Changes in brain arginine vasotocin, isotocin, plasma 11-ketotestosterone and cortisol in round goby, Neogobius melanostomus, males subjected to overcrowding stress during the breeding season

Ewa Sokołowska a,⁎, Agnieszka Kleszczyńska a, Hanna Kalamarz-Kubiak a, Bartłomiej Arciszewski b, Ewa Kulczykowska a

a Department of Genetics and Marine Biotechnology, Institute of Oceanography of the Polish Academy of Sciences, ul. Powstańców Warszawy 55, Sopot 81-712, Poland
b Hel Marine Station, Institute of Oceanography, University of Gdańsk, ul. Morska 2, 84-150 Hel, Poland

A R T I C L E I N F O

Article history:
Received 19 October 2012
Received in revised form 14 March 2013
Accepted 15 March 2013
Available online 21 March 2013

Keywords:
Aggression
Arginine vasotocin
High fish density
Isotocin
Social behavior

A B S T R A C T

In natural spawning grounds, breeding round goby, Neogobius melanostomus, males are exposed to various social stimuli, including high density of same-sex competitors and separation from females. We hypothesize that breeding males subjected to overcrowding in the wild experience high stress that affects their socio-sexual behavior and their relationships among conspecifics. We designed an experiment to mimic natural stimulation when highly aggregated breeding males are subjected to same-sex opponents. Males were sampled sequentially from experimental tank stocked at decreasing fish densities of 15 fish/m², 9 fish/m² and 4 fish/m². We studied the effects of overcrowding on male behavior and selected hormones, brain arginine vasotocin (AVT) and isotocin (IT) and plasma 11-ketotestosterone (11-KT) and cortisol as these are known to play roles in reproduction and related social interactions. The highest brain AVT and plasma cortisol levels were measured in non-aggressive males kept in the overcrowded group of 15 fish/m². IT level was elevated in fish kept at the lower density of 9 fish/m², and at which the males began to display territoriality and aggression. The plasma level of 11-KT was similar in all the males. Brain AVT and IT and plasma cortisol along with behavioral observations can be applied as species-specific indicators of the well-being of round goby males.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Fish experience different types of stress throughout their life cycles; these include high density, confinement, sex-separation, food-deprivation, disturbance, and the threat of intruders. The sexually active round goby (Neogobius melanostomus) is a cavity-spawning fish that exhibits complex socio-sexual behaviors, including territoriality, nesting, social hierarchy, and aggression. During the breeding season in the wild, the round goby occurs in large aggregations in spawning grounds with densities at preferred rocky sites ranging from 3 to 20 fish/m² (Charlebois et al., 1997; Ray and Corkum, 2001; Sapota, 2005; Sapota and Skóra, 2005). Since the round goby is a batch spawner, the males are periodically separated from the females when they migrate offshore to feed in deeper waters. Thus, round goby males are exposed to social cues that are stress-evoked, including high densities, temporary separation from females, deficient space and nesting refuge, and the threat of same-sex opponents. High density-dependent stress has a strong impact on relationships between individuals, sexual selection, and consequently, breeding success (Lehtonen and Lindstrom, 2008; Kaspersson et al., 2010). Thus, it can be assumed that males that are subjected to overcrowding are unable to establish territories or select nesting sites. We studied the effects of overcrowding on behavior and hormone levels in sexually active round goby males exposed to same-sex conspecifics under controlled laboratory conditions; the focus was on the following hormones: arginine vasotocin (AVT), isotocin (IT), 11-ketotestosterone (11-KT), and cortisol, which are known to affect social, aggressive and male-typical behavior in fish during the spawning season (Mommsen et al., 1999; Pål et al., 2002a,b; Almeida et al., 2012; Kleszczyńska et al., 2012).

AVT and IT are nonapeptides synthesized in the neurosecretory neurons within the preoptic nucleus and stored in the neurohypophysis (Saito et al., 2004). Both of these neuropeptides play roles in a variety of reproductive behaviors, and related social interactions such as nest-building, courtship, parental care, spawning reflex, vocal activity, social hierarchy, and competition for mates and nesting (Pickford and Strecker, 1977; Goodson and Basset, 2000a,b; Grober et al., 2002; Salek et al., 2002; Ripley and Foran, 2010; Almeida et al., 2012; Kleszczynska et al., 2012). Some studies have also demonstrated that AVT induces the aggressive behavior (Goodson et al., 2004; Larson et al., 2006; Backström and Windberg, 2009) associated with reproduction in territorial fish. There is evidence of changes in AVT and IT concentrations in fish exposed to different kinds of stress, i.e., high density and food deprivation (Mancera et al., 2008; Kulczykowska et al., 2009;}.
Kleszczyńska and Kulczykowska, 2013), confinement (Gilchriest et al., 2000; Balment et al., 2006), osmotic and disturbance (Kulczykowska, 2007; Kagawa, 2008). It is generally accepted that 11-KT, an important teleost androgen, is effective in stimulating secondary sexual characters and male reproductive behavior, i.e., nuptial coloration and courtship during breeding (Cardwell and Liley, 1991; Borg, 1994; Pål et al., 2002a,b). Furthermore, 11-KT is of high importance also in the reproductive round goby males: parental males which exhibit secondary sexual characteristics has higher plasma 11-KT concentration than non-parental sneaker males (Marentette et al., 2009). It is postulated that 11-KT which plays an instrumental role in male behaviors also impacts the main neuropeptides of hypothalamo-neurohypophysial systems – AVT in fishes (Goodson and Bass, 2001). Cortisol, the main corticosteroid in fish, is an essential component of the stress response, including overcrowding stress in fish (Mommsen et al., 1999; Ramsay et al., 2006).

This experiment was designed to mimic the stress stimulation of round gobies in the wild where highly aggregated breeding males are separated from females. Brain AVT and IT, and plasma 11-KT and cortisol concentrations together with aggression levels were determined in males kept at densities of 15 fish/m², 9 fish/m² and 4 fish/m².

2. Materials and methods

2.1. Fish sampling and experimental protocols

Round goby males were caught in the coastal zone of the Gulf of Gdańsk in Hel harbor (southern Baltic Sea) with a fyke net to depths of 5 m. The fish (n = 61, 125–235 mm body length) were kept outdoors in a 2400-L experimental housing tank (2 m × 2 m × 0.6 m). The fish were acclimatized for one week prior to experiment. The tank was equipped with an open circuit brackish water system. The fish were exposed to the natural photoperiod (15:19) and temperatures of 17–20 °C. The fish were fed ad libitum with frozen herring Clupea harengus and Mytilus edulis trossulus daily, at 15:00 h. Fish behavior was observed daily every 2 h from 09:00 h to 19:00 h for 30 min.

The fish were sampled randomly from the experimental tank three times at 7-day intervals as follows: after 7 days (25 males were taken), after 14 days (20 males were taken) and after 21 days of experiment (16 males were taken) (Table 1). Thus, the males were kept in the same housing tank in a sequence of decreasing density from 15 fish/m² to 9 fish/m² and then 4 fish/m². This sampling protocol gave the opportunity to observe changing behavior in males coming from the same (experimental) fish community. Noteworthy, sequential fish sampling from one initial group imitates the situation in nature where male density decreases over the course of the breeding season.

In the wild, round goby male abundance at spawning grounds is the highest at the beginning of breeding (Sapota and Skóra, 2005), but it gradually declines because of male–male territorial competitions and formation of a dominance hierarchy. In addition, fish housed in the same tank avoided disturbance stress and tank-changing effect.

The tank used in the current experiment had no shelters so that conditions were similar for all the fish. The males failed to establish typical male territorial competitions and formation of a dominance hierarchy. In addition, fish housed in the same tank avoided disturbance stress and tank-changing effect.

Table 1

<table>
<thead>
<tr>
<th>Experiment schedule.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of experiment</td>
</tr>
<tr>
<td>Number of males in experimental group</td>
</tr>
<tr>
<td>Fish density</td>
</tr>
<tr>
<td>Number of sampled males</td>
</tr>
</tbody>
</table>

2.2. Analytical methods

2.2.1. Brain AVT and IT assay

The fish were killed by severing the spinal cord and the whole brains for AVT and IT measurement were removed, immediately frozen and stored at −70 °C until HPLC analysis. Frozen brains were defrosted, weighed (50–176 mg) and sonicated separately in 1 mL distilled water using Microson™ XL 2000. Glacial acetic acid (2.5 µL) was added to homogenates, and the mixtures were placed in a boiling water bath for 3.5 min. The extracts were cooled on ice, and then centrifuged at 17 970 rcf for 20 min at 4 °C. AVT and IT were extracted by solid-phase extraction method (SPE) using C18 Bakerbond cartridges (JT. Baker, Phillipsburg, NJ, USA; 100 mg/mL). The supernatants were decanted and loaded onto previously equilibrated (3 mL methanol, 3 mL distilled water) SPE columns. After washing by-products with water (1 mL) and methanol (5%, 1 mL), peptides were eluted with mixture of ethanolic 6 N HCl (2000:1, 2 × 1 mL). Eluent was evaporated, and the residue was dissolved in 80 µL of 0.1% TFA in acetonitrile: H₂O (3:1). Next, the derivatization of peptides was applied according to Godzowska and Kulczykowska (2004) with modifications. Briefly, 40 µL phosphoric buffer (0.2 M, pH 9.0) was added to 40 µL of sample and mixed. The derivatization was performed using 2 µL NBD-F (4-fluoro-7-nitro-2,1,3-benzoxadiazole: 30 mg/mL in acetonitrile) in 60 °C for 3 min, and then the reaction mixture was immediately cooled on ice. Next, 20 µL HCl (1 M) was added and 50 µL of the mixture was injected directly to HPLC (Shimadzu HPLC Prominance System). Chromatographic analysis was performed according to Godzowska and Kulczykowska (2004). Briefly, HPLC separation was done on an Ultraphase ODS column (Beckman, 250 × 4.6 mm, 5 µm particle) connected with precolumn (ODS, Beckman, 45 × 4.6 mm, 5 µm particle), the mobile phase consisted of solvent A (0.1% TFA in H₂O) and solvent B (0.1% TFA in acetonitrile: H₂O (3:1)). A linear gradient was 48–80% of solvent B in 20 min. The column temperature was set at 20 °C and flow rate at 1 mL/min. Fluorescence detection was carried out at 530 nm with excitation at 470 nm. Recovery of peptides was in the range 89–93% for AVT and IT. The detection limit was determined to be 100 fmol/mL. Intra-day repeatability expressed as relative standard deviation was 2–4.5% and 5.3–8.2% for AVT and IT, respectively; inter-day precision was in the range 2.5–5.5% and 5.5–8.5% for AVT and IT, respectively.

2.2.2. Plasma 11-KT assay

Blood samples for 11-KT were collected by cardiac puncture. Plasma was separated by centrifugation in heparinized tubes at 20 630 rcf for 10 min and stored at −70 °C until analysis. Plasma 11-KT concentration was determined by competitive enzymoimmunoassay (EIA) with preceding extraction procedure. The assay was performed using a Cayman EIA kit (Ann Arbor, MI, USA). Extraction of plasma samples
Values are presented as means ± standard error of the mean (S.E.M.). Normality (W Shapiro-Wilk's test) and homogeneity (Levene's test) of variances were assessed prior to the use of statistical analysis. Statistical differences between number of males showing various levels of aggression were measured by multiple comparisons of the analysis of variance (one-way ANOVA). Significance was considered at $P < 0.05$. Correlation between hormone levels and fishstocking densities and levels of aggression, and between fishstocking densities and levels of aggression was assessed by Spearman's rank correlation analysis at a significance level of $P < 0.05$. Statistical analyses were carried out using Statistica 8.1 software (Sokal and Rohlf, 1995).

3. Results

3.1. Variation in hormone levels

The experimental treatment caused marked changes in brain AVT and IT concentrations (Kruskal–Wallis test, $P < 0.001$) (Fig. 1). The highest brain AVT level was measured in males kept at the highest density of 15 fish/m2 (Mann–Whitney U-test, $P < 0.001$). Brain AVT concentration decreased along with decreasing fish density (Spearman's rank correlation, $n = 59, R = 0.707240, P < 0.001$). The brain IT level was the highest at a stocking density of 9 fish/m2 (Mann–Whitney U-test, $P < 0.001$).

The plasma concentration of 11-KT was not influenced by stocking density (Kruskal–Wallis test, $P = 0.9352$).

The experimental conditions affected markedly the plasma cortisol concentration (Kruskal–Wallis test, $P < 0.001$). The highest plasma cortisol level was measured at the density of 15 fish/m2 (Mann–Whitney U-test, $P < 0.001$). Plasma cortisol dropped along with fish density (Spearman's rank correlation, $n = 31, R = 0.7599726, P < 0.001$).

3.2. Behavioral changes

The number and percentage of round goby males exhibiting aggression at various levels after exposure to different stocking densities are presented in Table 2. At the density of 15 fish/m2, the majority of fish were quiescent, inactive, behaved like subordinates, and only sporadically showed aggressiveness (level 1). Only a few males exhibited more frequent approaches and chases (level 2). At the lower stocking densities of 9 and 4 fish/m2, the fish were more active and demonstrated distinct aggression, including frequent attacks on approaching intruders (level 3). Round goby male aggression increased as fish density decreased (Spearman's rank correlation, $R = -0.720680, P < 0.001$) and correlated negatively with brain AVT and plasma cortisol concentrations (Spearman's rank correlation, $R = -0.681796, P < 0.001$ and $R = -0.746108, P < 0.001$, respectively).

4. Discussion

Fish experience different types of stress during their life cycle, i.e., confinement, high density, sex-separation, or disturbance. Different fish species exhibit various behavioral responses and divergent coping strategies towards stressors (Koolhaas et al., 1999; Överli et al., 2007; Martins et al., 2012). In the wild, at the onset of breeding, round gobies are exposed to a high density of same-sex conspecifics aggregated in the spawning grounds (Ray and Corkum, 2001; Sapota and Skóra, 2005). The density of round gobies during breeding in the wild ranges from 5 to 9 fish/m2 (Ray and Corkum, 2001), and the preferred distance between territorial males is about 1 m (Sapota, 2005). Thus, in our study, same-sex group of 15 males/m2 is considered as overcrowding.

The highest brain AVT concentration was observed in overcrowded males. In three-spined stickleback males (Gasterosteus aculeatus) which also exhibits territorial and nesting behavior during breeding, the brain AVT level is also elevated after exposure to high density of conspecifics (Kleszczynska and Kulczykowska, 2013). Also, plasma AVT level is enhanced in immature gilthead sea bream (Sparus auratus) exposed to high density (Mancera et al., 2008; Kulczykowska et al.,
The values are presented as means ± S.E.M. Significant differences are at the \(P < 0.001 \) level.

Fig. 1. Changes in brain concentration of AVT and IT, and plasma concentration of cortisol and 11-KT in males of the round goby *N. melanostomus* after exposure to densities of 15 fish/m\(^2\), 9 fish/m\(^2\) and 4 fish/m\(^2\). Number of sampled males is given in the bars. The values are presented as means ± S.E.M. Significant differences are indicated as *** \(P < 0.001 \).**

<table>
<thead>
<tr>
<th>Aggression</th>
<th>Fish density</th>
<th>Number of males</th>
<th>%</th>
<th>Number of males</th>
<th>%</th>
<th>Number of males</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>15 fish/m(^2)</td>
<td>33</td>
<td>54</td>
<td>4</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Level 2</td>
<td>28</td>
<td>46</td>
<td>12</td>
<td>35</td>
<td>3</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Level 3</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>55</td>
<td>13</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>61</td>
<td>100</td>
<td>36</td>
<td>100</td>
<td>16</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Similarly to high density-dependent effects, confinement and restraint also stimulate AVT in fish. Bond et al. (2007) demonstrated the elevated expression of pro-AVT mRNA in magnocellular neurons of the preoptic area (POA) in flounder (*Platichthys flesus*) exposed to acute restraint stress. A significantly higher level of AVT mRNA is also observed in the forebrain of rainbow trout (*Oncorhynchus mykiss*) in response to confinement stress (Gilchriest et al., 2000; Backström et al., 2011). As was described in Introduction, overcrowding is stressful for breeding round goby males. We reveal that plasma cortisol level was the highest in high density group of 15 fish/m\(^2\), which confirms that overcrowded males experienced severe stress at the beginning of breeding. Apparently, round gobies present a reactive coping style characterized by the high production of corticosteroid hormones in response to severe stress (Koolhaas et al., 1999; Överli et al., 2007).

In our study, chronic overcrowding stress that caused increase of brain AVT corresponded with fish passivity without aggression. The present results are in accordance with the findings from studies by Backström and Windberg (2009) where intracerebroventricularly administered AVT inhibits aggression in juvenile rainbow trout. Also, exogenous AVT is known to decrease the number of chases towards individuals by territorial bluehead wrasse males (Semsar et al., 2001). The number of AVT-producing neurons in the POA is higher in subordinate, quiescent clown anemonefish (*Amphiprion ocellaris*) males (Iwata et al., 2010). AVT also inhibits aggressive behavior in some bird species. Treatment with AVT attenuates crowding-induced aggression in starlings (Nephew et al., 2005), and it reduces aggression in territorial species such as field sparrows (Goodson, 1998).

It is noteworthy that non-aggressive round goby males with high AVT in the overcrowded group displayed the lowest levels of social approach. This effect of a high AVT level on behavior corresponds with data from a study by Thompson and Walton (2004), in which centrally administered AVT inhibits approach responses toward same-sex conspecifics in male goldfish. Moreover, in studies of male goldfish, Thompson and Walton (2004) and Walton et al. (2010) show that inhibition of approach occurs with an absence of aggression.

In the groups of round goby males of decreasing densities, 9 and 4 fish/m\(^2\), we observed lower AVT concentration together with increasing aggressiveness and territoriality that are signs of the formation of a dominance hierarchy. Apparently, social spacing enables to demonstrate aggressive responses in dominants and then induces avoidance and withdrawals in subordinates. Iwata et al. (2010) show that the number of AVT-ir neurons in the POA of clown anemonefish declines as a social hierarchy forms in this species. Zebra finch males also exhibit aggressive competition and have a small number of AVT-ir neurons (Goodson et al., 2009). On the other hand, fish aggressiveness can correspond with high concentrations of brain AVT. For example, aggressive dominant three-spined stickleback males that take care of eggs demonstrate the highest brain concentration of AVT (Kleszczyńska et al., 2012). Also, aggressive dominant zebrafish (*Danio rerio*) and plainfin midshipman males that guard eggs in nests have larger AVT-ir neurons in the POA than do male subordinates or those without nests (Foran and Bass, 1998; Larson et al., 2006). Greenwood et al. (2008) show that aggressive, territorial dominant African cichlid fish (*Astatotilapia burtoni*) males exhibit higher...
levels of AVT mRNA expression in the whole brain than do non-territorial subordinate males. It appears that the link between AVT and aggressiveness is species-specific.

The role of IT in round goby males seems to be opposite to AVT action during breeding season. The highest IT concentration was measured in aggressive males kept at a density of 9 fish/m². Aggressiveness in this fish species is a sign of readiness for breeding. We hypothesize that an increased level of IT is a signal that triggers male reproductive behavior. Overcrowding at the beginning of the breeding season inhibits this behavior. A higher brain IT level in aggressive, dominant three-spined stickleback males that court females and defend territory has been reported by Kleszczyńska et al. (2012). Moreover, studies performed in goldfish reveal that IT stimulates social approach behavior towards conspecifics (Thompson and Walton, 2004). O’Connell et al. (2012) demonstrate that IT promotes reproductive behavior in aggressive paternal cichlid fish (Amatitlania nigrofasciata) males. Furthermore, administered OT, a mammalian homologue of IT, promotes sexual activity in African catfish (Viveiros et al., 2003). The highest IT level in males that exhibit aggression and territoriality and the highest concentration of AVT in non-aggressive males presented in our study indicate the different roles of AVT and IT in round goby males during reproduction. Thompson and Walton (2004) also report that AVT and IT induce the opposite effects on social behavior in male goldfish: AVT reduces social approach while IT induces it.

The plasma 11-KT in the round goby males during the experiment did not change irrespectively of social conditions or increasing aggression and territoriality. Similarly, it has been shown that the escalation of male aggressiveness in cichlid fish is independent of plasma 11-KT (Oliveira et al., 2005; O’Connell et al., 2012). Oliveira et al. (2001) demonstrate that exogenous 11-KT does not affect the behavior of peacock benny (Salarias pavo) sneakers males. Moreover, gonadectomy does not influence aggression or breeding behavior in male bluehead wrasse (Thalassoma bifasciatum) (Godwin et al., 1996, 2000). On the other hand, aggressive and territorial stoplight parrotfish (Sparisoma viride) and demersal fish (Chromis dispilus) males have higher levels of plasma 11-KT than do non-aggressive males without territory (Cardwell and Liley, 1991; Pankhurst and Barnett, 1993). Thus, behavioral alterations during breeding may or may not be linked with plasma 11-KT depending on species.

In the current study, we also considered the relationship between plasma 11-KT and brain AVT, because Goodson and Bass (2001) demonstrated that androgen inhibitors or castration decreased forebrain AVT-ir, AVT mRNA level, and AVT receptor expression, whereas androgen treatment reversed these effects. In round goby males, brain AVT concentrations changed despite the constant plasma 11-KT level.

In the peacock benny (Salarias pavo), exogenous 11-KT does not affect the number of AVT preoptic neurons (Oliveira et al., 2001). Gonadectomy also has no effect on the AVT mRNA level in bluehead wrasse (Perry and Grober, 2003; Semsar and Godwin, 2003). Although in round goby brain, AVT is not affected by plasma 11-KT, we cannot exclude the possibility that 11-KT produced in the brain can influence AVT production locally. It is well established that androgens, estrogens, and progesterone are synthesized de novo in the central nervous system of teleosts (Diotel et al., 2011).

5. Conclusions

We observed the highest AVT and cortisol levels in overcrowded, non-aggressive males. On the other hand, the IT level was elevated as overcrowding was eased and the males were aggressive, which is usually a sign of breeding readiness. Brain AVT and IT, plasma cortisol, together with behavioral observations can be used as species-specific indicators of round goby male well-being. The role of AVT and IT as hormonal markers of fish condition and welfare indicators has been suggested previously (Kulczyńska et al., 2010).

Acknowledgements

This study was supported by Polish Ministry of Science and Higher Education Grant 498/N-HISZP-JRP/2009/0 and by IOPAS statutory research task IV.2.1 to E. Sokolowska. We wish to thank Dr. M. Godzowska for help in peptide analyses. Authors would like to acknowledge prof. K. E. Skórka from Hel Marine Station of the Institute of Oceanography (University of Gdańsk) for the use of facility and equipment of the Station during the experiment. We also thank to Dominika Danil, Dorota Pachol, Kaja Urbańska and other students for their efficient help in monitoring the experiment and assistance in sections in Hel Marine Station.

References

Kleszczyńska, A., Sokolowska, E., Kulczyńska, E., 2012. Variation in brain arginine vasotoxicin (AVT) and isotocin (IT) levels with reproductive stage and social status in

