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In fishes, hormonal regulation of water and ion homeostasis
requires participation and interaction of many endocrine
systems at the various functional levels of the organism
(Kulczykowska, 2007). One of them is urotensin II (UII), a cyclic
peptide originally isolated from the urophysis of the goby
(Gillichthys mirabilis) (Pearson et al., '80). In teleosts, UII appears
to be involved in the control of osmoregulatory and metabolic
functions and also in the cardiovascular and gastrointestinal
activities, and immune response (Sheridan et al., '87; Lu
et al., 2006; Le Mével et al., 2008; Nobata et al., 2011; Singh
and Rai, 2011). In the European flounder (Platichthys flesus),
urophysial UII content increased over the 24 hr following transfer
from sea water to fresh water, whereas plasma UII content and
UII receptor expression in key target organs (kidney and gill)
decreased, suggesting down‐regulation of the UII system (Bond
et al., 2002; Lu et al., 2006).

In teleosts, also nonapeptides such as arginine vasotocin (AVT)
and isotocin (IT), the homologues of mammalian arginine
vasopressin (AVP), and oxytocin (OT), seem to be involved in
the maintenance of water and ion homeostasis (McCormick and
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Bradshaw, 2006; Kulczykowska, 2007). There is also evidence for
a role of AVT and IT in response to different stress stimuli
(Kulczykowska et al., 2001; Mancera et al., 2008). It has been
observed that the synthesis of both nonapeptides and their
release from the neurohypophysis are sensitive to changes of
water salinity. In teleosts, an acute change in water salinity
results in altered pro AVT and pro IT mRNA expression in
hypothalamic neurons (Hyodo et al., '91; Urano et al., '94;
Martos‐Sitcha et al., 2013) and in altered content of AVT and IT in
the pituitary (Haruta et al., '91; Bond et al., 2002; Martos‐Sitcha
et al., 2013).
The potential relationship between AVT and other hormonal

systems such as UII contributing to the osmoregulation in fishes
has been suggested before (Warne and Balment, '95; Winter
et al., '99; Bond et al., 2002). AVT and IT are synthesized in the
preoptic area (POA) and transported to the neurohypophysis for
storage and release into the vascular system via axon terminals
(Van den Dungen et al., '82; Holmqvist and Ekström, '95; Saito
et al., 2004). UII has been identified in teleost and non‐teleost
fishes not only in the urophysis but also in the CNS, for example,
in caudal spinal cord, medulla oblongata, several hypothalamic
nuclei, and most thalamic nuclei (Yulis and Lederis, '86, '88;
Waugh and Conlon, '93; Waugh et al., '95). UII and UII receptor
mRNA expression has been detected in all brain regions of
European flounder, including the telencephalon‐preoptic region,
hypothalamus, and pituitary (Lu et al., 2006). These results may
indicate a site of interaction between the UII and AVT/IT systems
within the POA, hypothalamus and pituitary. Moreover, in the
European flounder it was observed that both UII and AVT are
involved in the hyper‐ and hypo‐osmotic stress (Warne and
Balment, '95; Winter et al., '99; Bond et al., 2002). However, to the
best of our knowledge, the influence of UII on AVTand IT secretion
in teleosts has never been studied before.
The aim of the present study was to determine whether AVT and

IT release from nerve endings is affected by UII in the pituitary of
gilthead sea bream (Sparus aurata).

MATERIALS AND METHODS

Fish
Three‐year old gilthead sea breamwere held at the National Center
for Mariculture, Eilat, Israel. Fish were kept in a 5‐m3 circular tank
supplied with aeration at ambient seawater temperature (20–
26°C), salinity of 40� 0.5‰, under natural light conditions
11 hr:13 hr (light/dark). Fish were fed with commercial sea bream
diet containing 45% protein. In October, with the reproductive
season approaching, 49 fishes of both sexes (560� 24 g) were
euthanized with an overdose of bicarbonate‐buffered MS222
(0.02%; Sigma–Aldrich, St. Louis, MO, USA), and after decapita-
tion, the pituitary glands were immediately collected.
The experiment was conducted following the guidelines of the

Ministry of Agriculture (Committee for Animal Welfare) after the

completion of training by courses given by the Committee for
Animal Welfare (both the Ministry of Agriculture and Ben‐Gurion
University of the Negev, Israel).

Culture of Dispersed Pituitary Cells
Primary cultures of dispersed pituitary cells were performed
according to the procedure described previously by Kalamarz‐
Kubiak et al. (2014). Dispersed pituitary cells were plated on 24
multi‐well plates (Greiner Bio‐One, Frickenhausen, Germany) at
density of 1.105�106 cells/well in 1.5mL growth medium
(Medium 199, 10% FCS, 10mM HEPES, and 1% Pen–Strep–
Nystatin solution; Biological Industries, Beit Haemek, Israel). After
3 days of culture at 28°C in 5% CO2 atmosphere, growth medium
was replaced with harvest medium (Medium 199 supplemented
with 0.1% BSA, 10mM HEPES, and 1% Pen–Strep–Nystatin
solution) and UII (10�12, 10�10, and 10�8M) (goby sequence;
Bachem, Bubendorf, Switzerland) was added. Each plate consisted
of a cell culture supplemented with UII and a cell culture without
treatment as control. The plates were incubated at 28°C in 5% CO2

atmosphere for 6, 24, and 48 hr, respectively. Six replicas were
done for each UII concentration and control. After 6, 24, and 48 hr,
the media were collected and stored at �70°C until high
performance liquid chromatography (HPLC) analysis.

AVT and IT Analysis
Nonapeptides from culture media were extracted by solid‐phase
extraction (SPE) as described previously by Kalamarz‐Kubiak et al.
(2011). The separation and detection of AVT and IT were performed
with HPLC with fluorescence and UV detection according to a
modified procedure by Kulczykowska ('95). Dried samples were
reconstituted with 50mL of 0.1% trifluoroacetic acid (TFA) in 15%
acetonitrile and then injected to HPLC system [1200 series
Quaternary HPLC system (Agilent Technology, Santa Clara, CA,
USA)] with fluorescence detector and Diode Array Detector. The
chromatographic separations of peptides were carried out on
ZORBAX Eclipse XDB‐C18 (4.6mm� 150mm, 5mm) (Agilent
Technology) using linear gradient system: 20–40%mobile phase B
(0.1% TFA in acetonitrile: H2O (3:1) in mobile phase A (0.1% TFA
in H2O) for 15min at the flow rate 0.7mL/min. UV detection was
performed at 215 nm, fluorescence detection at 312 nm with
excitation at 280 nm. Recovery of AVT and IT was in the 89–93%
range. The detection limit was defined as 100 fmol/mL. Intra‐day
repeatability expressed as relative standard deviation (RSD) was in
the 2–4.5% and 5.3–8.2% range for AVT and IT, respectively;
inter‐day repeatability was in the 2.5–5.5% and 5.5–8.5% range
for AVT and IT, respectively.

Statistical Analysis
Contents of AVT and IT are presented as % of control. For multiple
comparisons, two‐way ANOVA was used. Post hoc comparisons
were made with the Newman–Keuls test. Significance was taken at
P< 0.05. Statistical analysis was performed using STATISTICA 7.1.
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RESULTS
Urostensin II at all doses significantly decreased AVT release after
6, 24, and 48 hr of culture in comparison to control (Fig. 1A). UII
caused approximately 50% of inhibition in AVT release. In
contrast to AVT, IT secretion was significantly higher only after
24 hr of culture in exposure to all tested doses of UII (Fig. 1B).
There U II caused approximately 30% of stimulation in IT release.

DISCUSSION
This study provides evidence for the first time that AVT and IT
release from nerve endings is influenced by UII in gilthead sea
bream pituitary. Although it had been observed that AVT and UII
are both linked to osmoregulation (Warne and Balment, '95;
Winter et al., '99; Bond et al., 2002), their interactions had not been
studied before. The doses of UII used in this in vitro study were

A

B

Figure 1. Arginine vasotocin (A) and isotocin (B) release by nerve endings in primary cultures of dispersed pituitary cells from gilthead sea
bream in response to UII (10�12, 10�10, and 10�8M) for 6, 24, and 48 hr of incubation. Values are the means� SEM. Nonapeptides values are
expressed as % of control. The baseline levels of AVT and IT in controls are 155.37� 4 and 1619.62� 32 pmol/mL, respectively. Letters above
bars indicate values significantly different versus control within time point of incubation; a (P< 0.001), b (P< 0.01), and c (P< 0.05).
Asterisks above bars indicate values that are significantly different between applied UII doses within time point of incubation. �P< 0.05.
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determined on the basis of the literature, considering its
concentration in different fish tissues (Kobayashi et al., '86;
Kelsall and Balment, '98; Winter et al., '99). The results presented
here indicate that UII inhibits AVT release from nerve endings. It
has been shown that AVT is an antidiuretic hormone reducing
urine production in eels (Henderson and Wales, '74; Babiker and
Rankin, '78). Thus, by inhibiting AVT secretion, UII may have a
diuretic effect. Furthermore, it is known, that UII administrated
in vivo increases renal blood flow, glomerular filtration rate, and
consequently enhances diuresis and natriuresis in rat (Zhang
et al., 2003; Abdel‐Razik et al., 2008). The mammalian paradigm
could be helpful in interpretation of fish data. Our results indicate
that UII strong inhibitory action on AVT release is independent of
the time of exposure and tested doses. After 24 hr of incubation,
the inhibition of AVT was lower and persisted to the end of
experiment. Disinhibition in AVT secretion after a long time of
culture may suggest the desensitization of UII receptors as it was
observed in human cell lines (Proulx et al., 2008; Batuwangala
et al., 2009). In contrast to AVT, UII significantly increased IT
release from nerve endings after 24 hr of culture. This stimulatory
effect of UII appeared to be independent of tested doses. In a
variety of mammalian systems, UII is a naturally occurring
somatostatin analog sharing some functional similarities with
somatostatin (Pearson et al., '80; Conlon et al., '97). These results
are consistent with data in mammals that show that the
intracerebroventricular (ICV) somatostatin infusion significantly
increases plasma OT secretion in virgin and pregnant rats (Meddle
et al., 2010). The opposite response of AVT and IT to UII exposure
in pituitary cell culture showed an independent regulation of
nonapeptides secretion which has been documented previously in
rainbow trout (Oncorhynchus mykiss) (Saito and Urano, 2001).
An apparent difference in response of AVT and IT to rapid and
long‐term osmotic changes which have been shown in rainbow
trout also supports this idea (Kulczykowska, '97; Kulczykowska
et al., 2001).
This study indicates that UII affects AVT and IT release from

nerve endings in the pituitary of gilthead sea bream. It seems that
UII together with AVT and IT may control response to different
salinities in fishes.
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