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Abstract

It is shown that two particular systems of linear equations, derived in an
earlier paper by Prosnak & Kosma (1991), can be solved in an exact time- and
storage-saving manner. First of all, by the proper elimination of unknowns, each
system can be reduced to a smaller one containing only half of the unknowns. In
the first case, the matrix of coefficients of the so reduced system turns out to be
tridiagonal, its elements consisting of square submatrices. Moreover, the reduced
system can be split into two independent ones. In the second case, the matrix of the
reduced system can be presented as the product of two triangular ones, each one
being partitioned in square submatrices. Corresponding algorithms and computer
programs have been developed in order to investigate whether some economy in
storage and computing time is really attainable. Affirmative conclusions are drawn
from the results of computations. This means that the new method of solving
problems governed by the Navier-Stokes equations, presented in the cited paper,
can be applied in a more effective manner.

1. Introduction

An important direction of research in contemporary numerical fluid
dynamics concerns methods for the determination of unsteady, viscous and
incompressible flows governed by the system of equations referred to for the
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sake of convenience as the Navier-Stokes equations, although they contain
also the continuity equation.

For obvious reasons, the properties of these newly developed methods
are usually investigated in the plane case, when the Navier-Stokes equations
reduce to the following form:

ux + vy = 0;

ut + uux + vuy = −px/ρ+ ν∆u;

vt + uvx + vvy = −py/ρ+ ν∆v

 (1)

in a rectilinear system of co-ordinates x, y. The symbols t, ∆, ρ, ν denote
time, Laplace operator, constant density and constant kinematic viscosity
of the fluid, respectively, the indices referring to partial derivatives.

For the sake of completeness and clarity it should be recalled that the
unknown functions in (1), i.e. the velocity components

u = u (x, y, t), v = v (x, y, t) (2)

in the direction of the x and y axes respectively, and the pressure

p = p (x, y, t) (3)

are ‘ incompatible’ as far as boundary conditions are concerned. Namely,
such conditions have to be imposed on all boundaries of the domain of
solution for the components (2), but at just one point of this domain for
the pressure (3). Moreover, no derivative of pressure with respect to time
appears in (1).

It should be recalled that the ‘ incompatibility’ can be retraced to
the oversimplified physical model of flow described by the system (1), in
particular – to the assumption of constant density.

In order to avoid the inconveniences and problems arising out of this
‘ incompatibility’, and to reduce the number of unknown functions, the
majority of methods of solution start with the elimination of pressure
from the system (1). Differentiation is usually applied for this purpose
which, however, increases the order of the system. Consequently, boundary
conditions for derivatives of components (2) have to be introduced, although
such conditions do not appear in the original problem. Nevertheless, these
artificial, ‘unphysical’ conditions have to be defined somehow. They are
always disputable, and can be validated only a posteriori, and indirectly,
by a comparison of the results of applying different methods to the same
problem. For more than 30 years now, the so-called driven cavity problem
has usually been used as such a test problem. This is also the case in the
present considerations.

A new method for determining plane, unsteady flows of viscous,
incompressible fluids was presented by Prosnak & Kosma (1991), the novelty
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consisting in the elimination of pressure from the governing system of
equations by means of the condition of univalence. This condition was
expressed in the form of the following requirement:∮

l
(px dx + py dy) = 0; (t = const), (4)

imposed at any fixed time t on the total differential of pressure. The
derivatives in (4) stem from the Navier-Stokes equations (1), and the
symbol l denotes any contour in the domain of solution, contractible to
a regular point of the domain.

Because integration, and not the customary differentiation, is applied to
eliminate pressure, no need arises for artificial boundary conditions to be
imposed on derivatives of the velocity components (2). This represents the
fundamental virtue of the new method.

This method was applied by Prosnak & Kosma (1991) and by Klonowska
& Kołodziejczyk (in press) to the driven cavity problem (Fig. 1). The main
features of this problem must, however, be presented here in order to avoid
misunderstandings.
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Fig. 1. The ‘driven cavity’ problem (Prosnak & Kosma 1991)

The square cavity containing the viscous fluid is bounded by three fixed
walls

y = 0; x ∈ [0, 1], (5)

x = 0; y ∈ [0, 1], (6)
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x = 1; y ∈ [0, 1] (7)

and by a fourth one

y = 1; x ∈ [0, 1], (8)

which shifts in the x – direction with a given velocity

Uo = Uo (t), (9)

as shown in Fig. 1.
The boundary conditions express the impermeability of all four walls,

and the non-slip property of the fluid.
The initial conditions stem from the assumption that the fluid is at rest

for t ≤ 0.
Function (9) has to comply with this condition.
We applied the finite difference method and the method of splines to

the solution of the driven cavity problem in the two references cited. Hence,
a quadratic grid was assumed in the domain of solution, the spacing of
the grid being h = 1/(N + 1) depending on the integer N . The nodes i, j
∈ [1, N ] of the grid will be referred to as internal ones. Only at these nodes
are the velocity components (2) unknown. At the other ones, distributed on
the walls, they follow from the boundary conditions.

i-l, j+1

i-l, j i+l, j

i-l, j-1 i+l, j-1

i+l, j+1
i, j+1

i, j-1

i, j

F

B

G

A

E

C

DH

Fig. 2. A subdomain of the domain of solution containing two alternative contours
of integration: BDFHB and ABCDEFGHA (Prosnak & Kosma 1991)
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Now it should be well understood that the finite difference method and
the method of splines concern solely the space variables x, y, the respective
derivatives being replaced by differences of the functions of time

uij = uij(t), vij = vij(t); i, j ∈ [1, N ] (10)

corresponding to the internal nodes. The number of such functions is

2N2. (11)

The derivatives of these functions with respect to time, contained in the
Navier-Stokes equations (1), remain. However, after discretisation of the
domain of solution they refer solely to the nodes.

In such a manner the driven cavity problem was reduced within the
framework of the method under consideration to a system of ordinary
differential equations of the first-order containing derivatives of the velocity
components (10) at the indicated discrete N2 points of the domain of
solution.

This system depends on three factors:

• on the alternative, whether the continuity equation is taken in its
differential or its integral form;

• on the formulae approximating the spatial derivatives of the velocity
components (2);

• on the contour of integration (see Fig. 2) adopted in the integrals (4)
and – finally – in the integrals expressing the continuity condition.

In the first of the references cited, three cases were distinguished, which
lead to the following matrix equations:

AẎ =W, (12)

BẎ = V, (13)

AẎ = U. (14)

In these equations the symbolsA andB denote square constant matrices
of the order 2N2, corresponding to the number (11) of unknown functions
(10). The symbol Ẏ denotes the column vector

Ẏ = [Ẏ1, Ẏ2, ..., Ẏm]T ; m = 2N2, (15)

consisting of the unknown derivatives of functions (10) with respect to
time. The symbols W, V, U denote known column vectors, depending
on the instantaneous values of functions (10) and on the kinematic
viscosity ν.

The correspondence between the elements of the vectors W, V, U
and the velocity components (10) will be not needed in the present
considerations.
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System (12) corresponds to the case when the continuity equation is
taken in its differential form, the spatial derivatives of velocity components
(2) are approximated by finite differences, and the contours of the type
BDFHB (see Fig. 2) appear in the integrals (4).

System (13) corresponds to the case when the continuity equation is
taken in its integral form, the spatial derivatives are approximated by the
same finite differences, and the contours ABCDEFGHA (see Fig. 2) appear
in the integrals (4) as well as in the integrals expressing the continuity
equation.

Finally, system (14) corresponds to the case when the spatial derivatives
of (2) are approximated by formulae stemming from the theory of cubic
splines, the continuity equation is taken in its differential form, and contours
of the type BDFHB (Fig. 2) appear in the integrals (2).

Systems (12) and (14) differ solely with respect to their right hand sides,
so that further considerations will be confined to systems (12) and (13).

By introducing the respective inverses A−1, B−1 of the matrices of
coefficients A, B, one can reduce (12) and (13) to the Cauchy normal form

Ẏ = A−1W, (16)

Ẏ = B−1V, (17)

where the inverses are constant.
In such a manner the solution of the driven cavity problem has been

reduced to the initial problem for the set of 2N2 ordinary differential
equations of the first-order, the unknown function of time Y representing
the velocity components (10).

Any self-starting numerical method for the solution of any initial
problem of the type (12), (13) or (14), exemplified by the Runge-Kutta
method (see e.g. Lambert (1973)) makes use of the values of the vector of
derivatives (15). Elements of this vector have to be evaluated at least at the
initial and the final point of every time step. In the case of the Runge-Kutta
method of an order larger than 1, such evaluations concern also a number
of points situated within the time step. Hence, it is clear that the economy
of such a method of integration applied to the problem under consideration
depends directly on the economy of computing the vector (15) from
eq. (12) or (13).

The most obvious method for evaluating this vector stems from formulae
(16) and (17), and utilises the inverses of the matrices of coefficients. This
is a very elegant method; however, it does require computation and storage
of the inverses. Moreover, the number of multiplications of the order

2 (N2)3 (18)
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and, consequently, the computer time involved in such an evaluation of the
vector Ẏ as well as the corresponding storage may be quite large. These
two aspects may very severely restrict application of this method.

Therefore, the vitally important question arises whether this vector
could be evaluated more economically – by means of special algorithms
making use of the particular properties of the matrices A and B.

The present considerations refer to the development and the comparative
investigation of such algorithms.

2. The equation AẎ =W

Introducing after Prosnak & Kosma (1991) an auxiliary tridiagonal
submatrix α1

[N ] of the order N , and the identity submatrix I [N ] of the
same order

α1
[N ] =



0 1 0
−1 0 1

. . .
. . .
−1 0 1

0 −1 0


, (19)

I [N ] =



1 0
1

.
.

1
0 1


, (20)

one can rewrite the matrix system (12) of ordinary differential equations in
the following manner:

α1Ẏ1 + ẎN+2 =W1;

α1Ẏ2 − ẎN+1 + ẎN+3 =W2;

α1Ẏ3 − ẎN+2 + ẎN+4 =W3;

..................................................

α1ẎN−1 − Ẏ2N−2 + Ẏ2N =WN−1;

α1ẎN − Ẏ2N−1 =WN ,


(21)
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−Ẏ2 + α1ẎN+1 =WN+1;

Ẏ1 − Ẏ3 + α1ẎN+2 =WN+2;

Ẏ2 − Ẏ4 + α1ẎN+3 =WN+3;

..................................................

ẎN−2 − ẎN + α1Ẏ2N−1 =W2N+1;

ẎN−1 + α1Ẏ2N =W2N ,


(22)

the superscript at α1
[N ] and at the identity matrix I [N ] being omitted for

the sake of simplicity.
It should be recalled (Prosnak & Kosma 1991) that the determinant

of the submatrix (19) vanishes for odd values of N . This peculiar property
follows from the difference formulae applied for approximation of the spatial
derivatives of (2), but it has no other consequences besides confining the
computations to even numbers of nodes

N = 2P, (23)

where P denotes an odd or an even integer.
All the terms in (21)–(22) are column vectors of the order N ; they

represent elements of column vectors of the order 2N2 appearing in (12):

Ẏ = [Ẏ1, Ẏ2, ..., Ẏ2N ]T , (24)

W = [W1,W2, ...,W2N ]T . (25)

On the other hand, they depend on the real elements of these vectors, such
as those introduced in (15) with respect to Ẏ. In the case of the vectors of
unknowns Ẏk appearing in (24), the appropriate relations can be written as
follows:

Ẏk =
[
ẏ1+(k−1)N , ẏ2+(k−1)N , ..., ẏi+(k−1)N , ..., ẏN+(k−1)N

]T
;

k ∈ [1, 2N ], i ∈ [1, N ].

 (26)

The analogous relations concern the vectors

Wk; k ∈ [1, 2N ]. (27)

The structure of the matrix of coefficients in (21)–(22) is fairly regular,
as can be seen in Fig. 3, which exemplifies this matrix for the case N = 8.
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The symbols α1 and I in this Figure denote the N -th order submatrices
(19) and (20), the superscripts at α1 and I being, however, omitted
again. The superscript is retained only by the symbol of matrix A – see
Fig. 3.

a1

a1

a1

a1

a1

a1

a1

a1

a1

a1

a1

a1

a1

a1

a1

a1

I
I

I
I

I
I

I

-I

-I
I

I
I

I
I

I
I

-I
-I

-I
-I

-I
-I

-I
-I

-I
-I

-I
-I

A[8] =

Fig. 3. An example – for N = 8 – of the matrix of coefficients in (12), partitioned
into submatrices of the order N

It should be understood that the empty squares in Fig. 3 are in fact
occupied by null submatrices of the order N = 8.

The matrix A[N ] is not tridiagonal. However, by virtue of its regular
structure, half of the unknowns, i.e.

Ẏk; k ∈ [1, N ] (28)

can be easily eliminated, which leads to a ‘reduced’ system of equations,
containing just the remaining unknowns

Ẏk; k ∈ [N + 1, 2N ]. (29)

For this purpose the upper half of eqs. (21)–(22) is multiplied by the
inverse α−1

1 , which yields the following formulae:

Ẏ1 = −α−1
1 ẎN+2 + α−1

1 W1;

Ẏ2 = −α−1
1 ẎN+3 + α−1

1 ẎN+1 + α−1
1 W2;

...................................................................

ẎN−1 = −α−1
1 Ẏ2N + α−1

1 Ẏ2N−2 + α−1
1 WN−1;

ẎN = α−1
1 Ẏ2N−1 + α−1

1 WN .


(30)
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Substitution of these formulae into equations representing the lower half
of (21)–(22) results – after some rather obvious transformations – in the
following ‘reduced system’:

bẎN+1 + ẎN+3 = RN+1;

aẎN+2 + ẎN+4 = RN+2;

ẎN+1 + aẎN+3 + ẎN+5 = RN+3;

...................................................

Ẏ2N−4 + aẎ2N−2 + Ẏ2N = R2N−2;

Ẏ2N−3 + aẎ2N−1 = R2N−1;

Ẏ2N−2 + bẎ2N = R2N ,



(31)

which has a tridiagonal matrix of coefficients. The newly introduced symbols
denote

a = α2
1 − 2I; b = α2

1 − I, (32)

RN+1 = α1WN+1 +W2;

RN+2 = α1WN+2 +W3 −W1;

......................................................

R2N−1 = α1W2N−1 +WN −WN−2;

R2N = α1W2N −WN−1.


(33)

It is evident that the system (31) consists in fact of two independent ones.
The first one contains unknowns with odd subscripts and can be rewritten
as

bẎN+1 + ẎN+3 = RN+1;

ẎN+1 + aẎN+3 + ẎN+5 = RN+3;

...................................................

Ẏ2N−3 + aẎ2N−1 = R2N−1,


(34)

while the second one contains unknowns provided with even subscripts, and
has the following form:

aẎN+2 + ẎN+4 = RN+2;

ẎN+2 + aẎN+4 + ẎN+6= RN+4;

...................................................

Ẏ2N−4 + aẎ2N−2 + Ẏ2N = R2N−2;

Ẏ2N−2 + bẎ2N = R2N .


(35)
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Both can be solved by a quite well-known process consisting of two
operations: the elimination of successive unknowns (the ‘downward’ part
of the process), and the evaluation of consecutive unknowns, starting with
the one corresponding to the maximum value of the subscript (the ‘upward’
part of the process).

Simple recursive formulae are characteristic of this approach.
In the case of system (34) they are derived as follows. The first

equation in (34) is solved with respect to ẎN+1, yielding

ẎN+1 = −b−1ẎN+3 + b−1RN+1 =

= −q1ẎN+3 + u1. (36)

This result is substituted in the second equation in (34), which is then
solved with respect to ẎN+3:

ẎN+3 = −(−q1 + a)−1ẎN+5 + (−q1 + a)−1(RN+3 − u1) =

= −q2ẎN+5 + u2. (37)

This operation can be repeated with respect to consecutive equations
in (34), right down to the last one. Hence, the first part of the process
consists in the recursive evaluation of the submatrices

qi = (−qi−1 + a)−1; i ∈ [1, N/2],
q1 = b−1

}
(38)

and of the column vectors
ui = qi(RN+2i−1 − ui−1); i ∈ [1, N/2],
uo = 0.

}
(39)

They appear in the general relation

ẎN+2i−1 = −qiẎN+2i+1 + ui; i ∈ [1, N/2] (40)

connecting two consecutive vectorial unknowns. The last relation, i.e. the
one corresponding to i = N/2, reduces to the simple equation

Ẏ2N−1 = uN/2 (41)

because the unknown Ẏ2N+1 does not exist. Consequently, the second part
of the process under consideration consists in evaluating the unknowns by
the use of the relations (40), starting with the unknown (41).

It should be noted that the inverses (38) do not depend on the right
hand sides in (35), so that they can be evaluated and stored with a view to
saving computing time.
In the case of system (35) the same approach is applied; however,

slightly different recursive formulae appear:

ẎN+2 = −a−1ẎN+4 + a−1RN+2 =

= −q1ẎN+4 + u1;
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ẎN+4 = −(−q1 + a)−1ẎN+6 + (−q1 + a)−1(RN+4 − u1) =

= −q2ẎN+6 + u2

and generally

ẎN+2i = −qiẎN+2i+2 + ui; i ∈ [1, N/2], (42)

where the unknown Ẏ2N+2, corresponding to the largest value of the index i
should be replaced by zero.

The recursive formulae, analogous to (38) and (39), are as follows:

q1 = (−qi−1 + a)−1; i ∈ [1, N/2− 1],

q1 = a−1;

qN/2 = (−qN/2−1 + b)−1

 (43)

and

ui = qi(RN+2i − ui−1); i ∈ [1, N/2− 1],

q0 = 0.

}
(44)

The remark concerning the possibility of storing the inverses (43) remains
valid in this case, too.

Note that the systems (34), (35) can be solved parallelly.

3. The equation BẎ = V

Matrix B in (13) is defined (loc. cit.) by means of the following three
submatrices of the order N :

β
[N ]
1 ≡ α1

[N ], (45)

where the right hand side is denoted by (19);

β
[N ]
2 = 4β[N ]

1 (46)

and

α
[N ]
2 =



4 1 0
1 4 1

. . .
. . .

1 4 1
0 1 4


. (47)
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By the use of these submatrices, system (13) of ordinary differential
equations can be rewritten in the following manner:

β2Ẏ1 + β1Ẏ2 + α2ẎN+2 = V1;

β1Ẏ1 + β2Ẏ2 + β1Y3 − α2ẎN+1 + α2ẎN+3 = V2;

β1Ẏ2 + β2Ẏ3 + β1Y4 − α2ẎN+2 + α2ẎN+4 = V4;

.....................................................................................

β1ẎN−2 + β2ẎN−1 + β1ẎN − α2Ẏ2N−2 + α2Ẏ2N = VN−1;

β1ẎN−1 + β2ẎN − α2Ẏ2N−1 = VN ,


(48)

−α2Ẏ2 + β2ẎN+1 + β1ẎN+2 = VN+1;

α2Ẏ1 − α2Ẏ3 + β1YN+1 + β2ẎN+2 + β1ẎN+3 = VN+2;

........................................................................................

α2ẎN−2 − α2ẎN + β1Y2N−2 + β2Ẏ2N−1 + β1Ẏ2N = V2N−1;

α2ẎN−1 + β1Y2N−1 + β2Ẏ2N = V2N .


(49)

The matrix of this system is shown in Fig. 4 for the case N = 8. Again,
the empty squares in this Figure ought in fact to be filled by null submatrices
of the order N .
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Fig. 4. An example – for N = 8 – of the matrix of coefficients in (13), partitioned
into submatrices of the order N
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As in the previous Section, the symbols

Ẏk, Vk; k ∈ [1, 2N ]

denote column vectors, each one consisting of N real elements.
It will now be demonstrated that the unknowns

Ẏk; k ∈ [1,N ] (50)

can be eliminated from system (48)–(49), and a ‘reduced’ system will be
derived containing solely the other half of the unknowns

Ẏk; k ∈ [N + 1, 2N ]. (51)

For this purpose, subsystem (48) will be multiplied by the inverse β−1
1 of

submatrix (45), and subsystem (49) by the inverse α−1
2 of submatrix (47).

By introducing for the sake of convenience the following notation:

a = β−1
1 α2; b = α−1

2 β1;

β−1
1 Vk =Wk; k ∈ [1, N ];

α−1
2 Vk =Wk; k ∈ [N + 1, 2N ],

 (52)

and performing the said multiplications, one arrives easily at a new form of
system (48)–(49):

4Ẏ1 + Ẏ2 + aẎN+2 =W1;

Ẏ1 + 4Ẏ2 + Ẏ3 − aẎN+1 + aẎN+3 =W2;

Ẏ2 + 4Ẏ3 + Ẏ4 − aẎN+2 + aẎN+4 =W3;

..........................................................................

ẎN−2 + 4ẎN−1 + ẎN − aẎ2N−2 + aẎ2N =WN−1;

ẎN−1 + 4ẎN − aẎ2N−1 =WN ,


(53)

−Ẏ2 + 4bẎN+1 + bẎN+2 =WN+1;

Ẏ1 − Ẏ3 + bẎN+1 + 4bẎN+2 + bẎN+3 =WN+2;

..............................................................................

ẎN−2 − ẎN + bẎ2N−2 + 4bẎ2N−1 + bẎ2N =W2N−1;

ẎN−1 + bẎ2N−1 + 4bẎ2N =W2N .


(54)

It should be emphasised that the same symbol Wk has quite a different
meaning in the present Section than in the previous one.

The next step in the elimination of unknowns (50) consists in solving
subsystem (54) with respect to those unknowns. This can be done separately
for the even and for the odd indices at these unknowns.
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In the first case, the following general formulae can be derived:

Ẏk = bRk + Tk; k = 2, 4, ...,N, (55)

where

T2 = −WN+1,

Tk = Tk−2 −WN+k−1; k = 4, 6, ...N,

}
(56)

R2 = 4ẎN+1 + ẎN+2,

Rk = (ẎN+k−2 + 4ẎN+k−1 + ẎN+k) +Rk−2; k = 4, 6, ...,N.

}
(57)

Likewise, in the second case:

Ẏk = bRk + Tk; k = N − 1, N − 3, ..., 1, (58)

where

TN−1 =W2N ,

Tk = Tk+2 +WN+k+1; k = N − 3, N − 5, ..., 1,

}
(59)

RN−1 = −(Ẏ2N−1 + 4Ẏ2N ),

Rk = −(ẎN+k + 4ẎN+k+1 + ẎN+k+2) +Rk+2; k = N − 3,
N − 5, ..., 1.

 (60)

Substitution of (55)–(57) and (58)–(60) into (53) yields the sought-after
reduced system of equations, which does not contain unknowns (50). After
multiplication by the inverse b−1 of submatrix b in (52) the reduced system
can be presented in a relatively simple form. The right hand sides follow
from the formulae

Sk = b−1
[
Wk − (Tk−1 + 4Tk + Tk+1)

]
; k ∈ [1, N ],

To = TN+1 = 0

 (61)

and the matrix of coefficients is shown in Fig. 5 for the case N = 8. The
new submatrices in the Figure are defined as follows:

E = 15 I − b−1a,

F = 3 I − b−1a.

}
(62)

The main diagonal of the matrix BR[8] in Fig. 5 consists of null
submatrices and it is true for any even numberN . However, the determinant
of such a matrix does not vanish:∣∣∣B[N ]

R

∣∣∣ �= 0; N − even, (63)

an analogous property being mentioned in the previous Section. In other
words, the matrix is nonsingular for even values of N .
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Fig. 5. An example – for N = 8 – of the matrix BR of coefficients of the reduced
system of equations, partitioned into submatrices of the order N

Considering the matrix in Fig. 5 one comes easily to the conclusion
that it can be partitioned in a more convenient way by the use of just five
submatrices:

α =
[

0 −E
E 0

]
; β =

[
8I F
16I 8I

]
;

γ =
[

8I 4I
16I 8I

]
; δ = −

[
8I 16I
F 8I

]
= −βT ;

ε = −
[

8I 16I
4I 8I

]
= −γT


(64)

of the order 2N . It should be recalled that all the submatrices

E, F, I, 0 (65)

are of the order N . The new partitioning of the matrix BR[8] is shown in
Fig. 6. It is clear that the main diagonal consists solely of the submatrices α.
Similarly, the two closest diagonals contain the submatrices β and δ. The
remaining space is filled by the submatrices γ and ε in the manner indicated
in Fig. 6. The new partitioning does not influence the time necessary for
the solution of the reduced system of equations. Nevertheless, construction
of its matrix of coefficients becomes easy and systematic.

The matrix B[N ]
R does not appear to possess properties such as tridiag-

onality, enabling one to solve the reduced system of equations in a special
time-saving manner, as was the case in the previous Section. Therefore, one
of the existing methods of solution has to be applied. The one selected by
ourselves involves representing the matrix of coefficients by means of the
product of two triangular matrices, as is shown for the case N = 8 (Fig. 7).
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Fig. 6. An example – for N = 8 – of the matrix BR of coefficients of the reduced
system, partitioned into submatrices of the order 2N
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Fig. 7. An example – for N = 8 – of the matrix BR of coefficients of the reduced
system, represented by product of two triangular matrices

It can be referred to as Banachiewicz’s method – see Zurmühl (1949) and
Prosnak (1993) – generalised, however, for systems of equations in which
every term is represented by a column vector consisting of real elements.

Computation of the two factors of the product

B[N ]
R = L[N ]U[N ] (66)

can be treated as a routine problem of matrix algebra, and will be omitted.
However, the way of dealing with the product (66) should be perhaps
recalled.

For this purpose, the reduced system of equations will be rewritten in
the following form:

LUẎ = S, (67)

where

Ẏ = [Ỹ1, Ỹ2, ..., ỸN/2]T ;

S = [S̃1, S̃2, ..., S̃N/2]T ,

 (68)

the subvectors Ỹk, S̃k containing 2N real elements, unlike subvectors (51),
(61), which consist of N real elements only. This follows from the new
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partition of matrix B[N ]
R , cf. Figs. 5 and 6. The superscripts [N ] at L and U

in (67) are omitted for the sake of simplicity. Now, an auxiliary unknown

UẎ = X (69)

will be substituted into (67), which yields

LX = S. (70)

Remembering that L denotes the lower triangular matrix, one can see
at once that determination of the solution of (70) with respect to X is very
simple.

Substitution of this solution into (69) yields the equation with the
unknown Ẏ which can also be computed quite easily by virtue of the
properties of the matrix U.

Finally, vectors (50) have to be evaluated by means of recursive formulae
(55)–(57) and (58)–(60).

4. Numerical experiments and some conclusions

In order to obtain information on the algorithms presented in the pre-
vious Sections and, in particular, on the time necessary for their numerical
realisation, measurement of time was included in the computer programs
already mentioned. The results of these measurements are collected in
Table 1.

Table 1. Time necessary to perform selected operations

N matrix t1 t2 t3 t4 t5 t6 t7

8 A 0.010 1.883 0.027 0.233 0.034 – –
B 0.020 3.435 0.028 1.371 – 0.106 0.174

10 A 0.030 6.179 0.066 0.452 0.067 – –
B 0.030 11.667 0.066 4.317 – 0.227 0.716

20 A 0.440 476.916 1.105 8.524 0.701 – –
B 0.571 784.368 1.106 146.352 – 3.128 45.733

It should be recalled and emphasised that the left hand sides in (12),
(13), (14) do not contain the kinematic viscosity ν. This means that the
algorithms do not depend either on this constant or on the Reynolds Number

Re =
Vs l

ν
, (71)

where Vs denotes a velocity scale characterising the velocity distribution (9),
and l = 1 the length of the side of the square in Fig. 1. In fact, the algorithms
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will work for any right hand sides in eqs. (12), (13), (14), even for those which
have no connection at all with the original problem presented in Section 1.
Therefore, the test computations which served as a basis for Table 1, were
performed for column vectors W, V and U in the equations just cited,
every vector containing 2N2 zeroes except one element equal to 1. The
calculations were repeated 2N2 times, the non-vanishing element occupying
correspondingly the row numbered 1, 2, 3, ..., 2N2. The total time of these
calculations was subsequently divided by their number, and such mean
times required for just one solution of the corresponding equation appear in
Table 1.

The symbols A, B in the Table refer to the matrices in eqs. (12)–(13);
the other symbols denote time in seconds:
t1 – time required to generate the matrix;
t2 – time required to compute the inverse of the matrix;
t3 – time required to evaluate the solutions of the respective eqs. (12)–(13)

by the use of the inverse, in accordance with (16)–(17);
t4 – time required to solve eq. (12) or (13) by the use of the Gauss

elimination method;
t5 – time required to solve eq. (12) by means of the method presented in

Section 2: the initial system of equations is reduced by half, and the
matrix of coefficients of the system thus reduced is transformed to two
tridiagonal ones;

t6 – time required to solve eq. (13) by means of the method presented in
Section 3: the initial system of equations is reduced by half, and the
matrix of coefficients of the system thus reduced is replaced by the
product of two triangular matrices;

t7 – time required to solve eq. (13) by means of the method presented in
Section 3; the reduced system of equations is solved directly by the
use of the Gauss elimination without any preliminary transformation
of the reduced system.

It follows from Table 1 that the shortest times necessary to solve
eqs. (12)–(13) correspond to methods based on special properties of the
respective matrices of coefficients, i.e. to the methods presented in Sections
2 and 3.

Comparison of the times necessary for a single solution of these equations
by the use of one of these methods with the times needed just to invert the
corresponding matrix gives some idea of the possible gain. For instance,
when N = 20 and for the eq. (12), there is

t2/t5 = 476.916/0.701 ∼= 680.
For eq. (13) and the same value of N this ratio is smaller:
t2/t6 = 784.368/3.128 ∼= 250.
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Taking into account the respective times necessary to evaluate the vector of
unknowns after (16) and (17), i.e.

t3 = 1.105 and t3 = 1.106,
one can see at once, that such an evaluation is undoubtedly impractical in
the first case, especially if one considers also further elements, such as the
relatively small storage required by these two methods in comparison with
the other ones.

Moreover, the corresponding numerical calculations apply only to
matrices of the order N in the case of eq. (12), and of the order 2N in
the case of eq. (13).

Hence, the general conclusion can be drawn that the both presented
algorithms should be regarded as an achievement of the aim consisting in
improvement of the solution to the test problem under consideration – with
respect to economy both in computation time and in the storage required.

It is to be hoped that at least the underlying ideas can also be utilised
in applications of the new method other than the driven cavity problem.

Some further practical conclusions can be drawn from Table 1. It should
be noted that the widely applied method of Gauss elimination is rather time
consuming, especially in comparison with the usual form of Banachiewicz’s
method. The same conclusion is true as far as computing the inverses is
concerned, this operation being performed in our programs also by the use
of Gauss elimination.

It should be emphasised that the general assumption underlying the
considerations in the present paper concerns the independence of matrices
A and B of time. The conclusions arrived at are valid for this assumption.
They should be not extended to the case of non-stationary matrices, when
e.g. the application of the method based on formulae (16)–(17) would be
inadvisable. On the other hand, the two methods presented in Sections 2
and 3 would emphasise their merits even more.
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