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A B S T R A C T

The aim of this study was to determine changes in concentrations of melatonin (Mel) and
thyroxine (T4) in plasma, and 17β-estradiol (E2) and 11-ketotestosterone (11-KT) in plasma and
gonads of female and male round gobies (Neogobius melanostomus) from the Southern Baltic Sea
in four phases of the reproductive cycle classified as pre-spawning, spawning, late spawning and
non-spawning periods. The concentrations of Mel, T4 and E2 were determined by radio-
immunoassay (RIA) whereas 11-KT was quantified using an enzyme immunoassay (EIA). The
maturity stage of gonads was determined using histological analyses. The pattern of changes in
Mel concentrations of females and males was similar with the greatest concentrations in the
spawning and non-spawning phases. In both sexes, there was a similar tendency of change in
concentrations of T4 and E2 with the increase being in the pre-spawning and non-spawning
phases. The greatest concentrations of 11-KT were observed in the plasma and gonads of males
during the spawning phase. In females, there were no changes in 11-KT concentrations either in
plasma or gonads during all phases where quantifications occurred. This is the first study for
determination of the pattern of changes in Mel and T4 concentrations as well as gonadal steroids
E2 and 11-KT, supported by histological analysis of gonads, in batch spawning fish during the
reproductive cycle.

1. Introduction

Since the 1990s, the round goby (Neogobius melanostomus) became a significant invader in several regions of Europe (including the
Baltic Sea) and in the Laurentian Great Lakes of North America (Kornis et al., 2012). In the Baltic Sea, this batch spawning species is
most abundant in the Gulf of Gdańsk, where the spawning season lasts from the beginning of May to the end of September and
females may lay eggs from two to four times during the season (Sapota, 2012).

Although considerable research on the biology of round goby has been conducted (Kornis et al., 2012), the hormonal regulation of
the reproductive cycle of this species has received little attention. It is well recognized that sex steroids have important functions in
fish reproduction, and there are also other hormones such as melatonin (Mel) and thyroxine (T4) that are essential for regulation of
reproductive cycle (Borg, 1994; Falcón et al., 2010; Leatherland, 1994; Lubzens et al., 2010). To the authors’ knowledge, there is no
study on Mel and T4 in round goby. In fish reproduction, Mel has been reported to be an important hormone in regulation of
occurrence of spawning, gametogenic and steroidogenic functions of gonads (Popek et al., 1991; Sokołowska et al., 2004; Maitra
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et al., 2006). These actions of Mel occur as a result of effects at the brain – pituitary – gonad axis (Falcón et al., 2007; Popek et al.,
2010; Maitra et al., 2013). This hormone transduces seasonal temperature and photoperiod signals that are perceived via sensory
neurons that have an important role in synchronizing the stage of different biological rhythms also involved in reproduction (Ekström
and Meissl, 1989; Falcón et al., 2010; Maitra et al., 2013). Melatonin can also protect cells from oxidative stress in the processes of the
maturation and regression of gonads in an annual cycle (Bromage et al., 2001; Bayarri et al., 2004; Falcón et al., 2010; Maitra et al.,
2013, 2015; Alvarado et al., 2015; Maitra and Hasan, 2016). In fish, T4 has wide-ranging effects on gonadal development and
maturation, stimulating and maintaining the functions during the reproductive cycle (Biswas et al., 2006; Swapna and
Senthilkumaran, 2007). In females, T4 stimulates the development of previtellogenic oocytes and early oocyte vitellogenesis
(Wiegand, 1982; Cyr and Eales, 1988), up-regulates hepatic synthesis of vitellogenin - the protein sequestered by growing oocytes
(Monteverdi and Giulio, 2000) that induces final oocyte maturation and ovulation (Hurlburt, 1977; Detlaff and Davydova, 1979). In
males, T4 modulates the actions of many factors that are important for maintaining spermatogenesis and spermiation (Sower and
Schreck, 1982; Leatherland, 1994; Swapna and Senthilkumaran, 2007; Flood et al., 2013).

Furthermore, there are only a few studies focused on the sex steroids in round goby. There have been results reported describing
the 17β-estradiol (E2) and 11-ketotestosterone (11-KT) concentrations in non-reproductive and reproductive males and females and
two different male reproductive morphs, namely: parental and sneaker males (Marentette et al., 2009; Bowley et al., 2010; Zeyl et al.,
2014). In female fish, E2, which is produced mainly by the ovarian follicles, has an important role in supporting the hepatic synthesis
and secretion of vitellogenin (Lubzens et al., 2010). There is also an essential function of E2 in male reproduction (Borg, 1994; Schulz
et al., 2010). There is synthesis of E2 by Leydig and Sertoli cells in fish testes (Janz and Weber, 2000) and this hormone affects the
regulation of spermatogenesis, especially spermatogonial proliferation (Schulz et al., 2010). In most teleosts males, 11-KT is the
primary androgen, stimulating spermatogenesis and regulating growth and development of testis as well as secondary sexual
characteristics and reproductive behaviour (Borg, 1994; Schulz et al., 2010). The function of 11-KT in females is not fully understood
but in vivo and in vitro studies of short-finned eel (Anguilla australis; Rohr et al., 2001; Lokman et al., 2007) have reported that 11-KT
contributes in oocyte growth.

The objective of the present study was to investigate the changes in Mel, T4, E2 and 11-KT in four phases of the reproductive cycle
of round goby characterized as the pre-spawning, spawning, late spawning and non-spawning phases. In addition to analyses of
hormones, there were histological studies of gonads as a part of this study.

2. Materials and methods

2.1. Fish

Adult round gobies of both sexes (n=84) were caught using fyke nets, near Hel Harbour (54° 36ʹ 04.17″N, 18° 47ʹ 56.06″E) (Gulf
of Gdańsk, southern Baltic Sea) in March, April, July and October. After capture, the fish were transferred to the Marine Station
(Institute of Oceanography, University of Gdańsk, Poland) in Hel and were sexed by examination of the urogenital papilla. Each
group of 21 individuals of similar size consisted of 14 males and seven females and were acclimated to the tank conditions for 6
weeks. During this time, fish were maintained in natural photoperiodic and temperature conditions (Table 1) in a 2640 L outdoor
tank with an open circuit water system providing constant flow through of fresh brackish water (˜7% salt) from the Gulf of Gdańsk.
The temperature in the outdoor tank was measured using a portable meter CC-401 (Elmetron, Poland) every day at noon. The
measurements were taken in the middle of the tank water column. In each tank, devices were inserted that facilitated fish seclusion
that were made from PVC pipes so as to mimic natural living conditions of round goby. Fish were fed once daily with fresh fish meat
(herring), frozen mussels or shrimps at 3:00 p.m. After the acclimatisation, fish were anaesthetized in MS-222 (tricaine methane-
sulfonate) water buffered solution (0.1 g/L; Sigma-Aldrich, USA). Sampling occurred between 10:00 a.m. and 2:00 p.m. The length of
each individual was measured and weighing occurred. Blood samples were collected by cardiac puncture, using a heparinized syr-
inge. The plasma samples were centrifuged at 3000 g for 10min at 4 °C and frozen at−70 °C until analyses. After blood sampling, fish
were euthanized by transection of the spinal cord. Gonads were collected and one gonad of each individual was frozen at −70 °C and
stored until steroid analysis while the second gonad was preserved in 4% buffered formalin for histology. There were histological
analyses of ovaries and testes for characterization of sexual maturity stage because the gonadosomatic index (GSI) is apparently a less
reliable assessment of stage of sexual maturation in batch spawners (Guerriero, 2007; Zeyl et al., 2014)

Table 1
Average day length and range of water temperature during reproductive phases.

Phase Day length [h] Water temperature [°C]

Pre-spawning 13 4.8 ± 0.5
Spawning 15 11.5 ± 2.5
Late spawning 14 19.6 ± 1.2
Non-spawning 10 11.0 ± 1.3
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2.2. Analytical methods

2.2.1. Plasma analysis
Plasma Mel was assayed using a total melatonin radioimmunoassay (RIA) kit (IBL International, Germany), after conducting an

extraction procedure using the previously reported method of Kulczykowska et al. (2007). The solid phase extraction was conducted
using a 10 μm Octadecyl C18 Speedisk Column, (J.T. Baker, USA). Eluates obtained after extraction were dried and then stored at
−70 °C until analysis. Before the RIA procedure, dried samples were re-suspended in Dulbecco’s Phosphate Buffered Saline con-
taining 0.01% Thimerosal (Sigma-Aldrich, USA). The labelled Mel with iodine-125 (125I) was used as a tracer for this analysis. The
assay was performed using polyclonal rabbit anti-Mel first antibodies and goat anti-rabbit second antibodies (double antibody
method). The detection limit was 3.0 pg/mL of plasma. The intra-assay coefficients of variation were 6.5%.

There was quantification of plasma T4 using a total thyroxine RIA-gnost kit (Cisbio Bioassays, France) without extraction pro-
cedures being conducted the method previously reported by Kulczykowska et al. (2007). The assay was performed using tubes coated
with murine anti-T4 monoclonal antibodies and 8-aniline-1-sulfonic acid as a displacement reagent. The T4 labelled with 125I was
used as a tracer for RIA. The detection limit was 1.1 ng/mL of plasma. The intra-assay coefficients of variation were 5.6%.

Plasma E2 was measured using the ESTR-CTRIA RIA kit (Cisbio Bioassays, France) without conducting extraction procedures
according to the manufacturer’s protocol validated in our laboratory (Kalamarz-Kubiak et al., 2017). Iodinated E2 with 125I was used
as a tracer. The assay was conducted in RIA tubes pre-coated with polyclonal anti-rabbit antiserum according to the kit manu-
facturer’s instructions. The detection limit of the assay was 4.25 pg/mL. The intra-assay coefficient of variation was 2.1%.

Plasma 11-KT was quantified using the competitive enzyme immunoassay (EIA) Cayman kit (Ann Arbor, USA) with extraction
procedures occurring before conducting the assay following the methods previously reported by Sokołowska et al. (2013). Before
analysis, extraction of plasma samples (100 μL) was conducted using ethyl acetate/hexane (50:50 v/v) at 4 × the sample volume
utilizing the method recommended in the EIA kit protocol with slight modifications. Dried extracts were stored at −20 °C until
further analysis. The recovery of extraction was between 98% and 115%. Extracts were dissolved in 2mL of EIA buffer and 50 μL of
the diluted samples were used for the EIA analysis. The 11-KT–acetylcholinesterase conjugate was used as a tracer. The assay was
performed in the pre-coated microplate with mouse anti-rabbit IgG using rabbit anti-11KT antibodies. The microplate was read at
412 nm using a Sunrise Absorbance Reader (Tecan, Austria). All samples were assayed in duplicate. The detection limit of the assay
was 0.7 pg/mL. The intra-assay coefficient of variation was 0.6%. For the RIA, all samples were assayed in duplicate and counted for
1min in a Wallac Wizard 1470 gamma counter (Perkin Elmer Life Science, USA). The inter-assay variations for plasma analysis were
not determined because all samples were measured in the same assay

2.2.2. Analysis in gonads
Each gonad was sonicated in 0.5 mL of phosphate buffer (0.05M, pH 7.4) supplemented with sodium azide (NaN3) using a

Microson™ XL 2000 (USA). Sonicated samples were centrifuged at 20,000 g for 20min at 4 °C and the supernatants stored at −70 °C
prior to the quantification of E2 and 11-KT concentrations.

The E2 concentrations in gonads’ extracts were measured using ESTR-CTRIA RIA kit (Cisbio Bioassays, France) according to the
method by Kulczykowska et al. (2015). Gonad supernatants (200 μL) were extracted with 1.6mL of diethyl ether using the modified
methods of Mori and Kano (1984). The recovery rate of the extraction was between 86% and 109%. Dried extracts were stored at
−20 °C prior to analysis. Extracts were dissolved in phosphate buffer (0.05M, pH 7.4) supplemented with NaN3 and samples of
100mL were taken for RIA analysis. Further analysis was performed according to the method described for plasma E2 quantifications
(see paragraph 2.2.1.). The detection limit of the assay was 4.25 pg/mL. The intra-assay coefficient of variation was 6.5%.

The 11-KT concentrations in gonads’ extracts were determined by EIA using Cayman kit (Ann Arbor, USA) with the extraction
procedure described by Kulczykowska et al. (2015). Gonad supernatants (250 μL) were extracted with 1mL of ethyl acetate/hexane
(50:50 v/v) according to the method recommended in the EIA kit protocol with slight modifications. The recovery of extraction was
between 98% and 115%. Dried extracts were stored at −20 °C until further analysis. Extracts were dissolved in 0.5mL of EIA buffer
and 50 μL of the diluted samples were used for the EIA analysis. Further analysis was performed using the methods described for
plasma 11-KT quantification (see Section 2.2.1). The detection limit of the assay was 1.092 pg/mL. The intra-assay coefficient of
variation was 0.8%. The inter-assay variations for gonads analysis were not determined because there were quantifications for all
samples in the same assay.

2.3. Histological analysis of gonads

Gonads were stored in 4% buffered formalin then dehydrated in graded ethanol and embedded in paraffin using standard his-
tological techniques. Sections of 6 μm were cut using a Leica RM2245 (Germany) microtome and stained with haematoxylin and
eosin. Slides from each gonad were examined using a Leica HI1210 light microscope (Leica Microsystems, Germany). The devel-
opmental stage of gonads was adapted according to Rocha and Rocha (2006) and Brown-Peterson et al. (2011).

2.4. Statistical analysis

Statistical analyses of data were conducted using STATISTICA 13 software. The data were expressed as means ± SEM.
Significance was accepted at P < 0.05. For multiple comparisons of hormone concentrations (MEL, T4, E2 and 11-KT), analysis of
variance (one-way ANOVA) was performed followed by post hoc tests (Spjotvoll and Stoline’s test for unequal numbers of cases or LSD
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test, and NIR test; as required). For comparisons of all hormone concentrations in plasma and gonads between males and females,
Student’s t-test was used.

2.5. Ethical note

All procedures performed in this study complied with the EC Directive 2010/63/EU for animal experiments and with the
guidelines of the Local Ethics Committee on Animal Experimentation (Resolution No. 33/2010).

3. Results

3.1. Analysis of hormones

The pattern of changes in plasma Mel concentrations was similar in both sexes (Fig. 1). In females, there were the greatest
concentrations of Mel in the spawning and non-spawning phases (Fig. 1). In males, the greatest concentration of Mel was during the
spawning phase (Fig. 1). The differences in Mel concentration between females and males were observed only in the spawning phase
(P < 0.05; Table 2).

The concentrations of plasma T4 was of a similar pattern during the various reproductive phases in females and males (Fig. 2). In
the non-spawning phase, in both sexes, there were the greatest concentrations of T4 (Fig. 2). There were greater concentrations of T4

in males and females in the pre-spawning phase (Fig. 2). In both sexes, there were the least concentrations of T4 in the late spawning
phase (Fig. 2A–B). There were differences in T4 between females and males only during the non-spawning phase (P < 0.05;
Table 2).

The patterns of E2 changes in plasma and gonads were similar in both sexes (Fig. 3A–D). In females, there were the greatest
concentrations of plasma E2 in the pre-spawning and non-spawning phases (Fig. 3A). In ovaries, there was the greatest concentration
of E2 in the pre-spawning phase (Fig. 3B). In males, there were the greatest E2 concentrations in plasma and gonads in the pre-
spawning and non-spawning phases (Fig. 3C–D). The concentrations of E2 in plasma and gonads of females were greater than those in
males in all reproductive phases (Fig. 3A–D, Table 2).

Fig. 1. Concentration of plasma melatonin in round goby females (A) and males (B) in different phases of the reproductive cycle; Data are presented
as mean± SEM, numbers of individuals are given in circles; Different superscripts indicate statistical differences among phases (P < 0.05).

Table 2
Statistical differences (P-values) in hormones between males and females of round goby in different phases of the reproductive cycle; significance
was accepted at P < 0.05.

Phase

pre-spawning spawning late spawning non-spawning

P

Plasma
melatonin 0.88 < 0.05 0.93 0.32
thyroxine 0.20 0.13 0.94 < 0.05
17β-estradiol < 0.001 < 0.001 < 0.01 < 0.001
11-ketotestosterone < 0.001 < 0.001 < 0.05 < 0.01

Gonads
17β-estradiol < 0.001 < 0.001 < 0.01 < 0.01
11-ketotestosterone < 0.01 < 0.001 < 0.05 < 0.001
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In females, 11-KT concentrations in plasma and gonads did not differ during the various reproductive phases (Fig. 4A–B). In
males, there was a similar pattern of 11-KT in plasma and gonads with the greatest concentrations during spawning (Fig. 4C–D). The
concentrations of 11-KT in plasma and gonads of males were greater than those of females during all reproductive phases (Fig. 3A–D;
Table 2).

Fig. 2. Concentration of plasma thyroxine in round goby females (A) and males (B) in different phases of the reproductive cycle; Data are presented
as mean± SEM, numbers of individuals are given in circles; Different superscripts indicate statistical differences among phases (P < 0.05).

Fig. 3. Concentrations of 17β-estradiol in plasma and gonads of round goby females (A–B) and males (C–D) in different phases of the reproductive
cycle Data are presented as mean±SEM, numbers of individuals are given in circles; Different superscripts indicate statistical differences among
phases (P < 0.05).
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3.2. Histological analysis

On the basis of histological analysis of ovaries and testes, the following phases of the reproductive cycle in round goby were
distinguished: pre-spawning, spawning, late spawning and non-spawning.

Ovaries of round gobies collected during the pre-spawning phase contained mostly follicles at the late stage of vitellogenesis
(VTG), before there was germinal vesicle migration (GVM), and oocytes present at the previtellogenic stage (Fig. 5A). Ovaries
collected in the spawning phase were characterized by the large number of oocytes at the early stage of GVM. The presence of
postovulatory follicles (POFs) indicated these individuals were in the active spawning stage at the time of tissue collection. The
ovaries also contained the developing batches of oocytes at the early stage of vitellogenesis (eVTG) and previtellogenic stage (PG),
which is characteristic for batch spawners (Fig. 5C). In the late spawning phase, there were large numbers of POFs in the ovaries.
Oocytes during GVM, eVTG and PG were also detected (Fig. 5E). During non-spawning phase, ovaries were in regression and con-
tained mostly vitellogenic oocytes in the early atresia stage (A). In this phase, oocytes at the eVTG and PG stages were also present
(Fig. 5G).

In the pre-spawning phase, maturing testes contained spermatogonia (SG) - an undifferentiated germ cell (Fig. 5B). In the
spawning phase, testes were undergoing active spermatogenesis as indicated by the presence of large numbers of spermatozoa (SZ).
Spermatogonial cells, SG and spermatocytes (SC), were also clearly visible during this phase (Fig. 5D). In the late spawning phase,
testes were fully matured, filled with SZ (Fig. 5F). In the non-spawning phase, testes were in regression and SGs were the dominant
cells. It was also noted that there were residual SZ in the lumen of narrowing seminiferous tubules (ST; Fig. 5H).

4. Discussion

The present study is the first attempt to document the changes in concentrations of plasma Mel and T4 and plasma and gonadal E2
and 11-KT as well as with histology of gonads in both sexes of round goby during four different phases of the reproductive cycle: pre-
spawning, spawning, late spawning and non-spawning.

Fig. 4. Concentrations of 11-ketotestosterone in plasma nad gonads of round goby females (A–B) and males (C–D) in different phases of the
reproductive cycle. Data are presented as mean±SEM, numbers of individuals are given in circles; Different superscripts indicate statistical dif-
ferences among phases (P < 0.05).
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Fig. 5. Structures of ovaries and testes in round goby in different phases of the reproductive cycle. Pre-spawning phase: (A) Ovary with developing
oocytes in the late stage of vitellogenesis (VTG); (B) Maturing testis with the dominance of spermatogonia (SG). Spawning phase: (C) Partially spent
ovary (postovulatory follicles; POFs) with the next developing batches of oocytes in the early stage of maturation (germinal vesicle migration; GVM),
early stage of vitellogenesis (eVTG) and previtellogenic stage (PG); (D) Testis under active spermatogenesis with visible spermatocytes (SC) and
spermatozoa (SZ) in seminiferous tubules (ST). Late spawning phase: (E) Ovary with the dominance of POFs and the presence of GVM, eVTG and PG;
(F) Fully developed testis with seminiferous tubules (ST) filled with SZ. Non-spawning phase: (G) Regressing ovary with the dominance of atretic
vitellogenic oocytes (A); (H) regressing testis with the dominance of SG and residual SZ in the lumen of ST. Scale bars correspond to 500 μm.
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4.1. Mel

In the present study, the plasma Mel concentrations were of a similar pattern in round goby females and males throughout the
four phases where there were assessments. There were similar trends in the batch spawning common carp (Cyprinus carpio; Kezuka
et al., 1988) and single spawning pacu (Piaractus mesopotamicus; Iseki et al., 2000). In round goby females, there were greater
concentrations of plasma Mel in the pre-spawning phase. These findings are consistent with those of Maitra et al. (2013), where there
was a greater concentration of Mel during the pre-spawning phase in the single spawning major carp (Catla catla) females. There were
the greatest concentrations of Mel in the present study during the spawning phase of round goby females. At this phase, Mel is
necessary for maturation processes and to protect the oocytes from free radicals during periods of rapid cell proliferation as has been
reported to occur in the batch spawning mummichog (Fundulus heteroclitus; Lombardo et al., 2012) and zebrafish (Danio rerio;
Carnevali et al., 2011) as well as in the single spawning major carp (Maitra and Hasan, 2016; Mondal et al., 2017). In the late-
spawning phase, there were the least Mel concentrations in the present study, and the POFs were in predominant numbers compared
with the numbers of oocytes that were in relatively greater numbers during other stages of development. The subsequent increase of
Mel concentrations occurred in the non-spawning phase while there was ovarian regression occurring. There have been similar
previous observations in the batch spawning three-spined stickleback (Gasterosteus aculeatus; Sokołowska et al., 2004), where there
was an inhibitory effect on gonads. It resulted in gonadal regression that was attributed to having occurred because of the relatively
greater Mel concentrations during this phase. Furthermore, during this phase, there was follicular atresia with the production of free
radicals being a potential cause for the increased concentrations of Mel and other antioxidants as previously reported (Maitra and
Hasan, 2016; Mondal et al., 2017) in major carp.

In round goby males of the present study, there was a greater concentration of Mel in the pre-spawning phase when testes were
undergoing early maturation. Data from the present study are consistent with previous findings when there was study of the batch
spawner three-spined stickleback (Borg and Ekström, 1981) and single spawner masu salmon (Oncorhynchus masou; Amano et al.,
2000), where Mel stimulated gonadal development during the spring of the year. In round goby males, there was the greatest Mel
plasma concentration in the spawning phase. Results of studies conducted in fish indicate that relatively greater Mel concentrations
enhance the maturation of testes and sperm quality in a single spawning broadhead catfish (Clarias macrocephalus; Aripin et al.,
2014). Therefore, the greater concentrations of Mel, in round goby males may also function as a defense against free radicals during
the period of rapid cell proliferation that accompanies spermiogenesis, as it was presented in mammals (Gavella and Lipovac, 2000;
Shang et al., 2004). In the present study, in the late spawning phase, when testes were completely matured, there was the least
concentration of Mel. The decrease in Mel concentration at the end of spermiogenesis has also been reported in the three-spined
stickleback (Sokołowska et al., 2004). There was a second increase in plasma Mel concentration in round goby males during the non-
spawning phase when testes were undergoing regression. There has been a similar increase in Mel concentration observed after
spawning in three-spined stickleback (Sokołowska et al., 2004) and in single spawning major carp (Bhattacharya et al., 2007). It has
been suggested that in fish, relatively greater Mel concentrations may have an inhibitory effect on gonadotropins and induce re-
gression of gonads (Fenwick, 1970; Maitra and Hasan, 2016). Probably, the increase in Mel concentration during this reproductive
phase was also the result of free radical production during the regression of testicular tissue (Maitra and Hasan, 2016).

4.2. T4

In the pre-spawning phase, there was a relatively greater concentration of T4 in plasma of round goby females. Greater plasma
concentrations of T4 have also been reported during the pre-spawning phase in batch spawning of female goldfish (Carassius auratus;
Hurlburt, 1977), plaice (Pleuronectes platessa; Osborn and Simpson, 1978), common dentex (Dentex dentex; Pavlidis et al., 2000) and
Atlantic cod (Comeau and Campana, 2006). There have been reports that T4 increases the growth rate of ovarian follicles and the
number of vitellogenic follicles in this phase (Sage, 1973; Cyr and Eales, 1988; Legler et al., 2000; Supriya et al., 2005). In the
spawning and late spawning phase, concentrations of T4 in plasma of round goby females were basal. There have been similar reports
of basal plasma T4 during this reproductive phase in the batch spawning plaice (Osborn and Simpson, 1978), common dentex
(Pavlidis et al., 2000) and Atlantic cod (Comeau and Campana, 2006). There was the greatest concentration of plasma T4 in round
goby females during non-spawning phase when the ovaries contained primarily vitellogenic oocytes undergoing atresia. There has
been a similar post-reproductive surge of T4 observed in such batch spawners as plaice (Osborn and Simpson, 1978), common dentex
(Pavlidis et al., 2000) and Atlantic cod (Comeau and Campana, 2006). It was reported that the increase of T4 in fish occurring after
spawning might be associated with the function of T4 in enhancing development of previtellogenic oocytes still persisting in re-
gressing ovaries (Pavlidis et al., 2000) and also with ongoing steroidogenesis in the atretic vitellogenic oocytes (Cyr and Eales, 1988;
Rinchard et al., 1993).

In males of round goby, there was a similar trend in changes of plasma T4 concentration as in females in the present study. The
decreasing concentrations of T4 after the pre-spawning phase, and during the spawning to late spawning phases is a pattern that is
consistent with progress in spermatogenesis. There have been reports of similar results for other species such as the batch spawning
plaice (Osborn and Simpson, 1978) and striped bass (Morone saxatilis; Mylonas et al., 1997) or single spawning brown bullhead
(Ictalurus nebulosus; Burke and Leatherland, 1983). In the present study, there was the greatest concentration of plasma T4 during the
non-spawning phase when testes were undergoing regression. There was also a similar increase in T4 concentrations during this
reproductive phase in plaice (Osborn and Simpson, 1978). Furthermore, Habibi et al. (2012) have reported that T4 inhibits ster-
oidogenesis in the batch spawning goldfish.
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4.3. E2

In the pre-spawning phase of the present study, when a large population of the oocytes commenced active vitellogenesis, there
were the greatest concentration of E2 in plasma and gonads of round goby females. There were relatively greater plasma E2 con-
centrations during the pre-spawning phase in batch spawning females of the goldfish (Kagawa et al., 1983a), Atlantic halibut
(Hippoglossus hippoglossus; Methven et al., 1992), tench (Tinca tinca; Pinillos et al., 2003), chub (Leuciscus cephalus; Guerriero, 2007),
kutum (Rutilus frisii kutum; Sabet et al., 2009) and river catfish (Hemibagrus nemurus; Adebiyi et al., 2013). Furthermore, there have
been in vivo and in vitro studies reported describing a relatively greater amount of E2 production by vitellogenic oocytes during the
pre-spawning phase in females of the batch spawning tilapia (Oreochromis mossambicus; Cornish, 1998), goldfish (Kagawa et al.,
1984) and single spawning rainbow trout (Oncorhynchus mykiss; van Bohemen and Lambert, 1981). In the spawning phase, E2
concentrations were less in plasma and ovaries of round goby. There are many batch spawning fish species such as the goldfish
(Kagawa et al., 1983a), sea bass (Prat et al., 1990), gudgeon (Rinchard et al., 1993), Jundiá (Rhamdia quelen; Barcellos et al., 2001)
and gilthead seabream (Sparus aurata; Kadmon et al., 1985) in which plasma E2 concentration is basal during spawning. In round
goby, as well as in other batch spawners during the spawning phase, besides oocytes at early stages of vitellogenesis and maturation,
the ovaries contain POFs (Kagawa et al., 1984; Rinchard et al., 1993; Barcellos et al., 2001). The POFs, like other oocytes occurring in
ovaries during this phase, produce also a very small amount of E2 (Kagawa et al., 1983b), which could explain the relatively lesser E2
concentrations in gonads. In the late spawning phase, there were minimal concentrations of E2 in plasma and there were relatively
lesser concentrations in ovaries during this reproductive phase in female round goby. At the end of spawning, there were relatively
lesser concentrations of E2 in other batch spawning teleosts, such as the common dentex (Pavlidis et al., 2000), tench (Pinillos et al.,
2003), chub (Guerriero, 2007) and mahseer (Tor tambroides; Ismail et al., 2011). Further, the basal level concentration of E2 in round
goby ovaries when there was a predominance of POFs is consistent with results previously reported by Kagawa et al. (1983b) where
there were minimal concentrations of E2 in ovaries following ovulation in the single spawning amago salmon (Oncorhynchus rho-
durus). During the non-spawning phase in round goby, there was the second greatest concentration of E2 in plasma and greater
concentrations of E2 in regressed ovaries as compared with the other reproductive phases in the present study. Similarly, during
regression of ovaries, there were greater concentrations of E2 in the plasma of the batch spawning goldfish (Khoo, 1975) and gudgeon
(Rinchard et al., 1993). Furthermore, Rinchard et al. (1993) postulated that during regression, atretic vitellogenic oocytes continue to
undergo steroidogenesis, which seems to be a sufficient explanation for this observation in the present study.

In round goby males, there were the greatest concentrations of E2 in plasma and testes in the pre-spawning and non-spawning
phases. Relatively greater concentrations of E2 have been observed in plasma of males of the single spawning Japanese huchen
(Hucho perryi) (Amer et al., 2001) and the batch spawning gilthead seabream (Chaves-Pozo et al., 2007). The greatest concentration
of E2 in testes of round goby in the pre-spawning phase appears to be associated with the function of this hormone in the early stages
of spermatogenesis. Miura et al. (1999) have reported that there are functions of E2 in the stimulation of spermatogonial stem cell
division in the Japanese eel (Anguilla japonica). Whereas, the greatest concentration of E2 observed in testes of the non-spawning
round goby is probably associated with the suppression of spermatogenesis. The E2 inhibits spermatogonial proliferation and induces
spermatogonial atresia (Amer et al., 2001; Chaves-Pozo et al., 2005, 2007; Basak et al., 2016). There were lesser concentrations of E2
in plasma and gonads of round goby males in spawning and late-spawning phases. There were lesser concentrations of E2 during the
spawning season in the serum of the single spawner Japanese huchen (Amer et al., 2001) and in testes in the Japanese eel (Miura
et al., 1999; Miura and Miura, 2001). The role of E2 in spermatogenesis appeared to be less during spawning than in other re-
productive phases.

4.4. 11-KT

During the reproductive cycle in round goby females, concentrations of 11-KT in plasma and gonads were less than in males which
is consistent with 11-KT being a male-specific hormone in most of the fish species (Borg, 1994; Schulz et al., 2010). Furthermore, the
concentrations of 11-KT in plasma and ovaries did not differ during reproductive phases in the present study. There is little in-
formation available regarding the functions of 11-KT in the reproductive cycle of female fish. Results from in vitro studies in females
of the short-finned eel (Lokman et al., 2007), Atlantic cod (Kortner et al., 2008, 2009) and Japanese eel (Endo et al., 2011), however,
indicate that 11-KT is one of the factors stimulating the growth of previtellogenic oocytes. In the present study, the previtellogenic
oocytes were present in ovaries in similar quantities during all reproductive phases that coincide with the aligned concentrations of
11-KT during the same reproductive phases.

In round goby males, there were the greatest concentrations of 11-KT during the spawning phase in both plasma and testes. The
concentrations of 11-KT were associated with the process of active spermatogenesis in the developing testes. These results are
consistent with several reports in which concentrations of 11-KT are greatest at the beginning of male spawning and decrease with
the advancement of sperm production and testes regression (Borg, 1994; Schulz et al., 2010). For example, a similar pattern was
described in batch spawning pejerrey (Elisio et al., 2015) and Atlantic cod (Dahle et al., 2003).

5. Conclusions

There were the greatest Mel concentrations in the spawning and non-spawning phases in the present study, therefore, this
hormone appears to have important functions in determining a time frame for spawning in round goby females and males. The
greatest concentrations of T4 and E2 occurred in the pre-spawning and non-spawning phase, in both females and males, indicating
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these hormones are integral in affecting the tissues of the round goby during the active spawning phase and also the timing of
initiation of spawning (stimulation of gonad development in pre-spawning phase). The greatest concentrations of 11-KT in males was
during the spawning phase and, therefore, this hormone appears to be functional in spermatogenesis in the developing testes. In
females, however, there were no changes in 11-KT concentrations during the various reproductive phases. This finding is most likely
related to the stimulatory role of 11-KT in the growth of previtellogenic oocytes, which were present in ovaries in similar quantities
during all reproductive phases.
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