and ũ =

βū

Hiω
. (24)

Using the variables (24) into (23) we obtain

∂ũ
∂t̃

+ ũ∂ũ∂x̃ +
1
Br
∂ζ̃
∂x̃ = 0

∂ζ̃
∂t̃

+ ∂
∂x̃

[
(−x̃+ ζ̃)ũ

]
= 0


, (25)

where

Br =
Hiω

2

gβ2
. (26)

Eqs. (25) indicate that the run-up of waves on a plane beach is controlled by
one non-dimensional similarity parameter only, which is of great importance
for the modelling procedure.

To clarify the physical meaning of the parameter Br, eq. (26) is rewritten
as

1
Br

=
gβ2

Hiω2
=

1
2π


 β√

Hi
L0



2

=
1
2π

(ξ0)
2, (27)

or

Br =
2π
ξ20
, (28)

where

ξ0 =
β√
Hi
L0

, (29)

and L0 = 2πg/ω2 is the wavelength in deep water. When the wave height
Hi is approximately equal to the wave height in deep water, i.e. Hi ≈ H0,
the parameter ξ0 becomes exactly equal to the surf parameter introduced
by Battjes (1974). The parameter ξ0 can be used to classify various types
of breaker into three main categories (Battjes 1974, Massel 1989)

surging and collapsing if 3.3 < ξ0,
plunging if 0.5 < ξ0 < 3.3,
spilling if ξ0 < 0.5.
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Using eq. (28), the corresponding classification in terms of parameter Br
yields

surging and collapsing if Br < 0.58,
plunging if 0.58 < Br < 25.0,
spilling if Br > 25.0.

It should be noted that the range of variability of parameter Br is
much larger than the corresponding range for parameter ξ0. Therefore, the
parameter ξ0 is better defined and the particular type of breaking is classified
with greater accuracy.

The solution of eqs. (23) can be found using the method developed by
Carrier & Greenspan (1958). In this method, eqs. (23) are rewritten in
a form in which some characteristic variables σ and λ act as independent
variables, and variables u, ζ, x and t are the unknown functions of σ and λ.
Following Voltzinger et al. (1989), we define σ and λ as follows:

λ = ū+ gβt,

σ = 2
√
g(ζ − βx)


. (30)

Additional simplification is obtained when the potential ψ(σ, λ) is intro-
duced:

ū =
1
σ

∂ψ(σ, λ)
∂σ

. (31)

The details of the transformation from variables (x, t) into (σ, λ) can
be found elsewhere (Carrier & Greenspan 1958, Kaystrenko et al. 1985,
Voltzinger et al. 1989) and are not repeated here. The final relationships
between x, t, ζ and σ, λ, ψ become

ζ =
1
2g

(
∂ψ

∂λ
− ū2

)
, (32)

x =
1

2gβ

(
∂ψ

∂λ
− ū2 − σ

2

2

)
, (33)

t =
λ− ū
gβ

. (34)

Using formulas (31)–(34), the initial non-linear set of eqs. (23) can be
reduced to the linear equation for the potential ψ(σ, λ)

∂2ψ(σ, λ)
∂λ2

− ∂
2ψ(σ, λ)
∂σ2

− 1
σ

∂ψ(σ, λ)
∂σ

= 0. (35)

From eq. (30) it follows that the value σ = 0 corresponds to the moving
shoreward boundary, therefore the solution of eq. (35) can be considered in
the fixed σ space: 0 < σ <∞. The method of separating the variables gives

ψ(σ, λ) = AJ0(lσ) sin(lλ), (36)
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where J0(lσ) is the Bessel function of the first kind and of zero order. The
constants A and l should be defined from the matching conditions at the
seaward and shoreward boundaries of Region 3.

3.2. Boundary conditions for Region 3

At the seaward boundary of Region 3, i.e. at x = −xp (see Fig. 1), the
wave amplitude should be equal to the amplitude of the linear wave in
Region 2. This condition is satisfied only when σ 
 1 for x = −xp. Then
eqs. (31)–(34) yield

ζ =
1
2g
∂ψ

∂λ
, x = − σ

2

4gβ
, t =

λ

gβ
. (37)

Using the asymptotic form of the Bessel function J0(lσ) for large arguments
(Abramowitz & Stegun 1975), i.e.

J0(lσ) ≈
√

2
πlσ

cos
(
lσ − π

4

)
for σ 
 1, (38)

we obtain the surface ordinate ζ in the form

ζ(σ, λ) =
Al

2g
J0(lσ) cos(lλ) ≈

A

g

√
l

2πσ
cos(lλ) cos

(
lσ − π

4

)
, (39)

or

ζ(σ, λ) ≈ A

2g

√
l

2πσ

{
cos

[
l(σ + λ)− π

4

]
+ cos

[
l(σ − λ)− π

4

]}
. (40)

To define parameters A and l we use the fact that at the seaward boundary
of Region 3 (x = −xp) waves are periodic with frequency ω and height Hp,
i.e.

l g β = ω or l =
ω

gβ
, (41)

and

A

g

√
l

2πσ
=
Hp
2

(42)

or

A =
√
π

(
β3g7xp
ω2

)1/4
Hp. (43)

Substituting eqs. (30), (34) and (43) into eq. (40) gives

ζ(x, t) ≈ Hp
2

∣∣∣∣∣ xxp
∣∣∣∣∣
−1/4 {

cos

[
2ω
( |x|
gβ

)1/2
+ ωt− π

4

]
+

+ cos

[
2ω
( |x|
gβ

)1/2
− ωt− π

4

]}
. (44)
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Eq. (44) describes the wave travelling shoreward from the region of large
negative x, and the reflected wave travels out to sea. For non-dissipative
motion, the reflection coefficient becomes unity and far out at sea the wave
is periodic in time and space. Assuming a plane beach, we have

∣∣∣ xxp
∣∣∣ = ∣∣∣ hhp

∣∣∣.
Then eq. (44) indicates that the amplitude in shallow water attenuates
according to Green’s law (Massel 1989).

The other limiting value, σ = 0, corresponds to the moving shoreward
boundary which determines the run-up distance on the beach and the run-up
time. Eqs. (33), (34) and (36) give

x =
1

2gβ

[
Al cos(lλ)− A

2l4

4
sin2(lλ)

]
(45)

and

t =
1
gβ

[
λ+

Al2

2
sin(lλ)

]
. (46)

Therefore, the maximum and minimum run-up distances on the beach are

xmax =
1
2

√
πω

g
β−5/4(g |xp|)1/4Hp (47)

and

xmin = −
1
2

√
πω

g
β−5/4(g |xp|)1/4Hp. (48)

Eq. (47) implies that on a plane beach, the height of the maximum run-up
Rmax becomes

Rmax

Hp
=

1
2

(
πω

β

√
hp
g

)1/2
. (49)

The maximum run-up Rmax is defined here as the vertical distance from the
maximum wave surface extent on the beach, measured from the SWL, when
the set-up is not taken into account. It should be noted that the level of the
run-down is equal to that of the run-up.

The corresponding velocity of the shoreward boundary motion becomes

ūb = lim
σ→0

(
1
σ

∂ψ

∂σ

)
= −Al

2

2
sin(lλ), (50)

or

ūb = −
ω

2β

(
πω

β

√
hp
g

)1/2
Hp sin(lλ). (51)

To illustrate the above relationships, the variation of the shoreline distance
against the initial waterline position, x = 0, and the velocity of the shoreline
movement are shown in Fig. 2a for Hp = 0.5m, T = 12 s, hp = 10m, β = 0.2
and xp = 50. Fig. 2b shows the percentage of beach face coverage by water.
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Fig. 2. Wave run-up on a plane beach: variation of shoreline distance and velocity
of shoreline movement as a function of time (a), percentage of coverage of beach
face during run-up (b)

The lower limit of the run-up is always covered by water, while the coverage
of the upper limit by water becomes zero.



74 S.R. Massel, E. N. Pelinovsky

At the end of this Section, we note that the relationships of the variables
(σ, λ) and (x, t) are not explicit. Therefore, the determination of the run-up
level for an arbitrary location and time can only be done numerically.
Examples of such calculations are given by Carrier & Greenspan (1958),
Voltzinger et al. (1989) and others, and are not repeated here.

3.3. Equivalence of the non-linear and linear solutions for the
extreme characteristics of wave run-up

Prior to deriving the solution for the run-up of breaking waves, we
discuss the relationships between the non-linear and linear theory of run-up
of non-breaking waves. For our starting point we use the linear version of
the Carrier & Greenspan transformation in the form

ū =
1
σ0

∂ψ0(σ0, λ0)
∂σ0

, (52)

ζ =
1
2g

(
∂ψ0
∂λ0

)
, (53)

x = − σ
2
0

4gβ
, (54)

t =
λ0
gβ
, (55)

and the linear approximation of the incident non-linear equations of shallow
water:

∂ū
∂t + g

∂ζ
∂x = 0

∂ζ
∂t +

∂
∂x(hū) = 0


 . (56)

Substituting eqs. (52)–(55) into eq. (56) we obtain

∂2ψ0(σ0, λ0)
∂λ20

− ∂
2ψ0(σ0, λ0)
∂σ20

− 1
σ0

∂ψ0(σ0, λ0)
∂σ0

. (57)

Comparison of eqs. (35) and (57) indicates that the resulting equation for
the linear potential ψ0(σ0, λ0) is identical to the equation for the non-linear
potential ψ(σ, λ). Therefore, we can say that the values of functions ψ(σ, λ)
and ψ0(σ0, λ0), and especially their maxima, are identical. Moreover, very
far from the waterline, σ0 → σ and λ0 → λ, and both asymptotes of ψ
and ψ0 are the same and correspond to the same waves incident from
Region 2. However, the function ζ(0, λ) resulting from the non-linear
solution corresponds to the motion of the waterline, where ζ(0, λ) = Rmax

and xmax = Rmaxβ . On the other hand, function ζ(0, λ0) describes the
oscillations of the surface elevation at the constant position of the waterline
(σ0 = 0→ x = 0, see eq. (54)).



Run-up of dispersive and breaking waves on beaches 75

The above equivalence yields an important conclusion in that the
maximum sea level at x = 0, resulting from the linear theory, is identical
to the maximum run-up predicted by the non-linear theory. To be more
specific, let us write the solution of eq. (57) in the form

ψ0(σ0, λ0) = AJ0(lσ0) sin(lλ0), (58)

and the surface elevation at x = 0 as

ζ(0, λ0) =
1
2g

(
∂ψ0
∂λ0

)
=
Al

2g
sin(lλ0). (59)

Therefore, the maximum of the elevation becomes

max {ζ(0, λ0)} =
Al

2g
. (60)

On the other hand, from the non-linear theory we have (see eqs. (32) and
(36))

ζ(0, λ) =
1
2g

(
∂ψ(0, λ)
∂λ

− ū2
)
=

1
2g

(
∂ψ(0, λ)
∂λ

)
=
Al

2g
sin(lλ), (61)

and

max {ζ(0, λ)} = Al

2g
. (62)

Both maximum surface elevations are the same, although they appear at
different locations. The first one appears at the constant point x = 0, while
the second one corresponds to the most shoreward position of the dynamic
waterline. Therefore, in order to find the exact maximum run-up height, it is
sufficient to solve the linear system of equations and calculate the sea level at
x = 0. We can also determine the exact velocity of the moving waterline by
calculating the linear velocity at x = 0, i.e. for σ0 = 0. However, it should be
pointed out that within the linear approach it is not possible to determine
the dynamics of the moving boundary. In the next Section we apply the
above equivalence to predict the wave run-up on various types of beaches
and to study the influence of wave breaking on the run-up height.

3.4. Influence of wave breaking on run-up in Region 3

Carrier & Greenspan’s transformation is valid when the Jacobian of
the transformation J = ∂(x, t)/∂(σ, λ) 
= 0 for σ > 0 (Carrier & Greenspan
1958). This condition is satisfied when

Rmax ω
2

gβ2
= B̃r < 1, (63)

and the solution of eq. (35) represents waves which do not break. If
the Jacobian does vanish for σ > 0, the waves must break. The critical
parameter B̃r is similar to the parameter Br defined by eq. (26), but is
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expressed in terms of the maximum run-up height. Both parameters are of
the same order of magnitude. For typical values of wind induced waves and
a gentle beach slope, i.e. when ω ≈ 1 rad s−1, Hi = 1m and β = 0.02, we
obtain Br = 250. This value is much higher than the critical value Br ≈ 1.
Therefore, the run-up of short wind induced waves is usually accompanied
by wave breaking. To take into account wave breaking, the dissipative
term should be included in the governing equations. However, an analytical
non-linear solution of eqs. (23) including the dissipative factors cannot be
obtained as the corresponding Carrier & Greenspan-type transformation for
breaking waves does not exist. On the other hand, the equivalence of the
maximum characteristics resulting from the linear and non-linear solutions,
discussed in the above Section, suggests the use of the linear theory of
shallow water to predict the run-up of breaking waves on the beach. Thus,
consider a linear version of eqs. (23) with the dissipation term in the form
(Dingemans 1997)

∂ū
∂t + g

∂ζ
∂x +Dbū = 0

∂ζ
∂t +

∂
∂x (hū) = 0


, (64)

where Db is the dissipation factor due to wave breaking. As was mentioned
above, the energy dissipation due to bottom friction is neglected. Combining
both eqs. (64) we obtain

∂2ū

∂t2
− ∂

∂x

[
∂

∂x
(ghū)

]
+Db

∂ū

∂t
= 0. (65)

Introduction of the velocity potential Φ3(x, t)

ū =
∂Φ3

∂x
(66)

into eq. (65) yields

∂2Φ3

∂t2
− ∂

∂x

(
gh
∂Φ3

∂x

)
+Db

∂Φ3

∂t
= 0. (67)

As with the potentials in Regions 1 and 2, we represent Φ3(x, t) as follows:

Φ3(x, t) =
−igHi
2ω

ϕ3(x) exp(−iωt). (68)

Therefore, eq. (67) for the non-dimensional wave height ϕ3(x) gives

d

dx

(
gh
dϕ3
dx

)
+
(
ω2 + iDbω

)
ϕ3 = 0, (69)

or

d2ϕ3
dx2

+ (gh)−1
d(gh)
dx

dϕ3
dx

+
(
k23 + i

Db√
gh
k3

)
ϕ3 = 0, (70)
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where

k3 =
ω√
gh
. (71)

Using the resemblance of eq. (70) to the mild-slope eq. (9), we can write

Db =
√
ghγ. (72)

For a plane beach, the water depth h(x) = −βx and eq. (70) simplifies
as follows:

d2ϕ3
dx2

+
1
x

dϕ3
dx
− δ

2

x
ϕ3 = 0, (73)

in which

δ2 =
ω2

gβ

(
1 +

iDb
ω

)
. (74)

Assuming that x < 0, after substitution of −x = y2, eq. (73) takes the form
of the Bessel equation (McLachlan 1964)

d2ϕ3
dy2

+
1
y

dϕ3
dy

+ 4δ2ϕ3 = 0, (75)

with the solution

ϕ3(x) = AJ0
(
2δ
√
−x

)
+BY0

(
2δ
√
−x

)
, (76)

in which J0(x) and Y0(x) are zero order Bessel functions of the first and
second kind respectively. As we are looking for a solution which is finite
throughout Region 3, including the waterline (x = 0), the coefficient B
should be equal to zero. Thus, eq. (76) becomes

ϕ3(x) = KTJ0



√(

1 +
iDb
ω

)
4ω2(−x)
gβ


, (77)

in which the transmission coefficient KT should be defined from the
matching conditions at x = −xp. Thus, the potential Φ3(x, t), surface
elevation ζ(x, t) and flow velocity ū(x, t) are

Φ3(x, t) =
−igHi
2ω

KTJ0



√(

1 +
iDb
ω

)
4ω2(−x)
gβ


 exp(−iωt), (78)

ζ(x, t) = �


Hi2 KTJ0



√(

1 +
iDb
ω

)
4ω2(−x)
gβ


 exp(−iωt)


, (79)

ū(x, t) = �


−iHiKTωβ

(
1 +

iDb
ω

)[(
1 +

iDb
ω

)
4ω2(−x)
gβ

]−1/2
×

× J1



√(

1 +
iDb
ω

)
4ω2(−x)
gβ


 exp(−iωt)


. (80)
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4. Solution of the boundary value problem

The potentials Φ1, Φ2 and Φ3, determined by eqs. (4), (7) and (78),
contain two functions, KR and KT , which are still unknown. To find them
we should solve eq. (9) with the matching conditions at x = −x1 and
x = −xp. These conditions provide continuity of pressure and horizontal
velocity, normal to the vertical planes separating the fluid regions.

Matching conditions at x = −x1 (Region 1/Region 2):

– continuity of pressure:

1 +KR = ϕ2(−x1), (81)

– continuity of horizontal and depth integrated velocity:

ik1 (1−KR) =
dϕ2(−x1)
dx

. (82)

Matching conditions at x = −xp (Region 2/Region 3):

– continuity of pressure:

ϕ2(−xp) = KTJ0



√(

1 +
iDb
ω

)
4ω2 | xp |
gβ


, (83)

– continuity of horizontal and depth integrated velocity:

PKT =
dϕ2(−xp)
dx

, (84)

in which

P =
2ω2

gβ

[
tanh(kphp)
kphp

]−1 (
1 + iDbω

)
√[(

1 + iDbω
)

4ω2|xp|
gβ

] ×

× J1



√(

1 +
iDb
ω

)
4ω2 | xp |
gβ


. (85)

For the arbitrary bottom profile h(x) in Region 2, the resulting boundary
value problem can be solved numerically only. In this paper, a finite
difference method has been used and the resulting system of linear equations
for ϕ2 was solved by Cholesky’s method for a band type matrix (Haggerty
1971). Therefore, we consider eq. (9) in the form

d2ϕ2(x)
dx2

+D(x)
dϕ2(x)
dx

+E(x)ϕ2(x) = 0, (86)

where

D(x) =
1

C(x)Cg(x)
dC(x)Cg(x)

dx
(87)
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and

E(x) = k22(x) + iγ(x)k2(x). (88)

Approximation of the derivatives in eq. (86) by the central differences yields

(2−∆xDj)fj−1 + (−4 + 2∆2xEj)fj + (2 +∆xDj)fj+1 = 0, (89)

in which f = ϕ2 and ∆x is the sampling interval. The solution of eq. (89)
should be found in the domain [−x1,−xp] at n discrete points, i.e.

n =
|x1| − |xp|

∆x
+ 1. (90)

At the matching points, eq. (89) takes the forms

at x = −x1(j = 1)

KR = f1 − 1 (91)

and

[ik1∆x(2−∆xD1) + ∆2xE1 − 2]f1 + 2f2 = 2ik1∆x(2−∆xD1). (92)

at x = −xp(j = n)

KT =
fn

J0

[√(
1 + iDbω

)
4ω2|xp|
gβ

] (93)

and

2fn−1 + [(2 + ∆xDn)∆xP1 +∆2xEn − 2]fn = 0, (94)

where

P1 =
P

J0

[√(
1 + iDbω

)
4ω2|xp|
gβ

] . (95)

The dissipation factor γ due to wave breaking in eq. (88) is a function of local
wave height; therefore, the set of eq. (89) should be solved in a recurrent
manner, i.e. first the non-dimensional wave height ϕ2 is determined for
γ(x) = 0 and η̄ = 0, after which the new wave height is used to calculate
new values γ, Db, η̄ and ϕ2.

Choosing the position of the boundary between Regions 2 and 3 is
not quite arbitrary. In Region 2 waves are considered dispersive, while in
Region 3 wave motion is non-dispersive. However, for large xp, wave motion
can be represented in the form of trigonometric functions. This fact provides
an opportunity to match solutions in both Regions. Massel et al. (1990)
suggest that the water depth at matching point (x = −xp) should be

h
 25gβ2

ω2
. (96)
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5. Examples of numerical calculations

5.1. Simplified case - a plane slope connected with a horizontal
bottom

5.1.1. Governing equations and numerical calculations

Prior to discussing the arbitrary bottom profile in Region 2, let us
consider a simplified domain, i.e. a plane slope merging into a horizontal
bottom (Fig. 3). The velocity potential Φ1(x, t) is given by eq. (4). As
x1 = xp, Region 2 vanishes and the solution for Region 1 should match
the solution for Region 3 (Mazova & Pelinovsky 1982), i.e.

1 +KR = KTJ0(ε)

1−KR = −iKT
√
1 + iDbω SJ1(ε)


, (97)

where

ε =

√(
1 + i

Db
ω

)
4ω2|xp|
gβ

, (98)

and

S =

√
ω2h1

g tanh2(k1h1)
=

√
k1h1

tanh(k1h1)
. (99)

It should be noted that for nondispersive waves tanh(k1h1)→ k1h1 and
S → 1.

The solution of eqs. (97) is

KT =
2

J0(ε)− i
√
1 + iDbω SJ1(ε)

(100)

and

KR =
J0(ε) + i

√
1 + iDbω SJ1(ε)

J0(ε)− i
√
1 + iDbω SJ1(ε)

. (101)

For non-breaking waves, i.e. when Db = 0, the coefficients (100) and (101)
simplify to the well-known formula of Keller & Keller (1964)

KT =
2√

J20 (ε) + S2J
2
1 (ε)

exp(iϕ) (102)

and

KR = exp(2iϕ), (103)

in which the phase ϕ becomes

tanϕ =
SJ1(ε)
J0(ε)

. (104)
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Fig. 3. Plane beach leading to a horizontal bottom

As should be expected, the reflection coefficient |KR|=1 for non-breaking
waves. From eq. (79) it follows that when the set-up is neglected, the
maximum height of the run-up is

Rmax
Hi
2

= |KT |. (105)

In Figs. 4 and 5, the transmission and reflection coefficients for non-dispersive
waves are shown as the function of the non-dimensional slope length xp/Lp,
in which Lp is the wavelength in Region 1. When dissipation due to breaking
is neglected (Db = 0), the height of the maximum run-up is about three
times that of the wave height Hi for xp/Lp = 0.5. The run-up height is
substantially reduced for breaking waves. The reflection coefficient KR is
equal to 1 for the non-breaking waves and attenuates quickly for breaking
waves, particularly on gentle slopes.

Transmission coefficient KT and reflection coefficient KR at xpLp → 0,
correspond to the case of the vertical step which joins the deep water region
(h = h∞) with a region of constant depth h (Massel 1989). Lamb (1932)
showed that

|KT | =
2

1 +
(
h
h∞

)1/2 and |KR| =
1−

(
h
h∞

)1/2
1 +

(
h
h∞

)1/2 . (106)

When h/h∞ → 0, the transmission and reflection coefficients become
|KT | = 2 and |KR| = 1 respectively.

Figs. 6 and 7 illustrate the dependence of the transmission and reflection
coefficients on the dissipation factorDb ω−1 for particular beach slopes. Lack
of dissipation provides an unrealistically high transmission of wave energy on
the beach, especially on gentle slopes, say 0.1 or 0.02. For such a situation,
the similarity coefficient Br becomes much higher than 1, which indicates
that on a gentle slope, waves usually break and Db 
= 0.
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5.1.2. Comparison with experimental data

The experimental data on wave run-up are numerous. However, they
are mostly related to long or solitary waves propagating on steep slopes,
especially on marine revetments (see, for example, Titov & Synolakis
(1995)). On the other hand, data on the run-up of short waves on the gentle
slopes of natural beaches, which are of interest to us, are rather rare. For
the purposes of this paper we used the experimental data on the run-up
height reported by Saville (1958), Führböter (1985) and Gourlay (1992).
They recorded only the run-up height; flow velocities were not measured. In
the calculations it is assumed that the waves in Region 1 are not breaking
and that the breaking process starts at some point in Region 3 and continues
in this Region.

To compare the theoretical run-up height with experiments, the dissi-
pation factor Db due to wave breaking should be evaluated. Eqs. (14) and
(72) yield the following expression for the dissipation factor Db:

Db =
√
ghγ =

αω

π

gh

CCg

(
H

h

)
≈ αω
π

(
H

h

)
, (107)

in which α is an experimental parameter of the order one. If we determine
the non-dimensional wave height

(
H
h

)
at the breaking point, we obtain

Db
ω

=
α

π

(
H

h

)
br
, (108)

in which
(
H
h

)
br
is given by eq. (16).

The Saville (1958) laboratory data of wave run-up on smooth imperme-
able slopes reported in the Shore Protection Manual (SPM 1984) are used
for comparison. It should be noted that these data are restricted to the
case when hp

H0
≈ 2, where H0 is the deep water wave height. Taking into

account restriction (96), the calibration is valid only for slopes satisfying
the relationship

β <

√
8π2

25

(
H0

gT 2

)
. (109)

The non-dimensional deep water wave heights
(
H0
gT 2

)
of the experimental

data are in the range 0.0003−0.0124. The corresponding range of beach
slopes when the theory is applicable, for hpH0 ∼ 2, is given in Fig. 8.

It should be stressed that the experimental values of the run-up
includes the set-up mechanism. To estimate the set-up height close to the
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waterline we apply the shallow water approximation for eq. (2). Under this
approximation, the set-up value η̄ becomes (Massel 1989)

η̄(x) = η̄br +
3
8
γ2br

(
1 +

3
8
γ2br

)−1
[hbr − h(x)], (110)

in which γbr =
(
H
h

)
br

and the set-down value η̄br = − 1
16γbrHbr. For the

maximum set-up at the waterline (x = 0), eq. (110) gives

η̄max = η̄br +
3
8
γ2br

(
1 +

3
8
γ2br

)−1
hbr. (111)

Therefore, the final maximum run-up value becomes

Rmax =
Hi
2
|KT |+ η̄max (112)

and
Rmax

H0
=
Hi
2H0
|KT |+

η̄max

H0
(113)

Using the least squares procedure, the best values for the coefficient α, which
determines the minimum error between theoretical and experimental values
of the maximum run-up, were calculated. In particular, for 0.0023 < H0

gT 2 <

0.0124 and 1
14 < β <

1
6 when hp = 2H0, the coefficient α is in the narrow

range (1.21–1.44), while for the corresponding non-dimensional dissipation
factor Dbω this range is (0.35–0.42). In order to check the strength of the
dependence of the run-up height on the value of coefficient α, we assume
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a constant value of α = 1.30. The comparison between experimental and
theoretical values of RmaxH0 is given in Fig. 9 for 0.0023 < H0

gT 2 < 0.0124

and 1
14 < β <

1
6 , when hp = 2H0 and α = const = 1.3. Using this value in

eq. (108) we get the following parameterisation of the dissipation factor in
terms of wave height at the point of onset of breaking:

Db
ω

=
1.3
π

(
H

h

)
br
= 0.413

(
H

h

)
br

(114)

for 0.0023 < H0
gT 2 < 0.0124 and 1

14 < β <
1
6 , when hp = 2H0.

Gourlay (1992) reported the results of another set of laboratory observa-
tions of wave run-up on slope β = 0.1. The water depth hp was maintained
constant and equal to 0.2m. Fifteen tests for wave periods T = 1 s and
T = 1.5 s, as well as for wave heights ranging from 28mm to 101mm, were
documented. The calculations showed that the experimental coefficient α
in eq. (107) varied in the range (0.80–1.40), being in fact the function of
two non-dimensional variables H0gT 2 and hp

gT 2 . The best agreement between
experimental and theoretical run-up values was obtained for this function
in the form

α = 1.387

(
hp
gT 2

−1)( H0

gT 2

)
+ 0.65. (115)

Experimental and theoretical values of RmaxH0 agree satisfactorily (Fig. 10).
Beach slopes close to the waterline are sometimes steeper than the

slopes used above. Führböter (1985) reported the results of comprehensive
experiments on wave impact and wave run-up on a slope of β = 0.25,
in two scales. Prototype experiments were carried out in the large wave
channel (GWK) in Hannover (length 324 m, width 5 m and water depth
h1 = 5m, while model experiments were made in the wave flume of water
depth h1 = 0.5m. For the slope and water depths used, condition (96)
puts a restriction on the number of experiments which can be applied for
comparison. In particular, only runs satisfying the condition

T <
2π
5β

√
h1
g

(116)

can be used. Therefore, according to the above restriction, we can select
only those from the list of Führböter’s experimental runs when T < 3.59 s
for h1 = 5m and T < 1.14 s for h1 = 0.5m (a total of 4 runs). A comparison
of the experimental results with theoretical values is given in Fig. 11.
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In this figure, the maximum run-up heights resulting from the well-known
Hunt formula (Hunt 1959) are also given. To maintain the consistency of
the comparison, the Hunt formula is rewritten as follows:

Rmax
H0

=
Hi
H0

β√
Hi
L0

. (117)

This comparison indicates that the proposed theoretical solution agrees
better with the experimental data than Hunt’s formula does. It should be
pointed out that for the beach slope of β = 0.25, the coefficient α = 0.48
has been used to provide the best agreement with experiments. However,
the available data are not sufficient for an evaluation of the more general
dependence of the type α = f( H0gT 2 , β).

5.2 The arbitrary bottom profile in Region 2

Unfortunately, experimental data on run-up on a beach of arbitrary
profile are very rare. For the purpose of this study we apply the Saville
(1958) data on wave run-up on a beach slope β, fronted by another slope
0.1, reported in the Shore Protection Manual (1984). However, these data
are restricted to the case when hpH0 = 0.80. Using the additional condition
(96), it can be found that only the runs satisfying the condition
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β <

√
3.2π2

25

(
H0

gT 2

)
(118)

can be used. We assume that the slope β is greater than 0.1. Using the value
H0
gT 2 = 0.0124 (the highest value used by Saville), the only slope satisfying
condition (118) is β = 0.125. When we assume that the deep water wave
height H0 = 2m, the corresponding water depth hp = 1.6m, wave period
T = 4.05m and distances x1 = −112.8m and xp = −12.8m are used in the
calculations.

In Fig. 12a, the evolution of wave amplitude over the beach bottom is
shown. The observed oscillations are the result of the partial reflection of
the approaching waves. The reflection coefficient KR and the transmission
coefficient KT (from Region 2 to Region 3) are equal to 0.07 and 0.521
respectively. The slow attenuation of the wave amplitude over the slope
β = 0.10 is the result of wave transformation over the beach slope. At
a distance of about 28 m from waterline, wave breaking starts and the
wave energy decreases substantially; however, close to the waterline the
wave amplitude increases again rapidly. At the waterline (x = 0), the wave
amplitude reaches the level of 0.51m above SWL.

In the same figure, the corresponding wave set-up is given. Before the
breaking point, the wave height changes a little and the resulting wave
set-up is very small. However, from the breaking point, the wave set-up
increases substantially. The set-up height η̄(x) in Region 2 (−x1 < x < −xp)
was calculated using eqs. (22) and (89) in a recurrent manner. In Region
3 (−xp < x < 0), the approximate formula (110) was used. Assuming that
the value of ζ̄p at x = −xp is known, we obtain

η̄(x) = η̄p +
3
8
γ2br

(
1 +

3
8
γ2br

)−1
[hp − h(x)], (119)

in which γbr =
(
H
h

)
br

has been defined at the point of breaking onset at

x ∼ −28m. It should be noted that according to formula (119), the set-up
height is a linear function of x.

Fig. 12 is supplemented by Fig. 13 in which the wave amplitude and
set-up within the beach segment close to the waterline is enlarged. Line 3 in
this figure represents the possible maximum sea level, being a summation
of the run-up amplitude (line 1) and mean sea level rise due to set-up
(line 2). In particular, point A denotes the maximum wave run-up height
at the waterline. Using the equivalence of the maximum characteristics of
wave run-up resulting from the linear and non-linear theory discussed in
Section 3.3, we can find the maximum wave run-up on the beach slope – see
point B. The height of point B is the same as the height of point A, i.e.
0.89m. It should be noted that this equivalence, in the case of breaking
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Fig. 12. Run-up of waves on a beach (two plane segments of slopes 1:10 and 1:8):
variation of wave amplitude and set-up (a), beach geometry (b)

waves, can be treated only as an approximation of the unknown non-linear
solution for the run-up of breaking waves. For comparison, the experimental
run-up height given by Saville (1958) is shown in the figure. This value is
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about 12% smaller than the theoretical one. The probable reasons for the
observed discrepancy are the neglect of the bottom friction in the theoretical
model and the approximations used in the parameterisation of breaking
waves on the beach slope.
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In Fig. 14, a gentle slope 0.02 is considered. Seaward of 1m water depth,
the bottom profile is given by the formula

h(x) = 0.0033(−x)1.46. (120)

As is shown in Fig. 14a, the breaking process starts about 110m from the
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waterline. From this point the set-up is rising. The maximum run-up height
is about 0.15m while the set-up height is of the order of 0.50m. Thus, the
resulting total sea level at the waterline is about 0.65m. The details of the
water level in the vicinity of the waterline are shown in Fig. 15.
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Fig. 16. Schematic representation of the sea bottom along the Hel Peninsula

Finally, we made some visual observations on the run-up on the Hel
Penninsula coast in the southern Baltic, where the bottom profile can
be approximated by two slopes intersecting at the still water level (see
Fig. 16). At some distance the water depth was approximately constant and
hp ∼ 1m. The observations during moderate wind showed that the wave
height Hp at water depth hp was about 0.4m and period T ∼ 4 s. Using
these initial values, the calculations give the set-up η̄ = 0.13m at x = 0
and the maximum total run-up Rmax = 0.62m. Therefore, the maximum
wave extent on the beach is about 2.6 m. In fact such quantities have been
observed. The sandy beaches on the Hel Peninsula were also selected for the
next stage of investigations. The permeability of the beach will be considered
and the groundwater circulation due to wave motion will be discussed (paper
in preparation).

6. Conclusions

The following major conclusions can be drawn from this study:

1. The wave run-up on a beach face is one of the basic factors that
determines beach stability and sediment transport, induces beach
groundwater flow and raises the groundwater table. In the paper, the
run-up mechanisms have been studied using mathematical models. In
contrast to the available models, waves approaching the shoreline are
assumed to be dispersive and breaking.

2. The equivalence of the non-linear and linear solutions for the extreme
characteristics of the wave run-up, such as the height of maximum
run-up and velocity of run-up, is used. Basically this equivalence
is justified for the run-up of non-breaking waves. However, in the
calculations, the equivalence was extended to breaking waves.

3. The system of equations for the run-up of breaking waves is based on
the application of the mild-slope equation in deeper areas, where waves
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are dispersive. The linear equations of shallow water are applied close
to the shoreline, where the water depth is a linear function of distance.
The dissipation factor due to wave breaking in the shallow water
equation has been determined using its resemblance to the mild-slope
equation for a non-permeable sea bottom.

4. The applicability of this model has been demonstrated by the
comparison with the experimental data reported by Saville (1958),
Führböter (1985) and Gourlay (1992). Comparison of predicted and
observed wave run-up heights showed good agreement.

5. Although these findings were obtained for relatively simple beaches,
they also have implications for other beach slopes. The details of the
run-up given in the paper will assist future studies on infiltration in
the beach body as a result of wave run-up.
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